## 다양한 기질 수준 변화를 갖는 침식성 층 위의 댐 파손 흐름에 대한 수치 조사

Alireza Khoshkonesh^{1}, Blaise Nsom^{2}, Saeid Okhravi^{3}*, Fariba Ahmadi Dehrashid^{4}, Payam Heidarian^{5},

Silvia DiFrancesco^{6}^{1 }Department of Geography, School of Social Sciences, History, and Philosophy, Birkbeck University of London, London, UK. ^{2} Université de Bretagne Occidentale. IRDL/UBO UMR CNRS 6027. Rue de Kergoat, 29285 Brest, France. ^{3} Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104, Bratislava, Slovak Republic. ^{4}Department of Water Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, 65178-38695, Hamedan, Iran. ^{5 }Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy.^{ }^{6}Niccol`o Cusano University, via Don C. Gnocchi 3, 00166 Rome, Italy. * Corresponding author. Tel.: +421-944624921. E-mail: saeid.okhravi@savba.sk

## Abstract

This study aimed to comprehensively investigate the influence of substrate level difference and material composition on dam break wave evolution over two different erodible beds. Utilizing the Volume of Fluid (VOF) method, we tracked free surface advection and reproduced wave evolution using experimental data from the literature. For model validation, a comprehensive sensitivity analysis encompassed mesh resolution, turbulence simulation methods, and bed load transport equations. The implementation of Large Eddy Simulation (LES), non-equilibrium sediment flux, and van Rijn’s (1984) bed load formula yielded higher accuracy compared to alternative approaches. The findings emphasize the significant effect of substrate level difference and material composition on dam break morphodynamic characteristics. Decreasing substrate level disparity led to reduced flow velocity, wavefront progression, free surface height, substrate erosion, and other pertinent parameters. Initial air entrapment proved substantial at the wavefront, illustrating pronounced air-water interaction along the bottom interface. The Shields parameter experienced a one-third reduction as substrate level difference quadrupled, with the highest near-bed concentration observed at the wavefront. This research provides fresh insights into the complex interplay of factors governing dam break wave propagation and morphological changes, advancing our comprehension of this intricate phenomenon.

이 연구는 두 개의 서로 다른 침식층에 대한 댐 파괴파 진화에 대한 기질 수준 차이와 재료 구성의 영향을 종합적으로 조사하는 것을 목표로 했습니다. VOF(유체량) 방법을 활용하여 자유 표면 이류를 추적하고 문헌의 실험 데이터를 사용하여 파동 진화를 재현했습니다.

모델 검증을 위해 메쉬 해상도, 난류 시뮬레이션 방법 및 침대 하중 전달 방정식을 포함하는 포괄적인 민감도 분석을 수행했습니다. LES(Large Eddy Simulation), 비평형 퇴적물 플럭스 및 van Rijn(1984)의 하상 부하 공식의 구현은 대체 접근 방식에 비해 더 높은 정확도를 산출했습니다.

연구 결과는 댐 붕괴 형태역학적 특성에 대한 기질 수준 차이와 재료 구성의 중요한 영향을 강조합니다. 기판 수준 차이가 감소하면 유속, 파면 진행, 자유 표면 높이, 기판 침식 및 기타 관련 매개변수가 감소했습니다.

초기 공기 포집은 파면에서 상당한 것으로 입증되었으며, 이는 바닥 경계면을 따라 뚜렷한 공기-물 상호 작용을 보여줍니다. 기판 레벨 차이가 4배로 증가함에 따라 Shields 매개변수는 1/3로 감소했으며, 파면에서 가장 높은 베드 근처 농도가 관찰되었습니다.

이 연구는 댐 파괴파 전파와 형태학적 변화를 지배하는 요인들의 복잡한 상호 작용에 대한 새로운 통찰력을 제공하여 이 복잡한 현상에 대한 이해를 향상시킵니다.

## Keywords

Dam break; Substrate level difference; Erodible bed; Sediment transport; Computational fluid dynamics CFD.

## REFERENCES

Aleixo, R., Soares-Frazão, S., Zech, Y., 2010. Velocity profiles in

dam-break flows: water and sediment layers. In: Proc. Int. Conf.

on Fluvial Hydraulics “River Flow 2010”, pp. 533–540.

An, S., Ku, H., Julien, P.Y., 2015. Numerical modelling of local

scour caused by submerged jets. Maejo Int. J. Sci. Technol., 9, 3,

328–343.

Bahmanpouri, F., Daliri, M., Khoshkonesh, A., Namin, M.M.,

Buccino, M., 2021. Bed compaction effect on dam break flow over

erodible bed; experimental and numerical modeling. J. Hydrol.,

594, 125645. https://doi.org/10.1016/j.jhydrol.2020.125645

Baklanov, A., 2007. Environmental risk and assessment modelling

– scientific needs and expected advancements. In: Ebel, A.,

Davitashvili, T. (Eds.): Air, Water and Soil Quality Modelling

for Risk and Impact Assessment Springer, Dordrecht, pp. 29–44.

Biscarini, C., Di Francesco, S., Nardi, F., Manciola, P., 2013.

Detailed simulation of complex hydraulic problems with

macroscopic and mesoscopic mathematical methods. Math.

Probl. Eng., 928309. https://doi.org/10.1155/2013/928309

Cao, Z., Pender, G., Wallis, S., Carling, P., 2004. Computational

dam-break hydraulics over erodible sediment bed. J. Hydraul.

Eng., 130, 7, 689–703.

Catucci, D., Briganti, R., Heller, V., 2021. Numerical validation of novel

scaling laws for air entrainment in water. Proc. R. Soc. A, 477, 2255,20210339. https://doi.org/10.1098/rspa.2021.0339

Dehrashid, F.A., Heidari, M., Rahimi, H., Khoshkonesh, A., Yuan,

S., Tang, X., Lu, C., Wang, X., 2023. CFD modeling the flow

dynamics in an open channel with double-layered vegetation.

Model. Earth Syst. Environ., 9, 1, 543–555.

Desombre, J., Morichon, D., Mory, M., 2013. RANS v2-f simulation

of a swash event: Detailed flow structure. Coastal Eng., 71, 1–12.

Dodangeh, E., Afzalimehr, H., 2022. Incipient motion of sediment

particles in the presence of bed forms under decelerating and

accelerating flows. J. Hydrol. Hydromech., 70, 1, 89–102.

Dong, Z., Wang, J., Vetsch, D.F., Boes, R.M., Tan, G., 2019.

Numerical simulation of air entrainment on stepped

spillways. In: E-proceedings of the 38th IAHR World Congress

(pp. 1494). September 1–6, 2019, Panama City, Panama. DOI:

10.3850/38WC092019-0755

Flow3D [computer software]. 2023. Santa Fe, NM: Flow Science,

Inc.

Fraccarollo, L., Capart, H., 2002. Riemann wave description of

erosional dam-break flows. J. Fluid Mech., 461, 183–228.

Gu, Z., Wang, T., Meng, W., Yu, C.H., An, R., 2023. Numerical

investigation of silted-up dam-break flow with different silted-up

sediment heights. Water Supply, 23, 2, 599–614.

Gualtieri, P., De Felice, S., Pasquino, V., Doria, G.P., 2018. Use of

conventional flow resistance equations and a model for the

Nikuradse roughness in vegetated flows at high submergence. J.

Hydrol. Hydromech., 66, 1, 107–120.

Heller, V., 2011. Scale effects in physical hydraulic engineering

models. J. Hydraul. Res., 49, 3, 293–306.

Hirt, C.W., 2003. Modeling turbulent entrainment of air at a free

surface. Flow Science, Inc.

Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for

the dynamics of free boundaries. J. Comput. Phys., 39, 1, 201–

225.

Issakhov, A., Zhandaulet, Y., Nogaeva, A., 2018. Numerical

simulation of dam break flow for various forms of the obstacle

by VOF method. Int. J. Multiphase Flow, 109, 191–206.

Khayyer, A., Gotoh, H., 2010. On particle-based simulation of a dam

break over a wet bed. J. Hydraul. Res., 48, 2, 238–249.

Khoshkonesh, A., Daliri, M., Riaz, K., Dehrashid, F.A.,

Bahmanpouri, F., Di Francesco, S., 2022. Dam-break flow

dynamics over a stepped channel with vegetation. J. Hydrol., 613,128395. https://doi.org/10.1016/j.jhydrol.2022.128395

Khoshkonesh, A., Nsom, B., Gohari, S., Banejad, H., 2019.

A comprehensive study on dam-break flow over dry and wet

beds. Ocean Eng., 188, 106279.

https://doi.org/10.1016/j.oceaneng.2019.106279

Khoshkonesh, A., Sadeghi, S.H., Gohari, S., Karimpour, S., Oodi,

S., Di Francesco, S., 2023. Study of dam-break flow over a

vegetated channel with and without a drop. Water Resour.

Manage., 37, 5, 2107–2123.

Khosravi, K., Chegini, A.H.N., Cooper, J., Mao, L., Habibnejad, M.,

Shahedi, K., Binns, A., 2021. A laboratory investigation of bedload transport of gravel sediments under dam break flow. Int. J.

Sediment Res., 36, 2, 229–234.

Kim, Y., Zhou, Z., Hsu, T.J., Puleo, J.A., 2017. Large eddy

simulation of dam‐break‐driven swash on a rough‐planar beach.

J. Geophys. Res.: Oceans, 122, 2, 1274–1296.

Kocaman, S., Ozmen-Cagatay, H., 2012. The effect of lateral

channel contraction on dam break flows: Laboratory experiment.

J. Hydrol., 432, 145–153.

Leal, J.G., Ferreira, R.M., Cardoso, A.H., 2006. Dam-break wavefront celerity. J. Hydraul. Eng., 132, 1, 69–76.

Leal, J.G.A.B., Ferreira, R.M., Cardoso, A.H., 2003. Dam-break

wave propagation over a cohesionless erodible bed. In: Proc.

30rd IAHR Congress, 100, 261–268.

Li, Y. L., Ma, Y., Deng, R., Jiang, D.P., Hu, Z., 2019. Research on

dam-break induced tsunami bore acting on the triangular

breakwater based on high order 3D CLSVOF-THINC/WLICIBM approaching. Ocean Eng., 182, 645–659.

Li, Y.L., Yu, C.H., 2019. Research on dam-break flow induced front

wave impacting a vertical wall based on the CLSVOF and level

set methods. Ocean Eng., 178, 442–462.

Mei, S., Chen, S., Zhong, Q., Shan, Y., 2022. Detailed numerical

modeling for breach hydrograph and morphology evolution

during landslide dam breaching. Landslides, 19, 12, 2925–2949.

Meng, W., Yu, C.H., Li, J., An, R., 2022. Three-dimensional simulation

of silted-up dam-break flow striking a rigid structure. Ocean Eng.,

261, 112042. https://doi.org/10.1016/j.oceaneng.2022.112042

Meyer-Peter, E., Müller, R., 1948. Formulas for bed-load transport.

In: IAHSR 2nd meeting, Stockholm, appendix 2. IAHR.

Nielsen, P., 1984. Field measurements of time-averaged suspended

sediment concentrations under waves. Coastal Eng., 8, 1, 51–72.

Nielsen, P., 2018. Bed shear stress, surface shape and velocity field

near the tips of dam-breaks, tsunami and wave runup. Coastal

Eng., 138, 126–131.

Nsom, B., Latrache, N., Ramifidisoa, L., Khoshkonesh, A., 2019.

Analytical solution to the stability of gravity-driven stratified

flow of two liquids over an inclined plane. In: 24th French

Mechanics Congress in Brest. Brest, p. 244178.

Nsom, B., Ravelo, B., Ndong, W., 2008. Flow regimes in horizontal

viscous dam-break flow of Cayous mud. Appl. Rheol., 18, 4,

43577-1. https://doi.org/10.1515/arh-2008-0012

Oguzhan, S., Aksoy, A.O., 2020. Experimental investigation of the

effect of vegetation on dam break flood waves. J. Hydrol.

Hydromech., 68, 3, 231–241.

Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2022. Effects of bedmaterial gradation on clear water scour at single and group of

piles. J. Hydrol. Hydromech., 70, 1, 114–127.

Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2023. Numerical

modeling of local scour of non-uniform graded sediment for two

arrangements of pile groups. Int. J. Sediment Res., 38, 4, 597–614.

Parambath, A., 2010. Impact of tsunamis on near shore wind power

units. Master’s Thesis. Texas A&M University. Available

electronically from https://hdl.handle.net/1969.1/ETD-TAMU2010-12-8919

Pintado-Patiño, J.C., Puleo, J.A., Krafft, D., Torres-Freyermuth, A.,

- Hydrodynamics and sediment transport under a dambreak-driven swash: An experimental study. Coastal Eng., 170,
- https://doi.org/10.1016/j.coastaleng.2021.103986

Riaz, K., Aslam, H.M.S., Yaseen, M.W., Ahmad, H.H.,

Khoshkonesh, A., Noshin, S., 2022. Flood frequency analysis

and hydraulic design of bridge at Mashan on river Kunhar. Arch.

Hydroengineering Environ. Mech., 69, 1, 1–12.

Ritter, A., 1892. Die Fortpflanzung der Wasserwellen. Zeitschrift

des Vereines Deutscher Ingenieure, 36, 33, 947–954. (In

German.)

Smagorinsky, J., 1963. General circulation experiments with the

primitive equations: I. The basic experiment. Mon. Weather

Rev., 91, 3, 99–164.

Soulsby, R.L., 1997. Dynamics of marine sands: a manual for

practical applications. Oceanogr. Lit. Rev., 9, 44, 947.

Spinewine, B., Capart, H., 2013. Intense bed-load due to a sudden

dam-break. J. Fluid Mech., 731, 579–614.

Van Rijn, L.C., 1984. Sediment transport, part I: bed load transport.

J. Hydraul. Eng., 110, 10, 1431–1456.

Vosoughi, F., Rakhshandehroo, G., Nikoo, M.R., Sadegh, M., - Experimental study and numerical verification of

silted-up dam break. J. Hydrol., 590, 125267.

https://doi.org/10.1016/j.jhydrol.2020.125267

Wu, W., Wang, S.S., 2008. One-dimensional explicit finite-volume

model for sediment transport. J. Hydraul. Res., 46, 1, 87–98.

Xu, T., Huai, W., Liu, H., 2023. MPS-based simulation of

dam-break wave propagation over wet beds with a

sediment layer. Ocean Eng., 281, 115035.

https://doi.org/10.1016/j.oceaneng.2023.115035

Yang, S., Yang, W., Qin, S., Li, Q., Yang, B., 2018. Numerical study

on characteristics of dam-break wave. Ocean Eng., 159, 358–371.

Yao, G.F., 2004. Development of new pressure-velocity solvers in

FLOW-3D. Flow Science, Inc., USA.