FLOW-3D RESIN

FLOW-3D RESIN 모듈

FLOW-3D RESIN 는 FLOW Science Japan에서 개발된 열 경화성 수지 유동과 열 특성을 해석하는 모듈입니다.
열 경화성 수지 재료는 강한 접착성 구조 강도, 열 및 화학적 내구성이 뛰어나며, 반도체 장치, 발전기, 변압기, 개폐기, 전기 자동차 및 하이브리드 전기 자동차의 코일이나 다른 파트, 프린트 기판, MRI등에 사용되고 있습니다.

주요 기능:Castro-Macosko, Cross-WLF등의 점성 모델 지수 감쇠, Kamal등의 발열 모델 겔화 이후의 경화 수축 모델 수지 함침 해석용 포러스 체내 유동 모델(점성 의존 저항, 이방성 저항 등) 2-domain Tait pvT밀도식 모델 구조 해석 인터페이스 F.SAI 경유의 압력, 온도 데이터 내보내기

적용 사례

resin3 트랜스퍼 성형
resin4
사출 성형
background_phone_case_compare
실제 제품과 비교
resin5
트랜스퍼 몰드(충전의 결과:온도[위] / 속도[하단])
resin6
트랜스퍼 몰드(발열의 결과:온도[위]총 / 변형[하단])
resin7
트랜스퍼 몰드(냉각의 결과:온도)
background_resin1
FLOW-3D의 온도 데이터를 기반으로 수지에 매핑
background_resin2
구조 해석의 결과(Von Mises stress)
background_resin3
구조 해석의 결과(Total translation)
resin8
트랜스퍼 몰드(충전 해석:온도[위] / 공기 흡입[하단])
resin9
트랜스퍼 몰드(냉각 해석:응력[좌측]총 변형[오른쪽 위] / 온도[아래])
background_resin4
트랜스퍼 몰드 반응률[시간 추이]
background_resin5
트랜스퍼 몰드 응력[시간 추이]
background_resin6
FLOW-3D의 온도 데이터를 기반으로 수지에 매핑
background_resin7
구조 해석의 결과(변위[왼쪽] / Von Mises stress[오른쪽])

^back to top

Continuous Casting

Continuous Casting

연속 주조는 용강이 반제품 빌렛, 블룸 또는 슬래브로 응고되어 후속 압연기에서 압연하는 공정입니다. 연속 주조시, 용강은 레들에서 주조기로 이송됩니다. 주조 작업이 시작되면 레들의 바닥에 있는 슬라이딩 셔터가 열리고 철강은 제어된 속도로 턴디쉬 안으로 그리고 턴디쉬에서 하나 이상의 주형으로 흐릅니다.

1950 년대에 연속 주조가 도입되기 전에 철강은 고정 금형에 붓고 잉곳을 성형했습니다. 그 이후로 지속적인 주조는 수율, 품질, 생산성 및 비용 효율성을 향상시키기 위해 발전해 왔습니다. 주조 회사는 공정 개선을 위해 항상 노력하고 있으며, FLOW-3D CAST를 사용한 시뮬레이션은 물리적 시행 착오없이 비용을 절감할 수 있는 기회를 제공합니다.

Semi-Continuous Casting of a 600 mm Slab with Stress Calculation

이 시뮬레이션에서는 600mm직경 슬래브의 반 연속 주조의 공정이 모델링 됩니다. 액체 금속, A7050 합금은 세라믹 노즐을 통해 상단에서 들어가 흑연 주형을 통과하고, 표면 열전달계수와 지정된 온도로 모델링 된 물 분무에 의해 냉각됩니다. 하단의 강철 캡은 금속의 이동을 시작하여 액체 금속이 유출되는 것을 방지합니다. 캡은 0.3mm/sec의 일정한 속도로 아래쪽으로 이동하는 General Moving Object 물리 모델로 모델링 됩니다. 열응력 해석 모델은 균일하지 않은 냉각 및 수축으로 인해 고상 금속에서 발생하는 응력 및 변형을 예측하는 데 사용됩니다. 이 애니메이션은 Von Mises stress 결과를 보여 주는데, 400배로 확대된 결과입니다.

Continuous Casting Simulations

Rotational channel continuous casting example.

 

Solid fraction contours of the continuous casting process of a cylindrical steed rod using the general moving object and solidification models.

 

A 2D axisymmetric slice showing transient solidification contours through the transition region during continuous casting of a cylindrical steel rod.

열응력 개선 / Thermal Stress Evolution

열응력 개선 / Thermal Stress Evolution

FLOW-3D의 TSE(Thermalstressdiversion)모델은 모델링 가능한 주조 프로세스의 범위를 확장합니다. FSI/SETSE모델은 주변 유체, 열 구배 및 지정된 구속 조건의 압력에 대응하여 솔리드 및 단단한 구성 요소의 응력 및 변형을 모델링 하는 유한 요소 접근 방식을 사용하여 유체와 솔리드 사이의 완전 결합 상호 작용을 설명합니다.

균일하지 않은 냉각에 의해 발생하는 응고 과정 동안 열 스트레스가 발생합니다. 이러한 응력은 주형 벽의 수축 및 주물 형상의 불규칙에 의해 영향을 받습니다.Thermal stress evolution simulation
Von Mises stresses in a solidified aluminum V6 engine block

위의 시뮬레이션은 VonMises가 단단한 알루미늄 V6엔진 블록에서 응력을 나타냅니다. 이 블록은 강철 다이 내에서 주조된 알루미늄 A380합금으로 구성되어 있습니다.

알루미늄의 주입 온도는 527°C였으며 초기 다이 온도는 125°C였습니다. 부품을 60초 동안 다이 내에서 냉각한 후 주변 조건(125°C)에서 9분 동안 부품을 계속 냉각시켜 총 10분의 시뮬레이션 시간을 제공했습니다. 표시된 VonMises 응력은 부품 내 전단 응력의 크기를 측정한 것이며, 따라서 찢어지기 쉬운 부위를 보여 줍니다.

응력은 금형과 응고 금속에서 동시에 계산할 수 있습니다. FLOW-3D의 구조화된 메쉬를 초기 템플릿으로 사용하여 자동으로 메쉬 작업을 수행할 수 있습니다. 사용자는 중첩 또는 링크된 메쉬 블록을 만들고 V1.1.0의 새로운 적합한 메쉬 기능을 사용하여 메쉬의 로컬 해상도를 제어할 수 있습니다. 또는, Exodus-II형식의 타사 메쉬 생성 소프트웨어에서 유한 요소 메쉬를 가져올 수 있습니다.

Simulating Thermal Stress

아래에 표시된 알루미늄 커버는 강철 다이 내 알루미늄 A380합금으로 구성되어 있습니다. 주입 온도는 654°C였으며 초기 다이 온도는 240°C였습니다. 부품이 다이 내에서 6s동안 냉각되었으며 이때 부품이 완전히 경화되었습니다(러너 시스템 제외). 그런 다음 다이를 열고 부품이 주변 조건(25°C)에서 10초 이상 냉각되도록 했습니다. 그런 다음 탕도(runner)시스템을 제거했고, 이후 주변 조건에서 10초간 더 냉각했습니다. 여기에 표시된 정상 변위는 부품 표면의 움직임을 나타내며, 최대 변형 영역을 강조하기 위해 30회 증폭됩니다.

Displacements in a die cast part, die closed
Displacements in a die cast part, die closed.
Displacements in the part and runners, die open
Displacements in the part and runners, die open.
Displacements in the part with runner system removed
Displacements in the part with runner system removed.

Component Coupling within the Fluid-Structure Interaction and Thermal Stress Evolution Models

FLOW-3Dv11의 새로운 기능은 인접한 FSI(유체-구조물 상호 작용)구성 요소 및/또는 TSE(열 스트레스 진화)고체화된 유체 영역 간의 탄성 응력을 결합할 수 있는 기존의 유한 요소 고체 역학 용제의 업그레이드입니다. 이 새로운 기능은 복합 재료 부품(예:주형에서 응고되는 금속 주물 응고제 또는 바이메탈 게이지)의 열 응력과 변형을 시뮬레이션하고 반경 게이트 및 파이프 라인 지지 시스템과 같은 연결된 유압 구조에 가해지는 힘을 시뮬레이션하는 등 다양한 모델링 가능성을 열어 줍니다.

모델에는 복잡한 프로세스를 효율적으로 계산할 수 있는 여러가지 옵션이 있습니다.

No coupling

이 옵션은 인접 FSI구성 요소가 응력을 교환하지 않는 단순화된 경우를 나타냅니다. 그것은 계산적으로 효율적이며 요소들 간의 스트레스 상호 작용이 중요하지 않은 시나리오에 적합하다.

Full coupling

전체 커플링 옵션은 서로 다른 재료 특성을 가진 인접 FSI구성 요소를 모델링 하기 위한 것입니다. 두 구성 요소는 서로 당기거나 미끄러질 수 없지만 인터페이스의 응력은 구성 요소 간에 전달됩니다. 이는 바이메탈과 같이 접합된 구조물을 모델링 하는 데 이상적입니다.

Partial coupling

부분 커플링 옵션은 인접 FSI구성 요소가 마찰력과 정상적인 힘을 통해 상호 작용하지만 분리될 수 있는 일반적인 문제를 모델링 하기 위한 것. 이 옵션은 FSI구성 요소와 TSE의 고체화된 유체 영역을 결합하는 데 사용될 수 있으므로 부품이 다이에서 냉각될 때 주조 부품 및 다이에 대한 열 응력의 영향을 조사하는 데 이상적입니다.

두가지 시뮬레이션이 제시되어 모델의 새로운 특징을 보다 자세히 보여 줍니다. 첫번째 상황에서는 완전한 커플링 옵션을 사용하여 시간이 변화하는 온도에 대응하여 바이메탈 벤딩을 모델링 하는 반면, 두번째 예에서는 다이에서 V6엔진 블록을 응고하는 동안 부분 커플링 모델을 사용하여 열 응력을 확인하는 것을 보여 줍니다.

Full Coupling Example: Bimetallic Strip

전체 커플링 옵션의 가장 간단한 예 중 하나는 온도 구배에 대한 반응으로 바이메탈이 움직이는 것입니다. 이러한 스트립은 온도 변화에 대응하여 두 금속이 동일한 속도로 팽창하지 않기 때문에 열 스위치 및 벤딩에 일반적으로 사용됩니다. 시뮬레이션에서 모델링 된 바이메탈은 그림 1과 같이 길이 15cm, 두께 0.5cm의 강철 스트립으로 구성된 캔틸레버 빔입니다.

Schematic of bimetallic strip
그림 1:예제 시뮬레이션에 사용된 바이메탈의 개략도; 검은 색 화살표는 편향이 프로브 되는 위치를 나타내고, 양의 편향은 상향이다.

그리고 나서 스트립은 온도가 70초에 걸쳐 균일하게 변화하는 환경에 배치되었다. 그림 2는 시간 경과에 따른 다양한 온도에서 시뮬레이션 및 분석 용액을 위한 스트립 팁의 편향을 보여 준다. 결과는 온도가 변한 시기와 스트립의 열적 관성으로 인한 스트립의 반응 사이의 약간의 지연을 포함하여 몇가지 흥미로운 특징을 보여 준다. 이러한 지연은 분석 솔루션이 온도의 즉각적인 변화를 가정하기 때문에 계산된 편향과 분석적 편향 사이의 타이밍 차이에도 영향을 미친다. 변위의 진폭 차이는 분석 결과에서 무한대의 얇은 스트립의 가정에 기인할 수 있다. 계산 모델의 두께는 장착 지점에 응력을 추가하여 편향을 증가시킵니다.

Bimetallic deflection plot FLOW-3D
그림 2:스트립의 끝에서 시뮬레이션 시간에 걸쳐 처짐. 그림에 표시된 것은 스트립의 평균 온도( 진한 파란 색)뿐만 아니라 분석적( 연한 파란 색)및 계산( 빨간 색)편향입니다.

Partial Coupling Example: Metal Casting within a Deformable Die

Temperature profile of a v6 engine block
Figure 3: V6 엔진 블록의 온도 프로파일 단면도. 시뮬레이션 시작 7 초.

두번째 예제 시뮬레이션에서는 부분 커플링 모델을 사용하여 변형 가능한 강철 다이 내 금속 주물의 응력 개발을 보여 줍니다. 다이의 두 절반과 응고된 유체는 부분적으로 서로 결합되어 정상적인 응력과 마찰을 통해 상호 작용합니다. 시뮬레이션은 다이와 주물 부품의 열 응력 변화를 770,000 K의 solidus온도 바로 아래에서 298K의 주변 온도로 냉각하는 모습을 보여 줍니다. 주물 부분은 A380알루미늄 합금으로 구성되어 있고 다이 반쪽은 H-13강철로 구성되어 있습니다.

주조 부품과 주변 다이의 유한 요소 메시는 그림 3과 같이 3,665,533 요소와 3,862,378개 노드로 구성됩니다. 또한 각 다이의 절반에 대해 분리된 메쉬와 TSE고형화된 유체 영역도 나와 있습니다. 전면의 빨간 색 원은 서포트 피스톤 때문입니다(그림과 같이 표시되지 않음).

Thermal stress model
Figure 4 는 채워진 후 고압 다이 캐스팅 부품 300s의 주조물 온도와 변위 크기로 채색 된 강철 다이 조각을 결합한 이미지를 보여줍니다. 이 시뮬레이션에서, 다이는 응고하는 알루미늄에 연결되어 응력이 그들 사이에 전달됩니다. 변위 크기는 다이의 에지에서 0에서부터 주조에 인접한 0.1mm 이상까지 다양합니다.

금형과 응고된 유체 표면 사이의 경계면에서 발생하는 응력이 부분적으로 결합되어 제한된 수축을 확인할 수 있습니다. 그림 4는 시뮬레이션을 통해 주형 부분의 변형과 다이 부분의 절반의 변형을 보여 줍니다. 온도가 감소함에 따라 다이 캐스트와 주물이 서로 다른 속도로 수축하여 간섭 영역에 큰 응력이 발생하고 잠재적인 문제 영역이 나타납니다. 다이와 부품에서 결합된 응력을 계산하면 사용자가 각 구성 요소 내에서 발생하는 응력을 더 잘 예측하고 부품 품질을 개선하고 도구 수명을 연장하는 방법에 대한 통찰력을 제공할 수 있습니다.

Conclusion

다른 단단한 물체들의 상호 작용은 현대 디자인과 공학의 중요한 부분입니다. FSI구성 요소와 TSE고정 유체 영역 간의 새로운 결합 옵션이 FLOW-3D에 추가되어 오늘날의 엔지니어들이 정기적으로 접하는 복잡한 기하학적 구조를 평가하는 데 유용한 도구가 되었습니다.

바이오 분야

Biotechnology

생명 공학 분야에 전산 유체 역학을 적용하는 것은 비교적 새로운 방법으로, 다양한 의료 기기를 효과적으로 사용하거나, 분석 구현하는 방법을 개선하는데 큰 도움이 될 수 있습니다.
FLOW-3D는 하나의 패키지로 구성되어 있으며, 광범위한 범위를 갖는 강력한 시뮬레이션 해석 프로그램 입니다.
FLOW-3D가 가지고 있는 기능으로 자유 표면과 제한된 갇혀 있는 유체의 흐름, 가변 밀도, 상 변화, 움직이는 물체, 기계 및 열 응력 해석이 가능합니다.
 
자세한 내용은 FLOW-3D의 모델링 기능의 전체 목록을 살펴보십시오.
Von Mises stress 분포.
FLOW-3D‘s fluid-structure interaction model 을 이용한 안압 분석 결과.
Courtesy University at Buffalo.

바이오 분야의 다양한 해석 사례


관련 기술자료

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

텅스텐 카바이드의 초고속 레이저 제거: 임계값 범위의 정량화 및 특징 전환 해석 Xiong Zhang, Chunjin Wang, Benny C. F. Cheung, Gaoyang Mi, Chunming WangFirst ...
Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

바인더 제트 3D 프린팅 중 계면 유체-입자 상호 작용에 대한 CFD-DEM 결합 시뮬레이션 Joshua J. Wagner, C. Fred Higgs III https://doi.org/10.1016/j.cma.2024.116747 Abstract The coupled ...
Schematic view of the experimental set-up

Short-time numerical simulation of ultrasonically assisted electrochemical removal of strontium from water

September 2023 DOI:10.30955/gnc2023.00436 Conference: 18th International Conference on Environmental Science and Technology CEST2023, 30 August to 2 September 2023, Athens, ...
Fig. 8. Pressure distribution during the infiltration of preform with the 50 ¯m particles and 20 % starches: (a) 25 % filled, (b) 57 % filled, and (c) 99 % filled.

Experimental study and numerical simulation of infiltration of AlSi12 alloys into Si porous preforms with micro-computed tomography inspection characteristics

마이크로 컴퓨터 단층 촬영 검사 특성을 가진 Si 다공성 프리폼에 AlSi12 합금의 침투에 대한 실험적 연구 및 수치 시뮬레이션 Ruizhe ...
Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting

재료 분사를 통한 다중 재료 3D 유체 장치의 액체-고체 공동 인쇄

Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting BrandonHayes,Travis Hainsworth, Robert MacCurdyUniversity of Colorado Boulder, Department of Mechanical ...
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-Chip Fabrication and In-Flow 3D-Printing of Cell-Laden Microgel Constructs: From Chip to Scaffold Materials in One Integral Process

세포가 함유된 마이크로겔의 온칩 제작 및 인-플로우 3D 프린팅구성:하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지 Vollmer, Gültekin Tamgüney, Aldo BoccaciniSubmitted date: ...
Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and ...
Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Energy and exergy analysis of an enhanced solar CCHP system with a collector embedded by porous media and nano fluid

Year 2021, Volume 7, Issue 6, 1489 - 1505, 02.09.2021 N. TONEKABONI H. SALARIAN M. Eshagh NIMVARI J. KHALEGHINIA https://doi.org/10.18186/thermal.990897 ...
Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. Chinaa ...
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

by  Cristina González Fernández1, Jenifer Gómez Pastora2, Arantza Basauri1, Marcos Fallanza1, Eugenio Bringas1, Jeffrey J. Chalmers2 and Inmaculada Ortiz1,* 1Department of Chemical and Biomolecular Engineering, ETSIIT, ...