Fatemehsadat Mirshafiee1, Emad Shahbazi 2, Mohadeseh Safi 3, Rituraj Rituraj 4,* 1Department of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran 1999143344 , Iran 2Department of Mechatronic, Amirkabir University of Technology, Tehran 158754413, Iran 3Department of Mechatronic, Electrical and Computer Engineering, University of Tehran, Tehran 1416634793, Iran 4 Faculty of Informatics, Obuda University, 1023, Budapest, Hungary
Correspondence: rituraj88@stud.uni-obuda.hu
ABSTRACT
본 연구는 지속가능한 에너지 변환기의 전력 및 수소 발생 모델링을 위한 데이터 기반 방법론을 제안합니다. 파고와 풍속을 달리하여 파고와 수소생산을 예측합니다.
또한 이 연구는 파도에서 수소를 추출할 수 있는 가능성을 강조하고 장려합니다. FLOW-3D 소프트웨어 시뮬레이션에서 추출한 데이터와 해양 특수 테스트의 실험 데이터를 사용하여 두 가지 데이터 기반 학습 방법의 비교 분석을 수행합니다.
결과는 수소 생산의 양은 생성된 전력의 양에 비례한다는 것을 보여줍니다. 제안된 재생 에너지 변환기의 신뢰성은 지속 가능한 스마트 그리드 애플리케이션으로 추가로 논의됩니다.
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore, this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from FLOW-3D software simulation and the experimental data from the special test in the ocean, the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application.
Key words
Cavity, Combustion efficiency, hydrogen fuel, Computational Fluent and Gambit.
Figure 1. The process of power and hydrogen production with Searaser.Figure 2. The cross-section A-A of the two essential parts of a SearaserFigure 3. Different parts of a Searaser; 1) Buoy 2) Chamber 3) Valves 4) Generator 5) Anchor systemFigure 4. The boundary conditions of the control volumeFigure 5. The wind velocity during the period of the experimental test
REFERENCES
Kalbasi, R., Jahangiri, M., Dehshiri, S.J.H., Dehshiri, S.S.H., Ebrahimi, S., Etezadi, Z.A.S. and Karimipour, A., 2021. Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustainable Energy Technologies and Assessments, 45, p.101097.
Megura M, Gunderson R. Better poison is the cure? Critically examining fossil fuel companies, climate change framing, and corporate sustainability reports. Energy Research & Social Science. 2022 Mar 1;85:102388.
Holechek JL, Geli HM, Sawalhah MN, Valdez R. A global assessment: can renewable energy replace fossil fuels by 2050?. Sustainability. 2022 Jan;14(8):4792.
Ahmad M, Kumar A, Ranjan R. Recent Developments of Tidal Energy as Renewable Energy: An Overview. River and Coastal Engineering. 2022:329-43.
Amini E, Mehdipour H, Faraggiana E, Golbaz D, Mozaffari S, Bracco G, Neshat M. Optimization of hydraulic power take-off system settings for point absorber wave energy converter. Renewable Energy. 2022 Jun 4.
Claywell, R., Nadai, L., Felde, I., Ardabili, S. 2020. Adaptive neuro-fuzzy inference system and a multilayer perceptron model trained with grey wolf optimizer for predicting solar diffuse fraction. Entropy, 22(11), p.1192.
McLeod I, Ringwood JV. Powering data buoys using wave energy: a review of possibilities. Journal of Ocean Engineering and Marine Energy. 2022 Jun 20:1-6.
Olsson G. Water interactions: A systemic view: Why we need to comprehend the water-climate-energy-food-economics-lifestyle connections.
Malkowska A, Malkowski A. Green Energy in the Political Debate. InGreen Energy 2023 (pp. 17-39). Springer, Cham.
Mayon R, Ning D, Ding B, Sergiienko NY. Wave energy converter systems–status and perspectives. InModelling and Optimisation of Wave Energy Converters (pp. 3-58). CRC Press.
Available online at: https://www.offshore-energy.biz/uk-ecotricity-introduces-wave-power-device-searaser/ (9/27/2022)
Mousavi SM, et al.,. Deep learning for wave energy converter modeling using long short-term memory. Mathematics. 2021 Apr 15;9(8):871.
Mega V. The Energy Race to Decarbonisation. InHuman Sustainable Cities 2022 (pp. 105-141). Springer, Cham.
Li R, Tang BJ, Yu B, Liao H, Zhang C, Wei YM. Cost-optimal operation strategy for integrating large scale of renewable energy in China’s power system: From a multi-regional perspective. Applied Energy. 2022 Nov 1;325:119780.
Ardabili S., Abdolalizadeh L., Mako C., Torok B., Systematic Review of Deep Learning and Machine Learning for Building Energy, Frontiers in Energy Research, 10, 2022.
Penalba M, Aizpurua JI, Martinez-Perurena A, Iglesias G. A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems. Renewable and Sustainable Energy Reviews. 2022 Oct 1;167:112751.
Torabi, M., Hashemi, S., Saybani, M.R., 2019. A Hybrid clustering and classification technique for forecasting short‐term energy consumption. Environmental progress & sustainable energy, 38(1), pp.66-76.
Rivera FP, Zalamea J, Espinoza JL, Gonzalez LG. Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems. Renewable and Sustainable Energy Reviews. 2022 Mar 1;156:112005.
Raza SA, Jiang J. Mathematical foundations for balancing single-phase residential microgrids connected to a three-phase distribution system. IEEE Access. 2022 Jan 6;10:5292-303.
Takach M, Sarajlić M, Peters D, Kroener M, Schuldt F, von Maydell K. Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns. Energies. 2022 Feb 15;15(4):1415.
Lv Z, Li W, Wei J, Ho F, Cao J, Chen X. Autonomous Chemistry Enabling Environment-Adaptive Electrochemical Energy Storage Devices. CCS Chemistry. 2022 Jul 7:1-9.
Dehghan Manshadi, Mahsa, Milad Mousavi, M. Soltani, Amir Mosavi, and Levente Kovacs. 2022. “Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System” Energies 15, no. 24: 9484. https://doi.org/10.3390/en15249484
Ishaq H, Dincer I, Crawford C. A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy. 2022 Jul 22;47(62):26238-64.
Maguire JF, Woodcock LV. On the Thermodynamics of Aluminum Cladding Oxidation: Water as the Catalyst for Spontaneous Combustion. Journal of Failure Analysis and Prevention. 2022 Sep 10:1-5.
Mohammadi, M. R., Hadavimoghaddam, F., Pourmahdi, M., Atashrouz, S., Munir, M. T., Hemmati-Sarapardeh, A., … & Mohaddespour, A. (2021). Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state. Scientific reports, 11(1).
Ma S, Qin J, Xiu X, Wang S. Design and performance evaluation of an underwater hybrid system of fuel cell and battery. Energy Conversion and Management. 2022 Jun 15;262:115672.
Ahamed R, McKee K, Howard I. A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems. Sustainability. 2022 Jan;14(16):9936.
Nejad, H.D., Nazari, M., Nazari, M., Mardan, M.M.S., 2022. Fuzzy State-Dependent Riccati Equation (FSDRE) Control of the Reverse Osmosis Desalination System With Photovoltaic Power Supply. IEEE Access, 10, pp.95585-95603.
Zou S, Zhou X, Khan I, Weaver WW, Rahman S. Optimization of the electricity generation of a wave energy converter using deep reinforcement learning. Ocean Engineering. 2022 Jan 15;244:110363.
Wu J, Qin L, Chen N, Qian C, Zheng S. Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose. Energy. 2022 Apr 15;245:123318.
Papini G, Dores Piuma FJ, Faedo N, Ringwood JV, Mattiazzo G. Nonlinear Model Reduction by Moment-Matching for a Point Absorber Wave Energy Conversion System. Journal of Marine Science and Engineering. 2022 May;10(5):656.
Forbush DD, Bacelli G, Spencer SJ, Coe RG, Bosma B, Lomonaco P. Design and testing of a free floating dual flap wave energy converter. Energy. 2022 Feb 1;240:122485.
Rezaei, M.A., 2022. A New Hybrid Cascaded Switched-Capacitor Reduced Switch Multilevel Inverter for Renewable Sources and Domestic Loads. IEEE Access, 10, pp.14157-14183.
Lin Z, Cheng L, Huang G. Electricity consumption prediction based on LSTM with attention mechanism. IEEJ Transactions on Electrical and Electronic Engineering. 2020;15(4):556-562.
Tavoosi, J., Mohammadzadeh, A., Pahlevanzadeh, B., Kasmani, M.B., 2022. A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. Ain Shams Engineering Journal, 13(2), p.101564.
Ghalandari, M., 2019. Flutter speed estimation using presented differential quadrature method formulation. Engineering Applications of Computational Fluid Mechanics, 13(1), pp.804-810.
Li Z, Bouscasse B, Ducrozet G, Gentaz L, Le Touzé D, Ferrant P. Spectral wave explicit navier-stokes equations for wavestructure interactions using two-phase computational fluid dynamics solvers. Ocean Engineering. 2021 Feb 1;221:108513.
Zhou Y. Ocean energy applications for coastal communities with artificial intelligencea state-of-the-art review. Energy and AI. 2022 Jul 29:100189.
Miskati S, Farin FM. Performance evaluation of wave-carpet in wave energy extraction at different coastal regions: an analytical approach (Doctoral dissertation, Department of Mechanical and Production Engineering).
Gu C, Li H. Review on Deep Learning Research and Applications in Wind and Wave Energy. Energies. 2022 Feb 17;15(4):1510.
Aazami, R., 2022. Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability, 14(10), p.6183.
Kabir M, Chowdhury MS, Sultana N, Jamal MS, Techato K. Ocean renewable energy and its prospect for developing economies. InRenewable Energy and Sustainability 2022 Jan 1 (pp. 263-298). Elsevier.
Babajani A, Jafari M, Hafezisefat P, Mirhosseini M, Rezania A, Rosendahl L. Parametric study of a wave energy converter (Searaser) for Caspian Sea. Energy Procedia. 2018 Aug 1;147:334-42.
He J. Coherence and cross-spectral density matrix analysis of random wind and wave in deep water. Ocean Engineering. 2020;197:106930
Ijadi Maghsoodi, A., 2018. Renewable energy technology selection problem using integrated h-swara-multimoora approach. Sustainability, 10(12), p.4481.
Band, S.S., Ardabili, S., Sookhak, M., Theodore, A., Elnaffar, S., Moslehpour, M., Csaba, M., Torok, B., Pai, H.T., 2022. When Smart Cities Get Smarter via Machine Learning: An In-depth Literature Review. IEEE Access.
Shamshirband, S., Rabczuk, T., Nabipour, N. and Chau, K.W., 2020. Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines. Engineering Applications of Computational Fluid Mechanics, 14(1), pp.805-817.
Liu, Z., Mohammadzadeh, A., Turabieh, H., Mafarja, M., 2021. A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access, 9, pp.10498-10508.
Bavili, R.E., Mohammadzadeh, A., Tavoosi, J., Mobayen, S., Assawinchaichote, W., Asad, J.H. 2021. A New Active Fault Tolerant Control System: Predictive Online Fault Estimation. IEEE Access, 9, pp.118461-118471.
Akbari, E., Teimouri, A.R., Saki, M., Rezaei, M.A., Hu, J., Band, S.S., Pai, H.T., 2022. A Fault-Tolerant Cascaded SwitchedCapacitor Multilevel Inverter for Domestic Applications in Smart Grids. IEEE Access.
Band, S.S., Ardabili, S., 2022. Feasibility of soft computing techniques for estimating the long-term mean monthly wind speed. Energy Reports, 8, pp.638-648.
Tavoosi, J., Mohammadzadeh, A., Pahlevanzadeh, B., Kasmani, M.B., 2022. A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. Ain Shams Engineering Journal, 13(2), p.101564.
Ponnusamy, V. K., Kasinathan, P., Madurai Elavarasan, R., Ramanathan, V., Anandan, R. K., Subramaniam, U., … & Hossain, E. A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability, 2021; 13(23), 13322.
Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 2021; 289, 125834.
Wang, G., Chao, Y., Cao, Y., Jiang, T., Han, W., & Chen, Z. A comprehensive review of research works based on evolutionary game theory for sustainable energy development. Energy Reports, 2022; 8, 114-136.
Iranmehr H., Modeling the Price of Emergency Power Transmission Lines in the Reserve Market Due to the Influence of Renewable Energies, Frontiers in Energy Research, 9, 2022
Farmanbar, M., Parham, K., Arild, Ø., & Rong, C. A widespread review of smart grids towards smart cities. Energies, 2019; 12(23), 4484.
Quartier, N., Crespo, A. J., Domínguez, J. M., Stratigaki, V., & Troch, P. Efficient response of an onshore Oscillating Water Column Wave Energy Converter using a one-phase SPH model coupled with a multiphysics library. Applied Ocean Research, 2021; 115, 102856.
Mahmoodi, K., Nepomuceno, E., & Razminia, A. Wave excitation force forecasting using neural networks. Energy, 2022; 247, 123322.
Wang, H., Alattas, K.A., 2022. Comprehensive review of load forecasting with emphasis on intelligent computing approaches. Energy Reports, 8, pp.13189-13198.
Clemente, D., Rosa-Santos, P., & Taveira-Pinto, F. On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 2021; 135, 110162.
Felix, A., V. Hernández-Fontes, J., Lithgow, D., Mendoza, E., Posada, G., Ring, M., & Silva, R. Wave energy in tropical regions: deployment challenges, environmental and social perspectives. Journal of Marine Science and Engineering, 2019; 7(7), 219.
Farrok, O., Ahmed, K., Tahlil, A. D., Farah, M. M., Kiran, M. R., & Islam, M. R. Electrical power generation from the oceanic wave for sustainable advancement in renewable energy technologies. Sustainability, 2020; 12(6), 2178.
Guo, B., & Ringwood, J. V. A review of wave energy technology from a research and commercial perspective. IET Renewable Power Generation, 2021; 15(14), 3065-3090.
López-Ruiz, A., Bergillos, R. J., Lira-Loarca, A., & Ortega-Sánchez, M. A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays. Energy, 2018; 153, 126-135.
Safarian, S., Saryazdi, S. M. E., Unnthorsson, R., & Richter, C. Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy, 2020; 213, 118800.
Kushwah, S. An oscillating water column (OWC): the wave energy converter. Journal of The Institution of Engineers (India): Series C, 2021; 102(5), 1311-1317.
Pap, J., Mako, C., Illessy, M., Kis, N., 2022. Modeling Organizational Performance with Machine Learning. Journal of Open Innovation: Technology, Market, and Complexity, 8(4), p.177.
Pap, J., Mako, C., Illessy, M., Dedaj, Z., Ardabili, S., Torok, B., 2022. Correlation Analysis of Factors Affecting Firm Performance and Employees Wellbeing: Application of Advanced Machine Learning Analysis. Algorithms, 15(9), p.300.
Alanazi, A., 2022. Determining Optimal Power Flow Solutions Using New Adaptive Gaussian TLBO Method. Applied Sciences, 12(16), p.7959.
Shakibjoo, A.D., Moradzadeh, M., Din, S.U., 2021. Optimized Type-2 Fuzzy Frequency Control for Multi-Area Power Systems. IEEE access, 10, pp.6989-7002.
Zhang, G., 2021. Solar radiation estimation in different climates with meteorological variables using Bayesian model averaging and new soft computing models. Energy Reports, 7, pp.8973-8996.
Cao, Y., Raise, A., Mohammadzadeh, A., Rathinasamy, S., 2021. Deep learned recurrent type-3 fuzzy system: Application for renewable energy modeling/prediction. Energy Reports, 7, pp.8115-8127.
Tavoosi, J., Suratgar, A.A., Menhaj, M.B., 2021. Modeling renewable energy systems by a self-evolving nonlinear consequent part recurrent type-2 fuzzy system for power prediction. Sustainability, 13(6), p.3301.
Bourouis, S., Band, S.S., 2022. Meta-Heuristic Algorithm-Tuned Neural Network for Breast Cancer Diagnosis Using Ultrasound Images. Frontiers in Oncology, 12, p.834028.
Mosavi, A.H., Mohammadzadeh, A., Rathinasamy, S., Zhang, C., Reuter, U., Levente, K. and Adeli, H., 2022. Deep learning fuzzy immersion and invariance control for type-I diabetes. Computers in Biology and Medicine, 149, p.105975.
Almutairi, K., Algarni, S., Alqahtani, T., Moayedi, H., 2022. A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings. Sustainability, 14(10), p.5924.
Ahmad, Z., Zhong, H., 2020. Machine learning modeling of aerobic biodegradation for azo dyes and hexavalent chromium. Mathematics, 8(6), p.913.
Mosavi, A., Shokri, M., Mansor, Z., Qasem, S.N., Band, S.S. and Mohammadzadeh, A., 2020. Machine learning for modeling the singular multi-pantograph equations. Entropy, 22(9), p.1041.
Ardabili, S., 2019, September. Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review. In International conference on global research and education (pp. 52-62). Springer, Cham.
Moayedi, H., (2021). Suggesting a stochastic fractal search paradigm in combination with artificial neural network for early prediction of cooling load in residential buildings. Energies, 14(6), 1649.
Rezakazemi, M., et al., 2019. ANFIS pattern for molecular membranes separation optimization. Journal of Molecular Liquids, 274, pp.470-476.
Mosavi, A., Faghan, Y., Ghamisi, P., Duan, P., Ardabili, S.F., Salwana, E. and Band, S.S., 2020. Comprehensive review of deep reinforcement learning methods and applications in economics. Mathematics, 8(10), p.1640.
Samadianfard, S., Jarhan, S., Salwana, E., 2019. Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water, 11(9), p.1934.
Moayedi, H., (2021). Double-target based neural networks in predicting energy consumption in residential buildings. Energies, 14(5), 1331.
Mohammadzadeh S, D., Kazemi, S.F., 2019. Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures, 4(2), p.26.
Karballaeezadeh, N., Mohammadzadeh S, D., Shamshirband, S., Hajikhodaverdikhan, P., 2019. Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan–Firuzkuh road). Engineering Applications of Computational Fluid Mechanics, 13(1), pp.188-198.
Rezaei, M. Et al., (2022). Adaptation of A Real-Time Deep Learning Approach with An Analog Fault Detection Technique for Reliability Forecasting of Capacitor Banks Used in Mobile Vehicles. IEEE Access v. 21 pp. 89-99.
Khakian, R., et al., (2020). Modeling nearly zero energy buildings for sustainable development in rural areas. Energies, 13(10), 2593.
결합된 Bi-level 메타휴리스틱 접근법을 사용한 해양 재생 에너지 변환기의 설계 최적화
Erfan Amini a1, Mahdieh Nasiri b1, Navid Salami Pargoo a, Zahra Mozhgani c, Danial Golbaz d, Mehrdad Baniesmaeil e, Meysam Majidi Nezhad f, Mehdi Neshat gj, Davide Astiaso Garcia h, Georgios Sylaios i
Abstract
In recent years, there has been an increasing interest in renewable energies in view of the fact that fossil fuels are the leading cause of catastrophic environmental consequences. Ocean wave energy is a renewable energy source that is particularly prevalent in coastal areas. Since many countries have tremendous potential to extract this type of energy, a number of researchers have sought to determine certain effective factors on wave converters’ performance, with a primary emphasis on ambient factors. In this study, we used metaheuristic optimization methods to investigate the effects of geometric factors on the performance of an Oscillating Surge Wave Energy Converter (OSWEC), in addition to the effects of hydrodynamic parameters. To do so, we used CATIA software to model different geometries which were then inserted into a numerical model developed in Flow3D software. A Ribed-surface design of the converter’s flap is also introduced in this study to maximize wave-converter interaction. Besides, a Bi-level Hill Climbing Multi-Verse Optimization (HCMVO) method was also developed for this application. The results showed that the converter performs better with greater wave heights, flap freeboard heights, and shorter wave periods. Additionally, the added ribs led to more wave-converter interaction and better performance, while the distance between the flap and flume bed negatively impacted the performance. Finally, tracking the changes in the five-dimensional objective function revealed the optimum value for each parameter in all scenarios. This is achieved by the newly developed optimization algorithm, which is much faster than other existing cutting-edge metaheuristic approaches.
Keywords
Wave Energy Converter
OSWEC
Hydrodynamic Effects
Geometric Design
Metaheuristic Optimization
Multi-Verse Optimizer
1. Introduction
The increase in energy demand, the limitations of fossil fuels, as well as environmental crises, such as air pollution and global warming, are the leading causes of calling more attention to harvesting renewable energy recently [1], [2], [3]. While still in its infancy, ocean wave energy has neither reached commercial maturity nor technological convergence. In recent decades, remarkable progress has been made in the marine energy domain, which is still in the early stage of development, to improve the technology performance level (TPL) [4], [5]and technology readiness level (TRL) of wave energy converters (WECs). This has been achieved using novel modeling techniques [6], [7], [8], [9], [10], [11], [12], [13], [14] to gain the following advantages [15]: (i) As a source of sustainable energy, it contributes to the mix of energy resources that leads to greater diversity and attractiveness for coastal cities and suppliers. [16] (ii) Since wave energy can be exploited offshore and does not require any land, in-land site selection would be less expensive and undesirable visual effects would be reduced. [17] (iii) When the best layout and location of offshore site are taken into account, permanent generation of energy will be feasible (as opposed to using solar energy, for example, which is time-dependent) [18].
In general, the energy conversion process can be divided into three stages in a WEC device, including primary, secondary, and tertiary stages [19], [20]. In the first stage of energy conversion, which is the subject of this study, the wave power is converted to mechanical power by wave-structure interaction (WSI) between ocean waves and structures. Moreover, the mechanical power is transferred into electricity in the second stage, in which mechanical structures are coupled with power take-off systems (PTO). At this stage, optimal control strategies are useful to tune the system dynamics to maximize power output [10], [13], [12]. Furthermore, the tertiary energy conversion stage revolves around transferring the non-standard AC power into direct current (DC) power for energy storage or standard AC power for grid integration [21], [22]. We discuss only the first stage regardless of the secondary and tertiary stages. While Page 1 of 16 WECs include several categories and technologies such as terminators, point absorbers, and attenuators [15], [23], we focus on oscillating surge wave energy converters (OSWECs) in this paper due to its high capacity for industrialization [24].
Over the past two decades, a number of studies have been conducted to understand how OSWECs’ structures and interactions between ocean waves and flaps affect converters performance. Henry et al.’s experiment on oscillating surge wave energy converters is considered as one of the most influential pieces of research [25], which demonstrated how the performance of oscillating surge wave energy converters (OSWECs) is affected by seven different factors, including wave period, wave power, flap’s relative density, water depth, free-board of the flap, the gap between the tubes, gap underneath the flap, and flap width. These parameters were assessed in their two models in order to estimate the absorbed energy from incoming waves [26], [27]. In addition, Folly et al. investigated the impact of water depth on the OSWECs performance analytically, numerically, and experimentally. According to this and further similar studies, the average annual incident wave power is significantly reduced by water depth. Based on the experimental results, both the surge wave force and the power capture of OSWECs increase in shallow water [28], [29]. Following this, Sarkar et al. found that under such circumstances, the device that is located near the coast performs much better than those in the open ocean [30]. On the other hand, other studies are showing that the size of the converter, including height and width, is relatively independent of the location (within similar depth) [31]. Subsequently, Schmitt et al. studied OSWECs numerically and experimentally. In fact, for the simulation of OSWEC, OpenFOAM was used to test the applicability of Reynolds-averaged Navier-Stokes (RANS) solvers. Then, the experimental model reproduced the numerical results with satisfying accuracy [32]. In another influential study, Wang et al. numerically assessed the effect of OSWEC’s width on their performance. According to their findings, as converter width increases, its efficiency decreases in short wave periods while increases in long wave periods [33]. One of the main challenges in the analysis of the OSWEC is the coupled effect of hydrodynamic and geometric variables. As a result, numerous cutting-edge geometry studies have been performed in recent years in order to find the optimal structure that maximizes power output and minimizes costs. Garcia et al. reviewed hull geometry optimization studies in the literature in [19]. In addition, Guo and Ringwood surveyed geometric optimization methods to improve the hydrodynamic performance of OSWECs at the primary stage [14]. Besides, they classified the hull geometry of OSWECs based on Figure 1. Subsequently, Whittaker et al. proposed a different design of OSWEC called Oyster2. There have been three examples of different geometries of oysters with different water depths. Based on its water depth, they determined the width and height of the converter. They also found that in the constant wave period the less the converter’s width, the less power captures the converter has [34]. Afterward, O’Boyle et al. investigated a type of OSWEC called Oyster 800. They compared the experimental and numerical models with the prototype model. In order to precisely reproduce the shape, mass distribution, and buoyancy properties of the prototype, a 40th-scale experimental model has been designed. Overall, all the models were fairly accurate according to the results [35].
Inclusive analysis of recent research avenues in the area of flap geometry has revealed that the interaction-based designs of such converters are emerging as a novel approach. An initiative workflow is designed in the current study to maximizing the wave energy extrication by such systems. To begin with, a sensitivity analysis plays its role of determining the best hydrodynamic values for installing the converter’s flap. Then, all flap dimensions and characteristics come into play to finalize the primary model. Following, interactive designs is proposed to increase the influence of incident waves on the body by adding ribs on both sides of the flap as a novel design. Finally, a new bi-level metaheuristic method is proposed to consider the effects of simultaneous changes in ribs properties and other design parameters. We hope this novel approach will be utilized to make big-scale projects less costly and justifiable. The efficiency of the method is also compared with four well known metaheuristic algorithms and out weight them for this application.
This paper is organized as follows. First, the research methodology is introduced by providing details about the numerical model implementation. To that end, we first introduced the primary model’s geometry and software details. That primary model is later verified with a benchmark study with regard to the flap angle of rotation and water surface elevation. Then, governing equations and performance criteria are presented. In the third part of the paper, we discuss the model’s sensitivity to lower and upper parts width (we proposed a two cross-sectional design for the flap), bottom elevation, and freeboard. Finally, the novel optimization approach is introduced in the final part and compared with four recent metaheuristic algorithms.
2. Numerical Methods
In this section, after a brief introduction of the numerical software, Flow3D, boundary conditions are defined. Afterwards, the numerical model implementation, along with primary model properties are described. Finally, governing equations, as part of numerical process, are discussed.
2.1. Model Setup
FLOW-3D is a powerful and comprehensive CFD simulation platform for studying fluid dynamics. This software has several modules to solve many complex engineering problems. In addition, modeling complex flows is simple and effective using FLOW-3D’s robust meshing capabilities [36]. Interaction between fluid and moving objects might alter the computational range. Dynamic meshes are used in our modeling to take these changes into account. At each time step, the computational node positions change in order to adapt the meshing area to the moving object. In addition, to choose mesh dimensions, some factors are taken into account such as computational accuracy, computational time, and stability. The final grid size is selected based on the detailed procedure provided in [37]. To that end, we performed grid-independence testing on a CFD model using three different mesh grid sizes of 0.01, 0.015, and 0.02 meters. The problem geometry and boundary conditions were defined the same, and simulations were run on all three grids under the same conditions. The predicted values of the relevant variable, such as velocity, was compared between the grids. The convergence behavior of the numerical solution was analyzed by calculating the relative L2 norm error between two consecutive grids. Based on the results obtained, it was found that the grid size of 0.02 meters showed the least error, indicating that it provided the most accurate and reliable solution among the three grids. Therefore, the grid size of 0.02 meters was selected as the optimal spatial resolution for the mesh grid.
In this work, the flume dimensions are 10 meters long, 0.1 meters wide, and 2.2 meters high, which are shown in figure2. In addition, input waves with linear characteristics have a height of 0.1 meters and a period of 1.4 seconds. Among the linear wave methods included in this software, RNGk-ε and k- ε are appropriate for turbulence model. The research of Lopez et al. shows that RNGk- ε provides the most accurate simulation of turbulence in OSWECs [21]. We use CATIA software to create the flap primary model and other innovative designs for this project. The flap measures 0.1 m x 0.65 m x 0.360 m in x, y and z directions, respectively. In Figure 3, the primary model of flap and its dimensions are shown. In this simulation, five boundaries have been defined, including 1. Inlet, 2. Outlet, 3. Converter flap, 4. Bed flume, and 5. Water surface, which are shown in figure 2. Besides, to avoid wave reflection in inlet and outlet zones, Flow3D is capable of defining some areas as damping zones, the length of which has to be one to one and a half times the wavelength. Therefore, in the model, this length is considered equal to 2 meters. Furthermore, there is no slip in all the boundaries. In other words, at every single time step, the fluid velocity is zero on the bed flume, while it is equal to the flap velocity on the converter flap. According to the wave theory defined in the software, at the inlet boundary, the water velocity is called from the wave speed to be fed into the model.
2.2. Verification
In the current study, we utilize the Schmitt experimental model as a benchmark for verification, which was developed at the Queen’s University of Belfast. The experiments were conducted on the flap of the converter, its rotation, and its interaction with the water surface. Thus, the details of the experiments are presented below based up on the experimental setup’s description [38]. In the experiment, the laboratory flume has a length of 20m and a width of 4.58m. Besides, in order to avoid incident wave reflection, a wave absorption source is devised at the end of the left flume. The flume bed, also, includes two parts with different slops. The flap position and dimensions of the flume can be seen in Figure4. In addition, a wave-maker with 6 paddles is installed at one end. At the opposite end, there is a beach with wire meshes. Additionally, there are 6 indicators to extract the water level elevation. In the flap model, there are three components: the fixed support structure, the hinge, and the flap. The flap measures 0.1m x 0.65m x 0.341m in x, y and z directions, respectively. In Figure5, the details are given [32]. The support structure consists of a 15 mm thick stainless steel base plate measuring 1m by 1.4m, which is screwed onto the bottom of the tank. The hinge is supported by three bearing blocks. There is a foam centerpiece on the front and back of the flap which is sandwiched between two PVC plates. Enabling changes of the flap, three metal fittings link the flap to the hinge. Moreover, in this experiment, the selected wave is generated based on sea wave data at scale 1:40. The wave height and the wave period are equal to 0.038 (m) and 2.0625 (s), respectively, which are tantamount to a wave with a period of 13 (s) and a height of 1.5 (m).
Two distinct graphs illustrate the numerical and experi-mental study results. Figure6 and Figure7 are denoting the angle of rotation of flap and surface elevation in computational and experimental models, respectively. The two figures roughly represent that the numerical and experimental models are a good match. However, for the purpose of verifying the match, we calculated the correlation coefficient (C) and root mean square error (RMSE). According to Figure6, correlation coefficient and RMSE are 0.998 and 0.003, respectively, and in Figure7 correlation coefficient and RMSE are respectively 0.999 and 0.001. Accordingly, there is a good match between the numerical and empirical models. It is worth mentioning that the small differences between the numerical and experimental outputs may be due to the error of the measuring devices and the calibration of the data collection devices.
Including continuity equation and momentum conserva- tion for incompressible fluid are given as [32], [39]:(1)
where P represents the pressure, g denotes gravitational acceleration, u represents fluid velocity, and Di is damping coefficient. Likewise, the model uses the same equation. to calculate the fluid velocity in other directions as well. Considering the turbulence, we use the two-equation model of RNGK- ε. These equations are:
(3)��t(��)+����(����)=����[�eff�������]+��-��and(4)���(��)+����(����)=����[�eff�������]+�1�∗����-��2��2�Where �2� and �1� are constants. In addition, �� and �� represent the turbulent Prandtl number of � and k, respectively.
�� also denote the production of turbulent kinetic energy of k under the effect of velocity gradient, which is calculated as follows:(5)��=�eff[�����+�����]�����(6)�eff=�+��(7)�eff=�+��where � is molecular viscosity,�� represents turbulence viscosity, k denotes kinetic energy, and ∊∊ is energy dissipation rate. The values of constant coefficients in the two-equation RNGK ∊-∊ model is as shown in the Table 1[40].Table 2.
Table 1. Constant coefficients in RNGK-∊ model
Factors
�
�0
�1
�2
��
��
��
Quantity
0.012
4.38
1.42
1.68
1.39
1.39
0.084
Table 2. Flap properties
Joint height (m)
0.476
Height of the center of mass (m)
0.53
Weight (Kg)
10.77
It is worth mentioning that the volume of fluid method is used to separate water and air phases in this software [41]. Below is the equation of this method [40].(8)����+����(���)=0where α and 1 − α are portion of water phase and air phase, respectively. As a weighting factor, each fluid phase portion is used to determine the mixture properties. Finally, using the following equations, we calculate the efficiency of converters [42], [34], [43]:(9)�=14|�|2�+�2+(�+�a)2(�n2-�2)2where �� represents natural frequency, I denotes the inertia of OSWEC, Ia is the added inertia, F is the complex wave force, and B denotes the hydrodynamic damping coefficient. Afterward, the capture factor of the converter is calculated by [44]:(10)��=�1/2��2����gw where �� represents the capture factor, which is the total efficiency of device per unit length of the wave crest at each time step [15], �� represent the dimensional amplitude of the incident wave, w is the flap’s width, and Cg is the group velocity of the incident wave, as below:(11)��=��0·121+2�0ℎsinh2�0ℎwhere �0 denotes the wave number, h is water depth, and H is the height of incident waves.
According to previous sections ∊,����-∊ modeling is used for all models simulated in this section. For this purpose, the empty boundary condition is used for flume walls. In order to preventing wave reflection at the inlet and outlet of the flume, the length of wave absorption is set to be at least one incident wavelength. In addition, the structured mesh is chosen, and the mesh dimensions are selected in two distinct directions. In each model, all grids have a length of 2 (cm) and a height of 1 (cm). Afterwards, as an input of the software for all of the models, we define the time step as 0.001 (s). Moreover, the run time of every simulation is 30 (s). As mentioned before, our primary model is Schmitt model, and the flap properties is given in table2. For all simulations, the flume measures 15 meters in length and 0.65 meters in width, and water depth is equal to 0.335 (m). The flap is also located 7 meters from the flume’s inlet.
Finally, in order to compare the results, the capture factor is calculated for each simulation and compared to the primary model. It is worth mentioning that capture factor refers to the ratio of absorbed wave energy to the input wave energy.
According to primary model simulation and due to the decreasing horizontal velocity with depth, the wave crest has the highest velocity. Considering the fact that the wave’s orbital velocity causes the flap to move, the contact between the upper edge of the flap and the incident wave can enhance its performance. Additionally, the numerical model shows that the dynamic pressure decreases as depth increases, and the hydrostatic pressure increases as depth increases.
To determine the OSWEC design, it is imperative to understand the correlation between the capture factor, wave period, and wave height. Therefore, as it is shown in Figure8, we plot the change in capture factor over the variations in wave period and wave height in 3D and 2D. In this diagram, the first axis features changes in wave period, the second axis displays changes in wave height, and the third axis depicts changes in capture factor. According to our wave properties in the numerical model, the wave period and wave height range from 2 to 14 seconds and 2 to 8 meters, respectively. This is due to the fact that the flap does not oscillate if the wave height is less than 2 (m), and it does not reverse if the wave height is more than 8 (m). In addition, with wave periods more than 14 (s), the wavelength would be so long that it would violate the deep-water conditions, and with wave periods less than 2 (s), the flap would not oscillate properly due to the shortness of wavelength. The results of simulation are shown in Figure 8. As it can be perceived from Figure 8, in a constant wave period, the capture factor is in direct proportion to the wave height. It is because of the fact that waves with more height have more energy to rotate the flap. Besides, in a constant wave height, the capture factor increases when the wave period increases, until a given wave period value. However, the capture factor falls after this point. These results are expected since the flap’s angular displacement is not high in lower wave periods, while the oscillating motion of that is not fast enough to activate the power take-off system in very high wave periods.
As is shown in Figure 9, we plot the change in capture factor over the variations in wave period (s) and water depth (m) in 3D. As it can be seen in this diagram, the first axis features changes in water depth (m), the second axis depicts the wave period (s), and the third axis displays OSWEC’s capture factor. The wave period ranges from 0 to 10 seconds based on our wave properties, which have been adopted from Schmitt’s model, while water depth ranges from 0 to 0.5 meters according to the flume and flap dimensions and laboratory limitations. According to Figure9, for any specific water depth, the capture factor increases in a varying rate when the wave period increases, until a given wave period value. However, the capture factor falls steadily after this point. In fact, the maximum capture factor occurs when the wave period is around 6 seconds. This trend is expected since, in a specific water depth, the flap cannot oscillate properly when the wavelength is too short. As the wave period increases, the flap can oscillate more easily, and consequently its capture factor increases. However, the capture factor drops in higher wave periods because the wavelength is too large to move the flap. Furthermore, in a constant wave period, by changing the water depth, the capture factor does not alter. In other words, the capture factor does not depend on the water depth when it is around its maximum value.
3. Sensitivity Analysis
Based on previous studies, in addition to the flap design, the location of the flap relative to the water surface (freeboard) and its elevation relative to the flume bed (flap bottom elevation) play a significant role in extracting energy from the wave energy converter. This study measures the sensitivity of the model to various parameters related to the flap design including upper part width of the flap, lower part width of the flap, the freeboard, and the flap bottom elevation. Moreover, as a novel idea, we propose that the flap widths differ in the lower and upper parts. In Figure10, as an example, a flap with an upper thickness of 100 (mm) and a lower thickness of 50 (mm) and a flap with an upper thickness of 50 (mm) and a lower thickness of 100 (mm) are shown. The influence of such discrepancy between the widths of the upper and lower parts on the interaction between the wave and the flap, or in other words on the capture factor, is evaluated. To do so, other parameters are remained constant, such as the freeboard, the distance between the flap and the flume bed, and the wave properties.
In Figure11, models are simulated with distinct upper and lower widths. As it is clear in this figure, the first axis depicts the lower part width of the flap, the second axis indicates the upper part width of the flap, and the colors represent the capture factor values. Additionally, in order to consider a sufficient range of change, the flap thickness varies from half to double the value of the primary model for each part.
According to this study, the greater the discrepancy in these two parts, the lower the capture factor. It is on account of the fact that when the lower part of the flap is thicker than the upper part, and this thickness difference in these two parts is extremely conspicuous, the inertia against the motion is significant at zero degrees of rotation. Consequently, it is difficult to move the flap, which results in a low capture factor. Similarly, when the upper part of the flap is thicker than the lower part, and this thickness difference in these two parts is exceedingly noticeable, the inertia is so great that the flap can not reverse at the maximum degree of rotation. As the results indicate, the discrepancy can enhance the performance of the converter if the difference between these two parts is around 20%. As it is depicted in the Figure11, the capture factor reaches its own maximum amount, when the lower part thickness is from 5 to 6 (cm), and the upper part thickness is between 6 and 7 (cm). Consequently, as a result of this discrepancy, less material will be used, and therefore there will be less cost.
As illustrated in Figure12, this study examines the effects of freeboard (level difference between the flap top and water surface) and the flap bottom elevation (the distance between the flume bed and flap bottom) on the converter performance. In this diagram, the first axis demonstrates the freeboard and the second axis on the left side displays the flap bottom elevation, while the colors indicate the capture factor. In addition, the feasible range of freeboard is between -15 to 15 (cm) due to the limitation of the numerical model, so that we can take the wave slamming and the overtopping into consideration. Additionally, based on the Schmitt model and its scaled model of 1:40 of the base height, the flap bottom should be at least 9 (cm) high. Since the effect of surface waves is distributed over the depth of the flume, it is imperative to maintain a reasonable flap height exposed to incoming waves. Thus, the maximum flap bottom elevation is limited to 19 (cm). As the Figure12 pictures, at constant negative values of the freeboard, the capture factor is in inverse proportion with the flap bottom elevation, although slightly.
Furthermore, at constant positive values of the freeboard, the capture factor fluctuates as the flap bottom elevation decreases while it maintains an overall increasing trend. This is on account of the fact that increasing the flap bottom elevation creates turbulence flow behind the flap, which encumbers its rotation, as well as the fact that the flap surface has less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, the capture factor increases by raising the freeboard. This is due to the fact that there is overtopping with adverse impacts on the converter performance when the freeboard is negative and the flap is under the water surface. Besides, increasing the freeboard makes the wave slam more vigorously, which improves the converter performance.
Adding ribs to the flap surface, as shown in Figure13, is a novel idea that is investigated in the next section. To achieve an optimized design for the proposed geometry of the flap, we determine the optimal number and dimensions of ribs based on the flap properties as our decision variables in the optimization process. As an example, Figure13 illustrates a flap with 3 ribs on each side with specific dimensions.
Figure14 shows the flow velocity field around the flap jointed to the flume bed. During the oscillation of the flap, the pressure on the upper and lower surfaces of the flap changes dynamically due to the changing angle of attack and the resulting change in the direction of fluid flow. As the flap moves upwards, the pressure on the upper surface decreases, and the pressure on the lower surface increases. Conversely, as the flap moves downwards, the pressure on the upper surface increases, and the pressure on the lower surface decreases. This results in a cyclic pressure variation around the flap. Under certain conditions, the pressure field around the flap can exhibit significant variations in magnitude and direction, forming vortices and other flow structures. These flow structures can affect the performance of the OSWEC by altering the lift and drag forces acting on the flap.
4. Design Optimization
We consider optimizing the design parameters of the flap of converter using a nature-based swarm optimization method, that fall in the category of metaheuristic algorithms [45]. Accordingly, we choose four state-of-the-art algorithms to perform an optimization study. Then, based on their performances to achieve the highest capture factor, one of them will be chosen to be combined with the Hill Climb algorithm to carry out a local search. Therefore, in the remainder of this section, we discuss the search process of each algorithm and visualize their performance and convergence curve as they try to find the best values for decision variables.
4.1. Metaheuristic Approaches
As the first considered algorithm, the Gray Wolf Optimizer (GWO) algorithm simulates the natural leadership and hunting performance of gray wolves which tend to live in colonies. Hunters must obey the alpha wolf, the leader, who is responsible for hunting. Then, the beta wolf is at the second level of the gray wolf hierarchy. A subordinate of alpha wolf, beta stands under the command of the alpha. At the next level in this hierarchy, there are the delta wolves. They are subordinate to the alpha and beta wolves. This category of wolves includes scouts, sentinels, elders, hunters, and caretakers. In this ranking, omega wolves are at the bottom, having the lowest level and obeying all other wolves. They are also allowed to eat the prey just after others have eaten. Despite the fact that they seem less important than others, they are really central to the pack survival. Since, it has been shown that without omega wolves, the entire pack would experience some problems like fighting, violence, and frustration. In this simulation, there are three primary steps of hunting including searching, surrounding, and finally attacking the prey. Mathematically model of gray wolves’ hunting technique and their social hierarchy are applied in determined by optimization. this study. As mentioned before, gray wolves can locate their prey and surround them. The alpha wolf also leads the hunt. Assuming that the alpha, beta, and delta have more knowledge about prey locations, we can mathematically simulate gray wolf hunting behavior. Hence, in addition to saving the top three best solutions obtained so far, we compel the rest of the search agents (also the omegas) to adjust their positions based on the best search agent. Encircling behavior can be mathematically modeled by the following equations: [46].(12)�→=|�→·��→(�)-�→(�)|(13)�→(�+1)=��→(�)-�→·�→(14)�→=2.�2→(15)�→=2�→·�1→-�→Where �→indicates the position vector of gray wolf, ��→ defines the vector of prey, t indicates the current iteration, and �→and �→are coefficient vectors. To force the search agent to diverge from the prey, we use �→ with random values greater than 1 or less than -1. In addition, C→ contains random values in the range [0,2], and �→ 1 and �2→ are random vectors in [0,1]. The second considered technique is the Moth Flame Optimizer (MFO) algorithm. This method revolves around the moths’ navigation mechanism, which is realized by positioning themselves and maintaining a fixed angle relative to the moon while flying. This effective mechanism helps moths to fly in a straight path. However, when the source of light is artificial, maintaining an angle with the light leads to a spiral flying path towards the source that causes the moth’s death [47]. In MFO algorithm, moths and flames are both solutions. The moths are actual search agents that fly in hyper-dimensional space by changing their position vectors, and the flames are considered pins that moths drop when searching the search space [48]. The problem’s variables are the position of moths in the space. Each moth searches around a flame and updates it in case of finding a better solution. The fitness value is the return value of each moth’s fitness (objective) function. The position vector of each moth is passed to the fitness function, and the output of the fitness function is assigned to the corresponding moth. With this mechanism, a moth never loses its best solution [49]. Some attributes of this algorithm are as follows:
•It takes different values to converge moth in any point around the flame.
•Distance to the flame is lowered to be eventually minimized.
•When the position gets closer to the flame, the updated positions around the flame become more frequent.
As another method, the Multi-Verse Optimizer is based on a multiverse theory which proposes there are other universes besides the one in which we all live. According to this theory, there are more than one big bang in the universe, and each big bang leads to the birth of a new universe [50]. Multi-Verse Optimizer (MVO) is mainly inspired by three phenomena in cosmology: white holes, black holes, and wormholes. A white hole has never been observed in our universe, but physicists believe the big bang could be considered a white hole [51]. Black holes, which behave completely in contrast to white holes, attract everything including light beams with their extremely high gravitational force [52]. In the multiverse theory, wormholes are time and space tunnels that allow objects to move instantly between any two corners of a universe (or even simultaneously from one universe to another) [53]. Based on these three concepts, mathematical models are designed to perform exploration, exploitation, and local search, respectively. The concept of white and black holes is implied as an exploration phase, while the concept of wormholes is considered as an exploitation phase by MVO. Additionally, each solution is analogous to a universe, and each variable in the solution represents an object in that universe. Furthermore, each solution is assigned an inflation rate, and the time is used instead of iterations. Following are the universe rules in MVO:
•The possibility of having white hole increases with the inflation rate.
•The possibility of having black hole decreases with the inflation rate.
•Objects tend to pass through black holes more frequently in universes with lower inflation rates.
•Regardless of inflation rate, wormholes may cause objects in universes to move randomly towards the best universe. [54]
Modeling the white/black hole tunnels and exchanging objects of universes mathematically was accomplished by using the roulette wheel mechanism. With every iteration, the universes are sorted according to their inflation rates, then, based on the roulette wheel, the one with the white hole is selected as the local extremum solution. This is accomplished through the following steps:
Assume that
(16)���=����1<��(��)����1≥��(��)
Where ��� represents the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui) is normalized inflation rate of the ith universe, r1 is a random number in [0,1], and j xk shows the jth parameter of the kth universe selected by a roulette wheel selection mechanism [54]. It is assumed that wormhole tunnels always exist between a universe and the best universe formed so far. This mechanism is as follows:(17)���=if�2<���:��+���×((���-���)×�4+���)�3<0.5��-���×((���-���)×�4+���)�3≥0.5����:���where Xj indicates the jth parameter of the best universe formed so far, TDR and WEP are coefficients, where Xj indicates the jth parameter of the best universelbjshows the lower bound of the jth variable, ubj is the upper bound of the jth variable, and r2, r3, and r4 are random numbers in [1], [54].
Finally, one of the newest optimization algorithms is WOA. The WOA algorithm simulates the movement of prey and the whale’s discipline when looking for their prey. Among several species, Humpback whales have a specific method of hunting [55]. Humpback whales can recognize the location of prey and encircle it before hunting. The optimal design position in the search space is not known a priori, and the WOA algorithm assumes that the best candidate solution is either the target prey or close to the optimum. This foraging behavior is called the bubble-net feeding method. Two maneuvers are associated with bubbles: upward spirals and double loops. A unique behavior exhibited only by humpback whales is bubble-net feeding. In fact, The WOA algorithm starts with a set of random solutions. At each iteration, search agents update their positions for either a randomly chosen search agent or the best solution obtained so far [56], [55]. When the best search agent is determined, the other search agents will attempt to update their positions toward that agent. It is important to note that humpback whales swim around their prey simultaneously in a circular, shrinking circle and along a spiral-shaped path. By using a mathematical model, the spiral bubble-net feeding maneuver is optimized. The following equation represents this behavior:(18)�→(�+1)=�′→·�bl·cos(2��)+�∗→(�)
Where:(19)�′→=|�∗→(�)-�→(�)|
X→(t+ 1) indicates the distance of the it h whale to the prey (best solution obtained so far),� is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1,1], and dot (.) is an element-by-element multiplication [55].
Comparing the four above-mentioned methods, simulations are run with 10 search agents for 400 iterations. In Figure 15, there are 20 plots the optimal values of different parameters in optimization algorithms. The five parameters of this study are freeboard, bottom elevations, number of ribs on the converter, rib thickness, and rib Height. The optimal value for each was found by optimization algorithms, naming WOA, MVO, MFO, and GWO. By looking through the first row, the freeboard parameter converges to its maximum possible value in the optimization process of GWO after 300 iterations. Similarly, MFO finds the same result as GWO. In contrast, the freeboard converges to its minimum possible value in MVO optimizing process, which indicates positioning the converter under the water. Furthermore, WOA found the optimal value of freeboard as around 0.02 after almost 200 iterations. In the second row, the bottom elevation is found at almost 0.11 (m) in all algorithms; however, the curves follow different trends in each algorithm. The third row shows the number of ribs, where results immediately reveal that it should be over 4. All algorithms coincide at 5 ribs as the optimal number in this process. The fourth row displays the trends of algorithms to find optimal rib thickness. MFO finds the optimal value early and sets it to around 0.022, while others find the same value in higher iterations. Finally, regarding the rib height, MVO, MFO, and GWO state that the optimal value is 0.06 meters, but WOA did not find a higher value than 0.039.
4.2. HCMVO Bi-level Approach
Despite several strong search characteristics of MVO and its high performance in various optimization problems, it suffers from a few deficiencies in local and global search mechanisms. For instance, it is trapped in the local optimum when wormholes stochastically generate many solutions near the best universe achieved throughout iterations, especially in solving complex multimodal problems with high dimensions [57]. Furthermore, MVO needs to be modified by an escaping strategy from the local optima to enhance the global search abilities. To address these shortages, we propose a fast and effective meta-algorithm (HCMVO) to combine MVO with a Random-restart hill-climbing local search. This meta-algorithm uses MVO on the upper level to develop global tracking and provide a range of feasible and proper solutions. The hill-climbing algorithm is designed to develop a comprehensive neighborhood search around the best-found solution proposed by the upper-level (MVO) when MVO is faced with a stagnation issue or falling into a local optimum. The performance threshold is formulated as follows.(20)Δ����THD=∑�=1�����TH��-����TH��-1�where BestTHDis the best-found solution per generation, andM is related to the domain of iterations to compute the average performance of MVO. If the proposed best solution by the local search is better than the initial one, the global best of MVO will be updated. HCMVO iteratively runs hill climbing when the performance of MVO goes down, each time with an initial condition to prepare for escaping such undesirable situations. In order to get a better balance between exploration and exploitation, the search step size linearly decreases as follows:(21)��=��-����Ma�iter��+1where iter and Maxiter are the current iteration and maximum number of evaluation, respectively. �� stands for the step size of the neighborhood search. Meanwhile, this strategy can improve the convergence rate of MVO compared with other algorithms.
Algorithm 1 shows the technical details of the proposed optimization method (HCMVO). The initial solution includes freeboard (�), bottom elevation (�), number of ribs (Nr), rib thickness (�), and rib height(�).
5. Conclusion
The high trend of diminishing worldwide energy resources has entailed a great crisis upon vulnerable societies. To withstand this effect, developing renewable energy technologies can open doors to a more reliable means, among which the wave energy converters will help the coastal residents and infrastructure. This paper set out to determine the optimized design for such devices that leads to the highest possible power output. The main goal of this research was to demonstrate the best design for an oscillating surge wave energy converter using a novel metaheuristic optimization algorithm. In this regard, the methodology was devised such that it argued the effects of influential parameters, including wave characteristics, WEC design, and interaction criteria.
To begin with, a numerical model was developed in Flow 3D software to simulate the response of the flap of a wave energy converter to incoming waves, followed by a validation study based upon a well-reputed experimental study to verify the accuracy of the model. Secondly, the hydrodynamics of the flap was investigated by incorporating the turbulence. The effect of depth, wave height, and wave period are also investigated in this part. The influence of two novel ideas on increasing the wave-converter interaction was then assessed: i) designing a flap with different widths in the upper and lower part, and ii) adding ribs on the surface of the flap. Finally, four trending single-objective metaheuristic optimization methods
Empty Cell
Algorithm 1:Hill Climb Multiverse Optimization
01:
procedure HCMVO
02:
�=30,�=5▹���������������������������������
03:
�=〈F1,B1,N,R,H1〉,…〈FN,B2,N,R,HN〉⇒lb1N⩽�⩽ubN
04:
Initialize parameters�ER,�DR,�EP,Best�,���ite��▹Wormhole existence probability (WEP)
05:
��=����(��)
06:
��=Normalize the inflation rate��
07:
for iter in[1,⋯,���iter]do
08:
for�in[1,⋯,�]do
09:
Update�EP,�DR,Black����Index=�
10:
for���[1,⋯,�]��
11:
�1=����()
12:
if�1≤��(��)then
13:
White HoleIndex=Roulette�heelSelection(-��)
14:
�(Black HoleIndex,�)=��(White HoleIndex,�)
15:
end if
16:
�2=����([0,�])
17:
if�2≤�EPthen
18:
�3=����(),�4=����()
19:
if�3<0.5then
20:
�1=((��(�)-��(�))�4+��(�))
21:
�(�,�)=Best�(�)+�DR�
22:
else
23:
�(�,�)=Best�(�)-�DR�
24:
end if
25:
end if
26:
end for
27:
end for
28:
�HD=����([�1,�2,⋯,�Np])
29:
Bes�TH�itr=����HD
30:
ΔBestTHD=∑�=1�BestTII��-BestTII��-1�
31:
ifΔBestTHD<��then▹Perform hill climbing local search
32:
BestTHD=����-�lim��������THD
33:
end if
34:
end for
35:
return�,BestTHD▹Final configuration
36:
end procedure
The implementation details of the hill-climbing algorithm applied in HCMPA can be seen in Algorithm 2. One of the critical parameters isg, which denotes the resolution of the neighborhood search around the proposed global best by MVO. If we set a small step size for hill-climbing, the convergence speed will be decreased. On the other hand, a large step size reinforces the exploration ability. Still, it may reduce the exploitation ability and in return increase the act of jumping from a global optimum or surfaces with high-potential solutions. Per each decision variable, the neighborhood search evaluates two different direct searches, incremental or decremental. After assessing the generated solutions, the best candidate will be selected to iterate the search algorithm. It is noted that the hill-climbing algorithm should not be applied in the initial iteration of the optimization process due to the immense tendency for converging to local optima. Meanwhile, for optimizing largescale problems, hill-climbing is not an appropriate selection. In order to improve understanding of the proposed hybrid optimization algorithm’s steps, the flowchart of HCMVO is designed and can be seen in Figure 16.
Figure 17 shows the observed capture factor (which is the absorbed energy with respect to the available energy) by each optimization algorithm from iterations 1 to 400. The algorithms use ten search agents in their modified codes to find the optimal solutions. While GWO and MFO remain roughly constant after iterations 54 and 40, the other three algorithms keep improving the capture factor. In this case, HCMVO and MVO worked very well in the optimizing process with a capture factor obtained by the former as 0.594 and by the latter as 0.593. MFO almost found its highest value before the iteration 50, which means the exploration part of the algorithm works out well. Similarly, HCMVO does the same. However, it keeps finding the better solution during the optimization process until the last iteration, indicating the strong exploitation part of the algorithm. GWO reveals a weakness in exploration and exploitation because not only does it evoke the least capture factor value, but also the curve remains almost unchanged throughout 350 iterations.
Figure 18 illustrates complex interactions between the five optimization parameters and the capture factor for HCMVO (a), MPA (b), and MFO (c) algorithms. The first interesting observation is that there is a high level of nonlinear relationships among the setting parameters that can make a multi-modal search space. The dark blue lines represent the best-found configuration throughout the optimisation process. Based on both HCMVO (a) and MVO (b), we can infer that the dark blue lines concentrate in a specific range, showing the high convergence ability of both HCMVO and MVO. However, MFO (c) could not find the exact optimal range of the decision variables, and the best-found solutions per generation distribute mostly all around the search space.
Empty Cell
Algorithm 1:Hill Climb Multiverse Optimization
01:
procedure HCMVO
02:
Initialization
03:
Initialize the constraints��1�,��1�
04:
�1�=Mi�1�+���1�/�▹Compute the step size,�is search resolution
were utilized to illuminate the optimum values of the design parameters, and the best method was chosen to develop a new algorithm that performs both local and global search methods.
The correlation between hydrodynamic parameters and the capture factor of the converter was supported by the results. For any given water depth, the capture factor increases as the wave period increases, until a certain wave period value (6 seconds) is reached, after which the capture factor gradually decreases. It is expected since the flap cannot oscillate effectively when the wavelength is too short for a certain water depth. Conversely, when the wavelength is too long, the capture factor decreases. Furthermore, under a constant wave period, increasing the water depth does not affect the capture factor. Regarding the sensitivity analysis, the study found that increasing the flap bottom elevation causes turbulence flow behind the flap and limitation of rotation, which leads to less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, increasing the freeboard improves the capture factor. Overtopping happens when the freeboard is negative and the flap is below the water surface, which has a detrimental influence on converter performance. Furthermore, raising the freeboard causes the wave impact to become more violent, which increases converter performance.
In the last part, we discussed the search process of each algorithm and visualized their performance and convergence curves as they try to find the best values for decision variables. Among the four selected metaheuristic algorithms, the Multi-verse Optimizer proved to be the most effective in achieving the best answer in terms of the WEC capture factor. However, the MVO needed modifications regarding its escape approach from the local optima in order to improve its global search capabilities. To overcome these constraints, we presented a fast and efficient meta-algorithm (HCMVO) that combines MVO with a Random-restart hill-climbing local search. On a higher level, this meta-algorithm employed MVO to generate global tracking and present a range of possible and appropriate solutions. Taken together, the results demonstrated that there is a significant degree of nonlinearity among the setup parameters that might result in a multimodal search space. Since MVO was faced with a stagnation issue or fell into a local optimum, we constructed a complete neighborhood search around the best-found solution offered by the upper level. In sum, the newly-developed algorithm proved to be highly effective for the problem compared to other similar optimization methods. The strength of the current findings may encourage future investigation on design optimization of wave energy converters using developed geometry as well as the novel approach.
CRediT authorship contribution statement
Erfan Amini: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Mahdieh Nasiri: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Navid Salami Pargoo: Writing – original draft, Writing – review & editing. Zahra Mozhgani: Conceptualization, Methodology. Danial Golbaz: Writing – original draft. Mehrdad Baniesmaeil: Writing – original draft. Meysam Majidi Nezhad: . Mehdi Neshat: Supervision, Conceptualization, Writing – original draft, Writing – review & editing, Visualization. Davide Astiaso Garcia: Supervision. Georgios Sylaios: Supervision.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgement
This research has been carried out within ILIAD (Inte-grated Digital Framework for Comprehensive Maritime Data and Information Services) project that received funding from the European Union’s H2020 programme.
[2]A. Morteza, M. SadipourReza Saadati Fard, Saman Taheri, and Amirhossein AhmadiA dagging-based deep learning framework for transmission line flexibility assessment, IET Renewable Power Generation (2022)Google Scholar
[3]A. Morteza, M. Ilbeigi, J. SchwedA blockchain information management framework for construction safety. Comput-ingCivil Engineering (2021, 2022.)Google Scholar
[4]Jochem Weber, Ronan Costello, and John Ringwood. Wec technology performance levels (tpls)-metric for successful development of economic wec technology. Proceedings EWTEC 2013, 2013.Google Scholar
[5]K. Rahgooy, A. Bahmanpour, M. Derakhshandi, A.a. Bagherzadeh-KhalkhaliDistribution of elastoplastic modulus of subgrade reaction for analysis of raft foundationsGeomechanics and Engineering, 28 (1) (2022), pp. 89-105View in ScopusGoogle Scholar
[7]M. Penalba, G. Giorgi, J.V. RingwoodMathematical modelling of wave energy converters: A review of nonlinear approachesRenewable and Sustainable Energy Reviews, 78 (2017), pp. 1188-1207View PDFView articleView in ScopusGoogle Scholar
[8]C. Windt, J. Davidson, J.V. RingwoodHigh-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanksRenewable and Sustainable Energy Reviews, 93 (2018), pp. 610-630View PDFView articleView in ScopusGoogle Scholar
[10]J.V. Ringwood, G. Bacelli, F. FuscoEnergymaximizing control of wave-energy converters: The development of control system technology to optimize their operationIEEE control systems magazine, 34 (5) (2014), pp. 30-55View article CrossRefView in ScopusGoogle Scholar
[11]N. Faedo, S. Olaya, J.V. RingwoodOptimal control, mpc and mpc-like algorithms for wave energy systems: An overviewIFAC Journal of Systems and Control, 1 (2017), pp. 37-56View PDFView articleView in ScopusGoogle Scholar
[12]L. Wang, J. Isberg, E. TedeschiReview of control strategies for wave energy conversion systems and their validation: the wave-to-wire approachRenewable and Sustainable Energy Reviews, 81 (2018), pp. 366-379View PDFView articleView in ScopusGoogle Scholar
[15]E. Amini, D. Golbaz, R. Asadi, M. Nasiri, O. Ceylan, M.M. Nezhad, et al.A comparative study of metaheuristic algorithms for wave energy converter power take-off optimisation: A case study for eastern australiaJournal of Marine Science and Engineering, 9(5):490 (2021)Google Scholar
[16]Arthur Pecher and Jens Peter KofoedHandbook of ocean wave energySpringer Nature (2017)Google Scholar
[17]G. Chang, C.A. Jones, J.D. Roberts, V.S. NearyA comprehensive evaluation of factors affecting the levelized cost of wave energy conversion projectsRenewable Energy, 127 (2018), pp. 344-354View PDFView articleView in ScopusGoogle Scholar
[18]E. Amini, H. Mehdipour, E. Faraggiana, D. Golbaz, S. Mozaffari, G. Bracco, et al.Optimization of hydraulic power take-off system settings for point absorber wave energy converterRenewable Energy, 194 (2022), pp. 938-954View PDFView articleView in ScopusGoogle Scholar
[19]A. Garcia-Teruel, D.I.M. ForehandA review of geometry optimisa-tion of wave energy convertersRenewable and Sustainable Energy Reviews, 139 (2021), Article 110593View PDFView articleView in ScopusGoogle Scholar
[20]M.M. Nezhad, A. Heydari, M. Neshat, F. Keynia, G. Piras, D.A. GarciaA mediterranean sea offshore wind classification using merra-2 and machine learning modelsRenewable Energy, 190 (2022), pp. 156-166Google Scholar
[21]I. López, J. Andreu, S. Ceballos, I.M.D. Alegría, I. KortabarriaReview of wave energy technologies and the necessary power-equipmentRenewable and sustainable energy reviews, 27 (2013), pp. 413-434View PDFView articleView in ScopusGoogle Scholar
[22]R. Ekström, B. Ekergård, M. LeijonElectrical damping of linear generators for wave energy converters—a reviewRenewable and Sustainable Energy Reviews, 42 (2015), pp. 116-128View PDFView articleGoogle Scholar
[23]Danial Golbaz, Rojin Asadi, Erfan Amini, Hossein Mehdipour, Mahdieh Nasiri, Meysam Majidi Nezhad, Seyed Taghi Omid Naeeni, and Mehdi Neshat. Ocean wave energy converters optimization: A comprehensive review on research directions. arXiv preprint arXiv:2105.07180, 2021.Google Scholar
[24]Michael Choiniere, Jacob Davis, Nhu Nguyen, Nathan Tom, Matthew Fowler, and Krish Thiagarajan Sharman. Hydrodynamics and load shedding behavior of a variable geometry oscillating surge wave energy converter (oswec). Available at SSRN 3900951, 2022.Google Scholar
[25]Alan Henry, Olivier Kimmoun, Jonathan Nicholson, Guillaume Dupont, Yanji Wei, andFrederic Dias. A two dimensional experimental investigation of slamming of an oscillating wave surge converter. In The Twenty-fourth International Ocean and Polar Engineering Conference. OnePetro, 2014.Google Scholar
[26]S. Doyle, G.A. AggidisDevelopment of multioscillating water columns as wave energy convertersRenewable and Sustainable Energy Reviews, 107 (2019), pp. 75-86View PDFView articleView in ScopusGoogle Scholar
[28]Matthew Folley, TJT Whittaker, and Alan Henry. The effect of water depth on the performance of a small surging wave energy converter. Ocean Engineering, 34(8-9):1265–1274, 2007.Google Scholar
[30]D. Sarkar, E. Renzi, F. DiasEffect of a straight coast on the hydrodynamics and performance of the oscillating wave surge converterOcean Engineering, 105 (2015), pp. 25-32View PDFView articleView in ScopusGoogle Scholar
[31]Adrian de Andres, Jéromine Maillet, Jørgen Hals Todalshaug, Patrik Möller, and Henry Jeffrey. On the optimum sizing of a real wec from a techno-economic perspective. In International Conference on Offshore Mechanics and Arctic Engineering, volume 49972, page V006T09A013. American Society of Mechanical Engineers, 2016.Google Scholar
[34]T. Whittaker, M. FolleyNearshore oscillating wave surge converters and the development of oysterPhilosophical Transactions Sciences of the Royal Society A: Mathematical, Physical and Engineering, 370 (1959) (2012), pp. 345-364View article CrossRefView in ScopusGoogle Scholar
[35]Louise O’Boyle, Kenneth Doherty, Jos van’t Hoff, and Jessica Skelton. The value of full scale prototype data-testing oyster 800 at emec, orkney. In Proceedings of the 11th European wave and tidal energy conference (EWTEC), Nantes, France, pages 6–11, 2015.Google Scholar
[37]Ishmail B Celik, Urmila Ghia, Patrick J Roache, and Christopher J Freitas. Procedure for estimation and reporting of uncertainty due to discretization in cfd applications. Journal of fluids EngineeringTransactions of the ASME, 130(7), 2008.Google Scholar
[38]Pal Schmitt, K Doherty, Darragh Clabby, and T Whittaker. The opportunities and limitations of using cfd in the development of wave energyconverters. Marine&OffshoreRenewableEnergy, pages 89–97, 2012.Google Scholar
[39]M. Choiniere, J. Davis, N.u. Nguyen, N. Tom, M. Fowler, K. ThiagarajanHydrodynamics and load shedding behavior of a variable-geometry oscillating surge wave energy converter (oswec)Renewable Energy (2022)Google Scholar
[40]Yong Li and Mian Lin. Regular and irregular wave impacts on floating body. Ocean Engineering, 42:93–101, 2012. Pal Manuel Schmitt. Investigation of the near flow field of bottom hinged flap type wave energy converters. PhD thesis, Queen’s University Belfast, 2014.Google Scholar
[41]Alan John Henry. The hydrodynamics of small seabed mounted bottom hinged wave energy conerverters in shallow water. PhD thesis, Queen’s University Belfast, 2009.Google Scholar
[42]N. Ghorbani, A. Korzeniowski, et al.Adaptive risk hedging for call options under cox-ingersoll-ross interest ratesJournal of Mathematical Finance, 10 (04) (2020), p. 697 View PDF CrossRefView in ScopusGoogle Scholar
[44]M. Abdel-Basset, L. Abdel-Fatah, A.K. SangaiahChapter 10metaheuristic algorithms: a comprehensive reviewcomputational intelligence for multimedia big data on the cloud with engineering applications (2018)Google Scholar
[47]Mohammad Shehab, Laith Abualigah, Husam Al Hamad, Hamzeh Alabool, Mohammad Alshinwan, and Ahmad M Khasawneh. Moth– flame optimization algorithm: variants and applications. Neural Computing and Applications, 32(14):9859–9884, 2020.Google Scholar
[48]Betül Sultan Yıldız and Ali Rıza YıldızMoth-flame optimization algorithm to determine optimal machining parameters in manufacturing processesMaterials Testing, 59 (5) (2017), pp. 425-429Google Scholar
[49]M Tegmark. Barrow, jd davies, pc harper, cl, jr eds. Science and Ultimate Reality Cambridge University Press Cambridge, 2004.Google Scholar
[52]M.S. Morris, K.S. ThorneWormholes in spacetime and their use for interstellar travel: A tool for teaching general relativityAmerican Journal of Physics, 56 (5) (1988), pp. 395-412View article CrossRefView in ScopusGoogle Scholar
[53]S. Mirjalili, S.M. Mirjalili, A. HatamlouMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Computing and Applications, 27 (2) (2016), pp. 495-513View article CrossRefView in ScopusGoogle Scholar
[55]Farhad Soleimanian Gharehchopogh and Hojjat GholizadehA comprehensive survey: Whale optimization algorithm and its applicationsSwarm and Evolutionary Computation, 48 (2019), pp. 1-24Google Scholar
[56]L. AbualigahMulti-verse optimizer algorithm: a comprehensive survey of its results, variants, and applicationsNeural Computing and Applications, 32 (16) (2020), pp. 12381-12401View article CrossRefView in ScopusGoogle Scholar
화성 미션 애플리케이션을 위한 NERVA 파생 원자로 냉각수 채널 모델은 1.3m NERVA 파생 원자로(NDR) 냉각수 채널의 전산유체역학(CFD) 연구 결과를 제시합니다. CFD 코드 FLOW-3D는 NDR 코어를 통과하는 기체 수소의 흐름을 모델링하는 데 사용되었습니다. 수소는 냉각제 채널을 통해 노심을 통과하여 원자로의 냉각제 및 로켓의 추진제 역할을 합니다. 수소는 고밀도/저온 상태로 채널에 들어가고 저밀도/고온 상태로 빠져나오므로 압축성 모델을 사용해야 합니다. 기술 문서의 설계 사양이 모델에 사용되었습니다. 채널 길이에 걸친 압력 강하가 이전에 추정한 것(0.9MPa)보다 높은 것으로 확인되었으며, 이는 더 강력한 냉각수 펌프가 필요하고 설계 사양을 재평가해야 함을 나타냅니다.
NERVA-Derived Reactor Coolant Channel Model for Mars Mission Applications presents the results of a computational fluid dynamics (CFD) study of a 1.3m NERVA-Derived Reactor (NDR) coolant channel; The CFD code FLOW-3D was used to model the flow of gaseous hydrogen through the core of a NDR. Hydrogen passes through the core by way of coolant channels, acting as the coolant for the reactor as well as the propellant for the rocket. Hydrogen enters the channel in a high density/low temperature state and exits in a low density/high temperature state necessitating the use of a compressible model. Design specifications from a technical paper were used for the model; It was determined that the pressure drop across the length of the channel was higher than previously estimated (0.9 MPa), indicating the possible need for more powerful coolant pumps and a re-evaluation of the design specifications.
Figure 1 Nuclear Rocket Schematic DiagramFigure 2 Fuel Element – Tip ViewFigure 3 Fuel Element – Tie-Tube Structure (Tie-tubes are black)Figure 5 Three-Dimensional Coolant Channel ModelFigure 6 Two-Dimensional Coolant Channel Model
REFERENCES
Anderson, J. D., Jr., (1990) Modern Compressible Flow, 2d ed., McGraw-Hill, New York. Avallone E. A. and T. Baumeister III, eds., (1987) Mark’s Standard Handbookfor Mechanical Engineers, 9th ed., McGraw-Hill, New York. Bennett, G. L. and T. J. Miller (1992) “Nuclear Propulsion: A Key Transportation Technology for the Exploration of Mars,” Proceedings o f the 9th Symposium on Space Nuclear Power Systems, CONF-920104, M. S. El-Genk and M. D. Hoover, eds., American Institute of Physics, New York, AIP Conference Proceedings No. 246, 2: 383-388. Black, D. L., and S. V. Gunn (1991) “A Technical Summary of Engine and Reactor Subsystem Design Performance during the NERVA Program,” AIAA-91-3450, American Institute of Aeronautics and Astronautics, Washington, D. C. Borowski, S. K., et al. (1992) “Nuclear Thermal Rockets: Key to Moon-Mars Exploration,” Aerospace America, July 1992, pp. 34(5). Borowski, S. K., et al. (1993) “ Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars,” AIAA-93-4170, American Institute of Aeronautics and Astronautics, Washington, D. C. Borowski, S. K., et al. (1994) “Nuclear Thermal Rocket/Stage Technology Options for NASA’s Future Human Exploration Missions to the Moon and Mars,” Proceedings o f the 11th Symposium on Space Nuclear Power and Propulsion, CONF-940101, M. S. El-Genk and M. D. Hoover, eds., American Institute of Physics, New York, NY, AIP Conference Proceedings No. 301, 2: 745 – 758. Burmeister, L. C. (1993) Convective Heat Transfer, 2d ed., John Wiley & Sons, New York. Chi, J., R. Holman, and B. Pierce (1989) “Nerva Derivative Reactors for Thermal and Electrical Propulsion,” AIAA-89-2770, American Institute of Aeronautics and Astronautics, Washington, D. C. FIDAP (1993) FIDAP 7.0 User’s Manual, Fluid Dynamics International, Inc. FL0W-3D (1994) FL0W-3D Version 6.0 Quick Reference Guide, Flow Science, Inc., Los Alamos, NM. Hill, P. G. and C. R. Peterson (1970) Mechanics and Thermodynamics o f Propulsion, Addison-Wesley, Reading, MA. Lamarsh, J. R. (1983) Introduction to Nuclear Engineering, 2d ed., Addison-Wesley, Reading, MA. Nassersharif, B. (1991) Notes from a Nuclear Propulsion Short Course, 3-5 January 1991, American Institute of Physics. Nassersharif, B., E. Porta, and D. Hailes (1994) “A Proposal Entitled: Scenario Based Design of Nuclear Propulsion for Manned Mars Mission,” NSCEE, Las Vegas, NV. Shepard, K., et al. (1992) “A Split Sprint Mission to Mars,” Proceedings o f the 9th Symposium on Space Nuclear Power Systems, CONF-920104, M. S. El-Genk and M. D. Hoover, eds., American Institute of Physics, New York, AIP Conference Proceedings No. 246, 1: 58 – 63. Sutton, G. P. (1986) Rocket Propulsion Elements: An Introduction to the Engineering o f Rockets, 5th ed., John Wiley & Sons, New York. U.S. President (1989) “Remarks on the 20th Anniversary of the Apollo 11 Moon Landing July 20, 1989,” Administration o f George Bush, Office of the Federal Register. National Archives and Records Service, 1989, Washington D. C., George Bush, 1989, p. 992. VSAERO (1994) VSAERO User’s Manual E.5, Analytical Methods, Inc., Redmond, WA. White, F. M. (1991) Viscous Fluid Flow, 2d ed., McGraw-Hill, Inc., New York. Zweig, H. R. and M. H. Cooper (1993) “NERVA-Derived Rocket Module for Solar System Exploration,” AIAA-93-2110, American Institute of Aeronautics and Astronautics, Washington, D. C.
Dissertação de Mestrado Ciclo de Estudos Integrados Conducentes ao Grau de Mestre em Engenharia Mecânica Trabalho efectuado sob a orientação do Doutor Hélder de Jesus Fernades Puga Professor Doutor José Joaquim Carneiro Barbosa
ABSTRACT
논문의 일부로 튜터 선택 가능성과 해결해야 할 주제가 설정되는 매개변수를 염두에 두고 개발 주제 ‘Flow- 3D ®에 의한 저압 충전 시스템 최적화’가 선택되었습니다. 이를 위해서는 달성해야 할 목표와 이를 달성하기 위한 방법을 정의하는 것이 필요했습니다.
충전 시스템을 시뮬레이션하고 검증할 수 있는 광범위한 소프트웨어에도 불구하고 Flow-3D®는 시장에서 최고의 도구 중 하나로 표시되어 전체 충전 프로세스 및 행동 표현과 관련하여 탁월한 정확도로 시뮬레이션하는 능력을 입증했습니다.
이를 위해 관련 프로세스를 더 잘 이해하고 충진 시스템 시뮬레이션을 위한 탐색적 기반 역할을 하기 위해 이 도구를 탐색하는 것이 중요합니다. 지연 및 재료 낭비에 반영되는 실제적인 측면에서 충전 장치의 치수를 완벽하게 만드는 비용 및 시간 낭비. 이러한 방식으로 저압 주조 공정에서 충진 시스템을 설계하고 물리적 모델을 탐색하여 특성화하는 방법론을 검증하기 위한 것입니다.
이를 위해 다음 주요 단계를 고려하십시오.
시뮬레이션 소프트웨어 Flow 3D® 탐색; 충전 시스템 모델링; 모델의 매개변수를 탐색하여 모델링된 시스템의 시뮬레이션, 검증 및 최적화.
따라서 연구 중인 압력 곡선과 주조 분석에서 가장 관련성이 높은 정보의 최종 마이닝을 검증하기 위한 것입니다.
사용된 압력 곡선은 수집된 문헌과 이전에 수행된 실제 작업을 통해 얻었습니다. 결과를 통해 3단계 압력 곡선이 층류 충진 체계의 의도된 목적과 관련 속도가 0.5 𝑚/𝑠를 초과하지 않는다는 결론을 내릴 수 있었습니다.
충전 수준이 2인 압력 곡선은 0.5 𝑚/𝑠 이상의 속도로 영역을 채우는 더 난류 시스템을 갖습니다. 열전달 매개변수는 이전에 얻은 값이 주물에 대한 소산 거동을 확증하지 않았기 때문에 연구되었습니다.
이러한 방식으로 주조 공정에 더 부합하는 새로운 가치를 얻었습니다. 달성된 결과는 유사한 것으로 나타난 NovaFlow & Solid®에 의해 생성된 결과와 비교되어 시뮬레이션에서 설정된 매개변수를 검증했습니다. Flow 3D®는 주조 부품 시뮬레이션을 위한 강력한 도구로 입증되었습니다.
As part of the dissertation and bearing in mind the parameters in which the possibility of a choice of tutor and the subject to be addressed is established, the subject for development ’Optimization of filling systems for low pressure by Flow 3D ®’ was chosen. For this it was necessary to define the objectives to achieve and the methods to attain them. Despite the wide range of software able to simulate and validate filling systems, Flow 3D® has been shown as one of the best tools in the market, demonstrating its ability to simulate with distinctive accuracy with respect to the entire process of filling and the behavioral representation of the fluid obtained. To this end, it is important to explore this tool for a better understanding of the processes involved and to serve as an exploratory basis for the simulation of filling systems, simulation being one of the great strengths of the current industry due to the need to reduce costs and time waste, in practical terms, that lead to the perfecting of the dimensioning of filling devices, which are reflected in delays and wasted material. In this way it is intended to validate the methodology to design a filling system in lowpressure casting process, exploring their physical models and thus allowing for its characterization. For this, consider the following main phases: The exploration of the simulation software Flow 3D®; modeling of filling systems; simulation, validation and optimization of systems modeled by exploring the parameters of the models. Therefore, it is intended to validate the pressure curves under study and the eventual mining of the most relevant information in a casting analysis. The pressure curves that were used were obtained through the gathered literature and the practical work previously performed. Through the results it was possible to conclude that the pressure curve with 3 levels meets the intended purpose of a laminar filling regime and associated speeds never exceeding 0.5 𝑚/𝑠. The pressure curve with 2 filling levels has a more turbulent system, having filling areas with velocities above 0.5 𝑚/𝑠. The heat transfer parameter was studied due to the values previously obtained didn’t corroborate the behavior of dissipation regarding to the casting. In this way, new values, more in tune with the casting process, were obtained. The achieved results were compared with those generated by NovaFlow & Solid®, which were shown to be similar, validating the parameters established in the simulations. Flow 3D® was proven a powerful tool for the simulation of casting parts.
Figure 4.24 – Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed fillingFigure 4.39 – Values of temperature contours using full energy heat transfer parameter for simulaFigure 4.40 – Comparison between software simulations (a) Flow 3D® simulation,
(b) NovaFlow & Solid® simulation
BIBLIOGRAPHY
[1] E. Stanley and D. B. Sc, “Fluid Flow Aspects of Solidification Modelling : Simulation of Low Pressure Die Casting .” [2] Y. Sahin, “Computer aided foundry die-design,” Metallography, vol. 24, no. 8, pp. 671–679, 2003. [3] F. Bonollo, J. Urban, B. Bonatto, and M. Botter, “Gravity and low pressure die casting of aluminium alloys : a technical and economical benchmark,” La Metall. Ital., vol. 97, no. 6, pp. 23–32, 2005. [4] P. a and R. R, “Study of the effect of process parameters on the production of a nonsimmetric low pressure die casting part,” La Metall. Ital., pp. 57–63, 2009. [5] “Fundição em baixa pressão | Aluinfo.” [Online]. Available: http://www.aluinfo.com.br/novo/materiais/fundicao-em-baixa-pressao. [Accessed: 18- Sep-2015]. [6] “Low Pressure Sand Casting by Wolverine Bronze.” [Online]. Available: http://www.wolverinebronze.com/low-pressure-sand-casting.php. [Accessed: 18-Sep2015]. [7] A. Reikher, “Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation,” no. December, 2012. [8] P. Fu, A. a. Luo, H. Jiang, L. Peng, Y. Yu, C. Zhai, and A. K. Sachdev, “Low-pressure die casting of magnesium alloy AM50: Response to process parameters,” J. Mater. Process. Technol., vol. 205, no. 1–3, pp. 224–234, 2008. [9] X. Li, Q. Hao, W. Jie, and Y. Zhou, “Development of pressure control system in counter gravity casting for large thin-walled A357 aluminum alloy components,” Trans. Nonferrous Met. Soc. China, vol. 18, no. 4, pp. 847–851, 2008. [10] J. a. Hines, “Determination of interfacial heat-transfer boundary conditions in an aluminum low-pressure permanent mold test casting,” Metall. Mater. Trans. B, vol. 35, no. 2, pp. 299–311, 2004. [11] A. Lima, A. Freitas, and P. Magalhães, “Processos de vazamento em moldações permanentes,” pp. 40–49, 2003. [12] Y. B. Choi, K. Matsugi, G. Sasaki, K. Arita, and O. Yanagisawa, “Analysis of Manufacturing Processes for Metal Fiber Reinforced Aluminum Alloy Composite Fabricated by Low-Pressure Casting,” Mater. Trans., vol. 47, no. 4, pp. 1227–1231, 68 2006. [13] G. Mi, X. Liu, K. Wang, and H. Fu, “Numerical simulation of low pressure die-casting aluminum wheel,” China Foundry, vol. 6, no. 1, pp. 48–52, 2009. [14] J. Kuo, F. Hsu, and W. Hwang, “ADVANCED Development of an interactive simulation system for the determination of the pressure ± time relationship during the ® lling in a low pressure casting process,” vol. 2, pp. 131–145, 2001. [15] S.-G. Liu, F.-Y. Cao, X.-Y. Zhao, Y.-D. Jia, Z.-L. Ning, and J.-F. Sun, “Characteristics of mold filling and entrainment of oxide film in low pressure casting of A356 alloy,” Mater. Sci. Eng. A, vol. 626, pp. 159–164, 2015. [16] “Casting Training Class – Lecture 10 – Solidification and Shrinkage-Casting.” FLOW3D®. [17] “UAB Casting Engineering Laboratory.” [Online]. Available: file:///C:/Users/Jos%C3%A9 Belo/Desktop/Artigo_Software/UAB Casting Engineering Laboratory.htm. [Accessed: 09-Nov-2015]. [18] A. Louvo, “Casting Simulation as a Tool in Concurrent Engineering,” pp. 1–12, 1997. [19] T. R. Vijayaram and P. Piccardo, “Computers in Foundries,” vol. 30, 2012. [20] M. Sadaiah, D. R. Yadav, P. V. Mohanram, and P. Radhakrishnan, “A generative computer-aided process planning system for prismatic components,” Int. J. Adv. Manuf. Technol., vol. 20, no. 10, pp. 709–719, 2002. [21] Ministry_of_Planning, “Digital Data,” vol. 67, pp. 1–6, 2004. [22] S. Shamasundar, D. Ramachandran, and N. S. Shrinivasan, “COMPUTER SIMULATION AND ANALYSIS OF INVESTMENTCASTING PROCESS.” [23] J. M. Siqueira and G. Motors, “Simulation applied to Aluminum High Pressure Die Casting,” pp. 1–5, 1998. [24] C. Fluid, COMPUTATIONAL FLUID DYNAMICS. Abdulnaser Sayma & Ventus Publishing ApS, 2009. [25] C. a. Felippa, “1 – Overview,” Adv. Finite Elem. Methods, pp. 1–9. [26] a. Meena and M. El Mansori, “Correlative thermal methodology for castability simulation of ductile iron in ADI production,” J. Mater. Process. Technol., vol. 212, no. 11, pp. 2484–2495, 2012. [27] T. R. Vijayaram, S. Sulaiman, a. M. S. Hamouda, and M. H. M. Ahmad, “Numerical simulation of casting solidification in permanent metallic molds,” J. Mater. Process. 69 Technol., vol. 178, pp. 29–33, 2006. [28] “General CFD FAQ — CFD-Wiki, the free CFD reference.” [Online]. Available: http://www.cfd-online.com/Wiki/General_CFD_FAQ. [Accessed: 10-Nov-2015]. [29] “FEM | FEA | CFD.” [Online]. Available: http://fem4analyze.blogspot.pt/. [Accessed: 09-Nov-2015]. [30] “Fundição; revista da Associação portuguesa de fundição,” Fundição, vol. N o 227. [31] “Casting Training Class – Lecture 1 – Introduction_to_FLOW-3D – Casting.” FLOW3D®. [32] F. Science, “FLOW-3D Cast Documentation,” no. 3.5, p. 80, 2012. [33] “Casting Training Class – Lecture 4 – Geometry Building – General.” FLOW-3D®. [34] F. Science, “FLOW-3D v11.0.3 User Manual,” pp. 1–132, 2015. [35] “Casting Training Class – Lecture 5 Meshing Concept – General.” FLOW-3D®. [36] “Casting Training Class – Lecture 6 – Boundary_Conditions – Casting.” FLOW-3D®. [37] “Casting Training Class – Lecture 9 – Physical Models-castings.” FLOW-3D®. [38] P. A. D. Jácome, M. C. Landim, A. Garcia, A. F. Furtado, and I. L. Ferreira, “The application of computational thermodynamics and a numerical model for the determination of surface tension and Gibbs–Thomson coefficient of aluminum based alloys,” Thermochim. Acta, vol. 523, no. 1–2, pp. 142–149, 2011. [39] J. P. Anson, R. A. L. Drew, and J. E. Gruzleski, “The surface tension of molten aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 30, no. 6, pp. XVI–1032, 1999.
ROPELLANT 열 성층화 및 외부 교란에 대한 유체 역학적 반응은 발사체와 우주선 모두에서 중요합니다. 과거에는 결합된 솔루션을 제공할 수 있는 충분한 계산 기술이 부족하여 이러한 문제를 개별적으로 해결했습니다.1
이로 인해 모델링 기술의 불확실성을 허용하기 위해 큰 안전 계수를 가진 시스템이 과도하게 설계되었습니다. 고중력 환경과 저중력 환경 모두에서 작동하도록 설계된 미래 시스템은 기술적으로나 재정적으로 실현 가능하도록 과잉 설계 및 안전 요소가 덜 필요합니다.
이러한 유체 시스템은 열역학 및 유체 역학이 모두 중요한 환경에서 모델의 기능을 광범위하게 검증한 후에만 고충실도 수치 모델을 기반으로 할 수 있습니다. 상용 컴퓨터 코드 FLOW-3D2는 유체 역학 및 열 모델링 모두에서 가능성을 보여주었으며,1 따라서 열역학-유체-역학 엔지니어링 문제에서 결합된 질량, 운동량 및 에너지 방정식을 푸는 데 적합함을 시사합니다.
발사체의 복잡한 액체 가스 시스템에 대한 포괄적인 솔루션을 달성하기 위한 첫 번째 단계로 액체 유체 역학과 열역학을 통합하는 제안된 상단 단계 액체-수소(Lit) 탱크의 간단한 모델이 여기에 제시됩니다. FLOW-3D FLOW-3D 프로그램은 Los Alamos Scientific Laboratory에서 시작되었으며 마커 및 셀 방법에서 파생된 것입니다.3 현재 상태로 가져오기 위해 수년에 걸쳐 광범위한 코드 수정이 이루어졌습니다.2
프로그램은 다음과 같습니다. 일반 Navier-Stokes 방정식을 풀기 위해 수치 근사의 중앙 유한 차분 방법을 사용하는 3차원 유체 역학 솔버입니다. 모멘텀 및 에너지 방정식의 섹션은 특정 응용 프로그램에 따라 활성화 또는 비활성화할 수 있습니다.
코드는 1994년 9월 13일 접수를 인용하기 위해 무액체 표면, 복잡한 용기 기하학, 여러 점성 모델, 표면 장력, 다공성 매체를 통한 흐름 및 응고와 함께 압축성 또는 비압축성 유동 가정을 제공합니다. 1995년 1월 15일에 받은 개정; 1995년 2월 17일 출판 승인.
In this study, the nonlinear effect of contactless bubble–bubble interactions in inertial micropumps is characterized via reduced parameter one-dimensional and three-dimensional computational fluid dynamics (3D CFD) modeling. A one-dimensional pump model is developed to account for contactless bubble-bubble interactions, and the accuracy of the developed one-dimensional model is assessed via the commercial volume of fluid CFD software, FLOW-3D. The FLOW-3D CFD model is validated against experimental bubble dynamics images as well as experimental pump data. Precollapse and postcollapse bubble and flow dynamics for two resistors in a channel have been successfully explained by the modified one-dimensional model. The net pumping effect design space is characterized as a function of resistor placement and firing time delay. The one-dimensional model accurately predicts cumulative flow for simultaneous resistor firing with inner-channel resistor placements (0.2L < x < 0.8L where L is the channel length) as well as delayed resistor firing with inner-channel resistor placements when the time delay is greater than the time required for the vapor bubble to fill the channel cross section. In general, one-dimensional model accuracy suffers at near-reservoir resistor placements and short time delays which we propose is a result of 3D bubble-reservoir interactions and transverse bubble growth interactions, respectively, that are not captured by the one-dimensional model. We find that the one-dimensional model accuracy improves for smaller channel heights. We envision the developed one-dimensional model as a first-order rapid design tool for inertial pump-based microfluidic systems operating in the contactless bubble–bubble interaction nonlinear regime
이 연구에서 관성 마이크로 펌프에서 비접촉 기포-기포 상호 작용의 비선형 효과는 감소 된 매개 변수 1 차원 및 3 차원 전산 유체 역학 (3D CFD) 모델링을 통해 특성화됩니다. 비접촉식 기포-버블 상호 작용을 설명하기 위해 1 차원 펌프 모델이 개발되었으며, 개발 된 1 차원 모델의 정확도는 유체 CFD 소프트웨어 인 FLOW-3D의 상용 볼륨을 통해 평가됩니다.
FLOW-3D CFD 모델은 실험적인 거품 역학 이미지와 실험적인 펌프 데이터에 대해 검증되었습니다. 채널에 있는 두 저항기의 붕괴 전 및 붕괴 후 기포 및 유동 역학은 수정 된 1 차원 모델에 의해 성공적으로 설명되었습니다. 순 펌핑 효과 설계 공간은 저항 배치 및 발사 시간 지연의 기능으로 특징 지어집니다.
1 차원 모델은 내부 채널 저항 배치 (0.2L <x <0.8L, 여기서 L은 채널 길이)로 동시 저항 발생에 대한 누적 흐름과 시간 지연시 내부 채널 저항 배치로 지연된 저항 발생을 정확하게 예측합니다. 증기 방울이 채널 단면을 채우는 데 필요한 시간보다 큽니다.
일반적으로 1 차원 모델 정확도는 저수지 근처의 저항 배치와 1 차원 모델에 의해 포착되지 않는 3D 기포-저수지 상호 작용 및 가로 기포 성장 상호 작용의 결과 인 짧은 시간 지연에서 어려움을 겪습니다. 채널 높이가 작을수록 1 차원 모델 정확도가 향상됩니다. 우리는 개발 된 1 차원 모델을 비접촉 기포-기포 상호 작용 비선형 영역에서 작동하는 관성 펌프 기반 미세 유체 시스템을 위한 1 차 빠른 설계 도구로 생각합니다.
REFERENCES
1.S. Hassan and X. Zhang, “ Design and fabrication of capillary-driven flow device for point-of-care diagnostics,” Biosensors 10, 39 (2020). https://doi.org/10.3390/bios10040039, Google ScholarCrossref 2.Q. Shizhi and H. Bau, “ Magneto-hydrodynamics based microfluidics,” Mech. Res. Commun. 36, 10 (2009). https://doi.org/10.1016/j.mechrescom.2008.06.013, Google ScholarCrossref 3.N. Mishchuk, T. Heldal, T. Volden, J. Auerswald, and H. Knapp, “ Micropump based on electroosmosis of the second kind,” Electrophoresis 30, 3499 (2009). https://doi.org/10.1002/elps.200900271, Google ScholarCrossref 4.J. Snyder, J. Getpreecharsawas, D. Fang, T. Gaborski, C. Striemer, P. Fauchet, D. Borkholder, and J. McGrath, “ High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes,” Proc. Nat. Acad. Sci. U. S. A. 110, 18425–18430 (2013). https://doi.org/10.1073/pnas.1308109110, Google ScholarCrossref 5.K. Vinayakumar, G. Nadiger, V. Shetty, S. Dinesh, M. Nayak, and K. Rajanna, “ Packaged peristaltic micropump for controlled drug delivery application,” Rev. Sci. Instrum. 88, 015102 (2017). https://doi.org/10.1063/1.4973513, Google ScholarScitation, ISI 6.D. Duffy, H. Gillis, J. Lin, N. Sheppard, and G. Kellogg, “ Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays,” Anal. Chem. 71, 4669 (1999). https://doi.org/10.1021/ac990682c, Google ScholarCrossref 7.V. Gnyawali, M. Saremi, M. Kolios, and S. Tsai, “ Stable microfluidic flow focusing using hydrostatics,” Biomicrofluidics 11, 034104 (2017). https://doi.org/10.1063/1.4983147, Google ScholarScitation, ISI 8.J. Lake, K. Heyde, and W. Ruder, “ Low-cost feedback-controlled syringe pressure pumps for microfluidics applications,” PLoS One 12, e0175089 (2017). https://doi.org/10.1371/journal.pone.0175089, Google ScholarCrossref 9.M. I. Mohammed, S. Haswell, and I. Gibson, “ Lab-on-a-chip or chip-in-a-lab: Challenges of commercialization lost in translation,” Procedia Technology 20, 54–59 (2015), proceedings of The 1st International Design Technology Conference, DESTECH2015, Geelong. Google ScholarCrossref 10.E. Torniainen, A. Govyadinov, D. Markel, and P. Kornilovitch, “ Bubble-driven inertial micropump,” Phys. Fluids 24, 122003 (2012). https://doi.org/10.1063/1.4769755, Google ScholarScitation, ISI 11.H. Hoefemann, S. Wadle, N. Bakhtina, V. Kondrashov, N. Wangler, and R. Zengerle, “ Sorting and lysis of single cells by bubblejet technology,” Sens. Actuators, B 168, 442–445 (2012). https://doi.org/10.1016/j.snb.2012.04.005, Google ScholarCrossref 12.B. Hayes, A. Hayes, M. Rolleston, A. Ferreira, and J. Kirsher, “ Pulsatory mixing of laminar flow using bubble-driven micro-pumps,” in Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition (2018), Vol. 7. Google ScholarCrossref 13.E. Ory, H. Yuan, A. Prosperetti, S. Popinet, and S. Zaleski, “ Growth and collapse of a vapor bubble in a narrow tube,” Phys. Fluids 12, 1268 (2000). https://doi.org/10.1063/1.870381, Google ScholarScitation, ISI 14.Z. Yin and A. Prosperetti, “‘ Blinking bubble’ micropump with microfabricated heaters,” J. Micromech. Microeng. 15, 1683 (2005). https://doi.org/10.1088/0960-1317/15/9/010, Google ScholarCrossref 15.M. Einat and M. Grajower, “ Microboiling measurements of thermal-inkjet heaters,” J. Microelectromech. Syst. 19, 391 (2010). https://doi.org/10.1109/JMEMS.2010.2040946, Google ScholarCrossref 16.A. Govyadinov, P. Kornilovitch, D. Markel, and E. Torniainen, “ Single-pulse dynamics and flow rates of inertial micropumps,” Microfluid. Nanofluid. 20, 73 (2016). https://doi.org/10.1007/s10404-016-1738-x, Google ScholarCrossref 17.E. Sourtiji and Y. Peles, “ A micro-synthetic jet in a microchannel using bubble growth and collapse,” Appl. Therm. Eng. 160, 114084 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114084, Google ScholarCrossref 18.B. Hayes, A. Govyadinov, and P. Kornilovitch, “ Microfluidic switchboards with integrated inertial pumps,” Microfluid. Nanofluid. 22, 15 (2018). https://doi.org/10.1007/s10404-017-2032-2, Google ScholarCrossref 19.P. Kornilovitch, A. Govyadinov, D. Markel, and E. Torniainen, “ One-dimensional model of inertial pumping,” Phys. Rev. E 87, 023012 (2013). https://doi.org/10.1103/PhysRevE.87.023012, Google ScholarCrossref 20.H. Yuan and A. Prosperetti, “ The pumping effect of growing and collapsing bubbles in a tube,” J. Micromech. Microeng. 9, 402–413 (1999). https://doi.org/10.1088/0960-1317/9/4/318, Google ScholarCrossref 21.J. Zou, B. Li, and C. Ji, “ Interactions between two oscillating bubbles in a rigid tube,” Exp. Therm. Fluid Sci. 61, 105 (2015). https://doi.org/10.1016/j.expthermflusci.2014.10.021, Google ScholarCrossref 22.C. Hirt and B. Nichols, “ Volume of fluid (vof) method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5, Google ScholarCrossref 23.C. Borgnakke and R. E. Sonntag, Fundamentals of Thermodynamics, 8th ed. ( Wiley, 1999). Google Scholar 24.O. E. Ruiz, “ CFD model of the thermal inkjet droplet ejection process,” in Proceeding of Heat Transfer Summer Conference (2007), Vol. 3. Google ScholarCrossref 25.T. Theofanous, L. Biasi, H. Isbin, and H. Fauske, “ A theoretical study on bubble growth in constant and time-dependent pressure fields,” Chem. Eng. Sci. 24, 885–897 (1969). https://doi.org/10.1016/0009-2509(69)85008-6, Google ScholarCrossref 26.S. Timoshenko and J. Goodier, Theory of Elasticity, 3rd ed. ( McGaw-Hill, Inc., 1970). Google Scholar
Subin Shrestha1 J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292 e-mail: subin.shrestha@louisville.edu
Y. Kevin Chou J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292 e-mail: kevin.chou@louisville.edu
LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.
이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.
이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.
전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.
또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.
The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.
Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity
Fig. 1 (a) Powder added to the dispenser platform and
(b) powder particles settled over build plate after the recoating
processFig. 2 3D computational domain used for single-track
simulationFig. 3 Temperature-dependent material properties of Ti-6Al-4VFig. 4 Powder and substrate melting during laser applicationFig. 5 Melt region formed after complete melting and
solidificationFig. 6 Melt pool boundary comparison between the experiment
[25] and the simulationFig. 7 Equilibrium points during the formation of vapor column
[27]Fig. 8 Multiple reflection vectors from the keyhole wallFig. 9 (a) Velocity field, keyhole profile, and breakage of the
keyhole to form bubble and (b) 2D temperature and velocity
field along the longitudinal sectionFig. 10 Fluid flow in the transverse direction during keyhole
meltingFig. 11 Melt pool boundary compared with the experiment [21]
for 195 W laser power and 400 mm/s scan speedFig. 12 Melt region formed after complete melting and
solidificationFig. 13 2D images of the pores formed at the beginning of the
single track and their 3D-rendered morphologyFig. 14 Pore number and volume from a different level of power
with LED = 0.4 J/mm [29]Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s,
(b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/sFig. 16 Intensity dependence in the relationship between vapor
column and evaporation pressure [27]Fig. 17 Temperature distribution when laser has moved 0.8 mm
with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/sFig. 18 Melt region with different level of power with LED of
0.4 J/mm
[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and Propagation Mechanism During Additive Manufacturing by Selective Beam Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528. [2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98. [3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24 (9), pp. 1469–1478. [4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol., 214(11), pp. 2627–2636. [5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process. Technol., 210(12), pp. 1624–1631. [6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools Manuf., 109(2016), pp. 147–157. [7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188. [8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78. [9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta Materialia, 108(2016), pp. 36–45. [10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans. A, 49A(8), pp. 3663–3673. [11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl, L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,” Metal Powder Report, 72(5), pp. 331–338. [12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett, A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1), p. 3602. [13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W., Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser– Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5), pp. 1467–1477. [14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T., and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852. [15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,” ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23. [16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018, “Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations, Optical Society of America, San Jose, CA, May 13–18, Optical Society of America, p. JW2A.117. [17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604. [18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018, “Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and Design, 141(2018), pp. 210–219. [19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models, Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog. Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152. [20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart, W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading Dynamics in Powder-Bed-Based Additive Manufacturing Process by High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079. [21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth, J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267. [22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK. [23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49. [24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D: Appl. Phys., 39(24), p. 5372. [25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B., 2017, “Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167. [26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung, J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340. [27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3), p. 474. [28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R., Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002. [29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions of laser power and scanning speed towards process-induced porosity in selective laser melting,” Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, Aug. 13–15, pp. 1400–1409. [30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl. Phys., 44(44), p. 445401. [31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-bed Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.