세포가 함유된 마이크로겔의 온칩 제작 및 인-플로우 3D 프린팅
구성:하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지
Vollmer, Gültekin Tamgüney, Aldo Boccacini
Submitted date: 10/05/2021 • Posted date: 11/05/2021
Licence: CC BY-NC-ND 4.0
바이오프린팅은 세포가 실린 스캐폴드의 제조를 위한 유력한 기술로 발전했습니다. 바이오잉크는 바이오프린팅의 가장 중요한 구성요소입니다. 최근 마이크로겔은 세포 보호 및 세포 미세 환경 제어를 가능하게 하는 매우 유망한 바이오 잉크로 도입되었습니다. 그러나 이들의 미세유체 제작은 본질적으로 한계가 있는 것으로 보입니다.
여기에서 우리는 안정적인 스캐폴드에 직접 유입되는 바이오프린팅과 함께 세포가 실린 마이크로겔의 미세유체 생산을 위한 미세유체 및 3D 인쇄의 직접 결합을 소개합니다. 방법론은 세포를 단분산 미세 방울로 연속 온칩 캡슐화하여 후속 유입 교차 연결을 통해 세포가 함유된 마이크로겔을 생성할 수 있으며, 이는 미세관을 종료한 후 자동으로 얇은 연속 마이크로겔 필라멘트로 끼이게 됩니다.
3D 프린트 헤드로의 통합으로 독립형 3차원 스캐폴드에 필라멘트를 직접 유입 인쇄할 수 있습니다. 이 방법은 다양한 교차 연결 방법 및 세포주에 대해 설명됩니다. 이러한 발전으로 미세유체학은 더 이상 바이오 제조의 병목을 초래하는 현상이 아닙니다.
Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication.






Keywords
biomaterials, microgels, microfluidics, 3D printing, bioprinting
References
- A. Atala, Chem. Rev. 2020, 120, 10545-10546.
- J. Groll, J. A. Burdick, D. W. Cho, B. Derby, M. Gelinsky, S. C. Heilshorn, T. Jüngst, J. Malda, V. A
Mironov, K. Nakayama, A. Ovisanikov, W. Sun, S. Takeuchi, J. J. Yoo, T. B. F. Woodfield,
Biofabrication 2019, 11, 013001. - W. Sun, B. Starly, A. C. Daly, J. A. Burdick, J. Groll, G. Skeldon, W. Shu, Y. Sakai, M. Shinohara,
M. Nishikawa, J. Jang, D.-W. Cho, M. Nie, S. Takeuchi, S. Ostrovidov, A. Khademhosseini, R. D. Kamm,
V. Mironov, L. Moroni, I. T. Ozbolat, Biofabrication 2020, 12, 022002. - R. Levato, T. Juengst, R. G. Scheuring, T. Blunk, J. Groll, J. Malda, Adv. Mater. 2020, 32, 1906423.
- C. B. Highley, K. H. Song, A. C. Daly, J. A. Burdick, Adv. Sci. 2019, 6, 1801076.
- D. Velasco, E. Tumarkin, E. Kumacheva, Small 2012, 8, 1633-1642.
- W. Jiang, M. Li, Z. Chen, K. W. Leong, Lab Chip 2016, 16, 4482-4506.
- A. C. Daly, L. Riley, T. Segura, J. A. Burdick, Nat. Rev. 2020, 5, 20-43.
- A. S. Mao, B. Özkale, N. J. Shah, K. H. Vining, T. Descombes, L. Zhang, C. M. Tringides, S.-W.
Wong, J.-W. Shin, D. T. Scadden, D. A. Weitz, D. J. Mooney, Proc. Natl. Acad. Sci. 2019, 116, 15392-15397. - S. R. Pajoumshariati, M. Azizi, D. Wesner, P. G. Miller, M. L. Shuler, A. Abbaspourrad, ACS Appl.
Mater. Interfaces 2018, 10, 9235-9246. - A. S. Mao, J.-W. Shin, S. Utech, H. Wang, O. Uzun, W. Li, M. Cooper, Y. Hu, L. Zhang, D. A.
Weitz, D. J. Mooney, Nat. Mater. 2017, 16, 236-243. - P. S. Lienemann, T. Rossow, A. S. Mao, Q. Vallmajo-Martin, M. Ehrbar, D. J. Mooney, Lab Chip, 2017, 17, 727.
- F. Chen, J. Xue, J. Zhang, M. Bai, X. Yu, X.; C. Fan, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 2889-2896.
- Q. Feng, Q. Li, H. Wen, J. Chen, M. Liang, H. Huang, D. Lan, H. Dong, X. Cao, Adv. Funct. Mater.,
2019, 29, 1096690. - L. P. B. Guerzoni, T. Yoshinari, D. B. Gehlen, D. Rommel, T. Haraszti, M. Akashi, L. De Laporte,
Biomacromolecules 2019, 20, 3746-3754 - T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, S. Seiffert, J. Am.
Chem. Soc. 2012, 134, 4983-4989. - E. Kapourani, F. Neumann, K. Achazi, J. Dernedde, R. Haag, Macromol. Bioscience 2018, 18,1800116
- H. Wang, H. Liu, H. Liu, W. Su, W. Chen, J. Qin, Adv. Mater. Technol. 2019, 4, 1800632.
- C. Fan, S.-H. Zhan, Z.-X. Dong, W. Yang, W.-S. Deng, X. Liu, P. Suna, D.-A. Wang, Mater. Sci. Eng. C 2019, 108, 110399.
- A. M. Compaan, K. Song, W. Chai, Y. Huang, ACS Appl. Mater. Interfaces 2020, 12, 7855-7868.
- S. L. Anna, H. C. Mayer, Phys. Fluids 2006, 18, 121512.
- T. Ward, M. Faivre, M. Abkarian, H. A. Stone, Electrophoresis 2005, 26, 3716-3724.
- F. Lapierre, N. Wu, Y. Zhu, Proc. SPIE 2011, 8204, 82040H-1.
- C. A. Stan, S. K. Y. Tang, G. M. Whitesides, Anal. Chem. 2009, 81, 2399-2402.
- J. Tan, J. H. Xu, S. W. Li, G. S. Luo, Chem. Eng. J. 2008, 136, 306-311.
- R.-C. Luo, C.-H. Chen, Soft 2012, 1, 1-23.
- C. H. Choi, J. H. Jung, T. S. Hwang, C. S. Lee, Macromol. Res. 2009, 17, 163-167.
- A. J. D. Krüger, O. Bakirman, P. B. Guerzoni, A. Jans, D. B. Gehlen, D. Rommel, T. Haraszti, A. J.
C. Kuehne, L. De Laporte, Adv. Mater. 2019, 31, 1903668. - D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, J. A. Lewis, Proc. Natl. Acad. Sci. 2016, 113, 3179-3184
- A. K. Miri, I. Mirzaee, S. Hassan, S. M. Oskui, D. Nieto, A. Khademhosseini, Y. S. Zhang, Lab Chip 2019, 19, 2019.
- F. A. Plamper, W. Richtering Acc. Chem. Res. 2017, 50, 131-140.
- S. Sun, M. Li, A. Liu, Int. J. Adhesion Adhesives 2013, 41, 98-106.