Figure 3 – Free surface views. Bottom left: k-ε RNG model. Bottom right: LES.

Physical Modeling and CFD Comparison: Case Study of a HydroCombined Power Station in Spillway Mode

물리적 모델링 및 CFD 비교: 방수로 모드의 HydroCombined 발전소 사례 연구

Gonzalo Duró, Mariano De Dios, Alfredo López, Sergio O. Liscia

ABSTRACT

This study presents comparisons between the results of a commercial CFD code and physical model measurements. The case study is a hydro-combined power station operating in spillway mode for a given scenario. Two turbulence models and two scales are implemented to identify the capabilities and limitations of each approach and to determine the selection criteria for CFD modeling for this kind of structure. The main flow characteristics are considered for analysis, but the focus is on a fluctuating frequency phenomenon for accurate quantitative comparisons. Acceptable representations of the general hydraulic functioning are found in all approaches, according to physical modeling. The k-ε RNG, and LES models give good representation of the discharge flow, mean water depths, and mean pressures for engineering purposes. The k-ε RNG is not able to characterize fluctuating phenomena at a model scale but does at a prototype scale. The LES is capable of identifying the dominant frequency at both prototype and model scales. A prototype-scale approach is recommended for the numerical modeling to obtain a better representation of fluctuating pressures for both turbulence models, with the complement of physical modeling for the ultimate design of the hydraulic structures.

본 연구에서는 상용 CFD 코드 결과와 물리적 모델 측정 결과를 비교합니다. 사례 연구는 주어진 시나리오에 대해 배수로 모드에서 작동하는 수력 복합 발전소입니다.

각 접근 방식의 기능과 한계를 식별하고 이러한 종류의 구조에 대한 CFD 모델링의 선택 기준을 결정하기 위해 두 개의 난류 모델과 두 개의 스케일이 구현되었습니다. 주요 흐름 특성을 고려하여 분석하지만 정확한 정량적 비교를 위해 변동하는 주파수 현상에 중점을 둡니다.

일반적인 수리학적 기능에 대한 허용 가능한 표현은 물리적 모델링에 따라 모든 접근 방식에서 발견됩니다. k-ε RNG 및 LES 모델은 엔지니어링 목적을 위한 배출 유량, 평균 수심 및 평균 압력을 잘 표현합니다.

k-ε RNG는 모델 규모에서는 변동 현상을 특성화할 수 없지만 프로토타입 규모에서는 특성을 파악합니다. LES는 프로토타입과 모델 규모 모두에서 주요 주파수를 식별할 수 있습니다.

수력학적 구조의 궁극적인 설계를 위한 물리적 모델링을 보완하여 두 난류 모델에 대한 변동하는 압력을 더 잘 표현하기 위해 수치 모델링에 프로토타입 규모 접근 방식이 권장됩니다.

Figure 1 – Physical scale model (left). Upstream flume and point gauge (right)
Figure 1 – Physical scale model (left). Upstream flume and point gauge (right)
Figure 3 – Free surface views. Bottom left: k-ε RNG model. Bottom right: LES.
Figure 3 – Free surface views. Bottom left: k-ε RNG model. Bottom right: LES.
Figure 4 – Water levels: physical model (maximum values) and CFD results (mean values)
Figure 4 – Water levels: physical model (maximum values) and CFD results (mean values)
Figure 5 – Instantaneous pressures [Pa] and velocities [m/s] at model scale (bay center)
Figure 5 – Instantaneous pressures [Pa] and velocities [m/s] at model scale (bay center)

Keywords

CFD validation, hydro-combined, k-ε RNG, LES, pressure spectrum

REFERENCES

ADRIAN R. J. (2007). “Hairpin vortex organization in wall turbulence.” Phys. Fluids 19(4), 041301.
DEWALS B., ARCHAMBEAU P., RULOT F., PIROTTON M. and ERPICUM S. (2013). “Physical and
Numerical Modelling in Low-Head Structures Design.” Proc. International Workshop on Hydraulic
Design of Low-Head Structures, Aachen, Germany, Bundesanstalt für Wasserbau Publ., D.B. BUNG
and S. PAGLIARA Editors, pp.11-30.
GRENANDER, U. (1959). Probability and Statistics: The Harald Cramér Volume. Wiley.
HIRT, C. W. and NICHOLS B. D. (1981). “Volume of fluid (VOF) method for the dynamics of free
boundaries.” Journal of Computational Physics 39(1): 201-225.
JOHNSON M. C. and SAVAGE B. M. (2006). “Physical and numerical comparison of flow over ogee
spillway in the presence of tailwater.” J. Hydraulic Eng. 132(12): 1353–1357.
KHAN L.A., WICKLEIN E.A., RASHID M., EBNER L.L. and RICHARDS N.A. (2004).
“Computational fluid dynamics modeling of turbine intake hydraulics at a hydropower plant.” Journal
of Hydraulic Research, 42:1, 61-69
LAROCQUE L.A., IMRAN J. and CHAUDHRY M. (2013). “3D numerical simulation of partial breach
dam-break flow using the LES and k–ϵ turbulence models.” Jl of Hydraulic Research, 51:2, 145-157
LI S., LAI Y., WEBER L., MATOS SILVA J. and PATEL V.C. (2004). “Validation of a threedimensional numerical model for water-pump intakes.” Journal of Hydraulic Research, 42:3, 282-292
NOVAK P., GUINOT V., JEFFREY A. and REEVE D.E. (2010). “Hydraulic modelling – An
introduction.” Spon Press, London and New York, ISBN 978-0-419-25010-4, 616 pp.

Fig. 7.Simulation results by single external force (left: rainfall, right: storm surge)

연안 지역의 복합 외력에 의한 침수 특성 분석

Analysis on inundation characteristics by compound external forces in coastal areas

연안 지역의 복합 외력에 의한 침수 특성 분석

Taeuk Kanga, Dongkyun Sunb, Sangho Leec*
강 태욱a, 선 동균b, 이 상호c*

aResearch Professor, Disaster Prevention Research Institute, Pukyong National University, Busan, Korea
bResearcher, Disaster Prevention Research Institute, Pukyong National University, Busan, Korea
cProfessor, Department of Civil Engineering, Pukyong National University, Busan, Korea
a부경대학교 방재연구소 전임연구교수
b부경대학교 방재연구소 연구원
c부경대학교 공과대학 토목공학과 교수
*Corresponding Author

ABSTRACT

연안 지역은 강우, 조위, 월파 등 여러가지 외력에 의해 침수가 발생될 수 있다. 이에 이 연구에서는 연안 지역에서 발생될 수 있는 단일 및 복합 외력에 의한 지역별 침수 특성을 분석하였다. 연구에서 고려한 외력은 강우와 폭풍 해일에 의한 조위 및 월파이고, 분석 대상지역은 남해안 및 서해안의 4개 지역이다. 유역의 강우-유출 및 2차원 지표면 침수 분석에는 XP-SWMM이 사용되었고, 폭풍 해일에 의한 외력인 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 모형과 FLOW-3D 모형이 각각 활용되었다. 단일 외력을 이용한 분석 결과, 대부분의 연안 지역에서는 강우에 의한 침수 영향보다 폭풍 해일에 의한 침수 영향이 크게 나타났다. 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 지역의 침수 피해 저감을 위해서는 복합 외력을 고려한 분석이 요구되는 것으로 판단되었다.

키워드

연안 지역

침수 분석

강우

폭풍 해일

복합 외력

The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn’t appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.

Keywords

Coastal area

Inundation analysis

Rainfall

Storm surge

Compound external forces

MAIN

1. 서 론

우리나라는 반도에 위치하여 삼면이 바다로 둘러싸여 있는 지리적 특성을 가지고 있다. 이에 따라 해양 산업을 중심으로 부산, 인천, 울산 등 대규모의 광역도시가 발달하였을 뿐만 아니라, 창원, 포항, 군산, 목포, 여수 등의 중․소규모 도시들도 발달되어 있다. 또한, 최근에는 연안 지역이 바다를 전망으로 하는 입지 조건을 가지고 있어 개발 선호도가 높고, 이에 따라 부산시 해운대의 마린시티, 엘시티와 같은 주거 및 상업시설의 개발이 지속되고 있다(Kang et al., 2019b).

한편, 최근 기후변화에 따른 지구 온난화 현상으로 평균 해수면이 상승하고, 해수면 온도도 상승하면서 태풍 및 강우의 강도가 커지고 있어 전 세계적으로 자연 재해로 인한 피해가 증가하고 있다(Kim et al., 2016). 실제로 2020년에는 최장기간의 장마가 발생하여 부산, 울산은 물론, 전국에서 50명의 인명 피해와 3,489세대의 이재민이 발생하였다1). 특히, 연안 지역은 강우, 만조 시 해수면 상승, 폭풍 해일(storm surge)에 의한 월파(wave overtopping) 등 복합적인 외력(compound external forces)에 의해 침수될 수 있다(Lee et al., 2020). 일례로, 2016년 태풍 차바 시 부산시 해운대구의 마린시티는 강우와 폭풍 해일에 의한 월파가 발생함에 따라 대규모 침수를 유발하였다(Kang et al., 2019b). 또한, 2020년 7월 23일에 부산에서는 시간당 81.6 mm의 집중호우와 약최고고조위를 상회하는 만조가 동시에 발생하였고, 이로 인해 감조 하천인 동천의 수위가 크게 상승하여 하천이 범람하였다(KSCE, 2021).

연안 지역의 복합 외력을 고려한 침수 분석에 관한 사례로서, 우선 강우와 조위를 고려한 연구 사례는 다음과 같다. Han et al. (2014)은 XP-SWMM을 이용하여 창원시 배수 구역을 대상으로 침수 모의를 수행하였는데, 연안 도시의 침수 모의에는 조위의 영향을 반드시 고려해야 함을 제시하였다. Choi et al. (2018a)은 경남 사천시 선구동 일대에 대하여 초과 강우 및 해수면 상승 시나리오를 조합하여 침수 분석을 수행하였다. Choi et al. (2018b)은 XP-SWMM을 이용하여 여수시 연등천 및 여수시청 지역에 대하여 강우 시나리오와 해수위 상승 시나리오를 고려한 복합 원인에 의한 침수 모의를 수행하여 홍수예경보 기준표를 작성하였다. 한편, 강우, 조위, 월파를 고려한 연구 사례로서, Song et al. (2017)은 부산시 해운대구 수영만 일원에 대하여 XP-SWMM으로 월파량의 적용 유무에 따른 침수 면적을 비교하였다. Suh and Kim (2018)은 부산시 마린시티 지역을 대상으로 태풍 차바 때 EurOtop의 경험식을 ADSWAN에 적용하여 월파량을 반영하였다. Chen et al. (2017)은 TELEMAC-2D 및 SWMM을 기반으로 한 극한 강우, 월파 및 조위를 고려하여 중국 해안 원자력 발전소의 침수를 예측하고 분석하기 위한 결합 모델을 개발한 바 있다. 한편, Lee et al. (2020)은 수리‧수문학 분야와 해양공학 분야에서 사용되는 물리 모형의 기술적 연계를 통해 연안 지역의 침수 모의의 재현성을 높였다.

상기의 연구들은 공통적으로 연안 지역에 대하여 복합 외력을 고려했을 때 발생되는 침수 현상의 재현 또는 예측을 목적으로 수행되었다. 이 연구는 이와 차별하여 복합 외력을 고려하는 경우 나타날 수 있는 연안 지역의 침수 특성 분석을 목적으로 수행되었다. 이를 위해 단일 외력을 독립적으로 고려했을 때 발생되는 침수 양상과 동시에 고려하는 경우의 침수 현상을 비교, 분석하였다. 복합 외력에 의한 지역적 침수 특성 분석은 우리나라 남해안과 서해안에 위치한 4개 지역에 대하여 적용되었다.

1) 장연제, 47일째 이어진 긴 장마, 50명 인명피해… 9년만에 최대, 동아닷컴, 2020년 8월 9일 수정, 2021년 3월 4일 접속, https://www.donga.com/news/article/all/20200809/102369692/2

2. 연구 방법

2.1 연안 지역의 침수 영향 인자

연안 지역의 침수는 크게 세 가지의 메카니즘으로 발생될 수 있다. 우선, 연안 지역은 바다와 인접하고 있기 때문에 그 영향을 직접적으로 받는다. Kim (2018)에 의하면, 연안 지역의 침수는 폭풍 해일에 의해 상승한 조위와 월파로 인해 발생될 수 있다(Table 1). 특히, 경상남도의 창원과 통영, 인천광역시의 소래포구 어시장 등 남해안 및 서해안 지역의 일부는 백중사리, 슈퍼문(super moon) 등 만조 시 조위의 상승으로 인한 침수가 발생하는 지역이 존재한다(Kang et al., 2019a). 두 번째는 강우에 의한 내수 침수 발생이다. ME (2011)에서는 도시 지역의 우수 관거를 10 ~ 30년 빈도로 계획하도록 지정하고 있고, 펌프 시설은 30 ~ 50년 빈도의 홍수를 배수시킬 수 있도록 정하고 있다. 하지만 최근에는 기후변화의 영향으로 도시 지역 배수시설의 설계 빈도를 초과하는 강우가 빈번하게 나타나고 있다. 실제로 2016년의 태풍 차바 시 울산 기상관측소에 관측된 시간 최대 강우량은 106.0 mm로서, 이는 300년 빈도 이상의 강우량에 해당하였다(Kang et al., 2019a). 따라서 배수시설의 설계 빈도 이상의 강우는 연안 도시 지역의 침수를 유발할 수 있다. 세 번째, 하천이 인접한 연안 도시에서는 하천의 범람으로 인해 침수가 발생할 수 있다. 하천의 경우, 기본계획이 수립되기는 하지만, 설계 빈도를 상회하는 강우의 발생, 제방, 수문 등 홍수 방어시설의 기능 저하, 예산 등의 문제로 하천기본계획 이행의 지연 등에 의해 범람할 가능성이 존재한다.

Table 1.

Type of natural hazard damage in coastal areas (Kim, 2018)

ItemRisk factor
Facilities damage∙ Breaking of coastal facilities by wave
– Breakwater, revetment, lighters wharf etc.
∙ Local scouring at the toe of the structures by wave
∙ Road collapse by wave overtopping
Inundation damage∙ Inundation damage by wave overtopping
∙ Inundation of coastal lowlands by storm surge
Erosion damage∙ Backshore erosion due to high swell waves
∙ Shoreline changes caused by construction of coastal erosion control structure
∙ Sediment transport due to the construction of artificial structures

상기의 내용을 종합하면, 연안 지역은 조위 및 월파에 의한 침수, 강우에 의한 내수 침수, 하천 범람에 의한 침수로 구분될 수 있다. 이 연구에서는 폭풍 해일에 의한 조위 상승 및 월파와 강우를 연안 지역의 침수 유발 외력으로 고려하였다. 하천 범람의 경우, 상대적으로 사례가 희소하여 제외하였다.

2.2 복합 외력을 고려한 침수 모의 방법

이 연구에서는 조위 및 월파와 강우를 연안 지역의 침수 발생에 관한 외력 조건으로 고려하였다. 따라서 해당 외력 조건을 고려하여 침수 분석을 수행할 수 있어야 한다. 이와 관련하여 Lee et al. (2020)은 Fig. 1과 같이 수리‧수문 및 해양공학 분야에서 사용되는 물리 기반 모형의 연계를 통해 조위, 월파, 강우를 고려한 침수 분석 방법을 제시하였고, 이 연구에서는 해당 방법을 이용하였다.

https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F1.jpg
Fig. 1.

Connection among the models for inundation analysis in coastal areas (Lee et al., 2020)

우선, 태풍에 의해 발생되는 폭풍 해일의 영향을 분석하기 위해서는 태풍에 의해 발생되는 기압 강하, 해상풍, 진행 속도 등을 고려하여 해수면의 변화 양상 및 조석-해일-파랑을 충분히 재현 가능해야 한다. 이 연구에서는 국내․외에서 검증 및 공인된 폭풍 해일 모형인 ADCIRC 모형과 파랑 모형인 UnSWAN이 결합된 ADCSWAN (coupled model of ADCIRC and UnSWAN)을 이용하였다. 정수압 가정의 ADCSWAN은 월파량 산정에 단순 경험식을 적용하는 단점이 있지만 넓은 영역을 모의할 수 있고, FLOW-3D는 해안선의 경계를 고해상도로 재현이 가능하다. 이에 연구에서는 먼 바다 영역에 대해서는 ADCSWAN을 이용하여 분석하였고, 연안 주변의 바다 영역과 월파량 산정에 대해서는 FLOW-3D 모형을 이용하였다. 한편, 연안 지역의 침수 모의를 위해서는 유역에서 발생하는 강우-유출 현상과 우수 관거 등의 배수 체계에 대한 분석이 가능해야 한다. 또한, 배수 체계로부터 범람한 물이 지표면을 따라 흘러가는 현상을 해석할 수 있어야 하고, 바다의 조위 및 월파량을 경계조건으로 반영할 수 있어야 한다. 이 연구에서는 이러한 현상을 모의할 수 있고, 도시 침수 모의에 활용도가 높은 XP-SWMM을 이용하였다.

2.3 침수 분석 대상지역

연구의 대상지역은 조위 및 월파에 의한 침수와 강우에 의한 내수 침수의 영향이 복합적으로 발생할 수 있는 남해안과 서해안에 위치한 4개 지역이다. Table 2는 침수 분석 대상지역을 정리하여 나타낸 표이고, Fig. 2는 각 지역의 유역 경계를 나타낸 그림이다.

Table 2.

Target region for inundation analysis

ClassificationAdministrative districtTarget regionArea
(km2)
Main cause of inundationPump
facility
Number of
major outfall
The south
coast
Haundae-gu, BusanMarine City area0.53Wave overtopping9
Haundae-gu, BusanCentum City area4.76Poor interior drainage at high tide level12
The west
coast
GunsanJungang-dong area0.79Poor interior drainage at high tide level23
BoryeongOcheon Port area0.41High tide level5
https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F2.jpg
Fig. 2.

Watershed area

남해안의 분석 대상지역 중 부산시 해운대구의 마린시티는 바다 조망을 중심으로 조성된 주거지 및 상업시설 중심의 개발지역이다. 마린시티는 2016년 태풍 차바 및 2018년 태풍 콩레이 등 태풍 내습 시 월파에 의한 해수 월류로 인해 도로 및 상가 일부가 침수를 겪은 지역이다. 부산시 해운대구의 센텀시티는 과거 수영만 매립지였던 곳에 조성된 주거지 및 상업시설 중심의 신도시 지역이다. 센텀시티 유역의 북쪽은 해발고도 El. 634 m의 장산이 위치하는 등 산지 특성도 가지고 있어 상대적으로 유역 면적이 넓고, 배수시설의 규모도 크고 복잡하다. 하지만 수영강 하구의 저지대 지역에 위치함에 따라 강우 시 내수 배제가 불량하고, 특히 만조 시 침수가 잦은 지역이다.

서해안 분석 대상지역 중 전라북도 군산시의 중앙동 일원은 군산시 내항 내측에 조성된 구도시로서, 금강 및 경포천 하구에 위치하는 저지대이다. 이에 따라 군산시 풍수해저감종합계획에서는 해당 지역을 3개의 영역으로 구분하여 내수재해 위험지구(영동지구, 중동지구, 경암지구)로 지정하였고, 이 연구에서는 해당 지역을 모두 고려하였다. 한편, 군산시 중앙동 일원은 특히, 만조 시 내수 배제가 매우 불량하여 2개의 펌프시설이 운영되고 있다. 충청남도 보령시의 오천면에 위치한 오천항은 배후의 산지를 포함한 소규모 유역에 위치한다. 서해안의 특성에 따라 조석 간만의 차가 크고, 특히 태풍 내습 시 폭풍 해일에 의한 침수가 잦은 지역이다. 산지의 강우-유출수는 복개된 2개의 수로를 통해 바다로 배제되고, 상가들이 위치한 연안 주변 지역에는 강우-유출수 배제를 위한 3개의 배수 체계가 구성되어 있다.

3. 연구 결과

3.1 침수 모의 모형 구축

XP-SWMM을 이용하여 분석 대상지역별 침수 모의 모형을 구축하였다. 적절한 침수 분석 수행을 위해 지역별 수치지형도, 도시 공간 정보 시스템(urban information system, UIS), 하수 관망도 등의 수치 자료와 현장 조사를 통해 유역의 배수 체계를 구성하였다. 그리고 2차원 침수 분석을 위해 무인 드론 및 육상 라이다(LiDAR) 측량을 수행하여 평면해상도가 1 m 이하인 고해상도 수치지형모형(digital terrain model, DTM)을 구성하였고, 침수 모의 격자를 생성하였다.

Fig. 3은 XP-SWMM의 상세 구축 사례로서 부산시 마린시티 배수 유역에 대한 소유역 및 관거 분할 등을 통해 구성한 배수 체계와 고해상도 측량 결과를 이용하여 구성한 수치표면모형(digital surface model, DSM)을 나타낸다. Fig. 4는 각 대상지역에 대해 XP-SWMM을 이용하여 구축한 침수 모의 모형을 나타낸다. 침수 분석을 위해서는 침수 모의 영역에 대한 설정이 필요한데, 다수의 사전 모의를 통해 유역 내에서 침수가 발생되는 지역을 검토하여 결정하였다.

https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F3.jpg
Fig. 3.

Analysis of watershed drainage system and high-resolution survey for Marine City

https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F4.jpg
Fig. 4.

Simulation model for inundation analysis by target region using XP-SWMM

한편, 이 연구에서는 월파량 및 조위의 산정 과정과 침수 모의 모형의 보정에 관한 내용 등은 다루지 않았다. 관련된 내용은 선행 연구인 Kang et al. (2019b)와 Lee et al. (2020)을 참조할 수 있다.

3.2 침수 모의 설정

3.2.1 분석 방법

복합 외력에 의한 침수 영향을 검토하기 위해서는 외력 조건에 대한 빈도와 지속기간의 설정이 필요하다. 이 연구에서는 재해 현상이 충분히 나타날 수 있도록 강우와 조위 및 월파의 빈도를 모두 100년으로 설정하였다. 이때, 조위와 월파량의 산정에는 만조(약최고고조위) 시, 100년 빈도에 해당하는 태풍 내습에 따른 폭풍 해일의 발생 조건을 고려하였다.

지역별 강우 발생 특성과 유역 특성을 고려하기 위해 MOIS (2017)의 방재성능목표 기준에 따라 임계 지속기간을 결정하여 대상지역별 강우의 지속기간으로 설정하였다. 이때, 강우의 시간 분포는 MLTM (2011)의 Huff 3분위를 이용하였다. 그리고 조위와 월파의 경우, 일반적인 폭풍 해일의 지속기간을 고려하여 5시간으로 결정하였다. 한편, 침수 모의를 위한 계산 시간 간격, 2차원 모의 격자 등의 입력자료는 분석 대상지역의 유역 규모와 침수 분석 대상 영역을 고려하여 결정하였다. 참고로 침수 분석에 사용된 수치지형모형은 1 m 급의 고해상도로 구성되었지만, 2차원 침수 모의 격자의 크기는 지역별로 3 ~ 4 m이다. 이는 연구에서 사용된 XP-SWMM의 격자 수(100,000개) 제약에 따른 설정이나, Sun (2021)은 민감도 분석을 통해 2차원 침수 분석을 위한 적정 격자 크기를 3 ~ 4.5 m로 제시한 바 있다.

Table 3은 이 연구에서 설정한 침수 모의 조건과 분석 방법을 정리하여 나타낸 표이다.

Table 3.

Simulation condition and method

ClassificationTarget regionSimulation conditionSimulation method
RainfallStorm surgeSimulation time interval2D
grid size
Return
period
DurationTemporal
distribution
Return
period
DurationWatershed
routing
Channel
routing
2D
inundation
The south coastMarine City area100 yr1 hr3rd quartile
of Huff’s
method
1005 hr5 min10 sec1 sec3 m
Centum City area1 hr1005 min10 sec1 sec4 m
The west coastJungang-dong area2 hr1005 min10 sec1 sec3.5 m
Ocheon Port area1 hr1001 min10 sec1 sec3 m

3.2.2 복합 재해의 동시 고려

이 연구의 대상지역들은 모두 소규모의 해안가 도시지역이고, 이러한 지역에 대한 강우의 임계지속기간은 1시간 ~ 2시간이나, 이 연구에서 분석한 폭풍 해일의 지속기간은 5시간으로 강우의 지속기간과 폭풍 해일의 지속기간이 상이하다. 이에 이 연구에서는 서로 다른 지속기간을 가진 강우와 폭풍 해일 또는 조위를 고려하기 위해 강우의 중심과 폭풍 해일의 중심이 동일한 시간에 위치하도록 설정하였다(Fig. 5).

XP-SWMM은 폭풍 해일이 지속되는 5시간 전체를 모의하도록 설정하였고, 폭풍 해일이 가장 큰 시점에 강우의 중심이 위치하도록 강우 발생 시기를 결정하였다. 다만, 부산 마린시티의 경우, 폭풍 해일에 의한 피해가 주로 월파에 의해 발생되므로 강우의 중심과 월파의 중심을 일치시켰고(Fig. 5(a)), 상대적으로 조위의 영향이 큰 3개 지역은 강우의 중심과 조위의 중심을 맞추었다. Fig. 5(b)는 군산시 중앙동 지역의 복합 외력에 의한 침수 분석에 사용된 강우와 조위의 조합이다.

한편, 100년 빈도의 확률강우량만을 고려한 침수 분석에서는 유역 유출부의 경계조건으로 우수 관거의 설계 조건을 고려하여 약최고고조위가 일정하게 유지되도록 설정하였다.

https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F5.jpg
Fig. 5.

Consideration of external force conditions with different durations

3.2.3 XP-SWMM의 월파량 고려

XP-SWMM에 ADCSWAN 및 FLOW-3D 모형에 의해 산정된 월파량을 입력하기 위해 해안가 지역에 절점을 생성하여 월파 현상을 구현하였다. XP-SWMM에서 월파량을 입력하기 위한 절점의 위치는 FLOW-3D 모형에서 월파량을 산정한 격자의 중심 위치이다.

Fig. 6(a)는 마린시티 지역에 대한 월파량 입력 지점을 나타낸 것으로서, 유역 경계 주변에 동일 간격으로 원으로 표시한 지점들이 해당된다. Fig. 6(b)는 XP-SWMM에 월파량 입력 지점들을 반영하고, 하나의 절점에 월파량 시계열을 입력한 화면을 나타낸다.

https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F6.jpg
Fig. 6.

Considering wave overtopping on XP-SWMM

3.3 침수 모의 결과

3.3.1 단일 외력에 의한 침수 모의 결과

Fig. 7은 단일 외력을 고려한 지역별 침수 모의 결과이다. 즉, Fig. 7의 왼쪽 그림들은 지역별로 100년 빈도 강우에 의한 침수 모의 결과를 나타내고, Fig. 7의 오른쪽 그림들은 만조 시 100년 빈도 폭풍 해일에 의한 침수 모의 결과이다. 대체로 강우에 의한 침수 영역은 유역 중․상류 지역의 유역 전반에 걸쳐 발생하였고, 폭풍 해일에 의한 침수 영역은 해안가 전면부에 위치하는 것을 볼 수 있다. 이는 폭풍 해일에 의한 조위 상승과 월파의 영향이 상류로 갈수록 감소하기 때문이다.

한편, 4개 지역 모두에서 공통적으로 강우에 비해 폭풍 해일에 의한 침수 영향이 상대적으로 크게 분석되었다. 이러한 결과는 연안 지역의 경우, 폭풍 해일에 대비한 침수 피해 저감 노력이 보다 중요함을 의미한다.

https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F7.jpg
Fig. 7.

Simulation results by single external force (left: rainfall, right: storm surge)

3.3.2 복합 외력에 의한 침수 모의 결과

Fig. 8은 복합 외력을 고려한 지역별 침수 모의 결과이다. 즉, 강우 및 폭풍 해일을 동시에 고려함에 따라 발생된 침수 영역을 나타낸다. 복합 외력을 고려하는 경우, 단일 외력만을 고려한 분석 결과(Fig. 7)보다 침수 영역은 넓어졌고, 침수심은 깊어졌다.

복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였고, 이는 일반적으로 예상할 수 있는 결과이다. 주목할만한 결과는 군산시 중앙동의 침수 분석에서 나타났다. 즉, 군산시 중앙동의 경우, 단일 외력만을 고려한 침수 모의 결과에서 나타나지 않았던 새로운 침수 영역이 발생하였다(Fig. 8(c)). 이와 관련된 상세 내용은 3.4절의 고찰에서 기술하였다.

https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F8.jpg
Fig. 8.

Simulation results by compound external forces

3.4 결과 고찰

외력 조건별 침수의 영향을 정량적으로 비교하기 위해 침수 면적을 이용하였다. 이 연구에서는 강우만에 의해 유발된 침수 면적을 기준(기준값: 1)으로 하고, 폭풍 해일(조위+월파량)에 의한 침수 면적과 복합 외력에 의한 침수 면적의 상대적 비율로 분석하였다(Table 4).

Table 4.

Impact evaluation for inundation area by external force

ConditionMarine City, BusanCentum City, BusanJungang-dong area,
Gunsan
Ocheon Port area,
Boryeong
Inundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
Rate
Single
external force
Rainfall (①)0.01641.00.07591.00.04571.00.01751.0
Storm surge (②)0.03632.210.06850.900.14633.200.04122.35
Compound
external forces
Combination
(①+②)
0.05243.190.15051.980.26325.760.04732.70

분석 결과, 부산 센텀시티를 제외한 3개 지역은 모두 폭풍 해일에 의한 침수 면적이 강우에 의한 침수 면적에 비해 2.2 ~ 3.2배 넓은 것으로 분석되었다. 한편, 복합 외력에 의한 침수 면적은 마린시티와 센텀시티의 경우, 각각의 외력에 의한 침수 면적의 합과 유사하게 나타났다. 이는 각각의 외력에 의한 침수 영역이 상이하여 거의 중복되지 않음을 의미한다. 반면에, 오천항에서는 각각의 외력에 의한 침수 면적의 합이 복합 외력에 의한 면적보다 크게 나타났다. 이는 오천항의 경우, 유역면적이 작고 배수 체계가 비교적 단순하여 강우와 폭풍 해일에 의한 침수 영역이 중복되기 때문인 것으로 분석되었다(Fig. 7(d)).

군산시 중앙동 일대의 경우, 복합 외력에 의한 침수 면적이 각각의 독립적인 외력 조건에 의한 침수 면적의 합에 비해 37.1% 크게 나타났다. 이러한 현상의 원인을 분석하기 위해 복합 외력 조건에서만 나타난 우수 관거(Fig. 8(c)의 A 구간)에 대하여 종단을 검토하였다(Fig. 9). Fig. 9(a)는 강우만에 의해 분석된 우수 관거 내 흐름 종단을 나타내고, Fig. 9(b)는 폭풍 해일만에 의한 우수 관거의 종단이다. 그림을 통해 각각의 독립적인 외력 조건 하에서는 해당 구간에서 침수가 발생되지 않은 것을 볼 수 있다. 다만, 강우만을 고려하더라도 우수 관거는 만관이 된 상태를 확인할 수 있다(Fig. 9(a)). 반면에, 만관 상태에서 폭풍 해일이 함께 고려됨에 따라 해수 범람과 조위 상승에 의해 우수 배제가 불량하게 되었고, 이로 인해 침수가 유발된 것으로 분석되었다(Fig. 9(c)). 따라서 이러한 지역은 복합 외력에 대한 취약지구로 판단할 수 있고, 단일 외력의 고려만으로는 침수를 예상하기 어려운 지역임을 알 수 있다.

https://static.apub.kr/journalsite/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F9.jpg
Fig. 9.

A part of drainage profiles by external force in Jungang-dong area, Gunsan

4. 결 론

이 연구에서는 외력 조건에 따른 연안 지역의 침수 특성을 분석하였다. 연구에서 고려된 외력 조건은 두 가지로서 강우와 폭풍 해일(조위와 월파)이다. 분석 대상 연안 지역으로는 남해안에 위치하는 2개 지역(부산시 해운대구의 마린시티와 센텀시티)과 서해안의 2개 지역(군산시 중앙동 일원 및 보령시 오천항)이 선정되었다.

복합 외력을 고려한 연안 지역의 침수 모의를 위해서는 유역의 강우-유출 현상과 바다의 조위 및 월파량을 경계조건으로 반영할 수 있는 침수 모의 모형이 요구되는데, 이 연구에서는 XP-SWMM을 이용하였다. 한편, 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 및 FLOW-3D 모형이 이용되었다.

연안 지역별 침수 모의는 100년 빈도의 강우와 폭풍 해일을 독립적으로 고려한 경우와 복합적으로 고려한 경우를 구분하여 수행되었다. 우선, 외력을 독립적으로 고려한 결과, 대체로 폭풍 해일만 고려한 경우가 강우만 고려한 경우에 비해 침수 영향이 크게 나타났다. 따라서 연안 지역의 경우, 폭풍 해일에 의한 침수 피해 방지 계획이 상대적으로 중요한 것으로 분석되었다. 두 번째, 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수 모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 결과는 독립적인 외력 조건에서는 우수 관거가 만관 또는 그 이하의 상태가 되지만, 두 가지의 외력이 동시에 고려됨에 따라 우수 관거의 통수능 한계를 초과하여 나타났다. 이러한 지역은 복합 외력에 대한 취약지구로 판단되었고, 해당 지역의 적절한 침수 방지 대책 수립을 위해서는 복합적인 외력 조건이 고려되어야 함을 시사하였다.

현행, 자연재해저감종합계획에서는 침수와 관련된 재해 원인 지역을 내수재해, 해안재해, 하천재해 등으로 구분하고 있다. 하지만 이 연구에서 검토된 바와 같이, 연안 지역의 침수 원인은 복합적으로 나타날 뿐만 아니라, 복합 외력을 고려함에 따라 추가적으로 나타날 수 있는 침수 위험 지역도 존재한다. 따라서 기존의 획일적인 재해 원인의 구분보다는 지역의 특성에 맞는 복합적인 재해 원인을 검토할 필요가 있음을 제안한다.

Acknowledgements

본 논문은 행정안전부 극한 재난대응 기반기술 개발사업의 일환인 “해안가 복합재난 위험지역 피해저감 기술개발(연구과제번호: 2018-MOIS31-008)”의 지원으로 수행되었습니다.

References

1

Chen, X., Ji, P., Wu, Y., and Zhao, L. (2017). “Coupling simulation of overland flooding and underground network drainage in a coastal nuclear power plant.” Nuclear Engineering and Design, Vol. 325, pp. 129-134. 10.1016/j.nucengdes.2017.09.028

2

Choi, G., Song, Y., and Lee, J. (2018a). “Analysis of flood occurrence type according to complex characteristics of coastal cities.” 2018 Conference of the Korean Society of Hazard Mitigation, KOSHAM, p. 180.

3

Choi, J., Park, K., Choi, S., and Jun, H. (2018b). “A forecasting and alarm system for reducing damage from inland inundation in coastal urban areas: A case study of Yeosu City.” Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 475-484. 10.9798/KOSHAM.2018.18.7.475

4

Han, H., Kim, Y., Kang, N., and, Kim, H.S. (2014). “Inundation analysis of a coastal urban area considering tide level.” 2014 Conference of Korean Society of Civil Engineers, KSCE, pp. 1507-1508.

5

Kang, T., Lee, S., and Sun, D. (2019a). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in Coastal Areas (1): Proposal for analytical method.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 35-43. 10.9798/KOSHAM.2019.19.5.35

6

Kang, T., Lee, S., Choi, H., and Yoon, S. (2019b). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in coastal areas (2): Case analysis for application.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 45-53. 10.9798/KOSHAM.2019.19.5.45

7

Kim, J.O., Kim, J.Y., and Lee, W.H. (2016). “Analysis on complex disaster information contents for building disaster map of coastal cities.” Journal of the Korean Association of Geographic Information Studies, Vol. 19, No. 3, pp. 43-60. 10.11108/kagis.2016.19.3.043

8

Kim, P.J. (2018). Improvement measures on the risk area designation of coastal disaster in consideration of natural hazards. Ph.D. dissertation, Chonnam National University.

9

Korean Society of Civil Engineers (KSCE) (2021). A report on the cause analysis and countermeasures establishment for Dongcheon flooding and lowland inundation. Busan/Ulsan, Gyungnam branch.

10

Lee, S., Kang, T., Sun, D., and Park, J.J. (2020). “Enhancing an analysis method of compound flooding in coastal areas by linking flow simulation models of coasts and watershed.” Sustainability, Vol. 12, No. 16, 6572. 10.3390/su12166572

11

Ministry of Environment (ME) (2011). Standard for sewerage facilities. Korea Water and Wastewater Works Association.

12

Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Improvement and complementary research for probability rainfall.

13

Ministry of the Interior and Safety (MOIS) (2017). Criteria for establishment and operation of disaster prevention performance target by region: Considering future climate change impacts.

14

Song, Y., Joo, J., Lee, J., and Park, M. (2017). “A study on estimation of inundation area in coastal urban area applying wave overtopping.” Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 501-510. 10.9798/KOSHAM.2017.17.2.501

15

Suh, S.W., and Kim, H.J. (2018). “Simulation of wave overtopping and inundation over a dike caused by Typhoon Chaba at Marine City, Busan, Korea.” Journal of Coastal Research, Vol. 85, pp. 711-715.

16

Sun, D. (2021). Sensitivity analysis of XP-SWMM for inundation analysis in coastal area. M.Sc. Thesis, Pukyong National University.

Intrusion of fine sediments into river bed and its effect on river environment – a research review

미세한 퇴적물이 강바닥에 침투하고 하천 환경에 미치는 영향 – 연구 검토

Intrusion of fine sediments into river bed and its effect on river environment – a research review

Nilav Karna,K.S. Hari Prasad, Sanjay Giri & A.S. Lodhi

Abstract

Fine sediments enter into the river through various sources such as channel bed, bank, and catchment. It has been regarded as a type of pollution in river. Fine sediments present in a river have a significant effect on river health. Benthic micro-organism, plants, and large fishes, all are part of food chain of river biota. Any detrimental effect on any of these components of food chain misbalances the entire riverine ecosystem. Numerous studies have been carried out on the various environmental aspects of rivers considering the presence of fine sediment in river flow. The present paper critically reviews many of these aspects to understand the various environmental impacts of suspended sediment on river health, flora and fauna.

Keywords: 

  1. Introduction
    The existence of fine sediment in a river system is a natural phenomenon. But in many cases it is exacerbated by the manmade activities. The natural cause of fines being in flow generally keeps the whole system in equilibrium except during some calamites whereas anthropogenic activities leading to fines entering into the flow puts several adverse impacts on the entire river system and its ecology. Presence of fines in flow is considered as a type of pollution in water. In United States,
    the fine sediment in water along with other non point source pollution is considered as a major obstacle in providing quality water for fishes and recreation activities (Diplas and Parker 1985).
    Sediments in a river are broadly of two types, organic and inorganic, and they both move in two ways either along the bed of the channel called bed load or in suspension called suspended load and their movements depend upon fluid flow and sediment characteristics. Further many investigators have divided the materials in suspension into two different types.
    One which originates from channel bed and bank is called bed material suspended load and another that migrates from feeding catchment area is called wash load. A general perception is that wash loads are very fine materials like clay, silt but it may not always be true (Woo et al. 1986). In general, suspended materials are of size less than 2 mm. The impact of sand on the various aspects of river is comparatively less than that of silt and clay. The latter are chemically active and good carrier of many contaminants and nutrients such as dioxins, phosphorous, heavy and trace metals, polychlorinated biphenyl (PCBs), radionuclide, etc. (Foster and Charlesworth 1996; Horowitz et al. 1995; Owens et al. 2001; Salomons and Förstner 1984; Stone and Droppo 1994; Thoms 1987). Foy and Bailey-Watt (1998) reported that out of 129 lakes in England and Wales, 69% have phosphorous contamination. Ten percent lakes, rivers, and bays of United States have sediment contaminants with chemicals as reported by USEPA. Several field and experimental studies have been conducted
    considering, sand, silt, and clay as suspended material. Hence, the subject reported herein is based on considering the fine sediment size smaller than 2 mm.
    Fine sediments have the ability to alter the hydraulics of the flow. Presence of fines in flow can change the magnitude of turbulence, it can change the friction resistance to flow. Fines can change the mobility and permeability of the bed material. In some extreme cases, fines in flow may even change the morphology of the river (Doeg and Koehn 1994; Nuttall 1972; Wright and Berrie 1987). Fines in the flow adversely affect the producer by increasing the turbidity, hindering the
    photosynthesis process by limiting the light penetration. This is ultimately reflected in the entire food ecosystem of river (Davis-Colley et al. 1992; Van Niewenhuyre and Laparrieve 1986). In addition, abrasion due to flowing sediment kills the aquatic flora (Edwards 1969; Brookes 1986). Intrusion of fines into the pores of river bed reduces space for several invertebrates, affects the spawning process (Petts 1984; Richards and Bacon 1994; Schalchli 1992). There are several other direct
    or indirect, short-term or long-term impacts of fines in river.
    The present paper reports the physical/environmental significance of fines in river. The hydraulic significance of presence of fines in the river has been reviewed in another paper (Effect of fine sediments on river hydraulics – a research review – http://dx.doi.org/10.1080/09715010.2014.982001).

References

  • Adams, J.N., and Beschta, R.L. (1980). “Gravel bed composition in oregon coastal streams.” Can. J. Fish. Aquat.Sci., 37, 1514–1521.10.1139/f80-196  [Crossref][Web of Science ®][Google Scholar]
  • Alabaster, J.S., and Llyod, R.L. (1980). Water quality criteria for fresh water, Butterworth, London, 297. [Google Scholar]
  • Aldridge, D.W., Payne, B.S., and Miller, A.C. (1987). “The effects of intermittent exposure to suspended solids and turbulence on three species of freshwater mussels.” Environ. Pollution, 45, 17–28.10.1016/0269-7491(87)90013-3  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Barton, B.A. (1977). “Short-term effects of highway construction on the limnology of a small stream in southern Ontario.” Freshwater Biol., 7, 99–108.10.1111/fwb.1977.7.issue-2  [Crossref][Web of Science ®][Google Scholar]
  • Bash, J., Berman, C., and Bolton, S. (2001). Effects of turbidity and suspended solids on salmonids, Center for Streamside Studies, University of Washington, Seattle, WA. [Google Scholar]
  • Baxter, C.V., and Hauer, F.R. (2000). “Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confuentus).” Can. J. Fish. Aquat.Sci., 57, 1470–1481.10.1139/f00-056  [Crossref][Web of Science ®][Google Scholar]
  • Berkman, H.E., and Rabeni, C.F. (1987). “Effect of siltation on stream fish communities.” Environ. Biol. Fish., 18, 285–294.10.1007/BF00004881  [Crossref][Web of Science ®][Google Scholar]
  • Beschta, R.L., and Jackson, W.L. (1979). “The intrusion of fine sediments into a stable gravel bed.” J. Fish. Res. Board Can., 36, 204–210.10.1139/f79-030  [Crossref][Google Scholar]
  • Boon, P.J. (1988). “The impact of river regulation on invertebrate communities in the UK.” Reg. River Res. Manage., 2, 389–409.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • Brookes, A. (1986). “Response of aquatic vegetation to sedimentation downstream from river channelization works in England and Wales.” Biol. Conserv., 38, 352–367. [Crossref][Web of Science ®][Google Scholar]
  • Bruton, M.N. (1985). “The effects of suspensoids on fish.” Hydrobiologia, 125, 221–241.10.1007/BF00045937  [Crossref][Web of Science ®][Google Scholar]
  • Carling, P.A. (1984). “Deposition of fine and coarse sand in an open-work gravel bed.” Can. J. Fish. Aquat. Sci., 41, 263–270.10.1139/f84-030  [Crossref][Web of Science ®][Google Scholar]
  • Carling, P.A., and McCahon, C.P. (1987). “Natural siltation of brown trout (Salmo trutta L.) spawning gravels during low-flow conditions.” Regulated streams, J.F. Craig and J.B. Kemper, eds., Plenum Press, New York, NY, 229–244.10.1007/978-1-4684-5392-8  [Crossref][Google Scholar]
  • Carter, J., Owens, P.N., Walling, D.E., and Leeks, G.J.L. (2003). “Fingerprinting suspended sediment sources in a large urban river system.” Sci. Total Environ., 314–316, 513–534.10.1016/S0048-9697(03)00071-8  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Chang, H.H. (1988). Fluvial processes in river engineering, Krieger, Malabar Florida, 432. [Google Scholar]
  • Chapman, D.W. (1988). “Critical review of variables used to define effects of fines in redds of large salmonids.” Trans. Am. Fish. Soc., 117, 1–21.10.1577/1548-8659(1988)117<0001:CROVUT>2.3.CO;2  [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Church, M.A., Mclean, D.G., and Wolcott, J.F. (1987). “River bed gravel sampling and analysis.” Sediment transport in gravel-bed rivers, C.R. Thorne, J.C. Bathrust, and R.D. Hey, eds., John Willey, Chichester, 43–79. [Google Scholar]
  • Cline, L.D., Short, R.A., and Ward, J.V. (1982). “The influence of highway construction on the macroinvertebrates and epilithic algae of a high mountain stream.” Hydrobiologia, 96, 149–159.10.1007/BF02185430  [Crossref][Web of Science ®][Google Scholar]
  • Collins, A.L., Walling, D.E., and Leeks, G.J.L. (1997). “Fingerprinting the origin of fluvial suspended sediment in larger river basins: combining assessment of spatial provenance and source type.” Geografiska Annaler, 79A, 239–254.10.1111/1468-0459.00020  [Crossref][Google Scholar]
  • Cordone, A.J., and Kelly, D.W. (1961). “The influence of inorganic sediment on the aquatic life of stream.” Calif. Fish Game, 47, 189–228. [Google Scholar]
  • Culp, J.M., Wrona, F.J., and Davies, R.W. (1985). “Response of stream benthos and drift to fine sediment depositionversus transport.” Can. J. Zool., 64, 1345–1351. [Crossref][Web of Science ®][Google Scholar]
  • Davies-Colley, R.J., Hickey, C.W., Quinn, J.M., and Ryan, P.A. (1992). “Effects of clay discharges on streams.” Hydrobiologia, 248, 215–234.10.1007/BF00006149  [Crossref][Web of Science ®][Google Scholar]
  • Dhamotharan, S., Wood, A., Parker, G., and Stefan, H. (1980). Bed load transport in a model gravel stream. Project Report No. 190. St. Anthony Falls Hydraulic Laboratory, University of Minnesota. [Google Scholar]
  • Diplas, P., and Parker, G. (1985). Pollution of gravel spawning grounds due to fine sediment. Project Report, No. 240. St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN. [Google Scholar]
  • Doeg, T.J., and Koehn, J.D. (1994). “Effects of draining and desilting a small weir on downstream fish and macroinvertebrates.” Reg. River Res. Manage., 9, 263–277.10.1002/(ISSN)1099-1646  [Crossref][Web of Science ®][Google Scholar]
  • Droppo, I.G. (2001). “Rethinking what constitutes suspended sediment.” Hydrol. Process., 15, 1551–1564.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Droppo, I.G., and Ongley, E.D. (1994). “Flocculation of suspended sediment in rivers of southeastern Canada.” Water Res., 28, 1799–1809.10.1016/0043-1354(94)90253-4  [Crossref][Web of Science ®][Google Scholar]
  • Einstein, H.A. (1968). “Deposition of suspended particles in a gravel bed.” J. Hydraul. Eng., 94, 1197–1205. [Google Scholar]
  • Erman, D.C., and Ligon, F.K. (1988). “Effects of discharge fluctuation and the addition of fine sediment on stream fish and macroinvertebrates below a water-filtration facility.” Environ. Manage., 12, 85–97.10.1007/BF01867380  [Crossref][Web of Science ®][Google Scholar]
  • Farnsworth, K.L., and Milliman, J.D. (2003). “Effects of climatic and anthropogenic change on small mountainous rivers: the Salinas River example.” Global Planet. Change, 39, 53–64.10.1016/S0921-8181(03)00017-1  [Crossref][Web of Science ®][Google Scholar]
  • Foster, I.D.L., and Charlesworth, S.M. (1996). “Heavy metals in the hydrological cycle: trends and explanation.” Hydrol. Process., 10, 227–261.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Foy, R.H., and Bailey-Watts, A.E. (1998). “Observations on the spatial and temporal variation in the phosphorus status of lakes in the British Isles.” Soil Use Manage., 14, 131–138.10.1111/sum.1998.14.issue-s4  [Crossref][Web of Science ®][Google Scholar]
  • Frostick, L.E., Lucas, P.M., and Reid, I. (1984). “The infiltration of fine matrices into coarse-grained alluvial sediments and its implications for stratigraphical interpretation.” J. Geol. Soc. London, 141, 955–965.10.1144/gsjgs.141.6.0955  [Crossref][Web of Science ®][Google Scholar]
  • Gagnier, D.L., and Bailey, R.C. (1994). “Balancing loss of information and gains in efficiency in characterizing stream sediment samples.” J. North Am. Benthol. Soc., 13, 170–180.10.2307/1467236  [Crossref][Web of Science ®][Google Scholar]
  • Gammon, J.R. (1970). The effect of inorganic sediment on stream biota. Environmental Protection Agency, Water Pollution Control Research, Series, 18050 DWC 12/70. USGPO, Washington, DC. [Google Scholar]
  • Graham, A.A. (1990). “Siltation of stone-surface periphyton in rivers by clay-sized particles from low concentrations in suspention.” Hydrobiologia, 199, 107–115.10.1007/BF00005603  [Crossref][Web of Science ®][Google Scholar]
  • Greig, S.M., Sear, D.A., and Carling, P.A. (2005). “The impact of fine sediment accumulation on the survival of incubating salmon progeny: Implications for sediment management.” Sci. Total Environ., 344, 241–258.10.1016/j.scitotenv.2005.02.010  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Harrod, T.R., and Theurer, F.D. (2002). “Sediment.” Agriculture, hydrology and water quality, P.M. Haygarth and S.C. Jarvis, eds., CABI, Wallingford, 502. [Crossref][Google Scholar]
  • Horowitz, A.J., Elrick, K.A., Robbins, J.A., and Cook, R.B. (1995). “Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur D’Alene, Idaho, USA part II: Subsurface sediments.” Hydrol. Process., 9, 35–54.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Hynes, H.B.N. (1970). The ecology of running waters, Liverpool University Press, Liverpool. [Google Scholar]
  • Khullar, N.K. (2002). “Effect of wash load on transport of uniform and nonuniform sediments.” Ph.D. thesis, Indian Institute of Technology Roorkee. [Google Scholar]
  • Kondolf, G.M. (1995). “Managing bedload sediment in regulated rivers: Examples from California, USA.” Geophys. Monograph, 89, 165–176. [Google Scholar]
  • Kondolf, G.M. (1997). “Hungry water: effects of dams and gravel mining on river channels.” Environ. Manage., 21, 533–551.10.1007/s002679900048  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Langer, O.E. (1980). “Effects of sedimentation on salmonid stream life.” Report on the Technical Workshop on Suspended Solids and the Aquatic Environment, K. Weagle, ed., Whitehorse. [Google Scholar]
  • Lemly, A.D. (1982). “Modification of benthic insect communities in polluted streams: combined effects of sedimentation and nutrient enrichment.” Hydrobiologia, 87, 229–245.10.1007/BF00007232  [Crossref][Web of Science ®][Google Scholar]
  • Levasseur, M., Bergeron, N.E., Lapointe, M.F., and Bérubé, F. (2006). “Effects of silt and very fine sand dynamics in Atlantic salmon (Salmo salar) redds on embryo hatching success.” Can. J. Fish. Aquat. Sci., 63, 1450–1459.10.1139/f06-050  [Crossref][Web of Science ®][Google Scholar]
  • Lewis, K. (1973a). “The effect of suspended coal particles on the life forms of the aquatic moss Eurhynchium riparioides (Hedw.).” Fresh Water Biol., 3, 251–257.10.1111/fwb.1973.3.issue-3  [Crossref][Google Scholar]
  • Lewis, K. (1973b). “The effect of suspended coal particles on the life forms of the aquatic moss Eurhynchium riparioides (Hedw.).” Fresh Water Biol., 3, 391–395.10.1111/fwb.1973.3.issue-4  [Crossref][Google Scholar]
  • Lisle, T. (1980). “Sedimentation of Spawning Areas during Storm Flows, Jacoby Creek, North Coastal California.” Presented at the fall meeting of the American Geophysical Union, San Francisco, CA. [Google Scholar]
  • Marchant, R. (1989). “Changes in the benthic invertebrate communities of the thomson river, southeastern Australia, after dam construction.” Reg. River Res. Manage., 4, 71–89.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • McNeil, W.J., and Ahnell, W.H. (1964). Success of pink salmon spawning relative to size of spawning bed material. US Fish and Wildlife Service. Special Scientific Report, Fisheries 469. Washington, DC. [Google Scholar]
  • Milhous, R.T. (1973). “Sediment transport in a gravel bottomed stream.” Ph.D. thesis, Oregon State University, Corvallis, OR. [Google Scholar]
  • Milliman, J.D., and Syvitski, J.P.M. (1992). “Geomorphic/tectonic control of sediment discharge to the oceans: the importance of small mountainous rivers.” J. Geol., 100, 525–544.10.1086/jg.1992.100.issue-5  [Crossref][Web of Science ®][Google Scholar]
  • Mohnakrishnan, A. (2001). Reservoir sedimentation, Seminar on Reservoir Sedimentation, Ooty. [Google Scholar]
  • Mohta, J.A., Wallbrink, P.J., Hairsine, P.B., and Grayson, R.B. (2003). “Determining the sources of suspended sediment in a forested catchment in southeastern Australia.” Water Resour. Res., 39, 1056. [Web of Science ®][Google Scholar]
  • Morris, G.L. (1993). “A global perspective of sediment control measures in reservoirs.” Notes on sediment management in reservoirs, S. Fan and G. Morris, eds., Water Resources Publications, Colorado, 13–44. [Google Scholar]
  • Morris, L.G., and Fan, J. (2010). Reservoir Sedimentation hand book – design and management of dams, reservoirs and watershed for sustainable use. McGraw-Hill, 440 and 499. [Google Scholar]
  • Newcombe, C.P., and Macdonald, D.D. (1991). “Effects of suspended sediments on aquatic ecosystems.” North Am. J. Fish. Manage., 11, 72–82.10.1577/1548-8675(1991)011<0072:EOSSOA>2.3.CO;2  [Taylor & Francis Online][Google Scholar]
  • Nuttal, P.M. (1972). “The effects of sand deposition upon the macroinvertebrate fauna of the River Camel, Cornwall.” Freshwater Biol., 2, 181–186.10.1111/fwb.1972.2.issue-3  [Crossref][Google Scholar]
  • Olsson, T.I., and Petersen, B. (1986). “Effects of gravel size and peat material on embryo survival and alevin emergence of brown trout, Salmo trutta L.” Hydrobiologia, 135, 9–14.10.1007/BF00006453  [Crossref][Web of Science ®][Google Scholar]
  • Owens, P.N., Walling, D.E., and Leeks, G.J.L. (2000). “Tracing fluvial suspended sediment sources in the catchment of the River Tweed, Scotland, using composite fingerprints and a numerical mixing model.” Tracers in eomorphology, I.D.L. Foster, ed., Wiley, Chichester, 291–308. [Google Scholar]
  • Owens, P.N., Walling, D.E., Carton, J., Meharg, A.A., Wright, J., and Leeks, G.J.L. (2001). “Downstream changes in the transport and storage of sediment-associated contaminants (P, Cr and PCBs) in agricultural and industrialized drainage basins.” Sci. Total Environ., 266, 177–186.10.1016/S0048-9697(00)00729-4  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Petts, G.E. (1984). Impounded rivers: Perspectives for ecological management, Wiley, Chichester, 326. [Google Scholar]
  • Phillips, J.M., and Walling, D.E. (1995). “An assessment of the effects of sample collection, storage and resuspension on the representativeness of measurements of the effective particle size distribution of fluvial suspended sediment.” Water Res., 29, 2498–2508.10.1016/0043-1354(95)00087-2  [Crossref][Web of Science ®][Google Scholar]
  • Quinn, J.M., Davies-Coley, R.J., Hickey, C.W., Vickers, M.L., and Ryan, P.A. (1992). “Effects of clay discharges on streams.” Hydrobiologia, 248, 235–247.10.1007/BF00006150  [Crossref][Web of Science ®][Google Scholar]
  • Reiser, D.W., and White, R.G. (1990). “Effects of stream flow reduction on Chinook salmon egg incubation and fry quality.” Rivers, 1, 110–118. [Google Scholar]
  • Richards, C., and Bacon, K.L. (1994). “Influence of fine sediment on macroibvertebrates colonization of surface and hyporheic stream substrate.” Great Basin Nat., 54, 106–113. [Google Scholar]
  • Richards, C., Host, G.H., and Arthur, J.W. (1993). “Identification of predominant environmental factors structuring stream macroinvertebrate communities within a large agricultural catchment.” Freshwater Biol., 29, 285–294.10.1111/fwb.1993.29.issue-2  [Crossref][Web of Science ®][Google Scholar]
  • Rosenberg, D.M., and Wiens, A.P. (1978). “Effects of sediment addition on macrobenthic invertebrates in a Northern Canadian River.” Water Res., 12, 753–763.10.1016/0043-1354(78)90024-6  [Crossref][Web of Science ®][Google Scholar]
  • Ryan, P.A. (1991). “Environmental effects of sediment on New Zealand streams: A review.” New Zeal. J. Mar. Freshwater Res., 25, 207–221.10.1080/00288330.1991.9516472  [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Salomons, W., and Förstner, U. (1984). Metals in the hydrocycle, Sringer Verglag, New York, NY.10.1007/978-3-642-69325-0  [Crossref][Google Scholar]
  • Schalchli, U. (1992). “The clogging of coarse gravel river beds by fine sediment.” Hydrobiologia, 235–236, 189–197.10.1007/BF00026211  [Crossref][Web of Science ®][Google Scholar]
  • Scrivener, J.C., and Brownlee, M.J. (1989). “Effects of forest harvesting on spawning gravel and incubation survival of chum (Oncorhynchus keta) andcoho salmon (O. kisutch) in Carnation Creek, British Columbia.” Can. J. Fish. Aquat. Sci., 46, 681–696.10.1139/f89-087  [Crossref][Web of Science ®][Google Scholar]
  • Sear, D.A. (1993). “Fine sediment infiltration into gravel spawning beds within a regulated river experiencing floods: Ecological implications for salmonids.” Reg Rivers Res. Manage., 8, 373–390.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • Soutar, R.G. (1989). “Afforestation and sediment yields in British fresh waters.” Soil Use Manage., 5, 82–86.10.1111/sum.1989.5.issue-2  [Crossref][Web of Science ®][Google Scholar]
  • Stone, M., and Droppo, I.G. (1994). “In-channel surficial fine-grained sediment laminae: Part II: Chemical characteristics and implications for contaminant transport in fluvial systems.” Hydrol. Process., 8, 113–124.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Thoms, M.C. (1987). “Channel sedimentation within the urbanized River Tame, UK.” Reg. Rivers Res. Manage., 1, 229–246.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • Trimble, S.W. (1983). “A sediment budget for Coon Creek, Driftless area, Wisconsin, 1853–1977.” Am. J. Sci., 283, 454–474.10.2475/ajs.283.5.454  [Crossref][Web of Science ®][Google Scholar]
  • U.S. Department of Health, Education and Welfare. (1965). Environmental Health Practices in recreational Areas, Public Health Service, Publication No. 1195. [Google Scholar]
  • Van Nieuwenhuyse, E.E., and LaPerriere, J.D. (1986). “Effects of placer gold mining on primary production in subarctic streams of Alaska.” J. Am. Water Res. Assoc., 22, 91–99. [Crossref][Google Scholar]
  • Vörösmarty, C.J., Meybeck, M., Fekete, B., Sharma, K., Green, P., and Syvitski, J.P.M. (2003). “Anthropogenic sediment retention: major global impact from registered river impoundments.” Global Planet. Change, 39, 169–190.10.1016/S0921-8181(03)00023-7  [Crossref][Web of Science ®][Google Scholar]
  • Walling, D.E. (1995). “Suspended sediment yields in a changing environment.” Changing river channels, A. Gurnell and G. Petts, eds., Wiley, Chichester, 149–176. [Google Scholar]
  • Walling, D.E., and Moorehead, D.W. (1989). “The particle size characteristics of fluvial suspended sediment: an overview.” Hydrobiologia, 176–177, 125–149.10.1007/BF00026549  [Crossref][Web of Science ®][Google Scholar]
  • Walling, D.E., Owens, P.N., and Leeks, G.J.L. (1999). “Fingerprinting suspended sediment sources in the catchment of the River Ouse, Yorkshire, UK.” Hydrol. Process., 13, 955–975.10.1002/(ISSN)1099-1085  [Crossref][Web of Science ®][Google Scholar]
  • Walling, D.E., Owens, P.N., Waterfall, B.D., Leeks, G.J.L., and Wass, P.D. (2000). “The particle size characteristics of fluvial suspended sediment in the Humber and Tweed catchments, UK.” Sci. Total Environ., 251–252, 205–222.10.1016/S0048-9697(00)00384-3  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Wilbur, C.G. (1983). Turbidity in the aquatic environment: an environmental factor in fresh and oceanic waters, Charles C. Thomas, Springfield, IL, 133. [Google Scholar]
  • Woo, H.S., Julien, P.Y., and Richardson, E.V. (1986). “Washload and fine sediment load.” J. Hydraul. Eng., 112, 541–545.10.1061/(ASCE)0733-9429(1986)112:6(541)  [Crossref][Google Scholar]
  • Wood, P.J., and Armitage, P.D. (1997). “Biological effects of fine sediment in the lotic environment.” Environ. Manage., 21, 203–217.10.1007/s002679900019  [Crossref][PubMed][Web of Science ®][Google Scholar]
  • Wooster, J.K., Dusterhoff, S.R., Cui, Y., Sklar, L.S., Dietrich, W.E., and Malko, M. (2008). “Sediment supply and relative size distribution effects on fine sediment infiltration into immobile gravels.” Water Res. Res., 44, 1–18. [Crossref][Web of Science ®][Google Scholar]
  • Wren, G.Daniel, Bennett, J.Sean, Barkdoll, D.Brian, and Khunle, A.Roger. (2000). Studies in suspended sediment and turbulence in open channel flows, USDA, Agriculture Research Service, Research Report No. 18. [Google Scholar]
  • Wright, J.F., and Berrie, A.D. (1987). “Ecological effects of groundwater pumping and a natural drought on the upper reaches of a chalk stream.” Reg. River Res. Manage., 1, 145–160.10.1002/(ISSN)1099-1646  [Crossref][Google Scholar]
  • Zhang, H., Xia, M., Chen, S.J., Li, Z., and Xia, H.B. (1976). “Regulation of sediments in some medium and small-sized reservoirs on heavily silt-laden streams in China.” 12th International Commission on Large Dams (ICOLD) Congress, Q. 47, R. 32, Mexico City, 1123–1243. [Google Scholar]
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses

Alkistis Stergiopoulou1, Vassilios Stergiopoulos2
1Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University,
Muthgasse 18, 1190 Vienna, (actually Senior Process Engineer at the VTU Engineering in Vienna,
Zieglergasse 53/1/24, 1070 Vienna, Austria).
2 School of Pedagogical and Technological Education, Department of Civil Engineering Educators,
ASPETE Campus, Eirini Station, 15122 Amarousio, Athens, Greece.
Received 4 Jan. 2021; Received in revised form 8 Aug. 2021; Accepted 8 Aug. 2021; Available online 14 Aug. 2021

Abstract

This paper presents a short view of the first Archimedean Screw Turbines CFD modelling results, which
were carried out within the recent research entitled “Rebirth of Archimedes in Greece: contribution to the
study of hydraulic mechanics and hydrodynamic behavior of Archimedean cochlear waterwheels, for
recovering the hydraulic potential of Greek natural and technical watercourses”. This CFD analysis, based
to the Flow-3D code, concerns typical Tubular Archimedean Screw Turbines (TASTs) and shows some
promising performances for such small hydropower systems harnessing the important unexploited
hydraulic potential of natural and technical watercourses of Greece, of the order of several TWh / year and of a total installed capacity in the range of thousands MWs.

이 논문은 최초의 아르키메데스 나사 터빈 CFD 모델링 결과에 대한 간략한 견해를 제시하며, 이는 “그리스에서 아르키메데스의 부활: 수리 역학 및 아르키메데스 달팽이관 물레방아의 유체역학적 거동 연구에 대한 기여”라는 제목의 최근 연구에서 수행되었습니다. 그리스 자연 및 기술 수로의 수력 잠재력”. Flow-3D 코드를 기반으로 하는 이 CFD 분석은 일반적인 TAST(Tubular Archimedean Screw Turbines)에 관한 것이며 그리스의 자연 및 기술 수로의 중요한 미개발 수력 잠재력을 활용하는 이러한 TWh/년 및 수천 MW 범위의 총 설치 용량인 소규모 수력 발전 시스템에 대한 몇 가지 유망한 성능을 보여줍니다.
Copyright © 2021 International Energy and Environment Foundation – All rights reserved.

Keywords

CFD; Flow-3D; TAST; Small Hydro; Renewable Energy; Greek Watercourses.

Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).

References.

[1] A. Stergiopoulou, Computational and experimental investigation of the hydrodynamic behaviour of
screw hydro turbine, Ph.D. Thesis, NTUA, 2017.
[2] B. Pelikan, A. Lashofer, Verbesserung der Strömungseigenschaften sowie Planungs-und
Betriebsoptimierung von Wasserkraftschnecken, Research Project, BOKU University, Vienna,
2012.
[3] G. Müller, J. Senior, Simplified theory of Archimedean screws, Journal of Hydraulic Research 47
(5) (2009) 666-669.
[4] C. Rorres, The turn of the screw: Optimal design of an Archimedes screw, Journal of Hydraulic
Engineering, 80 (2000) 72-80.
[5] A. Stergiopoulou, V. Stergiopoulos, Return of Archimedes: Harnessing with new Archimedean
spirals the hydraulic potential of the Greek watercourses, in: Proceedings of the Conference for
Climate Change, Thessaloniki, 2009.
[6] A. Stergiopoulou, V. Stergiopoulos, from the old Archimedean screw pumps to the new
Archimedean screw turbines for hydropower production in Greece, in: Proceedings of CEMEPE
Conference, Mykonos, June 21-26, 2009.
International Journal of Energy and Environment (IJEE), Volume 12, Issue 1, 2021, pp.19-30
[7] V. Stergiopoulos, A. Stergiopoulou, E. Kalkani, Quo Vadis Archimedes Nowadays in Greece?
Towards Modern Archimedean Turbines for Recovering Greek Small Hydropower Potential, in:
Proceedings of 3rd International Scientific “Energy and Climate Change” Conference, Athens, 2010.
[8] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Greece beyond the horizon of the era of transition:
Archimedean screw hydropower development terra incognita, International Journal of Energy and
Development, v.6, Issue 6, pp. 627-536, 2015.
[9] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Experimental and theoretical research of zero head
innovative horizontal axis Archimedean screw turbines, Journal of Energy and Development, v.6,
Issue 5, pp. 471-478, 2015.
[10] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Back to the Future: Rediscovering the Archimedean
screws as modern turbines for harnessing Greek small hydropower potential, in: Proceedings of the
Third International Conference CEMEPE 2011 & SECOTOX, Skiathos, 2011.
[11] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[12] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[13] A. Stergiopoulou, V. Stergiopoulos, Towards an inventory of the archimedean small hydropower
potential of Greece, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT
Volume 11, Issue 2, 2020 pp.137-144.
[14] Flow Science, FLOW-3D Manual, 2013.
[15] K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson,
2007.
[16] C. Hirsch, Numerical Computation of internal and external flows: The fundamentals of
Computational Fluid dynamics, John Wiley & Sons, 2007.
[17] A. Stergiopoulou, V. Stergiopoulos and E. Kalkani, An eagle’s CFD view of Studying Innovative
Archimedean Screw Renewable Hydraulic Energy Systems, Proceedings of the 4th International
Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and
SECOTOX Conference, Mykonos island, Greece, pp.454-460 June 24-28, 2013.
[18] A. Stergiopoulou, V. Stergiopoulos, A., E. Kalkani, Computational Fluid Dynamics Study on a 3D
Graphic Solid Model of Archimedean Screw Turbines, Fresenius Environmental Bulletin, vol.23-
No1, 2014.
[19] Α. Stergiopoulou, Kalkani E., “Towards a First C.F.D. Study of Innovative Archimedean Inclined
Axis Hydropower Turbines”, International Journal of Engineering Research & Technology (IJERT),
Vol. 2 Issue 9, September – 2013, pp. 193-199.
[20] A. Stergiopoulou, V. Stergiopoulos, A first CFD study of small hydro energy recovery from the
Attica water supply network, INTERNATIONAL JOURNAL OF ENERGY AND
ENVIRONMENT, Volume 11, Issue 3, 2020 pp.157-166.

What’s New – FLOW-3D 2023R2

FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다. FLOW-3D 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. 누락된 종속성을 보고하도록 Linux 설치 프로그램이 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 또한 워크플로를 자동화한 사용자를 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.

확장된 PQ 2 분석

제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량-운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리한 단순화인 경우가 많습니다. 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 여전히 현실적인 결과를 제공합니다. 이것은 시뮬레이션 시간과 모델 복잡성의 감소로 해석됩니다.

FLOW-3D 2022R2 의 새로운 기능

FLOW-3D 2022R2 제품군 의 출시와 함께 Flow Science는 워크스테이션과 FLOW-3D 의 HPC 버전 을 통합하여 단일 노드 CPU 구성에서 다중 구성에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 노드 병렬 고성능 컴퓨팅 실행. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 구조 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성 요소 제어, 향상된 연행 공기 기능이 포함됩니다.

통합 솔버

FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여  로컬 워크스테이션 또는 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.

많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션에서 OpenMP/MPI 하이브리드 병렬화의 동일한 이점을 활용하여 워크스테이션 및 노트북에서 실행할 수 있습니다.

성능 확장의 예
점점 더 많은 수의 CPU 코어를 사용하는 성능 확장의 예
메쉬 분해의 예
OpenMP/MPI 하이브리드 병렬화를 위한 메시 분해의 예

솔버 성능 개선

멀티 소켓 워크스테이션

멀티 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 통해 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있는 성능 이점을 볼 수 있습니다.

낮은 수준의 루틴으로 벡터화 및 메모리 액세스 개선

대부분의 테스트 사례에서 10%에서 20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 있었습니다.

정제된 체적 대류 안정성 한계

시간 단계 안정성 한계는 모델 런타임의 주요 동인입니다. 2022R2에서는 새로운 시간 단계 안정성 한계인 3D 대류 안정성 한계를 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 30% 정도의 일반적인 속도 향상을 보여주었습니다.

압력 솔버 프리 컨디셔너

경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 어려운 경우 2022R2에서는 모델이 너무 많이 반복될 때 FLOW-3D가 자동으로 새로운 프리 컨디셔너를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임이 1.9배에서 335배까지 빨라졌습니다!

점탄성 유체에 대한 로그 형태 텐서 방법

점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수치에 효과적입니다.

점탄성 흐름을 위한 개선된 솔루션
로그 구조 텐서 솔루션을 사용하여 점탄성 흐름에 대한 높은 Weissenberg 수에서 개선된 솔루션의 예. Courtesy MF Tome, et al., J. Non-Newton. 체액. 기계 175-176 (2012) 44–54

활성 시뮬레이션 제어 확장

능동 시뮬레이션 제어 기능은 연속 주조 및 적층 제조 응용 프로그램과 주조 및 기타 여러 열 관리 응용 프로그램에 사용되는 냉각 채널에 일반적으로 사용되는 팬텀 개체를 포함하도록 확장되었습니다.

동적 열 제어의 예
융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예
가상 물체 속도 제어의 예
산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예
동적 열 제어의 예
연속 주조 애플리케이션을 위한 팬텀 물체 속도 제어의 예

연행 공기 기능 개선

디퓨저 및 유사한 산업용 기포 흐름 응용 분야의 경우 이제 대량 공급원을 사용하여 물 기둥에 공기를 도입할 수 있습니다. 또한 혼입 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.

디퓨저 모델의 예
디퓨저 모델의 예: 질량원을 사용하여 물기둥에 공기를 도입할 수 있습니다.
Figure 1 | Laboratory channel dimensions.

강화된 조도 계수 및 인버트 레벨 변화가 있는 90도 측면 턴아웃에서의 유동에 대한 실험적 및 수치적 연구

Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

Maryam Bagheria, Seyed M. Ali Zomorodianb, Masih Zolghadrc, H. Md. Azamathulla d,*
and C. Venkata Siva Rama Prasade
a Hydraulic Structures, Department of Water Engineering, Shiraz University, Shiraz, Iran
b Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
c Department of Water Sciences Engineering, College of Agriculture, Jahrom University, Jahrom, Iran
d Civil & Environmental Engineering, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad
e Department of Civil Engineering, St. Peters Engineering College, Hyderabad, India
*Corresponding author. E-mail: azmatheditor@gmail.com

ABSTRACT

측면 분기기(흡입구)의 상류측에서 유동 분리는 분기기 입구에서 맴돌이 전류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 분기 용량 및 효율성을 감소시킵니다. 따라서 분리구역의 크기를 파악하고 그 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다.

본 연구에서는 분리 구역의 크기를 줄이기 위한 방법으로 분출구 입구에 7가지 유형의 조면화 요소와 4가지 다른 방류가 있는 3가지 다른 베드 인버트 레벨의 설치(총 84회 실험)를 조사했습니다. 또한 3D 전산 유체 역학(CFD) 모델을 사용하여 분리 구역의 흐름 패턴과 치수를 평가했습니다.

결과는 조도 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면 드롭 구현 효과는 사용된 조도 계수에 따라 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 방법을 결합하면 분리 구역 치수를 최대 63%까지 줄일 수 있습니다.

Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions.

Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone.

Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

Key words

discharge ratio, flow separation zone, intake, three dimensional simulation

Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced
roughness coefficient and invert level changes
Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes
Figure 1 | Laboratory channel dimensions.
Figure 1 | Laboratory channel dimensions.
Figure 2 | Roughness plates.
Figure 2 | Roughness plates.
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 10 | Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).
Figure 10 | Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).
Figure 11 | Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.
Figure 11 | Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.
Figure 12 | Velocity vector for flow condition Q¼22 l/s, near surface.
Figure 12 | Velocity vector for flow condition Q¼22 l/s, near surface.

REFERENCES

Abbasi, A., Ghodsian, M., Habibi, M. & Salehi Neishabouri, S. A. 2004 Experimental investigation on dimensions of flow separation zone at
lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi 62, 38–44. (In Persian).
Al-Zubaidy, R. & Hilo, A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD).
Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.
Chow, V. T. 1959 Open Channel Hydraulics. McGraw-Hill, New York.
Jalili, H., Hosseinzadeh Dalir, A. & Farsadizadeh, D. 2011 Effect of intake geometry on the sediment transport and lateral flow pattern.
Iranian Water Research Journal 5 (9), 1–10. (In Persian).
Jamshidi, A., Farsadizadeh, D. & Hosseinzadeh Dalir, A. 2016 Variations of flow separation zone at lateral intake entrance using submerged
vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.
Karami Moghaddam, K. & Keshavarzi, A. 2007 Investigation of flow structure in lateral intakes of 55° and 90° with rounded entrance edge.
In: 03 National Congress on Civil Engineering University of Tabriz. Available from: https://civilica.com/doc/16317. (In Persian).
Karami, H., Farzin, S., Sadrabadi, M. T. & Moazeni, H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and
submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.
Kasthuri, B. & Pundarikanthan, N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering
113 (4), 543–548.
Keshavarzi, A. & Habibi, L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552.
https://doi.org/10.1002/ird.207.
Kirkgöz, M. S. & Ardiçlioğ
lu, M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering
1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).
Nakato, T., Kennedy, J. F. & Bauerly, D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering.
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).
Neary, V. S. & Odgaard, J. A. 1993 Three-dimensional flow structure at open channel diversions. Journal of Hydraulic Engineering. ASCE 119
(11), 1224–1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223).
Nikbin, S. & Borghei, S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at a 90°
openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://
civilica.com/doc/120494.
Odgaard, J. A. & Wang, Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.

Ramamurthy, A. S., Junying, Q. & Diep, V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic
Engineering. See: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).
Seyedian, S., Karami Moghaddam, K. & Shafai Begestan, M. 2008 Determining the optimal radius in lateral intakes of 55° and 90° using
variation of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT). (In Persian).
Available from: https://civilica.com/doc/56251.
Zolghadr, M. & Shafai Bejestan, M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments.
International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.
Zolghadr, M., Zomorodian, S. M. A., Shabani, R. & Azamatulla Md., H. 2021 Migration of sand mining pit in rivers: an experimental,
numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944

Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3 /s and 0.30m3 /s and angles of orientation 22ο & 32ο .

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses

Alkistis Stergiopoulou 1, Vassilios Stergiopoulos 2
1 Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University, Muthgasse 18, 1190 Vienna, (actually Senior Process Engineer at the VTU Engineering in Vienna, Zieglergasse 53/1/24, 1070 Vienna, Austria).2 School of Pedagogical and Technological Education, Department of Civil Engineering Educators, ASPETE Campus, Eirini Station, 15122 Amarousio, Athens, Greece.

Abstract

이 논문은 최초의 아르키메데스 나사 터빈 CFD 모델링 결과에 대한 간략한 견해를 제시하며, 이는 “그리스에서 아르키메데스의 부활: 수리 역학 및 아르키메데스 달팽이관 물레방아의 유체역학적 거동 연구에 대한 기여”라는 제목의 최근 연구에서 수행되었습니다.
그리스 자연 및 기술 수로의 수력 잠재력”. Flow-3D 코드를 기반으로 하는 이 CFD 분석은 일반적인 TAST(Tubular Archimedean Screw Turbines)와 관련이 있으며 몇 TWh 정도의 그리스 자연 및 기술 수로의 중요한 미개발 수력 잠재력을 활용하는 연간 및 수천 MW 범위의 총 설치 용량인 소규모 수력 발전 시스템에 대한 몇 가지 유망한 성능을 보여줍니다.

This paper presents a short view of the first Archimedean Screw Turbines CFD modelling results, which were carried out within the recent research entitled “Rebirth of Archimedes in Greece: contribution to the study of hydraulic mechanics and hydrodynamic behavior of Archimedean cochlear waterwheels, for recovering the hydraulic potential of Greek natural and technical watercourses”. This CFD analysis, based to the Flow-3D code, concerns typical Tubular Archimedean Screw Turbines (TASTs) and shows some promising performances for such small hydropower systems harnessing the important unexploited hydraulic potential of natural and technical watercourses of Greece, of the order of several TWh / year and of a total installed capacity in the range of thousands MWs.

Keywords

CFD; Flow-3D; TAST; Small Hydro; Renewable Energy; Greek Watercourses.

Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 3. The spectrum of all the screw axis orientation cases.
Figure 3. The spectrum of all the screw axis orientation cases.
Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks
Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks
Figure 6. “Meshing & Geometry” tab Operations (Flow 3-D).
Figure 6. “Meshing & Geometry” tab Operations (Flow 3-D).
Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3
/s and 0.30m3
/s
and angles of orientation 22ο & 32ο
.
Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3 /s and 0.30m3 /s and angles of orientation 22ο & 32ο .
Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque,
Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3
/s and an angle of
orientation θ = 32ο
Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque, Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3 /s and an angle of orientation θ = 32ο

References

[1] A. Stergiopoulou, Computational and experimental investigation of the hydrodynamic behaviour of
screw hydro turbine, Ph.D. Thesis, NTUA, 2017.
[2] B. Pelikan, A. Lashofer, Verbesserung der Strömungseigenschaften sowie Planungs-und
Betriebsoptimierung von Wasserkraftschnecken, Research Project, BOKU University, Vienna,
2012.
[3] G. Müller, J. Senior, Simplified theory of Archimedean screws, Journal of Hydraulic Research 47
(5) (2009) 666-669.
[4] C. Rorres, The turn of the screw: Optimal design of an Archimedes screw, Journal of Hydraulic
Engineering, 80 (2000) 72-80.
[5] A. Stergiopoulou, V. Stergiopoulos, Return of Archimedes: Harnessing with new Archimedean
spirals the hydraulic potential of the Greek watercourses, in: Proceedings of the Conference for
Climate Change, Thessaloniki, 2009.
[6] A. Stergiopoulou, V. Stergiopoulos, from the old Archimedean screw pumps to the new
Archimedean screw turbines for hydropower production in Greece, in: Proceedings of CEMEPE
Conference, Mykonos, June 21-26, 2009.

[7] V. Stergiopoulos, A. Stergiopoulou, E. Kalkani, Quo Vadis Archimedes Nowadays in Greece?
Towards Modern Archimedean Turbines for Recovering Greek Small Hydropower Potential, in:
Proceedings of 3rd International Scientific “Energy and Climate Change” Conference, Athens, 2010.
[8] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Greece beyond the horizon of the era of transition:
Archimedean screw hydropower development terra incognita, International Journal of Energy and
Development, v.6, Issue 6, pp. 627-536, 2015.
[9] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Experimental and theoretical research of zero head
innovative horizontal axis Archimedean screw turbines, Journal of Energy and Development, v.6,
Issue 5, pp. 471-478, 2015.
[10] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Back to the Future: Rediscovering the Archimedean
screws as modern turbines for harnessing Greek small hydropower potential, in: Proceedings of the
Third International Conference CEMEPE 2011 & SECOTOX, Skiathos, 2011.
[11] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[12] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[13] A. Stergiopoulou, V. Stergiopoulos, Towards an inventory of the archimedean small hydropower
potential of Greece, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT
Volume 11, Issue 2, 2020 pp.137-144.
[14] Flow Science, FLOW-3D Manual, 2013.
[15] K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson,
2007.
[16] C. Hirsch, Numerical Computation of internal and external flows: The fundamentals of
Computational Fluid dynamics, John Wiley & Sons, 2007.
[17] A. Stergiopoulou, V. Stergiopoulos and E. Kalkani, An eagle’s CFD view of Studying Innovative
Archimedean Screw Renewable Hydraulic Energy Systems, Proceedings of the 4th International
Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and
SECOTOX Conference, Mykonos island, Greece, pp.454-460 June 24-28, 2013.
[18] A. Stergiopoulou, V. Stergiopoulos, A., E. Kalkani, Computational Fluid Dynamics Study on a 3D
Graphic Solid Model of Archimedean Screw Turbines, Fresenius Environmental Bulletin, vol.23-
No1, 2014.
[19] Α. Stergiopoulou, Kalkani E., “Towards a First C.F.D. Study of Innovative Archimedean Inclined
Axis Hydropower Turbines”, International Journal of Engineering Research & Technology (IJERT),
Vol. 2 Issue 9, September – 2013, pp. 193-199.
[20] A. Stergiopoulou, V. Stergiopoulos, A first CFD study of small hydro energy recovery from the
Attica water supply network, INTERNATIONAL JOURNAL OF ENERGY AND
ENVIRONMENT, Volume 11, Issue 3, 2020 pp.157-166.

Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.

Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment

by Hongbo Mi 1,2, Chuan Wang 1,3, Xuanwen Jia 3,*, Bo Hu 2, Hongliang Wang 4, Hui Wang 3 and Yong Zhu 5

1College of Mechatronics Engineering, Hainan Vocational University of Science and Technology, Haikou 571126, China

2Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

4School of Aerospace and Mechanical Engineering/Flight College, Changzhou Institute of Technology, Changzhou 213032, China

5National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

*Author to whom correspondence should be addressed.Sustainability202315(6), 5159; https://doi.org/10.3390/su15065159

Received: 30 January 2023 / Revised: 4 March 2023 / Accepted: 10 March 2023 / Published: 14 March 2023(This article belongs to the Special Issue Advanced Technologies of Renewable Energy and Water Management for Sustainable Environment

Abstract

Due to their high efficiency, low heat loss and associated sustainability advantages, impinging jets have been used extensively in marine engineering, geotechnical engineering and other engineering practices. In this paper, the flow structure and impact characteristics of impinging jets with different Reynolds numbers and impact distances are systematically studied by Flow-3D based on PIV experiments. In the study, the relevant state parameters of the jets are dimensionlessly treated, obtaining not only the linear relationship between the length of the potential nucleation zone and the impinging distance, but also the linear relationship between the axial velocity and the axial distance in the impinging zone. In addition, after the jet impinges on the flat plate, the vortex action range caused by the wall-attached flow of the jet gradually decreases inward with the increase of the impinging distance. By examining the effect of Reynolds number Re on the hydraulic characteristics of the submerged impact jet, it can be found that the structure of the continuous submerged impact jet is relatively independent of the Reynolds number. At the same time, the final simulation results demonstrate the applicability of the linear relationship between the length of the potential core region and the impact distance. This study provides methodological guidance and theoretical support for relevant engineering practice and subsequent research on impinging jets, which has strong theoretical and practical significance.

Keywords: 

PIVFlow-3Dimpinging jethydraulic characteristicsimpinging distance

Sustainability 15 05159 g001 550

Figure 1. Geometric model.

Sustainability 15 05159 g002 550

Figure 2. Model grid schematic.

Sustainability 15 05159 g003 550

Figure 3. (a) Schematic diagram of the experimental setup; (b) PIV images of vertical impinging jets with velocity fields.

Sustainability 15 05159 g004 550

Figure 4. (a) Velocity distribution verification at the outlet of the jet pipe; (b) Distribution of flow angle in the mid-axis of the jet [39].

Sustainability 15 05159 g005 550

Figure 5. Along-range distribution of the dimensionless axial velocity of the jet at different impact distances.Figure 6 shows the variation of H

Sustainability 15 05159 g006 550

Figure 6. Relationship between the distribution of potential core region and the impact height H/D.

Sustainability 15 05159 g007 550

Figure 7. The relationship between the potential core length 

Sustainability 15 05159 g008 550

Figure 8. Along-range distribution of the flow angle φ of the jet at different impact distances.

Sustainability 15 05159 g009 550

Figure 9. Velocity distribution along the axis of the jet at different impinging regions.

Sustainability 15 05159 g010 550

Figure 10. The absolute value distribution of slope under different impact distances.

Sustainability 15 05159 g011a 550
Sustainability 15 05159 g011b 550

Figure 11. Velocity distribution of impinging jet on wall under different impinging distances.

Sustainability 15 05159 g012 550

Figure 12. Along-range distribution of the dimensionless axial velocity of the jet at different Reynolds numbers.

Sustainability 15 05159 g013 550

Figure 13. Along-range distribution of the flow angle φ of the jet at different Reynolds numbers.

Sustainability 15 05159 g014 550

Figure 14. Velocity distribution along the jet axis at different Reynolds numbers.

Sustainability 15 05159 g015 550

Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.

References

  1. Zhang, J.; Li, Y.; Zhang, Y.; Yang, F.; Liang, C.; Tan, S. Using a high-pressure water jet-assisted tunnel boring machine to break rock. Adv. Mech. Eng. 202012, 1687814020962290. [Google Scholar] [CrossRef]
  2. Shi, X.; Zhang, G.; Xu, G.; Ma, Y.; Wu, X. Inactivating Microorganism on Medical Instrument Using Plasma Jet. High Volt. Eng. 200935, 632–635. [Google Scholar]
  3. Gao, Y.; Han, P.; Wang, F.; Cao, J.; Zhang, S. Study on the Characteristics of Water Jet Breaking Coal Rock in a Drilling Hole. Sustainability 202214, 8258. [Google Scholar] [CrossRef]
  4. Xu, W.; Wang, C.; Zhang, L.; Ge, J.; Zhang, D.; Gao, Z. Numerical study of continuous jet impinging on a rotating wall based on Wray—Agarwal turbulence model. J. Braz. Soc. Mech. Sci. Eng. 202244, 433. [Google Scholar] [CrossRef]
  5. Hu, B.; Wang, C.; Wang, H.; Yu, Q.; Liu, J.; Zhu, Y.; Ge, J.; Chen, X.; Yang, Y. Numerical Simulation Study of the Horizontal Submerged Jet Based on the Wray—Agarwal Turbulence Model. J. Mar. Sci. Eng. 202210, 1217. [Google Scholar] [CrossRef]
  6. Dahiya, A.K.; Bhuyan, B.K.; Kumar, S. Perspective study of abrasive water jet machining of composites—A review. J. Mech. Sci. Technol. 202236, 213–224. [Google Scholar] [CrossRef]
  7. Abushanab, W.S.; Moustafa, E.B.; Harish, M.; Shanmugan, S.; Elsheikh, A.H. Experimental investigation on surface characteristics of Ti6Al4V alloy during abrasive water jet machining process. Alex. Eng. J. 202261, 7529–7539. [Google Scholar] [CrossRef]
  8. Hu, B.; Wang, H.; Liu, J.; Zhu, Y.; Wang, C.; Ge, J.; Zhang, Y. A numerical study of a submerged water jet impinging on a stationary wall. J. Mar. Sci. Eng. 202210, 228. [Google Scholar] [CrossRef]
  9. Peng, J.; Shen, H.; Xie, W.; Zhai, S.; Xi, G. Influence of flow fluctuation characteristics on flow and heat transfer in different regions. J. Drain. Irrig. Mach. Eng. 202240, 826–833. [Google Scholar]
  10. Zhai, S.; Xie, F.; Yin, G.; Xi, G. Effect of gap ratio on vortex-induced vibration characteristics of different blunt bodies near-wall. J. Drain. Irrig. Mach. Eng. 202139, 1132–1138. [Google Scholar]
  11. Lin, W.; Zhou, Y.; Wang, L.; Tao, L. PIV experiment and numerical simulation of trailing vortex structure of improved INTER-MIG impeller. J. Drain. Irrig. Mach. Eng. 202139, 158–164. [Google Scholar]
  12. Han, B.; Yao, Z.; Tang, R.; Xu, H. On the supersonic impinging jet by laser Doppler velocimetry. Exp. Meas. Fluid Mech. 200216, 99–103. [Google Scholar]
  13. Darisse, A.; Lemay, J.; Benaissa, A. LDV measurements of well converged third order moments in the far field of a free turbulent round jet. Exp. Therm. Fluid Sci. 201344, 825–833. [Google Scholar] [CrossRef]
  14. Kumar, S.; Kumar, A. Effect of initial conditions on mean flow characteristics of a three dimensional turbulent wall jet. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021235, 6177–6190. [Google Scholar] [CrossRef]
  15. Tao, D.; Zhang, R.; Ying, C. Development and application of the pollutant diffusion testing apparatus based on the image analysis. J. Saf. Environ. 201616, 247–251. [Google Scholar]
  16. Seo, H.; Kim, K.C. Experimental study on flow and turbulence characteristics of bubbly jet with low void fraction. Int. J. Multiph. Flow 2021142, 103738. [Google Scholar] [CrossRef]
  17. Wen, Q.; Sha, J.; Liu, Y. TR-PIV measurement of the turbulent submerged jet and POB analysis of the dynamic structure. J. Exp. Fluid Mech. 20144, 16–24. [Google Scholar]
  18. Yang, Y.; Zhou, L.; Shi, W.; He, Z.; Han, Y.; Xiao, Y. Interstage difference of pressure pulsation in a three-stage electrical submersible pump. J. Petrol. Sci. Eng. 2021196, 107653. [Google Scholar] [CrossRef]
  19. Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform. 202150, 101406. [Google Scholar] [CrossRef]
  20. Han, Y.; Song, X.; Li, K.; Yan, X. Hybrid modeling for submergence depth of the pumping well using stochastic configuration networks with random sampling. J. Petrol. Sci. Eng. 2022208, 109423. [Google Scholar] [CrossRef]
  21. Tang, S.; Zhu, Y.; Yuan, S. A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images. Adv. Eng. Inform. 202252, 101554. [Google Scholar] [CrossRef]
  22. Long, J.; Song, X.; Shi, J.; Chen, J. Optimization and CFD Analysis on Nozzle Exit Position of Two-phase Ejector. J. Refrig. 202243, 39–45. [Google Scholar]
  23. Ni, Q.; Ruan, W. Optimization design of desilting jet pump parameters based on response surface model. J. Ship Mech. 202226, 365–374. [Google Scholar]
  24. Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S. Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Therm. Eng. 2017126, 594–601. [Google Scholar] [CrossRef]
  25. Fu, W.; Liu, Z.; Li, Y.; Wu, H.; Tang, Y. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance. Int. J. Therm. Sci. 2018132, 509–516. [Google Scholar] [CrossRef]
  26. Lucas, C.; Rusche, H.; Schroeder, A.; Koehler, J. Numerical investigation of a two-phase CO2 ejector. Int. J. Refrigeration 201443, 154–166. [Google Scholar] [CrossRef]
  27. Ma, X.; Zhu, T.; Fu, Y.; Yan, Y.; Chen, W. Numerical simulation of rock breaking by abrasive water jet. J. Coast. Res. 201993, 274–283. [Google Scholar] [CrossRef]
  28. He, L.; Liu, Y.; Shen, K.; Yang, X.; Ba, Q.; Xiong, W. Numerical research on the dynamic rock-breaking process of impact drilling with multi-nozzle water jets. J. Pet. Sci. Eng. 2021207, 109145. [Google Scholar] [CrossRef]
  29. Yu, Z.; Wang, Z.; Lei, C.; Zhou, Y.; Qiu, X. Numerical Simulation on Internal Flow Field of a Self-excited Oscillation Pulsed Jet Nozzle with Back-flow. Mech. Sci. Technol. Aerosp. Eng. 202241, 998–1002. [Google Scholar]
  30. Huang, J.; Ni, F.; Gu, L. Numerical method of FLOW-3D for sediment erosion simulation. China Harb. Eng. 201939, 6–11. [Google Scholar]
  31. Al Shaikhli, H.I.; Khassaf, S.I. Using of flow 3d as CFD materials approach in waves generation. Mater. Today Proc. 202249, 2907–2911. [Google Scholar] [CrossRef]
  32. Kosaj, R.; Alboresha, R.S.; Sulaiman, S.O. Comparison Between Numerical Flow3d Software and Laboratory Data, For Sediment Incipient Motion. IOP Conf. Ser. Earth Environ. Sci. 2022961, 012031. [Google Scholar] [CrossRef]
  33. Du, C.; Liu, X.; Zhang, J.; Wang, B.; Chen, X.; Yu, X. Long-distance water hammer protection of pipeline after pump being first lowered and then rasied. J. Drain. Irrig. Mach. Eng. 202240, 1248–1253, 1267. [Google Scholar]
  34. Gao, F.; Li, X.; Gao, Q. Experiment and numerical simulation on hydraulic characteristics of novel trapezoidal measuring weir. J. Drain. Irrig. Mach. Eng. 202240, 1104–1111. [Google Scholar]
  35. Tu, A.; Nie, X.; Li, Y.; Li, H. Experimental and simulation study on water infiltration characteristics of layered red soil. J. Drain. Irrig. Mach. Eng. 202139, 1243–1249. [Google Scholar]
  36. Chen, J.; Zeng, B.; Liu, L.; Tao, K.; Zhao, H.; Zhang, C.; Zhang, J.; Li, D. Investigating the anchorage performance of full-grouted anchor bolts with a modified numerical simulation method. Eng. Fail. Anal. 2022141, 106640. [Google Scholar] [CrossRef]
  37. Hu, B.; Yao, Y.; Wang, M.; Wang, C.; Liu, Y. Flow and Performance of the Disk Cavity of a Marine Gas Turbine at Varying Nozzle Pressure and Low Rotation Speeds: A Numerical Investigation. Machines 202311, 68. [Google Scholar] [CrossRef]
  38. Yao, J.; Wang, X.; Zhang, S.; Xu, S.; Jin, B.; Ding, S. Orthogonal test of important parameters affecting hydraulic performance of negative pressure feedback jet sprinkler. J. Drain. Irrig. Mach. Eng. 202139, 966–972. [Google Scholar]
  39. Wang, C.; Wang, X.; Shi, W.; Lu, W.; Tan, S.K.; Zhou, L. Experimental investigation on impingement of a submerged circular water jet at varying impinging angles and Reynolds numbers. Exp. Therm. Fluid Sci. 201789, 189–198. [Google Scholar] [CrossRef]
  40. Speziale, C.G.; Thangam, S. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci. 199230, 1379–1388. [Google Scholar] [CrossRef]
  41. El Hassan, M.; Assoum, H.H.; Sobolik, V.; Vétel, J.; Abed-Meraim, K.; Garon, A.; Sakout, A. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids 201252, 1475–1489. [Google Scholar] [CrossRef]
  42. Fairweather, M.; Hargrave, G. Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp. Fluids 200233, 464–471. [Google Scholar] [CrossRef]
  43. Ashforth-Frost, S.; Jambunathan, K. Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int. Commun. Heat Mass Transf. 199623, 155–162. [Google Scholar] [CrossRef]
  44. Chen, M.; Huang, H.; Wang, D.; Lv, S.; Chen, Y. PIV tests for flow characteristics of impinging jet in a semi-closed circular pipe. J. Vib. Shock 202140, 90–97, 113. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

      

MDPI and ACS Style

Mi, H.; Wang, C.; Jia, X.; Hu, B.; Wang, H.; Wang, H.; Zhu, Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability 202315, 5159. https://doi.org/10.3390/su15065159

AMA Style

Mi H, Wang C, Jia X, Hu B, Wang H, Wang H, Zhu Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability. 2023; 15(6):5159. https://doi.org/10.3390/su15065159Chicago/Turabian Style

Mi, Hongbo, Chuan Wang, Xuanwen Jia, Bo Hu, Hongliang Wang, Hui Wang, and Yong Zhu. 2023. “Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment” Sustainability 15, no. 6: 5159. https://doi.org/10.3390/su15065159

Nerva-derived reactor coolant channel model for Mars mission applications

화성 임무 적용을 위한 Nerva 파생 원자로 냉각수 채널 모델

Edward W PortaUniversity of Nevada, Las Vegas

Abstract

화성 미션 애플리케이션을 위한 NERVA 파생 원자로 냉각수 채널 모델은 1.3m NERVA 파생 원자로(NDR) 냉각수 채널의 전산유체역학(CFD) 연구 결과를 제시합니다. CFD 코드 FLOW-3D는 NDR 코어를 통과하는 기체 수소의 흐름을 모델링하는 데 사용되었습니다. 수소는 냉각제 채널을 통해 노심을 통과하여 원자로의 냉각제 및 로켓의 추진제 역할을 합니다. 수소는 고밀도/저온 상태로 채널에 들어가고 저밀도/고온 상태로 빠져나오므로 압축성 모델을 사용해야 합니다. 기술 문서의 설계 사양이 모델에 사용되었습니다. 채널 길이에 걸친 압력 강하가 이전에 추정한 것(0.9MPa)보다 높은 것으로 확인되었으며, 이는 더 강력한 냉각수 펌프가 필요하고 설계 사양을 재평가해야 함을 나타냅니다.

NERVA-Derived Reactor Coolant Channel Model for Mars Mission Applications presents the results of a computational fluid dynamics (CFD) study of a 1.3m NERVA-Derived Reactor (NDR) coolant channel; The CFD code FLOW-3D was used to model the flow of gaseous hydrogen through the core of a NDR. Hydrogen passes through the core by way of coolant channels, acting as the coolant for the reactor as well as the propellant for the rocket. Hydrogen enters the channel in a high density/low temperature state and exits in a low density/high temperature state necessitating the use of a compressible model. Design specifications from a technical paper were used for the model; It was determined that the pressure drop across the length of the channel was higher than previously estimated (0.9 MPa), indicating the possible need for more powerful coolant pumps and a re-evaluation of the design specifications.

Keywords

Application; Channel; Coolant; Derived; Mars; Mission; Model; Nerva; Reactor

Figure 1 Nuclear Rocket Schematic Diagram
Figure 1 Nuclear Rocket Schematic Diagram
Figure 2 Fuel Element - Tip View
Figure 2 Fuel Element – Tip View
Figure 3 Fuel Element - Tie-Tube Structure (Tie-tubes are black)
Figure 3 Fuel Element – Tie-Tube Structure (Tie-tubes are black)
Figure 5 Three-Dimensional Coolant Channel Model
Figure 5 Three-Dimensional Coolant Channel Model
Figure 6 Two-Dimensional Coolant Channel Model
Figure 6 Two-Dimensional Coolant Channel Model

REFERENCES

Anderson, J. D., Jr., (1990) Modern Compressible Flow, 2d ed., McGraw-Hill, New
York.
Avallone E. A. and T. Baumeister III, eds., (1987) Mark’s Standard Handbookfor
Mechanical Engineers, 9th ed., McGraw-Hill, New York.
Bennett, G. L. and T. J. Miller (1992) “Nuclear Propulsion: A Key Transportation
Technology for the Exploration of Mars,” Proceedings o f the 9th Symposium on
Space Nuclear Power Systems, CONF-920104, M. S. El-Genk and M. D. Hoover,
eds., American Institute of Physics, New York, AIP Conference Proceedings No.
246, 2: 383-388.
Black, D. L., and S. V. Gunn (1991) “A Technical Summary of Engine and Reactor
Subsystem Design Performance during the NERVA Program,” AIAA-91-3450,
American Institute of Aeronautics and Astronautics, Washington, D. C.
Borowski, S. K., et al. (1992) “Nuclear Thermal Rockets: Key to Moon-Mars
Exploration,” Aerospace America, July 1992, pp. 34(5).
Borowski, S. K., et al. (1993) “ Nuclear Thermal Rocket/Vehicle Design Options for
Future NASA Missions to the Moon and Mars,” AIAA-93-4170, American Institute
of Aeronautics and Astronautics, Washington, D. C.
Borowski, S. K., et al. (1994) “Nuclear Thermal Rocket/Stage Technology Options for
NASA’s Future Human Exploration Missions to the Moon and Mars,” Proceedings
o f the 11th Symposium on Space Nuclear Power and Propulsion, CONF-940101, M.
S. El-Genk and M. D. Hoover, eds., American Institute of Physics, New York, NY,
AIP Conference Proceedings No. 301, 2: 745 – 758.
Burmeister, L. C. (1993) Convective Heat Transfer, 2d ed., John Wiley & Sons, New
York.
Chi, J., R. Holman, and B. Pierce (1989) “Nerva Derivative Reactors for Thermal and
Electrical Propulsion,” AIAA-89-2770, American Institute of Aeronautics and
Astronautics, Washington, D. C.
FIDAP (1993) FIDAP 7.0 User’s Manual, Fluid Dynamics International, Inc.
FL0W-3D (1994) FL0W-3D Version 6.0 Quick Reference Guide, Flow Science, Inc.,
Los Alamos, NM.
Hill, P. G. and C. R. Peterson (1970) Mechanics and Thermodynamics o f Propulsion,
Addison-Wesley, Reading, MA.
Lamarsh, J. R. (1983) Introduction to Nuclear Engineering, 2d ed., Addison-Wesley,
Reading, MA.
Nassersharif, B. (1991) Notes from a Nuclear Propulsion Short Course, 3-5 January
1991, American Institute of Physics.
Nassersharif, B., E. Porta, and D. Hailes (1994) “A Proposal Entitled: Scenario Based
Design of Nuclear Propulsion for Manned Mars Mission,” NSCEE, Las Vegas, NV.
Shepard, K., et al. (1992) “A Split Sprint Mission to Mars,” Proceedings o f the 9th
Symposium on Space Nuclear Power Systems, CONF-920104, M. S. El-Genk and M.
D. Hoover, eds., American Institute of Physics, New York, AIP Conference
Proceedings No. 246, 1: 58 – 63.
Sutton, G. P. (1986) Rocket Propulsion Elements: An Introduction to the Engineering
o f Rockets, 5th ed., John Wiley & Sons, New York.
U.S. President (1989) “Remarks on the 20th Anniversary of the Apollo 11 Moon
Landing July 20, 1989,” Administration o f George Bush, Office of the Federal
Register. National Archives and Records Service, 1989, Washington D. C., George
Bush, 1989, p. 992.
VSAERO (1994) VSAERO User’s Manual E.5, Analytical Methods, Inc., Redmond,
WA.
White, F. M. (1991) Viscous Fluid Flow, 2d ed., McGraw-Hill, Inc., New York.
Zweig, H. R. and M. H. Cooper (1993) “NERVA-Derived Rocket Module for Solar
System Exploration,” AIAA-93-2110, American Institute of Aeronautics and
Astronautics, Washington, D. C.

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.

Numerical modelling of air-water flows in sewer drops

하수구 방울의 공기-물 흐름 수치 모델링

Paula Beceiro (corresponding author)
Maria do Céu Almeida
Hydraulic and Environment Department (DHA), National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisbon, Portugal
E-mail: pbeceiro@lnec.pt
Jorge Matos
Department of Civil Engineering, Arquitecture and Geosources,
Technical University of Lisbon (IST), Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal

ABSTRACT

물 흐름에 용존 산소(DO)의 존재는 해로운 영향의 발생을 방지하는 데 유익한 것으로 인식되는 호기성 조건을 보장하는 중요한 요소입니다.

하수도 시스템에서 흐르는 폐수에 DO를 통합하는 것은 공기-액체 경계면 또는 방울이나 접합부와 같은 특이점의 존재로 인해 혼입된 공기를 통한 연속 재방출의 영향을 정량화하기 위해 광범위하게 조사된 프로세스입니다. 공기 혼입 및 후속 환기를 향상시키기 위한 하수구 드롭의 위치는 하수구의 호기성 조건을 촉진하는 효과적인 방법입니다.

본 논문에서는 수직 낙하, 배경 및 계단식 낙하를 CFD(전산유체역학) 코드 FLOW-3D®를 사용하여 모델링하여 이러한 유형의 구조물의 존재로 인해 발생하는 난류로 인한 공기-물 흐름을 평가했습니다. 이용 가능한 실험적 연구에 기초한 수력학적 변수의 평가와 공기 혼입의 분석이 수행되었습니다.

이러한 구조물에 대한 CFD 모델의 결과는 Soares(2003), Afonso(2004) 및 Azevedo(2006)가 개발한 해당 물리적 모델에서 얻은 방류, 압력 헤드 및 수심의 측정을 사용하여 검증되었습니다.

유압 거동에 대해 매우 잘 맞았습니다. 수치 모델을 검증한 후 공기 연행 분석을 수행했습니다.

The presence of dissolved oxygen (DO) in water flows is an important factor to ensure the aerobic conditions recognised as beneficial to prevent the occurrence of detrimental effects. The incorporation of DO in wastewater flowing in sewer systems is a process widely investigated in order to quantify the effect of continuous reaeration through the air-liquid interface or air entrained due the presence of singularities such as drops or junctions. The location of sewer drops to enhance air entrainment and subsequently reaeration is an effective practice to promote aerobic conditions in sewers. In the present paper, vertical drops, backdrops and stepped drop was modelled using the computational fluid dynamics (CFD) code FLOW-3D® to evaluate the air-water flows due to the turbulence induced by the presence of this type of structures. The assessment of the hydraulic variables and an analysis of the air entrainment based in the available experimental studies were carried out. The results of the CFD models for these structures were validated using measurements of discharge, pressure head and water depth obtained in the corresponding physical models developed by Soares (2003), Afonso (2004) and Azevedo (2006). A very good fit was obtained for the hydraulic behaviour. After validation of numerical models, analysis of the air entrainment was carried out.

Key words | air entrainment, computational fluid dynamics (CFD), sewer drops

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.

REFERENCES

Afonso, J. Dissipação de energia e rearejamento em quedas em colectores. M.Sc. Thesis, UTL/IST, Lisboa, Portugal.
Almeida, M. C., Butler, D. & Matos, J. S. Reaeration by sewer drops. In: 8th Int. Conf. on Urban Storm Drainage, Sydney, Australia.
Azevedo, R. I. Transferência de oxigénio em quedas guiadas em colectores. M.Sc. Thesis, IST, Lisboa, Portugal.
Beceiro, P., Almeida, M. C. & Matos, J. Numerical Modelling of air-water flows in a vertical drop and a backdrop. In: 3rd IAHR Europe Congress, Porto, Portugal.
Bombardelli, F. A., Meireles, I. & Matos, J. S. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of step stepped spillways. Environ. Fluid Mech. 11 (3), 263–288.
Brethour, J. M. & Hirt, C. W. Drift Model for TwoComponent Flows. Flow Science, Inc., Los Alamos, NM, USA.
Chamani, M. R. Jet Flow on Stepped Spillways and Drops. M.Sc. Thesis, University of Alberta, Alberta, Canada.
Chanson, H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flow. Academic Press Inc., California, USA.
Chanson, H. Air bubble entrainment in open channels: flow structure and bubble size distribution. Int. J. Multiphase 23 (1), 193–203.
Chanson, H. Hydraulics of aerated flows: qui pro quo? Journal of Hydraulic Research 51 (3), 223–243.
Dufresne, M., Vazques, J., Terfous, A., Ghenaim, A. & Poulet, J. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computer and Fluids 38, 1042–1049.
Durve, A. P. & Patwardhan, A. W. Numerical and experimental investigation of onset of gas entrainment phenomenon. Chemical Engineering Science 73, 140–150.
Felder, S. & Chanson, H. Air–water flows and free-surface profiles on a non-uniform stepped chute. Journal of Hydraulic Research 52 (2), 253–263.
Flow Science FLOW-3D User’s Manuals Version 10.0. Vol.1/2. Flow Science Inc., Los Alamos, NM, USA.
Granata, F., Marinis, G., Gargano, R. & Hager, W. H. Energy loss in circular drop manholes. In: 33rd IAHR Congress: Water Engineering for Sustainable Environment, British
Columbia, Vancouver, Canada. Hirt, C. W. Modeling Turbulent Entrainment of air at A Free Surface. Flow Science Inc., Los Alamos, NM, USA.
Hirt, C. W. & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225.
Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int, Conf. Ship Hydro., National Academy of Science, Washington, DC, USA.
Isfahani, A. H. G. & Brethour, J. On the Implementation of Two-Equation Turbulence Models in FLOW-3D. Flow Science Inc., Los Alamos, NM, USA.
Kouyi, G. L., Bret, P., Didier, J. M., Chocat, B. & Billat, C. The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology 64 (2), 521–527.
Lopes, P., Leandro, J., Carvalho, R. F., Páscoa, P. & Martins, R. Numerical and experimental investigation of a gully under surcharge conditions. Urban Water Journal 12 (6), 468–476.
Martins, R., Leandro, J. & Carvalho, R. F. Characterization of the hydraulic performance of a gully under drainage conditions. Water Science and Technology 69 (12), 2423–2430.
Matias, N., Nielsel, A. H., Vollertsen, J., Ferreira, F. & Matos, J. S. Reaeration and hydrogen sulfide release at drop structures. In: 8th International Conference on Sewer Processes and Networks (SPN8), Rotterdam, Netherlands.
Matos, J. S. & Sousa, E. R. Prediction of dissolved oxygen concentration along sanitary sewers. Water Science and Technology 34 (5–6), 525–532.
Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N. & Bertrand-Krajewski, J. L. Experiments and 3D simulations of flow structures in junctions and of their influence on location of flowmeters. In: 12th International Conference on Urban Drainage, Porto Alegre, Brazil.
Ozmen-Cagatay, H. & Kocaman, S. Dam-break flow in the presence of obstacle: experiment and CFD Simulation. Engineering Applications of Computational Fluid Mechanics 5 (4), 541–552.
Shojaee Fard, M. H. & Boyaghchi, F. A. Studies of the influence of various blade outlet angles in a centrifugal pump when handling viscous fluids. American Journal of Applied Sciences 4 (9), 718–724.
Soares, A. Rearejamento em Quedas em Colectores de Águas Residuais. M.Sc. Thesis, FCTUC, Coimbra, Portugal.
Sousa, C. M. & Lopes, R. R. Hidráulica e rearejamento em quedas verticais em colectores. Estudo Experimental. Research Report, UTL/IST, Lisboa, Portugal.
Sousa, V., Meireles, I., Matos, J. & Almeida, M. C. Numerical modelling of air-water flow in a vertical drop manhole. In: 7th International Conference on Sewer Processes and Networks (SPN7), Shefield, UK.
Stovin, V., Guymer, I. & Lau, S. D. Approaches to validating a 3D CFD manhole model. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Tota, P. V. Turbulent Flow Over A Backward-Facing Step Using the RNG Model. Flow Science Inc., Los Alamos, NM, USA.
Valero, D. & García-Bartual, R. Calibration of an air entrainment model for CFD spillway applications. In: Advances in Hydroinformatics. Springer, Singapore, pp. 571–582.
Versteeg, H. K. & Malalasekera, W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Group limited, England.
Yang, Y., Yang, J., Zuo, J., Li, Y., He, S., Yang, X. & Zhang, K. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Research 45 (11), 3439–3452.
Zhai, A. J., Zhang, Z., Zhang, W. & Chen, Q. Y. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part 1— summary of prevalent Turbulence models. HVAC&R Research 13 (6), 853–870.
Zhao, C., Zhu, D. Z. & Rajaratnam, N. Computational and experimental study of surcharged flow at a 90W combining sewer junction. Journal of Hydraulic Engineering 134 (6), 688–700.

Effect of tailwater depth on non-cohesive earth dam failure due to overtopping

Effect of tailwater depth on non-cohesive earth dam failure due to overtopping

범람으로 인한 비점착성 흙댐 붕괴에 대한 테일워터 깊이의 영향

ShaimaaAmanaMohamedAbdelrazek RezkbRabieaNasrc

Abstract

본 연구에서는 범람으로 인한 토사댐 붕괴에 대한 테일워터 깊이의 영향을 실험적으로 조사하였다. 테일워터 깊이의 네 가지 다른 값을 검사합니다. 각 실험에 대해 댐 수심 측량 프로파일의 진화, 고장 기간, 침식 체적 및 유출 수위곡선을 관찰하고 기록합니다.

결과는 tailwater 깊이를 늘리면 고장 시간이 최대 57% 감소하고 상대적으로 침식된 마루 높이가 최대 77.6% 감소한다는 것을 보여줍니다. 또한 상대 배수 깊이가 3, 4, 5인 경우 누적 침식 체적의 감소는 각각 23, 36.5 및 75%인 반면 최대 유출량의 감소는 각각 7, 14 및 17.35%입니다.

실험 결과는 침식 과정을 복제할 때 Flow 3D 소프트웨어의 성능을 평가하는 데 활용됩니다. 수치 모델은 비응집성 흙댐의 침식 과정을 성공적으로 시뮬레이션합니다.

The influence of tailwater depth on earth dam failure due to overtopping is investigated experimentally in this work. Four different values of tailwater depths are examined. For each experiment, the evolution of the dam bathymetry profile, the duration of failure, the eroded volume, and the outflow hydrograph are observed and recorded. The results reveal that increasing the tailwater depth reduces the time of failure by up to 57% and decreases the relative eroded crest height by up to 77.6%. In addition, for relative tailwater depths equal to 3, 4, and 5, the reduction in the cumulative eroded volume is 23, 36.5, and 75%, while the reduction in peak discharge is 7, 14, and 17.35%, respectively. The experimental results are utilized to evaluate the performance of the Flow 3D software in replicating the erosion process. The numerical model successfully simulates the erosion process of non-cohesive earth dams.

Keywords

Earth dam, Eroded volume, Flow 3D model, Non-cohesive soil, Overtopping failure, Tailwater depth

Notation

d50

Mean partical diameterWc

Optimum water contentZo

Dam height (cm)do

Tailwater depth (cm)Zeroded

Eroded height of the dam measured at distance of 0.7 m from the dam heel (cm)t

Total time of failure (sec)t1

Time of crest width erosion (sec)Zcrest

The crest height (cm)Vtotal

Total volume of the dam (m3)Veroded

Cumulative eroded volume (m3)RMSE

The statistical variable root- mean- square errord

Degree of agreement indexyu.s.

The upstream water depth (cm)yd.s

The downstream water depth (cm)H

Water surface elevation over sharp crested weir (cm)Q

Outflow discharge (liter/sec)Qpeak

Peak discharge (liter/sec)

1. Introduction

Earth dams are compacted structures composed of natural materials that are usually mined or quarried from local locations. The failures of the earth dams have proven to be deadly, destructive, and costly. According to People’s Daily, two earthen dams, Yong’an Dam and Xinfa Dam located in Hulun Buir City in North China’s Inner Mongolia failed on 2021, due to a surge in the water level of the Nuomin River caused by heavy rain. The dam breach affected 16,660 people, flooded 325,622 mu of farmland (21708.1 ha), and destroyed 22 bridges, 124 culverts, and 15.6 km of roadways. Also, the failure of south fork dam (earth and rock fill dam) near Johnstown on 1889 is considered the worst U.S dam disaster in terms of loss of life. The dam was overtopped and washed away due to unexpected heavy rains, releasing 20 million tons of water which destroyed Johnstown and resulted in 2209 deaths, [1][2]. Piping or shear sliding, failure due to natural factors, and failure due to overtopping are all possible causes of earth dam failure. However, overtopping failure is the most frequent cause of dam failure. According to The International Committee on Large Dams (ICOLD, 1995), and [3], more than one-third of the total known dam failures were caused by dam overtopping.

Overtopping occurs as the result of insufficient flood design or freeboard in some cases. Extreme rainstorms can cause floods which can overtop the dam and cause it to fail. The size and geometry of the reservoir or the dam (side slopes, top width, height, etc.), the homogeneity of the material used in the construction of the dam, overtopping depth, and the presence or absence of tailwater are all elements that influence this type of failure which will be illustrated in the following literature. Overtopping failures of earth dams may be divided into several failure mechanisms based on the material composition and the inner structure of the dam. For cohesive earth dams because of low permeability, no seepage exists on the slopes. Erosion often begins at the earth dam toe during turbulent erosion and moves upstream, undercutting the slope, causing the removal of large chunks of materials. While for non-cohesive earth dams the downstream face of the dam flattens progressively and is often said to rotate around a point near the downstream toe [4][5][6] In the last few decades, the study of failures due to overtopping has gained popularity among researchers. The overtopping failure, in fact, has been widely investigated in coastal and river hydraulics and morpho dynamic. In addition, several laboratory experimental studies have been conducted in this field in order to better understand different involved factors. Also, many numerical types of research have been conducted to investigate the process of overtopping failure as well as the elements that influence this type of failure.

Tabrizi et al. [5] conducted a series of embankment overtopping tests to find the effect of compaction on the failure of a homogenous sand embankment. A plane breach process occurred across the flume width due to the narrow flume width. They measured the downstream hydrographs and embankment surface profile for every case. They concluded that the peak discharge decreased with a high compaction level, while the time to peak increased. Kansoh et al. [6] studied experimentally the failure of compacted homogeneous non-cohesive earthen embankment due to overtopping. They investigated the influence of different shape parameters including the downstream slope, the crest width, and the height of the embankment on the erosion process. The erosion process was initiated by carving a pilot channel into the embankment crest. They evaluated the time of embankment failure for different shape parameters. They concluded that the failure time increases with increasing the downstream slope and the crest width. Zhu et al. [7] investigated experimentally the breaching of five embankments, one constructed with pure sand, and four with different sand-silt–clay mixtures. The erosion pattern was similar across the flume width. They stated that for cohesive soil mixtures the head cut erosion was the most important factor that affected the breach growth, while for non-cohesive soil the breach erosion was affected by shear erosion.

Amaral et al. [8] studied experimentally the failure by overtopping for two embankments built from silt sand material. They studied the effect of the degree of compaction of the embankment and the geometry of the pilot channel carved at the centre of the dam crest. They studied two shapes of pilot channel a rectangular shape and triangular shape. They stated that the breach development is influenced by a higher degree of compaction, however, the pilot channel geometry did not influence the breach’s final form. Bereta et al. [9] studied experimentally the breach formation of five dam models, three of them were homogenous clay soil while two were sandy-clay mixtures. The erosion process was initiated by cutting a pilot channel at the centre of the dam crest. They observed the initiation of erosion, flow shear erosion, sidewall bottom erosion, and distinguished the soil mechanical slope mass failure from the head cut vertically and laterally during these tests. Verma et al. [10] investigated experimentally a two-dimensional erosion phenomenon due to overtopping by using a wooden fuse plug model and five different soils. They concluded that the erosion process was affected mostly by cohesiveness and degree of compaction. For cohesive soils, a head cut erosion was observed, while for non-cohesive soils surface erosion occurred gradually. Also, the dimensions of fuse plug, type of fill material, reservoir capacity, and inflow were found to affect the behaviour of the overall breaching process.

Wu and Qin [11] studied the effect of adding coarse grains to the downstream face of a non-cohesive dam as a result of tailings deposition. The process of overtopping during tailings dam failures is analyzed and its effect on delaying the dam-break process and disaster mitigation are investigated. They found that the tested protective measures decreased the breach area, the maximum breaching flow discharge and flow velocity, and the downstream inundated area. Khankandi et al. [12] studied experimentally the effect of reservoir geometry on dam break flow in case of dry and wet bed conditions. They considered four different reservoir shapes, a long reservoir, a wide, a trapezoidal shaped and one with a 90◦ bend all with identical water volume and horizontal bed. The dam break is simulated by the sudden gate removal using a pneumatic jack. They measured the variation of water level over time with ultrasonic sensors and flow velocity component with an acoustic Doppler velocimeter. Also, the experimental results of water level variation are compared with Ritters solution (1892) [13]. They stated that for dry bed condition the long and 90 bend reservoirs results are close to the analytical solution by ritter also in these two shapes a 1D flow is noticed. However, for wide and trapezoidal reservoirs a 2D effect is significant due to flow contraction at channel entrance.

Rifai et al. [14] conducted a series of experiments to investigate the effect of tailwater depth on the outflow discharge and breach geometry during non-cohesive homogenous fluvial dikes overtopping failure. They cut an initial notch in the crest at 0.8 m from the upstream end of the dike to initiate overtopping. They compared their results to previous experiments under different main channel inflow discharges combined with a free floodplain. They divided the dike breaching process into three stages: gradual start of overtopping flow resulting in slow initiation of dike erosion, deepening and widening breach due to large flow depth and velocity, finally the flow depth starts stabilizing at its minimal level with or without sustained breach expansion. They stated that breach discharge has lower values than in free floodplain tests. Jiang [15] studied the effect of bed slope on breach parameters and peak discharge in non-cohesive embankment failure. An initial triangular breach with a depth and width of 4 cm was pre-set on one side of the dam. He stated that peak discharge increases with the increase of bed slope and then decreases.

Ozmen-cagatay et al. [16] studied experimentally flood wave propagation resulted from a sudden dam break event. For dam-break modelling, they used a mechanism that permitted the rapid removal of a vertical plate with a thickness of 4 mm and made of rigid plastic. They conducted three tests, one with dry bed condition and two tests with tailwater depths equal 0.025 m and 0.1 m respectively. They recorded the free surface profile during initial stages of dam break by using digital image processing. Finally, they compared the experimental results with the with a commercially available VOF-based CFD program solving the Reynolds-averaged Navier –Stokes equations (RANS) with the k– Ɛ turbulence model and the shallow water equations (SWEs). They concluded that Wave breaking was delayed with increasing the tailwater depth to initial reservoir depth ratio. They also stated that the SWE approach is sufficient more to represent dam break flows for wet bed condition. Evangelista [17] investigated experimentally and numerically using a depth-integrated two-phase model, the erosion of sand dike caused by the impact of a dam break wave. The dam break is simulated by a sudden opening of an upstream reservoir gate resulting in the overtopping of a downstream trapezoidal sand dike. The evolution of the water wave caused from the gate opening and dike erosion process are recorded by using a computer-controlled camera. The experimental results demonstrated that the progression of the wave front and dike erosion have a considerable influence on each other during the process. In addition, the dike constructed from fine sands was more resistant to erosion than the one built with coarse sand. They also stated that the numerical model can is capable of accurately predicting wave front position and dike erosion. Also, Di Cristo et al. [18] studied the effect of dam break wave propagation on a sand embankment both experimentally and numerically using a two-phase shallow-water model. The evolution of free surface and of the embankment bottom are recorded and used in numerical model assessment. They stated that the model allows reasonable simulation of the experimental trends of the free surface elevation regardeless of the geofailure operator.

Lots of numerical models have been developed over the past few years to simulate the dam break flooding problem. A one-dimensional model, such as Hec-Ras, DAMBRK and MIKE 11, ect. A two-dimensional model such as iRIC Nay2DH is used in earth embankment breach simulation. Other researchers studied the failure process numerically using (3D) computational fluid dynamics (CFD) models, such as FLOW-3D, and FLUENT. Goharnejad et al. [19] determined the outflow hydrograph which results from the embankment dam break due to overtopping. Hu et al. [20] performed a comparison between Flow-3D and MIKE3 FM numerical models in simulating a dam break event under dry and wet bed conditions with different tailwater depths. Kaurav et al. [21] simulated a planar dam breach process due to overtopping. They conducted a sensitivity analysis to find the effect of dam material, dam height, downstream slope, crest width, and inlet discharge on the erosion process and peak discharge through breach. They concluded that downstream slope has a significant influence on breaching process. Yusof et al. [22] studied the effect of embankment sediment sizes and inflow rates on breaching geometric and hydrodynamic parameters. They stated that the peak outflow hydrograph increases with increasing sediment size and inflow rates while time of failure decreases.

In the present work, the effect of tailwater depth on earth dam failure during overtopping is studied experimentally. The relation between the eroded volume of the dam and the tailwater depth is presented. Also, the percentage of reduction in peak discharge due to tailwater existence is calculated. An assessment of Flow 3D software performance in simulating the erosion process during earth dam failure is introduced. The statistical variable root- mean- square error, RMSE, and the agreement degree index, d, are used in model assessment.

2. Material and methods

The tests are conducted in a straight rectangular flume in the laboratory of Irrigation Engineering and Hydraulics Department, Faculty of Engineering, Alexandria University, Egypt. The flume dimensions are 10 m long, 0.86 m wide, and 0.5 m deep. The front part of the flume is connected to a storage basin 1 m long by 0.86 m wide. The storage basin is connected to a collecting tank for water recirculation during the experiments as shown in Fig. 1Fig. 2. A sharp-crested weir is placed at a distance of 4 m downstream the constructed dam to keep a constant tailwater depth in each experiment and to measure the outflow discharge.

To measure the eroded volume with time a rods technique is used. This technique consists of two parallel wooden plates with 10 cm distance in between and five rows of stainless-steel rods passing vertically through the wooden plates at a spacing of 20 cm distributed across flume width. Each row consists of four rods with 15 cm spacing between them. Also, a graph board is provided to measure the drop in each rod with time as shown in Fig. 3Fig. 4. After dam construction the rods are carefully rested on the dam, with the first line of rods resting in the middle of the dam crest and then a constant distance of 15 cm between rods lines is maintained.

A soil sample is taken and tested in the laboratory of the soil mechanics to find the soil geotechnical parameters. The soil particle size distribution is also determined by sieve analysis as shown in Fig. 5. The soil mean diameter d50,equals 0.38 mm and internal friction angle equals 32.6°.

2.1. Experimental procedures

To investigate the effect of the tailwater depth (do), the tailwater depth is changed four times 5, 15, 20, and 25 cm on the sand dam model. The dam profile is 35 cm height, with crest width = 15 cm, the dam base width is 155 cm, and the upstream and downstream slopes are 2:1 as shown in Fig. 6. The dam dimensions are set as the flume permitted to allow observation of the dam erosion process under the available flume dimensions and conditions. All of the conducted experiments have the same dimensions and configurations.

The optimum water content, Wc, from the standard proctor test is found to be 8 % and the maximum dry unit weight is 19.42 kN/m3. The soil and water are mixed thoroughly to ensure consistency and then placed on three horizontal layers. Each layer is compacted according to ASTM standard with 25 blows by using a rammer (27 cm × 20.5 cm) weighing 4 kg. Special attention is paid to the compaction of the soil to guarantee the repeatability of the tests.

After placing and compacting the three layers, the dam slopes are trimmed carefully to form the trapezoidal shape of the dam. A small triangular pilot channel with 1 cm height and 1:1 side slopes is cut into the dam crest to initiate the erosion process. The position of triangular pilot channel is presented in Fig. 1. Three digital video cameras with a resolution of 1920 × 1080 pixels and a frame rate of 60 fps are placed in three different locations. One camera on one side of the flume to record the progress of the dam profile during erosion. Another to track the water level over the sharp-crested rectangular weir placed at the downstream end of the flume. And the third camera is placed above the flume at the downstream side of the dam and in front of the rods to record the drop of the tip of the rods with time as shown previously in Fig. 1.

Before starting the experiment, the water is pumped into the storage basin by using pump with capacity 360 m3/hr, and then into the upstream section of the flume. The upstream boundary is an inflow condition. The flow discharge provided to the storage basin is kept at a constant rate of 6 L/sec for all experiments, while the downstream boundary is an outflow boundary condition.

Also, the required tailwater depth for each experiment is filled to the desired depth. A dye container valve is opened to color the water upstream of the dam to make it easy to distinguish the dam profile from the water profile. A wooden board is placed just upstream of the dam to prevent water from overtopping the dam until the water level rises to a certain level above the dam crest and then the wooden board is removed slowly to start the experiment.

2.2. Repeatability

To verify the accuracy of the results, each experiment is repeated two times under the same conditions. Fig. 7 shows the relative eroded crest height, Zeroded / Zo, with time for 5 cm tailwater depth. From the Figure, it can be noticed that results for all runs are consistent, and accuracy is achieved.

3. Numerical model

The commercially available numerical model, Flow 3D is used to simulate the dam failure due to overtopping for the cases of 15 cm, 20 cm and 25 cm tailwater depths. For numerical model calibration, experimental results for dam surface evolution are used. The numerical model is calibrated for selection of the optimal turbulence model (RNG, K-e, and k-w) and sediment scour equations (Van Rin, Meyer- peter and Muller, and Nielsen) that produce the best results. In this, the flow field is solved by the RNG turbulence model, and the van Rijn equation is used for the sediment scour model. A geometry file is imported before applying the mesh.

A Mesh sensitivity is analyzed and checked for various cell sizes, and it is found that decreasing the cell size significantly increases the simulation time with insignificant differences in the result. It is noticed that the most important factor influencing cell size selection is the value of the dam’s upstream and downstream slopes. For example, the slopes in the dam model are 2:1, thus the cell size ratio in X and Z directions should be 2:1 as well. The cell size in a mesh block is set to be 0.02 m, 0.025 m, and 0.01 m in X, Y and Z directions respectively.

In the numerical computations, the boundary conditions employed are the walls for sidewalls and the channel bottom. The pressure boundary condition is applied at the top, at the air–water interface, to account for atmospheric pressure on the free surface. The upstream boundary is volume flow rate while the downstream boundary is outflow discharge.

The initial condition is a fluid region, which is used to define fluid areas both upstream and downstream of the dam. To assess the model accuracy, the statistical variable root- mean- square error, RMSE, and the agreement degree index, d, are calculated as(1)RMSE=1N∑i=1N(Pi-Mi)2(2)d=1-∑Mi-Pi2∑Mi-M¯+Pi-P¯2

where N is the number of samples, Pi and Mi are the models and experimental values, P and M are the means of the model and experimental values. The best fit between the experimental and model results would have an RMSE = 0 and degree of agreement, d = 1.

4. Results of experimental work

The results of the total time of failure, t (defined as the time from when the water begins to overtop the dam crest until the erosion reaches a steady state, when no erosion occurs), time of crest width erosion t1, cumulative eroded volume Veroded, and peak discharge Qpeak for each experiment are listed in Table 1. The case of 5 cm tailwater depth is considered as a reference case in this work.

Table 1. Results of experimental work.

Tailwater depth, do (cm)Total time of failure, t (sec)Time of crest width erosion, t1 (sec)cumulative eroded volume, Veroded (m3)Peak discharge, Qpeak (liter/sec)
5255220.2113.12
15165300.1612.19
20140340.1311.29
25110390.0510.84

5. Discussion

5.1. Side erosion

The evolution of the bathymetry of the erosion line recorded by the video camera1. The videos are split into frames (60 frames/sec) by the Free Video to JPG Converter v.5.063 build and then converted into an excel spreadsheet using MATLAB code as shown in Fig. 8.

Fig. 9 shows a sample of numerical model output. Fig. 10Fig. 11Fig. 12 show a dam profile development for different time steps from both experimental and numerical model, for tailwater depths equal 15 cm, 20 cm and 25 cm. Also, the values of RMSE and d for each figure are presented. The comparison shows that the Flow 3D software can simulate the erosion process of non-cohesive earth dam during overtopping with an RMSE value equals 0.023, 0.0218, and 0.0167 and degree of agreement, d, equals 0.95, 0.968, and 0.988 for relative tailwater depths, do/(do)ref, = 3, 4 and 5, respectively. The low values of RMSE and high values of d show that the Flow 3D can effectively simulate the erosion process. From Fig. 10Fig. 11Fig. 12, it can be noticed that the model is not capable of reproducing the head cut, while it can simulate well the degradation of the crest height with a minor difference from experimental work. The reason of this could be due to inability of simulation of all physical conditions which exists in the experimental work, such as channel friction and the grain size distribution of the dam soil which is surely has a great effect on the erosion process and breach development. In the experimental work the grain size distribution is shown in Fig. 5, while the numerical model considers that the soil is uniform and exactly 50 % of the dam particles diameter are equal to the d50 value. Another reason is that the model is not considering the increased resistance of the dam due to the apparent cohesion which happens due to dam saturation [23].

It is clear from both the experimental and numerical results that for a 5 cm tailwater depth, do/(do)ref = 1.0, erosion begins near the dam toe and continues upward on the downstream slope until it reaches the crest. After eroding the crest width, the crest is lowered, resulting in increased flow rates and the speeding up of the erosion process. While for relative tailwater depths, do/(do)ref = 3, 4, and 5 erosion starts at the point of intersection between the downstream slope and tailwater. The existence of tailwater works as an energy dissipater for the falling water which reduces the erosion process and prevents the dam from failure as shown in Fig. 13. It is found that the time of the failure decreases with increasing the tailwater depth because most of the dam height is being submerged with water which decreases the erosion process. The reduction in time of failure from the referenced case is found to be 35.3, 45, and 57 % for relative tailwater depth, do /(do)ref equals 3, 4, and 5, respectively.

The relation between the relative eroded crest height, Zeroded /Zo, with time is drawn as shown in Fig. 14. It is found that the relative eroded crest height decreases with increasing tailwater depth by 10, 41, and 77.6 % for relative tailwater depth, do /(do)ref equals 3, 4, and 5, respectively. The time required for the erosion of the crest width, t1, is calculated for each experiment. The relation between relative tailwater depth and relative time of crest width erosion is shown in Fig. 15. It is found that the time of crest width erosion increases linearly with increasing, do /Zo. The percent of increase is 36.4, 54.5 and 77.3 % for relative tailwater depth, do /(do)ref = 3, 4 and 5, respectively.

Crest height, Zcrest is calculated from the experimental results and the Flow 3D results for relative tailwater depths, do/(do)ref, = 3, 4, and 5. A relation between relative crest height, Zcrest/Zo with time from experimental and numerical results is presented in Fig. 16. From Fig. 16, it is seen that there is a good consistency between the results of numerical model and the experimental results in the case of tracking the erosion of the crest height with time.

5.2. Upstream and downstream water depths

It is noticed that at the beginning of the erosion process, both upstream and downstream water depths increase linearly with time as long as erosion of the crest height did not take place. However, when the crest height starts to lower the upstream water depth decreases with time while the downstream water depth increases. At the end of the experiment, the two depths are nearly equal. A relation between relative downstream and upstream water depths with time is drawn for each experiment as shown in Fig. 17.

5.3. Eroded volume

A MATLAB code is used to calculate the cumulative eroded volume every time interval for each experiment. The total volume of the dam, Vtotal is 0.256 m3. The cumulative eroded volume, Veroded is 0.21, 0.16, 0.13, and 0.05 m3 for tailwater depths, do = 5, 15, 20, and 25 cm, respectively. Fig. 18 presents the relation between cumulative eroded volume, Veroded and time. From Fig. 18, it is observed that the cumulative eroded volume decreases with increasing the tailwater depth. The reduction in cumulative eroded volume is 23, 36.5, and 75 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The relative remained volume of the dam equals 0.18, 0.375, 0.492, and 0.8 for tailwater depths = 5, 15, 20, and 25 cm, respectively. Fig. 19 shows a relation between relative tailwater depth and relative cumulative eroded volume from experimental results. From that figure, it is noticed that the eroded volume decreases exponentially with increasing relative tailwater depth.

5.4. The outflow discharge

The inflow discharge provided to the storage tank is maintained constant for all experiments. The water surface elevation, H, over the sharp-crested weir placed at the downstream side is recorded by the video camera 2. For each experiment, the outflow discharge is then calculated by using the sharp-crested rectangular weir equation every 10 sec.

The outflow discharge is found to increase rapidly until it reaches its peak then it decreases until it is constant. For high values of tailwater depths, the peak discharge becomes less than that in the case of small tailwater depth as shown in Fig. 20 which agrees well with the results of Rifai et al. [14] The reduction in peak discharge is 7, 14, and 17.35 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively.

The scenario presented in this article in which the tailwater depth rises due to unexpected heavy rainfall, is investigated to find the effect of rising tailwater depth on earth dam failure. The results revealed that rising tailwater depth positively affects the process of dam failure in terms of preventing the dam from complete failure and reducing the outflow discharge.

6. Conclusions

The effect of tailwater depth on earth dam failure due to overtopping is investigated experimentally in this work. The study focuses on the effect of tailwater depth on side erosion, upstream and downstream water depths, eroded volume, outflow hydrograph, and duration of the failure process. The Flow 3D numerical software is used to simulate the dam failure, and a comparison is made between the experimental and numerical results to find the ability of this software to simulate the erosion process. The following are the results of the investigation:

The existence of tailwater with high depths prevents the dam from completely collapsing thereby turning it into a broad crested weir. The failure time decreases with increasing the tailwater depth and the reduction from the reference case is found to be 35.3, 45, and 57 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The difference between the upstream and downstream water depths decreases with time till it became almost negligible at the end of the experiment. The reduction in cumulative eroded volume is 23, 36.5, and 75 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The peak discharge decreases by 7, 14, and 17.35 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The relative eroded crest height decreases linearly with increasing the tailwater depth by 10, 41, and 77.6 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The numerical model can reproduce the erosion process with a minor deviation from the experimental results, particularly in terms of tracking the degradation of the crest height with time.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Reference

[1]

D. McCullough

The Johnstown Flood

Simon and Schuster, NY (1968)

Google Scholar[2]Rose AT. The influence of dam failures on dam safety laws in Pennsylvania. Association of State Dam Safety Officials Annual Conference 2013, Dam Safety 2013. 2013;1:738–56.

Google Scholar[3]

M. Foster, R. Fell, M. Spannagle

The statistics of embankment dam failures and accidents

Can Geotech J, 37 (5) (2000), pp. 1000-1024, 10.1139/t00-030 View PDF

View Record in ScopusGoogle Scholar[4]Pickert, G., Jirka, G., Bieberstein, A., Brauns, J. Soil/water interaction during the breaching process of overtopped embankments. In: Greco, M., Carravetta, A., Morte, R.D. (Eds.), Proceedings of the Conference River-Flow 2004, Balkema.

Google Scholar[5]

A. Asghari Tabrizi, E. Elalfy, M. Elkholy, M.H. Chaudhry, J. Imran

Effects of compaction on embankment breach due to overtopping

J Hydraul Res, 55 (2) (2017), pp. 236-247, 10.1080/00221686.2016.1238014 View PDF

View Record in ScopusGoogle Scholar[6]

R.M. Kansoh, M. Elkholy, G. Abo-Zaid

Effect of Shape Parameters on Failure of Earthen Embankment due to Overtopping

KSCE J Civ Eng, 24 (5) (2020), pp. 1476-1485, 10.1007/s12205-020-1107-x View PDF

View Record in ScopusGoogle Scholar[7]

YongHui Zhu, P.J. Visser, J.K. Vrijling, GuangQian Wang

Experimental investigation on breaching of embankments

Experimental investigation on breaching of embankments, 54 (1) (2011), pp. 148-155 View PDF

CrossRefView Record in ScopusGoogle Scholar[8]Amaral S, Jónatas R, Bento AM, Palma J, Viseu T, Cardoso R, et al. Failure by overtopping of earth dams. Quantification of the discharge hydrograph. Proceedings of the 3rd IAHR Europe Congress: 14-15 April 2014, Portugal. 2014;(1):182–93.

Google Scholar[9]

G. Bereta, P. Hui, H. Kai, L. Guang, P. Kefan, Y.Z. Zhao

Experimental study of cohesive embankment dam breach formation due to overtopping

Periodica Polytechnica Civil Engineering, 64 (1) (2020), pp. 198-211, 10.3311/PPci.14565 View PDF

View Record in ScopusGoogle Scholar[10]

D.K. Verma, B. Setia, V.K. Arora

Experimental study of breaching of an earthen dam using a fuse plug model

Int J Eng Trans A, 30 (4) (2017), pp. 479-485, 10.5829/idosi.ije.2017.30.04a.04 View PDF

View Record in ScopusGoogle Scholar[11]Wu T, Qin J. Experimental Study of a Tailings Impoundment Dam Failure Due to Overtopping. Mine Water and the Environment [Internet]. 2018;37(2):272–80. Available from: doi: 10.1007/s10230-018-0529-x.

Google Scholar[12]

A. Feizi Khankandi, A. Tahershamsi, S. Soares-Frazo

Experimental investigation of reservoir geometry effect on dam-break flow

J Hydraul Res, 50 (4) (2012), pp. 376-387 View PDF

CrossRefView Record in ScopusGoogle Scholar[13]

A. Ritter

Die Fortpflanzung der Wasserwellen (The propagation of water waves)

Zeitschrift Verein Deutscher Ingenieure, 36 (33) (1892), pp. 947-954

[in German]

View Record in ScopusGoogle Scholar[14]

I. Rifai, K. El Kadi Abderrezzak, S. Erpicum, P. Archambeau, D. Violeau, M. Pirotton, et al.

Floodplain Backwater Effect on Overtopping Induced Fluvial Dike Failure

Water Resour Res, 54 (11) (2018), pp. 9060-9073 View PDF

This article is free to access.

CrossRefView Record in ScopusGoogle Scholar[15]

X. Jiang

Laboratory Experiments on Breaching Characteristics of Natural Dams on Sloping Beds

Advances in Civil Engineering, 2019 (2019), pp. 1-14

View Record in ScopusGoogle Scholar[16]

H. Ozmen-Cagatay, S. Kocaman

Dam-break flows during initial stage using SWE and RANS approaches

J Hydraul Res, 48 (5) (2010), pp. 603-611 View PDF

CrossRefView Record in ScopusGoogle Scholar[17]

S. Evangelista

Experiments and numerical simulations of dike erosion due to a wave impact

Water (Switzerland), 7 (10) (2015), pp. 5831-5848 View PDF

CrossRefView Record in ScopusGoogle Scholar[18]

C. Di Cristo, S. Evangelista, M. Greco, M. Iervolino, A. Leopardi, A. Vacca

Dam-break waves over an erodible embankment: experiments and simulations

J Hydraul Res, 56 (2) (2018), pp. 196-210 View PDF

CrossRefView Record in ScopusGoogle Scholar[19]Goharnejad H, Sm M, Zn M, Sadeghi L, Abadi K. Numerical Modeling and Evaluation of Embankment Dam Break Phenomenon (Case Study : Taleghan Dam) ISSN : 2319-9873. 2016;5(3):104–11.

Google Scholar[20]Hu H, Zhang J, Li T. Dam-Break Flows : Comparison between Flow-3D , MIKE 3 FM , and Analytical Solutions with Experimental Data. 2018;1–24. doi: 10.3390/app8122456.

Google Scholar[21]

R. Kaurav, P.K. Mohapatra, D. Ph

Studying the Peak Discharge through a Planar Dam Breach, 145 (6) (2019), pp. 1-8 View PDF

CrossRef[22]

Z.M. Yusof, Z.A.L. Shirling, A.K.A. Wahab, Z. Ismail, S. Amerudin

A hydrodynamic model of an embankment breaching due to overtopping flow using FLOW-3D

IOP Conference Series: Earth and Environmental Science, 920 (1) (2021)

Google Scholar[23]

G. Pickert, V. Weitbrecht, A. Bieberstein

Breaching of overtopped river embankments controlled by apparent cohesion

J Hydraul Res, 49 (2) (Apr. 2011), pp. 143-156, 10.1080/00221686.2011.552468 View PDF

View Record in ScopusGoogle Scholar

Cited by (0)

My name is Shaimaa Ibrahim Mohamed Aman and I am a teaching assistant in Irrigation and Hydraulics department, Faculty of Engineering, Alexandria University. I graduated from the Faculty of Engineering, Alexandria University in 2013. I had my MSc in Irrigation and Hydraulic Engineering in 2017. My research interests lie in the area of earth dam Failures.

Peer review under responsibility of Ain Shams University.

© 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University.

Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).

Application of Computational Fluid Dynamics in Chlorine-Dynamics Modeling of In-Situ Chlorination Systems for Cooling Systems

Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*

Abstract

염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는​​데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.

Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.

Keywords

computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination

Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.
Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.

References

  1. Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
  2. Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
  3. Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.;
    Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
  4. World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
  5. Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
  6. Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
  7. Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
  8. Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
  9. Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
  10. Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
  11. Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
  12. Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
  13. European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
  14. Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
  15. Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
  16. Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
  17. Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
  18. Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
  19. Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
  20. Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
  21. Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
  22. Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
  23. Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
  24. Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
  25. Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
  26. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
  27. Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
  28. Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
  29. Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
  30. Jonkergouw, P.M.; Khu, S.-T.; Savic, D.A.; Zhong, D.; Hou, X.Q.; Zhao, H.-B. A variable rate coefficient chlorine decay model. Environ. Sci. Technol. 2009, 43, 408–414.
  31. Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
  32. Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
  33. Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
  34. Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
  35. Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
  36. United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
  37. Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
  38. Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
  39. Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
  40. Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
  41. Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
Effect of roughness on separation zone dimensions.

Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

조도 계수 및 역전 수준 변화가 개선된 90도 측면 분출구에서의 유동에 대한 실험적 및 수치적 연구

Maryam BagheriSeyed M. Ali ZomorodianMasih ZolghadrH. Md. AzamathullaC. Venkata Siva Rama Prasad

Abstract

측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 출력 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다. 본 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 7가지 유형의 거칠기 요소를 분기구 입구에 설치하고 4가지 다른 배출(총 84번의 실험을 수행)과 함께 3개의 서로 다른 베드 반전 레벨을 조사했습니다. 또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면, 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.

Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

HIGHLIGHTS

Listen

  • Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance.
  • Installation of 7 types of roughening elements at the turnout entrance and 3 different bed level inverts were investigated.
  • Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow.
  • Combining both methods can reduce the separation zone dimensions by up to 63%.
Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes
Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

Keywords

discharge ratioflow separation zoneintakethree dimensional simulation

INTRODUCTION

Listen

Turnouts or intakes are amongst the oldest and most widely used hydraulic structures in irrigation networks. Turnouts are also used in water distribution, transmission networks, power generation facilities, and waste water treatment plants etc. The flows that enter a turnout have a strong momentum in the direction of the main waterway and that is why flow separation occurs inside the turnout. The horizontal vortex formed in the separation area is a suitable place for accumulation and deposition of sediments. The separation zone is a vulnerable area for sedimentation and for reduction of effective flow due to a contracted flow region in the lateral channel. Sedimentaion in the entrance of the intake can gradually be transfered into the lateral channel and decrease the capacity of the higher order channels over time (Jalili et al. 2011). On the other hand, the existence of coarse-grained materials causes erosion and destruction of the waterway side walls and bottom. In addition, sedimentation creates conditions for vegetation to take root and damage the waterway cover, which causes water to leak from its perimeter. Therefore, it is important to investigate the pattern of the flow separation area in turnouts and provide solutions to reduce the dimensions of this area.

The three-dimensional flow structure at turnouts is quite complex. In an experimental study by Neary & Odgaard (1993) in a 90-degree water turnout it was found that the secondary currents and separation zone varies from the bed to the water surface. They also found that at a 90-degree water turnout, the bed roughness and discharge ratio play a critical role in flow structure. They asserted that an explanation of sediment behavior at a diversion entrance requires a comprehensive understanding of 3D flow patterns around the lateral-channel entrance. In addition, they suggested that there is a strong similarity between flow in a channel bend and a diversion channel, and that this similarity can rationalize the use of bend flow models for estimation of 3D flow structures in diversion channels.

Some of the distinctive characteristics of dividing flow in a turnout include a zone of separation immediately near the entrance of the lateral turnout (separation zone), a contracted flow region in the branch channel (contracted flow), and a stagnation point near the downstream corner of the junction (stagnation zone). In the region downstream of the junction, along the continuous far wall, separation due to flow expansion may occur (Ramamurthy et al. 2007), that is, a separation zone. This can both reduce the turnout efficiency and the effective width of flow while increasing the sediment deposition in the turnout entrance (Jalili et al. 2011). Installation of submerged vanes in the turnout entrance is a method which is already applied to reduce the size of flow separation zones. The separation zone draws sediments and floating materials into themselves. This reduces effective cross-section area and reduces transmission capacity. These results have also been obtained in past studies, including by Ramamurthy et al. (2007) and in Jalili et al. (2011). Submerged vanes (Iowa vanes) are designed in order to modify the near-bed flow pattern and bed-sediment motion in the transverse direction of the river. The vanes are installed vertically on the channel bed, at an angle of attack which is usually oriented at 10–25 degrees to the local primary flow direction. Vane height is typically 0.2–0.5 times the local water depth during design flow conditions and vane length is 2–3 times its height (Odgaard & Wang 1991). They are vortex-generating devices that generate secondary circulation, thereby redistributing sediment within the channel cross section. Several factors affect the flow separation zone such as the ratio of lateral turnout discharge to main channel discharge, angle of lateral channel with respect to the main channel flow direction and size of applied submerged vanes. Nakato et al. (1990) found that sediment management using submerged vanes in the turnout entrance to Station 3 of the Council Bluffs plant, located on the Missouri River, is applicable and efficient. The results show submerged vanes are an appropriate solution for reduction of sediment deposition in a turnout entrance. The flow was treated as 3D and tests results were obtained for the flow characteristics of dividing flows in a 90-degree sharp-edged, junction. The main and lateral channel were rectangular with the same dimensions (Ramamurthy et al., 2007).

Keshavarzi & Habibi (2005) carried out experiments on intake with angles of 45, 67, 79 and 90 degrees in different discharge ratios and reported the optimum angle for inlet flow with the lowest flow separation area to be about 55 degrees. The predicted flow characteristics were validated using experimental data. The results indicated that the width and length of the separation zone increases with the increase in the discharge ratio Qr (ratio of outflow per unit width in the turnout to inflow per unit width in the main channel).

Abbasi et al. (2004) performed experiments to investigate the dimensions of the flow separation zone at a lateral turnout entrance. They demonstrated that the length and width of the separation zone decreases with the increasing ratio of lateral turn-out discharge. They also found that with a reducing angle of lateral turnout, the length of the separation zone scales up and width of separation zone reduces. Then they compared their observations with results of Kasthuri & Pundarikanthan (1987) who conducted some experiments in an open-channel junction formed by channels of equal width and an angle of lateral 90 degree turnout, which showed the dimensions of the separation zone in their experiments to be smaller than in previous studies. Kasthuri & Pundarikanthan (1987) studied vortex and flow separation dimensions at the entrance of a 90 degree channel. Results showed that increasing the diversion discharge ratio can reduce the length and width of the vortex area. They also showed that the length and width of the vortex area remain constant at diversion ratios greater than 0.7. Karami Moghaddam & Keshavarzi (2007) analyzed the flow characteristics in turnouts with angles of 55 and 90 degrees. They reported that the dimensions of the separation zone decrease by increasing the discharge ratio and reducing the turnout angle with respect to the main channel. Studies about flow separation zone can be found in Jalili et al. (2011)Nikbin & Borghei (2011)Seyedian et al. (2008).

Jamshidi et al. (2016) measured the dimensions of a flow separation zone in the presence of submerged vanes with five arrangements (parallel, stagger, compound, piney and butterflies). Results showed that the ratio of the width to the length of the separation zone (shape index) was between 0.2 and 0.28 for all arrangements.

Karami et al. (2017) developed a 3D computational fluid dynamic (CFD) code which was calibrated by measured data. They used the model to evaluate flow pattern, diversion ratio of discharge, strength of the secondary flow, and dimensions of the vortex inside the channel in various dikes and submerged vane installation scenarios. Results showed that the diversion ratio of discharge in the diversion channel is dependent on the width of the flow separation area in the main channel. A dike, perpendicular to the flow, doubles the ratio of diverted discharge and reduces the suspended sediment load compared with the base-line situation by creating outer arch conditions. In addition, increasing the longitudinal distance between vanes increases the velocity gradient between the vanes and leads to a more severe erosion of the bed near the vanes.Figure 1VIEW LARGEDOWNLOAD SLIDE

Laboratory channel dimensions.

Al-Zubaidy & Hilo (2021) used the Navier–Stokes equation to study the flow of incompressible fluids. Using the CFD software ANSYS Fluent 19.2, 3D flow patterns were simulated at a diversion channel. Their results showed good agreement using the comparison between the experimental and numerical results when the k-omega turbulence viscous model was employed. Simulation of the flow pattern was then done at the lateral channel junction using a variety of geometry designs. These improvements included changing the intake’s inclination angle and chamfering and rounding the inner corner of the intake mouth instead of the sharp edge. Flow parameters at the diversion including velocity streamlines, bed shear stress, and separation zone dimensions were computed in their study. The findings demonstrated that changing the 90° lateral intake geometry can improve the flow pattern and bed shear stress at the intake junction. Consequently, sedimentation and erosion problems are reduced. According to the conclusions of their study, a branching angle of 30° to 45° is the best configuration for increasing branching channel discharge, lowering branching channel sediment concentration.

The review of the literature shows that most of the studies deal with turnout angle, discharge ratio and implementation of vanes as techniques to reduce the area of the separation zone. This study examines the effect of roughness coefficient and drop implementation at the entrance of a 90-degree lateral turnout on the dimensions of the separation zone. As far as the authors are aware, these two variables have never been studied as a remedy to decrease the separation zone dimensions whilst enhancing turnout efficiency. Additionally, a three-dimensional numerical model is applied to simulate the flow pattern around the turnout. The numerical results are verified against experimental data.

METHOD

Experimental setup

Listen

The experiments were conducted in a 90 degree dividing flow laboratory channel. The main channel is 15 m long, 0.5 m wide and 0.4 m high and the branch channel is 3 m long, 0.35 m wide and 0.4 m high, as shown in Figure 1. The tests were carried out at 9.65 m from the beginning of the flume and were far enough from the inlet, so we were sure that the flow was fully developed. According to Kirkgöz & Ardiçlioğlu (1997) the length of the developing region would be approximantly 65 and 72 times the flow depth. In this study, the depth is 9 cm, which makes this condition.

Both the main and lateral channel had a slope of 0.0003 with side walls of concrete. A 100 hp pump discharged the water into a stilling basin at the entrance of the main flume. The discharge was measured using an ultrasonic discharge meter around the discharge pipe. Eighty-four experiments in total were carried out at range of 0.1<Fr<0.4 (Froude numbers in main channel and upstream of turnout). The depth of water in the main channel in the experiments was 9 cm, in which case the effect of surface tension can be considered; according to research by Zolghadr & Shafai Bejestan (2020) and Zolghadr et al. (2021), when the water depth is more than 6 cm, the effect of surface tension is reduced and can be ignored given that the separation phenomenon occurs in the boundary layer, the height of the roughness creates disturbances in growth and development of the boundary layer and, as a result, separation growth is also faced with disruption and its dimensions grow less compared to smooth surfaces. Similar conditions occur in case of drop implementation. A disturbance occurs in the growth of the boundary layer and as a result the separation zone dimensions decrease. In order to investigate the effect of roughness coefficient and drop implementation on the separation zone dimensions, four different discharges (16, 18, 21, 23 l/s) in subcritical conditions, seven Manning (Strickler) roughness coefficients (0.009, 0.011, 0.017, 0.023, 0.028, 0.030, 0.032) as shown in Figure 2 and three invert elevation differences between the main channel and lateral turnout invert (0, 5 and 10 cm) at the entrance of the turnout were considered. The Manning roughness coefficient values were selected based on available and feasible values for real conditions, so that 0.009 is equivalent to galvanized sheet roughness and selected for the baseline tests. 0.011 is for concrete with neat surface, 0.017 and 0.023 are for unfinished and gunite concrete respectively. 0.030 and 0.032 values are for concrete on irregular excavated rock (Chow 1959). The roughness coefficients were created by gluing sediment particles on a thin galvanized sheet which was installed at the upstream side of the lateral turnout. The values of roughness coefficients were calculated based on the Manning-Strickler formula. For this purpose, some uniformly graded sediment samples were prepared and the Manning roughness coefficient of each sample was determined with respect to the median size (D50) value pasted into the Manning-Strickler formula. Some KMnO4 was sifted in the main channel upstream to visualize and measure the dimensions of the separation zone. Consequently, when KMnO4 approached the lateral turnout a photo of the separation zone was taken from a top view. All the experiments were recorded and several photos were taken during the experiment after stablishment of steady flow conditions. The photos were then imported to AutoCAD to measure the separation zone dimensions. Because all the shooting was done with a high-definition camera and it was possible to zoom in, the results are very accurate.Figure 2VIEW LARGEDOWNLOAD SLIDE

Roughness plates.

The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in transverse direction (perpendicular to the flow direction).

The water level was also measured by depth gauges with a accuracy of 0.1 mm, and velocity in one direction with a single-dimensional KENEK LP 1100 with an accuracy of ±0.02 m/s (0–1 m/s), ± 0.04 m/s (1–2 m/s), ± 0.08 m/s (2–4 m/s), ±0.10 m/s (4–5 m/s).

Numerical simulation

ListenA FLOW-3D numerical model was utilized as a solver of the Navier-Stokes equation to simulate the three-dimensional flow field at the entrance of the turnout. The governing equations included continuity momentum equations. The continuity equation, regardless of the density of the fluid in the form of Cartesian coordinates x, y, and z, is as follows:

formula

(1)where uv, and w represent the velocity components in the x, y, and z directions, respectively; AxAy, and Az are the surface flow fractions in the xy, and z directions, respectively; VF denotes flow volume fraction; r is the density of the fluid; t is time; and Rsor refers to the source of the mass. Equations (2)–(4) show momentum equations in xy and z dimensions respectively :

formula

(2)

formula

(3)

formula

(4)where GxGy, and Gz are the accelerations caused by gravity in the xy, and z directions, respectively; and fxfy, and fz are the accelerations caused by viscosity in the xy, and z directions, respectively.

The turbulence models used in this study were the renormalized group (RNG) models. Evaluation of the concordance of the mentioned models with experimental studies showed that the RNG model provides more accurate results.

Two blocks of mesh were used to simulate the main channels and lateral turnout. The meshes were denser in the vicinity of the entrance of the turnout in order to increase the accuracy of computations. Boundary conditions for the main mesh block included inflow for the channel entrance (volumetric flow rate), outflow for the channel exit, ‘wall’ for the bed and the right boundary and ‘symmetry’ for the top (free surface) and left boundaries (turnout). The side wall roughness coefficient was given to the software as the Manning number in surface roughness of any component. Considering the restrictions in the available processor, a main mesh block with appropriate mesh size was defined to simulate the main flow field in the channel, while the nested mesh-block technique was utilized to create a very dense solution field near the roughness plate in order to provide accurate results around the plates and near the entrance of the lateral turnout. This technique reduced the number of required mesh elements by up to 60% in comparison with the method in which the mesh size of the main solution field was decreased to the required extent.

The numerical outputs are verified against experimental data. The hydraulic characteristics of the experiment are shown in Table 1.Table 1

Hydraulic conditions of the flow

Q(L/s)FrY1 (m)Q2/Q1
16 0.449 0.09 0.22 
18 0.335 0.09 0.61 
21 0.242 0.09 0.71 
23 0.180 0.09 1.04 

RESULTS AND DISCUSSION

Experimental results

Listen

During the experiments, the dimensions of the separation zone were recorded with an HD camera. Some photos were imported to AutoCad software. Then, the separation zones dimensions were measured and compared in different scenarios.

At the beginning, the flow pattern in the separation zone for four different hydraulic conditions was studied for seven different Manning roughness coefficients from 0.009 to 0.032. To compare the obtained results, roughness of 0.009 was considered as the base line. The percentage of reduction in separation zone area in different roughness coefficients is shown in Figure 3. According to this figure, by increasing the roughness of the turnout side wall, the separation zone area ratio reduces (ratio of separation zone area to turnout area). In other words, in any desired Froud number, the highest dimensions of the separation zone area are related to the lowest roughness coefficients. In Figure 3, ‘A’ is the area of the separation zone and ‘Ai’ represents the total area of the turnout.Figure 3VIEW LARGEDOWNLOAD SLIDE

Effect of roughness on separation zone dimensions.Figure 4VIEW LARGEDOWNLOAD SLIDE

Effect of roughness on separation zone dimensions.

It should be mentioned that the separation zone dimensions change with depth, so that the area is larger at the surface than near the bed. This study measured the dimensions of this area at the surface. Figure 4 show exactly where the roughness elements were located.Figure 5VIEW LARGEDOWNLOAD SLIDE

Comparison of separation zone for n=0.023 and n=0.032.

Figure 5 shows images of the separation zone at n=0.023 and n=0.032 as examples, and show that the separation area at n=0.032 is smaller than that of n=0.023.

The difference between the effect of the two 0.032 and 0.030 roughnesses is minor. In other words, the dimensions of the separation zone decreased by increasing roughness up to 0.030 and then remained with negligable changes.

In the next step, the effect of intake invert relative to the main stream (drop) on the dimensions of the separation zone was investigated. To do this, three different invert levels were considered: (1) without drop; (2) a 5 cm drop between the main canal and intake canal; and (3) a 10 cm drop between the main canal and intake canal. The without drop mode was considered as the control state. Figure 6 shows the effect of drop implementation on separation zone dimensions. Tables 2 and 3 show the reduced percentage of separation zone areas in 5 and 10 cm drop compared to no drop conditions as the base line. It was found that the best results were obtained when a 10 cm drop was implemented.Table 2

Decrease percentage of separation zone area in 5 cm drop

Frn=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
0.08 10.56 11.06 25.27 33.03 35.57 36.5 
0.121 7.66 11.14 11.88 15.93 34.59 36.25 
0.353 1.38 2.63 8.17 14.39 31.20 31.29 
0.362 11.54 19.56 25.73 37.89 38.31 

Table 3

Decrease percentage of separation zone area in 10 cm drop

Frn=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
0.047 4.30 8.75 23.47 31.22 34.96 35.13 
0.119 11.01 13.16 15.02 21.48 39.45 40.68 
0.348 3.89 5.71 9.82 16.09 29 30.96 
0.354 2.84 10.44 18.42 25.45 35.68 35.76 

Figure 6VIEW LARGEDOWNLOAD SLIDE

Effect of drop implementation on separation zone dimensions.

The combined effect of drop and roughness is shown in Figure 7. According to this figure, by installing a drop structure at the entrance of the intake, the dimensions of the separation zone scales down in any desired roughness coefficient. Results indicated that by increasing the roughness coefficient or drop implementation individually, the separation zone area decreases up to 38 and 25% respectively. However, employing both techniques simultaneously can reduce the separation zone area up to 63% (Table 4). The reason for the reduction of the dimensions of the separation zone area by drop implementation can be attributed to the increase of discharge ratio. This reduces the dimensions of the separation zone area.Table 4

Reduction in percentage of combined effect of roughness and 10 cm drop

Qin=0.011n=0.017n=0.023n=0.028n=0.030n=0.032
16 32.3 35.07 37.2 45.7 58.01 59.1 
18 44.5 34.15 36.18 48.13 54.2 56.18 
21 43.18 32.33 42.30 37.79 57.16 63.2 
23 40.56 34.5 34.09 46.25 50.12 57.2 

Figure 7VIEW LARGEDOWNLOAD SLIDE

Combined effect of roughness and drop on separation zone dimensions.

This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Some other researchers reported that increasing the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007Ramamurthy et al. 2007). However, these researchers employed other methods to enhance the discharge ratio. Drop implementation is simple and applicable in practice, since there is normally an elevation difference between the main and lateral canal in irrigation networks to ensure gravity flow occurance.

Table 4 depicts the decrease in percentage of the separation zone compared to base line conditions in different arrangements of the combined tests.Figure 8VIEW LARGEDOWNLOAD SLIDE

Velocity profiles for various roughness coefficients along turnout width.

A comparison between the proposed methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. Figure 8 shows the comparison of the results. The comparison shows that the new techniques can be highly influential and still practical. In this research, with no change in structural geometry (enhancement of roughness coefficient) or minor changes with respect to drop implementation, the dimensions of the separation zone are decreased noticeably. The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in a transverse direction (perpendicular to the flow direction). The results are shown in Figure 9.Figure 9VIEW LARGEDOWNLOAD SLIDE

Effect of roughness on separation zone dimensions in numerical study.

Numerical results

Listen

This study examined the flow patterns around the entrance of a diversion channel due to various wall roughnesses in the diversion channel. Results indicated that increasing the discharge ratio in the main channel and diversion channel reduces the area of the separation zone in the diversion channel.Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).A laboratory and numerical error rate of 0.2605 was calculated from the following formula,

formula

where Uexp is the experimental result, Unum is the numerical result, and N is the number of data.

Figure 9 shows the effect of roughness on separation zone dimensions in numerical study. Figure 10 compares the vortex area (software output) for three roughnesses, 0.009, 0.023 and 0.032 and Figure 11 shows the flow lines (tecplot output) that indicate the effect of roughness on flow in the separation zone. Numerical analysis shows that by increasing the roughness coefficient, the dimensions of the separation zone area decrease, as shown in Figure 10 where the separation zone area at n=0.032 is less than the separation zone area at n=0.009.Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.Figure 12VIEW LARGEDOWNLOAD SLIDE

Velocity vector for flow condition Q1/422 l/s, near surface.

The velocities intensified moving midway toward the turnout showing that the effective area is scaled down. The velocity values were almost equal to zero near the side walls as expected. As shown in Figure 12 the approach vortex area velocity decreases. Experimental and numerical measured velocity at x=0.15 m of the diversion channel compared in Figure 13 shows that away from the separation zone area, the velocity increases. All longitudinal velocity contours near the vortex area are distinctly different between different roughnesses. The separation zone is larger at less roughness both in length and width.Figure 13VIEW LARGEDOWNLOAD SLIDE

Exprimental and numerical measured velocity.

CONCLUSION

Listen

This study introduces practical and feasible methods for enhancing turnout efficiency by reducing the separation zone dimensions. Increasing the roughness coefficient and implementation of inlet drop were considered as remedies for reduction of separation zone dimensions. A data set has been compiled that fully describes the complex, 3D flow conditions present in a 90 degree turnout channel for selected flow conditions. The aim of this numerical model was to compare the results of a laboratory model in the area of the separation zone and velocity. Results showed that enhancing roughness coefficient reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%. Further research is proposed to investigate the effect of roughness and drop implementation on sedimentation pattern at lateral turnouts. The dimensions of the separation zone decreases with the increase of the non-dimensional parameter, due to the reduction ratio of turnout discharge increasing in all the experiments.

This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Other researchers have reported that intensifying the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007Ramamurthy et al. 2007). However, they employed other methods to enhance the discharge ratio. Employing both techniques simultaneously can decrease the separation zone dimensions up to 63%. A comparison between the new methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. The comparison shows that the new techniques can be highly influential and still practical. The numerical and laboratory models are in good agreement and show that the method used in this study has been effective in reducing the separation area. This method is simple, economical and can prevent sediment deposition in the intake canal. Results show that CFD prediction of the fluid through the separation zone at the canal intake can be predicted reasonably well and the RNG model offers the best results in terms of predictability.

DATA AVAILABILITY STATEMENT

Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abbasi A., Ghodsian M., Habibi M. & Salehi Neishabouri S. A. 2004 Experimental investigation on dimensions of flow separation zone at lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi 62, 38–44. (In Persian).Google Scholar Al-Zubaidy R. & Hilo A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD). Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.Google Scholar Chow V. T. 1959 Open Channel Hydraulics. McGraw-Hill, New York.Jalili H., Hosseinzadeh Dalir A. & Farsadizadeh D. 2011 Effect of intake geometry on the sediment transport and lateral flow pattern. Iranian Water Research Journal 5 (9), 1–10. (In Persian).Google Scholar Jamshidi A., Farsadizadeh D. & Hosseinzadeh Dalir A. 2016 Variations of flow separation zone at lateral intake entrance using submerged vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.Google Scholar Karami Moghaddam K. & Keshavarzi A. 2007 Investigation of flow structure in lateral intakes of 55° and 90° with rounded entrance edge. In: 03 National Congress on Civil Engineering University of Tabriz. Available from: https://civilica.com/doc/16317. (In Persian).Google Scholar Karami H., Farzin S., Sadrabadi M. T. & Moazeni H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.Google ScholarCrossref  Kasthuri B. & Pundarikanthan N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering 113 (4), 543–548.Google ScholarCrossref  Keshavarzi A. & Habibi L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552. https://doi.org/10.1002/ird.207.Google ScholarCrossref  Kirkgöz M. S. & Ardiçlioğlu M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering 1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).Google Scholar Nakato T., Kennedy J. F. & Bauerly D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).Google Scholar Neary V. S. & Odgaard J. A. 1993 Three-dimensional flow structure at open channel diversions. Journal of Hydraulic Engineering. ASCE 119 (11), 1224–1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223).Google ScholarCrossref  Nikbin S. & Borghei S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at a 90° openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://civilica.com/doc/120494.Google Scholar Odgaard J. A. & Wang Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.Google ScholarCrossref  Ramamurthy A. S., Junying Q. & Diep V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic Engineering. See: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).Google Scholar Seyedian S., Karami Moghaddam K. & Shafai Begestan M. 2008 Determining the optimal radius in lateral intakes of 55° and 90° using variation of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT). (In Persian). Available from: https://civilica.com/doc/56251.Google Scholar Zolghadr M. & Shafai Bejestan M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments. International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.Google Scholar Zolghadr M., Zomorodian S. M. A., Shabani R. & Azamatulla H.Md. 2021 Migration of sand mining pit in rivers: an experimental, numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944.Google Scholar © 2022 The AuthorsThis is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.

Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes

조도 계수 및 역 고도 변화가 향상된 90도 측면 회전에서 유동의 실험 및 수치 연구

Maryam Bagheria, Seyed M. Ali Zomorodianb, Masih Zolghadrc, H. MD. Azamathulla d,*
and C. Venkata Siva Rama Prasade
a Hydraulic Structures, Department of Water Engineering, Shiraz University, Shiraz, Iran
b Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
c Department of Water Sciences Engineering, College of Agriculture, Jahrom University, Jahrom, Iran
d Civil & Environmental Engineering, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad
e Department of Civil Engineering, St. Peters Engineering College, Hyderabad, India
*Corresponding author. E-mail: azmatheditor@gmail.com

ABSTRACT

Flow separation at the upstream side of the lateral turnouts (intakes) is a critical issue causing eddy currents at the turn-out entrance. It reduces the effective width of flow, turn-out capacity and efficiency.

Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turn-out entrance and 3 different bed level inverts, with 4 different discharges (total of 84 experiments) were examined in this study as a method to reduce the dimensions of
the separation zone.

Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 턴아웃 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다.

이 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 4가지 다른 배출(총 84개 실험)과 함께 7가지 유형의 조면화 요소를 출구 입구에 설치하고 3가지 서로 다른 베드 레벨 반전 장치를 조사했습니다.

또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다.

두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.

Key words

discharge ratio, flow separation zone, intake, three dimensional simulation

Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes
Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced roughness coefficient and invert elevation changes
Figure 2 | Roughness plates.
Figure 2 | Roughness plates.
Figure 3 | Effect of roughness on separation zone dimensions
Figure 3 | Effect of roughness on separation zone dimensions
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 5 | Comparison of separation zone for n¼0.023 and n¼0.032.
Figure 5 | Comparison of separation zone for n¼0.023 and n¼0.032.
Figure 6 | Effect of drop implementation on separation zone dimensions
Figure 6 | Effect of drop implementation on separation zone dimensions
Figure 7 | Combined effect of roughness and drop on separation zone dimensions
Figure 7 | Combined effect of roughness and drop on separation zone dimensions
Figure 8 | Non- dimensional Length of separation zone (Lr) variations against relative unit discharge per width (qr) in present study compared with other methods.
Figure 8 | Non- dimensional Length of separation zone (Lr) variations against relative unit discharge per width (qr) in present study compared with other methods.
Figure 9 | Velocity profiles for various roughness coefficients along turn-out width.
Figure 9 | Velocity profiles for various roughness coefficients along turn-out width.
Figure 10 | Effect of roughness on sepration zone dimensions in numerical study
Figure 10 | Effect of roughness on sepration zone dimensions in numerical study
Figure 11 | Comparision of the vortex area (software output) with three roughness (0.009, 0.023 and 0.032).
Figure 11 | Comparision of the vortex area (software output) with three roughness (0.009, 0.023 and 0.032).
Figure 12 | Comparison of vortex area in 3D mode (tecplot output) with two roughness (a) 0.009 and (b) 0.032
Figure 12 | Comparison of vortex area in 3D mode (tecplot output) with two roughness (a) 0.009 and (b) 0.032
Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.
Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.
Figure 14 | Exprimental and numerical measured velocity.
Figure 14 | Exprimental and numerical measured velocity.

REFERENCES

Abbasi, A., Ghodsian, M., Habibi, M. & Salehi Neishabouri, S. A. 2004 Experimental investigation on dimensions of flow separation zone at
lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi (in Persian) 62, 38–44.
Al-Zubaidy, R. & Hilo, A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD).
Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.
Jalili, H., Hosseinzadeh Dalir, A. & Farsadizadeh, D. 2011 Effect of intake geometry on the sediment transport and flow pattern at lateral.
Iranian Water Research Journal(InPersian) 5 (9), 1–10.
Jamshidi, A., Farsadizadeh, D. & Hosseinzadeh Dalir, A. 2016 Variations of flow separation zone at lateral intakes entrance using submerged
vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.
Karami Moghaddam, K. & Keshavarzi, A. 2007 Investigation of flow structure in lateral intakes 55° and 900
° with rounded entrance edge.
In: 03 National Congress on Civil Engineering University of Tabriz. (In Persian). Available from: https://civilica.com/doc/16317.
Karami, H., Farzin, S., Sadrabadi, M. T. & Moazeni, H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and
submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.
Kasthuri, B. & Pundarikanthan, N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering
113 (4), 543–548.
Keshavarzi, A. & Habibi, L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552.
https://doi.org/10.1002/ird.207.
Kirkgöz, M. S. & Ardiçlioğ
lu, M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering
1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).
Nakato, T., Kennedy, J. F. & Bauerly, D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering.
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).

Neary, V. S., Sotiropoulos, F. & Odgaard, A. J. 1999 Three-dimensional numerical model of lateral-intake in flows. Journal of Hydraulic
Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(126).
Nikbin, S. & Borghei, S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at 90°
openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://
civilica.com/doc/120494.
Odgaard, J. A. & Wang, Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.
Ouyang, H. T. 2009 Investigation on the dimensions and shape of a submerged vane for sediment management in alluvial channels. Journal of
Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(209).
Ramamurthy, A. S., Junying, Q. & Diep, V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic
Engineering. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).
Samimi Behbahan, T. 2011 Laboratory investigation of submerged vane shapes effect on river banks protection. Australian Journal of Basic
and Applied Sciences 5 (12), 1402–1407.
Seyedian, S., Karami Moghaddam, K. & Shafai Begestan, M. 2008 Determine the optimal radius in lateral intakes 55° and 90° using variation
of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT) (in Persian). Available from:
https://civilica.com/doc/56251.
Zolghadr, M. & Shafai Bejestan, M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments.
International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.
Zolghadr, M., Zomorodian, S. M. A., Shabani, R. & Azamatulla Md., H. 2020 Migration of sand mining pit in rivers: an experimental,
numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid


Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4

Abstract

태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.

다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.

본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.

나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.

본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.

The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.

1. Introduction

Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].

Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].

Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.

There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.

Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.

Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [21215].

Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [1819].

Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.

Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.

The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.

2. Cycle Description

CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].

For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1 The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.

According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.

2.1. System Analysis Equations

An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic

Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.

Figure 1 Schematic shape of the cogeneration cycle.Table 2 Temperature and humidity of different points of system.

Based on the first law of thermodynamic, energy analysis is based on the following steps.

First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.

Collector efficiency is going to be calculated by the following equation [9]:

Total energy received by the collector is given by [9]

Also, the auxiliary boiler heat load is [2]

Energy consumed from vapor to expander is calculated by [2]

The power output form by the screw expander [9]:

The efficiency of the expander is 80% in this case [11].

In this step, cooling and heating loads were calculated and then, the required heating load to reach sanitary hot water will be calculated as follows:

First step: calculating the cooling load with the following equation [9]:

Second step: calculating heating loads [9]:

Then, calculating the required loud for sanitary hot water will be [9]

According to the above-mentioned equations, efficiency is [9]

In the third step, calculated exergy analysis as follows.

First, the received exergy collector from the sun is calculated [9]:

In the previous equation, f is the constant of air dilution.

The received exergy from the collector is [9]

In the case of using natural gas in an auxiliary heater, the gas exergy is calculated from the following equation [12]:

Delivering exergy from vapor to expander is calculated with the following equation [9]:

In the fourth step, the exergy in cooling and heating is calculated by the following equation:

Cooling exergy in summer is calculated [9]:

Heating exergy in winter is calculated [9]:

In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:

3. Porous Media

The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.

Figure 2 Copper foam with a porosity of 95%.Table 3 Thermophysical parameters and dimensions of copper foam.

In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.

Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

3.1. Nano Fluid

In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4 Properties of the nanoparticles [9].

System constant parameters for input in the software are shown in Table 5.Table 5 System constant parameters.

The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).

The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.

The specific heat capacity is calculated from the following equation [29]:

The thermal conductivity of the nanofluid is calculated from the following equation [29]:

The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.

The mixture viscosity is calculated as follows [30]:

In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.

4. Results and Discussion

In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.

Figure 4 Verification charts of energy analysis results.

Figure 5 Verification charts of exergy analysis results.

We may also investigate the application of machine learning paradigms [3141] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [4255], and intelligent model studies [5661] as well, for example, methods such as particle swarm optimizer (PSO) [6062], differential search (DS) [63], ant colony optimizer (ACO) [616465], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [5367], differential evolution (DE) [6869], and other fusion and boosted systems [4146485054557071].

At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [922263072]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6 Collectors with different percentages of nanofluids and porous media.

In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.

Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.

Figure 6 Energy and exergy efficiencies of the PTC with porous media and nanofluid.

Figure 7 Energy and exergy efficiency of the SCCHP.

Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.

In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.

5. Conclusion and Future Directions

In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.

In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.

In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.

Nomenclature

:Solar radiation
a:Heat transfer augmentation coefficient
A:Solar collector area
Bf:Basic fluid
:Specific heat capacity of the nanofluid
F:Constant of air dilution
:Thermal conductivity of the nanofluid
:Thermal conductivity of the basic fluid
:Viscosity of the nanofluid
:Viscosity of the basic fluid
:Collector efficiency
:Collector energy receives
:Auxiliary boiler heat
:Expander energy
:Gas energy
:Screw expander work
:Cooling load, in kilowatts
:Heating load, in kilowatts
:Solar radiation energy on collector, in Joule
:Sanitary hot water load
Np:Nanoparticle
:Energy efficiency
:Heat exchanger efficiency
:Sun exergy
:Collector exergy
:Natural gas exergy
:Expander exergy
:Cooling exergy
:Heating exergy
:Exergy efficiency
:Steam mass flow rate
:Hot water mass flow rate
:Specific heat capacity of water
:Power output form by the screw expander
Tam:Average ambient temperature
:Density of the mixture.

Greek symbols

ρ:Density
ϕ:Nanoparticles volume fraction
β:Ratio of the nanolayer thickness.

Abbreviations

CCHP:Combined cooling, heating, and power
EES:Engineering equation solver.

Data Availability

For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
  2. G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
  3. J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
  4. Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
  5. J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
  6. M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
  7. I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
  8. F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
  9. H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
  10. M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
  11. R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
  12. F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
  13. F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
  14. B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
  15. F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
  16. J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
  17. Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
  18. J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
  19. L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
  20. S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
  21. E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
  22. H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
  23. J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
  24. E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
  25. A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
  26. D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
  27. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
  28. K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
  29. K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
  30. M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
  31. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
  32. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  34. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  35. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  36. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
  37. M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
  38. M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
  39. M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
  40. A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
  41. F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  42. H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
  43. C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
  44. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
  45. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
  46. Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
  47. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
  48. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  49. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  50. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  51. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  52. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  53. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  54. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
  55. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  56. R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
  57. A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
  58. N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
  59. N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
  60. M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
  61. I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
  62. B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
  63. J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
  64. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  65. D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
  66. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  67. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
  68. G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
  69. G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
  70. A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
  71. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  72. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
  73. S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
  74. N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald

Thames Tideway Tunnel – East Contract – Hydraulic Modelling

수력 구조물의 수력 설계 및 모델링 경험 (Experiences in the hydraulic design and modelling of the hydraulic structures)

CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald
CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald

템스 타이드웨이 터널은 주로 템스 강 아래 런던 중심부를 통과하는 새로운 저장 및 이송 터널입니다. 최대 지름 7.2m의 길이약 25km에 달하는 주요 터널은 서쪽액톤에서 동쪽의 수도원 밀스까지 운행됩니다. 이 프로젝트의 목적은 템스 강에 도달하기 전에 결합된 하수 흐름을 가로채고 저장하여 가장 오염이 많은 복합 하수 오버플로(CSOS)의 34개 를 제어하는 것입니다. 템스 타이드웨이 터널은 베크턴 하수 처리 작업에서 치료를 위해 흐름을 수송할 수도원 밀스의 리 터널에 연결됩니다. CSO 현장에서는 소용돌이 낙하 샤프트와 같은 가로채기 및 전환 구조물이 근처 표면 하수 네트워크에서 깊은 저장 터널로 결합된 하수 흐름을 수송합니다.

East main works

터널을 납품하는 회사인 Tideway는 프로젝트를 세 부분으로 분리했습니다. 동쪽 구간은 프로젝트의 가장 깊은 부분이며, 65m 깊이에 도달합니다. 버몬드시의 챔버 부두는 애비 밀스 (Abbey Mills)에 이르는이 5.5km 터널 섹션의 주요 드라이브 사이트입니다. 동부 개발에는 그리니치 펌핑 스테이션에서 챔버 스워프의 주요 터널까지 약 4.5km의 5m 내부 직경 연결 터널이 포함되어 있습니다.

4개의 드롭 샤프트가 현재 설계 및 제작 중입니다. 이들은 24-36m 3/s 범위의 설계 흐름을 가지며 차단 및 전환 구조, 터널 격리 게이트 및 플랩 밸브가 있는 밸브 챔버, 와류 발생기 입구 구조, 와류 드롭 튜브 및 에너지 소산 및 탈기 챔버를 포함한 유압 구조로 구성됩니다.

The challenge/ hydraulic modelling

이러한 새로운 구조의 설계는 수많은 엔지니어링 문제에 직면해 있습니다. 최대 36m3/s의 대규모 설계 유량은 기존 네트워크에 부정적인 영향을 미치거나 기존 CSO를 통해 유출되지 않고 완전히 캡처되어 터널로 안전하게 전달되어야 합니다.

또한 복잡한 흐름 패턴이 발생하는 수축된 설계와 시스템의 올바른 작동을 위해 필요하고 불리한 유체 역학 조건으로부터 보호해야 하는 기계 플랜트의 필요성을 초래하는 공간 제약이 있습니다. 또한, 소용돌이 낙하 샤프트 내부에 최대 50m까지 떨어지는 흐름에 의해 생성되는 많은 양의 에너지는 터널로 전달하기 전에 안전하게 소멸되고 유동을 제거해야합니다.

이러한 과제를 해결하기 위해 프로젝트 팀은 물리적 스케일 모델링과 함께 CFD(계산 유체 역학) 모델링을 광범위하게 사용했습니다.

CFD 모델링: 얼 펌핑 스테이션 소용돌이 드롭 샤프트 및 저장 터널 의 보기 - Courtesy of Mott MacDonald
CFD 모델링: arl Pumping Station 소용돌이 드롭 샤프트 및 저장 터널 의 보기 – Courtesy of Mott MacDonald

전산 유체 역학 모델링

CFD는 초기 설계 단계에서 사용되는 주요 유압 모델링 도구로, 모든 유압 구조를 모델링하고, 설계 수정을 통합하고, 결과를 신속하게 시각화 및 분석하고, 성능을 마무리할 수 있는 기능을 제공했습니다.

제안된 설계의 3D 건물 정보 모델링(BIM) 형상을 CFD 소프트웨어로 전송하여 CFD 유체 도메인에 대한 형상을 생성하는 데 필요한 시간을 줄였습니다.

FlowScience Inc에서 개발한 Flow 3D가 주요 모델링 플랫폼으로 활용되었습니다. 이 소프트웨어는 공기-물 인터페이스를 추적하기 위해 유체 체적 방법을 적용하여 자유 표면 흐름을 정확하게 모델링하는 기능이 있습니다.

입방 격자를 사용한 3D 구조형 메쉬를 사용하였고, 레이놀즈평균 Navier-Stokes 접근법을 표준 k-omega 난기류 모델로 사용하여 난류를 해석하였습니다.

View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald
View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald

메쉬 해상도에 대한 민감도 분석이 수행되었고 계산 메쉬의 적합성에 대한 추론을 허용하기 위해 이전 개념 단계 구조의 물리적 스케일 모델링에서 사용 가능한 결과와 비교되었습니다. 와류 발생기 및 드롭 튜브의 목과 같이 급격한 기울기가 발생하는 영역의 메쉬에 특별한 주의를 기울였습니다.

전체 메쉬 해상도와 계산 효율성 간의 균형은 설계 목적을 위해 충분히 정확하지만 설계 프로그램 목표를 충족하는 시간 척도 내에서 결정적으로 중요한 솔루션을 생성하는 데 필요했습니다.

CFD 모델이 수렴되면 결과가 시각화되었습니다. 주요 산출물에는 구조 전체에 걸친 상세한 수위, 크기와 벡터, 흐름 유선이 있는 속도 플롯이 포함되었습니다. CFD 모델에 의해 생성된 데이터는 유동장의 거동을 이해하는 데 매우 유용했으며 이러한 결과를 분석하여 설계가 어떻게 수행되고 있는지에 대한 결론을 내릴 수 있었습니다.

View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber - Courtesy of Mott MacDonald
View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber – Courtesy of Mott MacDonald

물리적 스케일 유압 모델링

물리적 규모의 수력학적 모델링은 작동 조건의 전체 범위에 걸쳐 설계의 수력학적 성능을 종합적으로 평가하고 설계 개선 사항을 알리고 테스트하는 데 사용되었습니다.

프로그램의 효율성을 위해 수력구조물의 설계가 잘 진행된 단계에서 물리적인 규모의 모델링을 수행하였다. CFD 모델링은 이미 수행되어 설계의 전체 성능에 대한 확신을 제공했습니다. 주요 구조 부재도 MEICA 공장을 위해 크기가 조정되었고 설계 공간이 확보되었습니다.

설계 개발의 이 단계에서 물리적 모델링을 수행하는 것은 시간이 많이 소요되는 물리적 모델에 필요한 주요 변경의 위험을 줄이는 것을 목표로 했습니다. 또한 모델 테스트가 수력 구조의 최종 의도 설계를 가능한 한 가깝게 반영하도록 했습니다.

물리적 모델링을 위해 두 개의 사이트가 선택되었으며, 주로 공간 제약으로 인해 유압 구조의 설계가 더 복잡했습니다. 이러한 사이트는 다음과 같은 사이트였습니다.

  • 그리니치 펌핑 스테이션은 1:10 규모의 전체 작업 현장 모델이 건설되었습니다.
  • CSO 차단 구조의 모델이 수행된 King Edward Memorial Park 및 Foreshore는 1:10 축척으로, 드롭 샤프트 에너지 소산 및 탈기 챔버의 별도 모델은 1:12 축척으로 구축되었습니다.

모델은 실험실 시설에서 전문 하청 업체 BHR 그룹에 의해 구축 및 테스트되었습니다. 모델은 최신 디자인 BIM 모델에서 생성된 모델 도면을 사용하여 주로 퍼스펙스와 합판으로 구축되었다. 모델 시공승인을 받기 전에 도면은 실험실에서 유압 구조물의 정확한 복제본을 보장하기 위해 BIM 모델에 대한 엄격한 치수 검사를 받았습니다.

Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation - Courtesy of Mott MacDonald & BHR Group
Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation – Courtesy of Mott MacDonald & BHR Group

중력의 힘이 이러한 구조에서 개방 채널 유체 흐름을 지배하기 때문에 유사성을 보장하기 위해 프로토타입(전체 규모 설계) 및 축소된 축소 모델에서 Froude 수를 동일하게 유지하는 것이 중요합니다. 따라서 Froude 수의 동일성을 유지하기 위해 모델을 유속으로 작동했습니다. 규모는 또한 모든 흐름 조건에서 흐름이 완전히 난류임을 보장할 수 있을 만큼 충분히 커야 했으며 이는 모델의 다른 부분에서 흐름의 레이놀즈 수를 추정하여 확인했습니다.

축소된 물리적 모델에서는 모든 스케일 효과를 제거할 수 없습니다. 표면 장력은 비례하지 않기 때문에 프로토타입과 모델의 Weber 수(초기 힘과 표면 장력 사이의 비율을 나타냄)가 다르고 둘 사이의 액체 상태에 포함된 공기의 양도 다릅니다. 이것은 방법의 한계로 인식되고 이해되며 공기 동반 결과에 스케일링 계수를 적용하여 해결되었습니다.

이 모델은 작동 사례를 설정하는 미리 정의된 테스트 매트릭스에 따라 테스트를 거쳤습니다. 여기에는 다양한 흐름 사례와 저장 터널 꼬리 수위가 포함됩니다. 유량은 보정된 기기로 엄격하게 제어되었으며, 필요한 경우 모델로의 유량은 관심 영역의 유량이 유입구 조건에 의해 인위적으로 영향을 받지 않도록 조절되었습니다.

흐름의 동작을 관찰하고 기록했습니다.

  • 수위는 압력 태핑을 통해 또는 모델 측벽의 수직 눈금을 통해 시각적으로 기록되었습니다.
  • 플로우 패턴은 염료 추적기의 도움을 받아 시각적으로 기록되었습니다.

특히 관심의 한 측면은 소용돌이 흐름이었다. 소용돌이 발생기및 소용돌이 낙하튜브를 통한 흐름에 대한 상세한 관찰은 흐름이 안정적이고, 맥동과 도미 효과가 없는지, 그리고 흐름 범위 전반특히 관심의 한 측면은 소용돌이 흐름이었습니다. 와류 발생기 및 와류 드롭 튜브를 통한 흐름에 대한 자세한 관찰은 흐름이 안정적이고 맥동 과도 효과가 없으며 와류 흐름이 드롭 튜브에서 잘 형성되어 흐름 범위 전체에 걸쳐 안정적인 공기 코어를 유지하면서 관찰되었습니다.

(left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft - Courtesy of Mott MacDonald and BHR Group
(left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft – Courtesy of Mott MacDonald and BHR Group

와류 발생기에서 임계유량이 발생하기 때문에 확실한 수두-방전 관계가 설정되어 수위를 판독하여 유량을 측정할 수 있는 기회를 제공합니다. 와류 발생기에 대한 접근 암거에 위치한 압력 탭핑은 유속 범위에 걸쳐 수심 값을 기록하여 각 방울 구조에 대해 수두 방출 곡선을 도출할 수 있도록 했습니다. 프로토타입에서 이 지점에서 수집된 레벨 신호는 흐름을 계산하고 격리 게이트를 제어하는 ​​데 사용됩니다.

흐름이 와류 드롭 튜브 아래로 수 미터 떨어지고 드롭 샤프트의 바닥에 있는 물 풀로 충돌할 때 공기가 물 속으로 동반됩니다. 터널 시스템에서 발생하는 압축 공기 주머니와 저장 용량 감소 문제를 피하기 위해 드롭 샤프트에서 저장 터널로 전달되는 공기의 양을 최소화하는 것이 중요합니다. 이 목적을 달성하기 위해, 드롭 샤프트의 베이스가 흐름의 에너지 소산 및 탈기 기능을 수행하는 것이 매우 중요합니다. 이것은 충분한 체적을 제공하도록 샤프트의 크기를 조정하고 다음과 같은 흐름을 조절하기 위해 샤프트 내부 벽을 설계함으로써 달성되었습니다.

  • 플런지 풀이 형성되었습니다.
  • 샤프트의 흐름 경로/유지 시간은 가능한 한 오래 지속됩니다.
  • 샤프트 의 베이스의 특정 영역은 위쪽 흐름 경로를 촉진합니다.

이러한 조치는 떨어지는 물의 에너지가 소멸되고 공기가 가능한 한 흐름에서 분리되도록 하는 것을 목표로 하고 저장 터널로 전달됩니다.

에너지 소산 및 탈기 구조의 성능을 평가하기 위해 드롭 샤프트에서 저장 터널을 통과하는 공기 흐름을 물 변위 방법으로 측정했습니다. 흐름에 혼입된 정확한 양의 공기를 보장하기 위해 모델은 와류 드롭 튜브의 전체 높이를 통합했습니다. 설계의 허용 기준에 대해 최대 기류는 최대 설계 수류의 백분율로 정의된 미리 정의된 값으로 제한되었습니다. 스케일 효과를 설명하기 위해 모델에서 허용 가능한 최대 기류량은 프로토타입에 비해 약 6배 감소했습니다.

hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel - Courtesy of Mott MacDonald and BHR Group
hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel – Courtesy of Mott MacDonald and BHR Group

물리적 규모 모델링은 또한 구조물을 통한 퇴적물의 이동성을 테스트했습니다. 이는 하수 네트워크에서 발생하는 예상 입자 크기 분포와 일치하도록 조정된 모의물의 양으로 모델에 투여함으로써 달성되었습니다.

모델의 설계 개선은 주로 탈기 성능을 개선하기 위한 샤프트 내부 구조의 조정, 퇴적물 이동성을 돕기 위한 벤치 및 기타 조치의 포함으로 구성되었습니다. 이러한 개선 사항은 재테스트를 통해 확인된 다음 설계에 통합되었습니다. 물리적 모델링의 데이터는 관찰된 좋은 일치와 함께 CFD 모델링의 결과와 비교되었습니다.

최종 모델링 결과는 흐름이 기존 하수 네트워크에서 전환되는 위치 근처에서 큰 난류가 발생하는 반면 차단 챔버는 이 에너지를 부분적으로 소산할 수 있을 만큼 충분히 크기가 지정되었으며 특정 수력 설계 요소를 포함하면 문제가 있는 유압 거동이 기계 장비 근처에서 관찰되었습니다. 더 높은 유속에서 일부 공기 동반 와류는 유체의 대부분에 형성됩니다. 그러나 이러한 높은 폭풍 유속의 간헐적인 특성을 고려할 때 콘크리트 구조물의 열화를 일으킬 것으로 예상되지는 않았습니다. 결과는 또한 구조가 최대 설계 흐름을 Thames Tideway Tunnel로 전환하여 기존 보유 CSO를 통한 유출을 방지할 수 있음을 나타냅니다. 차단실과 와류 낙하축을 연결하는 선형 연결 암거는 흐름 조절에 긍정적인 영향을 미쳤고 소용돌이 낙하 튜브의 작동은 흐름 범위에 걸쳐 안정적인 것으로 관찰되었습니다.

Conclusions

Thames Tideway Tunnel의 수력 구조물 설계에는 복잡한 3D 난류 유동 거동이 포함되며 설계 단계에서 고급 수력 모델링 도구를 사용해야 합니다. CFD 모델링을 통해 제안된 설계를 테스트하고 수정할 수 있으므로 설계 흐름이 필요한 성능 매개변수 내에서 안전하게 수용됩니다.

이 프로젝트에서 CFD를 활용한 주요 이점은 비교적 짧은 시간에 수력학적 모델링을 수행할 수 있는 능력, 생성된 데이터의 유용성 및 시각화할 수 있는 능력이었습니다. 이는 설계를 알리고 확인하는 데 도움이 되었습니다. CFD 모델링은 제한된 도시 환경 내에서 설정된 이러한 수력학적 구조를 설계하는 데 유용한 도구였습니다.

Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber - Courtesy of Mott MacDonald and BHR Group
Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber – Courtesy of Mott MacDonald and BHR Group

구조의 중요성으로 인해 물리적 모델링이 수행되어 결과에 대한 신뢰도를 높이고 CFD가 한계를 나타내는 수력 성능 측면을 추가로 연구했습니다. 물리적 모델은 이해 관계자에게 구조 내부에서 흐름이 어떻게 수행되고 있는지 정확히 보여주기 위해 유용한 것으로 입증되었습니다. 또한, 모델 테스트가 대부분 최종 설계를 반영한다는 점을 감안할 때 구조물의 수력 성능에 대한 기록이 유지됩니다.

Timescale

5개 샤프트 중 4개에 대한 굴착이 진행 중이거나 완료되었으며 1차 기초 슬래브와 2차 라이닝이 올해 말 전에 샤프트에 부어질 것입니다. 주 터널인 Selina의 TBM은 2020년 터널링이 시작되어 연말에 현장으로의 마지막 여정을 시작할 것입니다.

The editor and publishers thank Ricardo Telo, Senior Hydraulic Engineer, and Tejal Shah, Senior Mechanical Engineer, both with Mott MacDonald, for providing the above article for publication.

첨부 파일

Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).

그리스 수로의 작은 수력 전위를 활용하는 관형 아르키메데스 스크류 터빈의 CFD 시뮬레이션

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses

Alkistis Stergiopoulou1
, Vassilios Stergiopoulos2
1
Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University,
Muthgasse 18, 1190 Vienna, (actually Senior Process Engineer at the VTU Engineering in Vienna,
Zieglergasse 53/1/24, 1070 Vienna, Austria).
2 School of Pedagogical and Technological Education, Department of Civil Engineering Educators,
ASPETE Campus, Eirini Station, 15122 Amarousio, Athens, Greece.

Abstract

이 논문은 “그리스 아르키메데스의 부활: 아르키메데스 달팽이관 물레방아의 수리역학 및 유체역학적 거동 연구, 그리스 자연 및 기술 수로의 수력 잠재력 회복에 대한 기여”. 라는  제목의 최근 연구에서 수행한 최초의 아르키메데스 나사 터빈 CFD 모델링 결과에 대한 간략한 견해를 제시합니다.

FLOW-3D 코드를 기반으로 하는 이 CFD 분석은 일반적인 TAST(Tubular Archimedean Screw Turbines)에 관한 것으로, 그리스의 자연 및 기술 수로의 중요한 미개척 수력 잠재력을 활용하는 소규모 수력 발전 시스템에 대한 TWh/년 및 수천 MW 범위의 총 설치 용량등 몇 가지 유망한 성능을 보여줍니다.

This paper presents a short view of the first Archimedean Screw Turbines CFD modelling results, which were carried out within the recent research entitled “Rebirth of Archimedes in Greece: contribution to the study of hydraulic mechanics and hydrodynamic behavior of Archimedean cochlear waterwheels, for recovering the hydraulic potential of Greek natural and technical watercourses”. This CFD analysis, based to the Flow-3D code, concerns typical Tubular Archimedean Screw Turbines (TASTs) and shows some promising performances for such small hydropower systems harnessing the important unexploited hydraulic potential of natural and technical watercourses of Greece, of the order of several TWh / year and of a total installed capacity in the range of thousands MWs.

Keywords

CFD; Flow-3D; TAST; Small Hydro; Renewable Energy; Greek Watercourses.

Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks.
Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks.
Figure 8. Comparison of Archimedean Screw Turbine power performances P(W) for angle of orientation θ = 22ο and 32ο and for various water discharge values Q = 0.15, 0.30, 0.45 m3 /s.
Figure 8. Comparison of Archimedean Screw Turbine power performances P(W) for angle of orientation θ = 22ο and 32ο and for various water discharge values Q = 0.15, 0.30, 0.45 m3 /s.
Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque, Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3 /s and an angle of orientation θ = 32ο .
Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque, Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3 /s and an angle of orientation θ = 32ο .

References

[1] A. Stergiopoulou, Computational and experimental investigation of the hydrodynamic behaviour of
screw hydro turbine, Ph.D. Thesis, NTUA, 2017.
[2] B. Pelikan, A. Lashofer, Verbesserung der Strömungseigenschaften sowie Planungs-und
Betriebsoptimierung von Wasserkraftschnecken, Research Project, BOKU University, Vienna,
2012.
[3] G. Müller, J. Senior, Simplified theory of Archimedean screws, Journal of Hydraulic Research 47
(5) (2009) 666-669.
[4] C. Rorres, The turn of the screw: Optimal design of an Archimedes screw, Journal of Hydraulic
Engineering, 80 (2000) 72-80.
[5] A. Stergiopoulou, V. Stergiopoulos, Return of Archimedes: Harnessing with new Archimedean
spirals the hydraulic potential of the Greek watercourses, in: Proceedings of the Conference for
Climate Change, Thessaloniki, 2009.
[6] A. Stergiopoulou, V. Stergiopoulos, from the old Archimedean screw pumps to the new
Archimedean screw turbines for hydropower production in Greece, in: Proceedings of CEMEPE
Conference, Mykonos, June 21-26, 2009.

[7] V. Stergiopoulos, A. Stergiopoulou, E. Kalkani, Quo Vadis Archimedes Nowadays in Greece?
Towards Modern Archimedean Turbines for Recovering Greek Small Hydropower Potential, in:
Proceedings of 3rd International Scientific “Energy and Climate Change” Conference, Athens, 2010.
[8] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Greece beyond the horizon of the era of transition:
Archimedean screw hydropower development terra incognita, International Journal of Energy and
Development, v.6, Issue 6, pp. 627-536, 2015.
[9] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Experimental and theoretical research of zero head
innovative horizontal axis Archimedean screw turbines, Journal of Energy and Development, v.6,
Issue 5, pp. 471-478, 2015.
[10] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Back to the Future: Rediscovering the Archimedean
screws as modern turbines for harnessing Greek small hydropower potential, in: Proceedings of the
Third International Conference CEMEPE 2011 & SECOTOX, Skiathos, 2011.
[11] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[12] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[13] A. Stergiopoulou, V. Stergiopoulos, Towards an inventory of the archimedean small hydropower
potential of Greece, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT
Volume 11, Issue 2, 2020 pp.137-144.
[14] Flow Science, FLOW-3D Manual, 2013.
[15] K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson,
2007.
[16] C. Hirsch, Numerical Computation of internal and external flows: The fundamentals of
Computational Fluid dynamics, John Wiley & Sons, 2007.
[17] A. Stergiopoulou, V. Stergiopoulos and E. Kalkani, An eagle’s CFD view of Studying Innovative
Archimedean Screw Renewable Hydraulic Energy Systems, Proceedings of the 4th International
Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and
SECOTOX Conference, Mykonos island, Greece, pp.454-460 June 24-28, 2013.
[18] A. Stergiopoulou, V. Stergiopoulos, A., E. Kalkani, Computational Fluid Dynamics Study on a 3D
Graphic Solid Model of Archimedean Screw Turbines, Fresenius Environmental Bulletin, vol.23-
No1, 2014.
[19] Α. Stergiopoulou, Kalkani E., “Towards a First C.F.D. Study of Innovative Archimedean Inclined
Axis Hydropower Turbines”, International Journal of Engineering Research & Technology (IJERT),
Vol. 2 Issue 9, September – 2013, pp. 193-199.
[20] A. Stergiopoulou, V. Stergiopoulos, A first CFD study of small hydro energy recovery from the
Attica water supply network, INTERNATIONAL JOURNAL OF ENERGY AND
ENVIRONMENT, Volume 11, Issue 3, 2020 pp.157-166.

Fig. 1  Layout of spillway tunnel

Experimental study and numerical simulation of hydraulic characteristics of ogee spillway tunnel

WU Jingxia1
, ZHANG Chunjin2,3
(1. Xi’an Water Conservancy Survey Design Institute, Xi’an  710054, Shaanxi, China; 2. Key Laboratory of
Yellow River Sediment Research, M. W. R. , Yellow River Institute of Hydraulic Research, Zhengzhou 
450003, Henan, China; 3. State Key Laboratory of Hydrology-Water Resources and Hydraulic
Engineering, Hohai University, Nanjing  210098, Jiangsu, China)

수치 시뮬레이션을 통해 오지 여수로 터널의 수리적 특성 연구의 타당성을 탐색하기 위해 황하 Xiaolangdi 수질 관리 프로젝트의 2번 오지 여수로 터널을 연구 대상으로 취한 다음 오지의 수리 특성 설계 및 점검 홍수 수준 조건에서 여수로 터널은 RNG k-ε 난류 모델을 사용하여 배출 용량, 터널 크라운 잔류 공간, 단면 유속, 압전 수두, 유동 캐비테이션 수, 제트 흐름 범위 및 1 ∶ 40의 일반 수리 모델과 결합된 세굴 구덩이 깊이, 시뮬레이션 값과 실험 값 모두 비교됩니다.

연구결과 모의실험값이 실험값과 일치하여 오지 여수로터널의 수리적 특성을 수치모사를 통해 탐색할 수 있음을 확인하였다. 여수로터널 내부의 흐름은 안정적이고 터널 크라운 잔류 공간은 개방 흐름과 완전 흐름의 교대 흐름 패턴이 없는 25% 이상입니다.

체크 홍수 수위에서 시뮬레이션 값과 유량 계수의 실험 값은 모두 설계에서보다 높으므로 배출 용량은 홍수 제어 관련 설계 요구 사항을 충족할 수 있습니다. 오지 단면과 플립 단면의 유동 캐비테이션 수는 캐비테이션 손상이 발생할 가능성이 작기 때문에 캐비테이션 침식을 줄이기 위한 적절한 적절한 조치가 채택될 필요가 있습니다.

유압 모델의 고르지 않은 표면에 부압이 발생하면 표면 구조에 관련주의를 기울일 필요가 있습니다. 연구 결과는 여수로 터널의 설계 및 건설에 대한 관련 참고 및 이론적 근거를 제공할 수 있습니다.

Keywords

Xiaolangdi Water Control Project; ogee spillway tunnel; simulative calculation; hydraulic characteristics; turbulent
model

Fig. 1  Layout of spillway tunnel
Fig. 1  Layout of spillway tunnel
Fig. 4  Hydraulic modeling
Fig. 4  Hydraulic modeling
Fig. 6  Sectional surface profile distributions
Fig. 6  Sectional surface profile distributions
Fig. 7  Comparison between simulated results and experimental results for flow velocity of section-cross
Fig. 7  Comparison between simulated results and experimental results for flow velocity of section-cross

参考文献(References)

[1]  谢省宗, 吴一红, 陈文学. 我国高坝泄洪消能新技术的研究和创
新[J]. 水利学报, 2016, 47(3): 324-336.
XIE Shengzong, WU Yihong, CHEN Wenxue. New technology and
innovation on flood discharge and energy dissipation of high dams in
China [J]. Journal of Hydraulic Engineering, 2016, 47( 3): 324-
336.
[2]  刘嘉夫, 齐昕. 龙抬头水电站泄洪洞水力特性研究[ J]. 水利水
电技术, 2019, 50(2): 139-143.
LIU Jiafu, QI Xin. Study on hydraulic characteristics of ogee spillway
tunnel of hydropower station [ J]. Water Resources and Hydropower
Engineering, 2019, 50(2): 139-143.
[3]  范灵, 张宏伟, 刘之平, 等. 明流泄洪洞布置形式对水力特性影
响的数值研究[J]. 水力发电学报, 2009, 28(3): 126-131.
FAN Ling, ZHANG Hongwei, LIU Zhiping, et al. Numerical study
on hydraulic characteristic of free surface flow in spillway tunnel with
different configuration [ J ]. Journal of Hydroelectric Engineering,
2009, 28(3): 126-131.
[4]  张春晋, 李永业, 孙西欢. 明流泄洪洞水力特性的二维数值模拟
与试验研究[J]. 长江科学院院报, 2016, 33(1): 54-60.
ZHANG Chunjin, LI Yongye, SUN Xihuan. Two-dimensional numerical simulation and experimental research of hydraulic characteristics
in spillway tunnel with free water surface [ J]. Journal of Yangtze
River Scientific Research Institute, 2016, 33(1): 54-60.
[5]  徐国宾, 章环境, 刘昉, 等. 龙抬头泄洪洞水力特性的数值模拟
[J]. 长江科学院院报, 2015, 32(1): 84-87.
XU Guobin, ZHANG Huanjing, LIU Fang, et al. Numerical simulation on hydraulic characteristic of high head ogee spillway tunnel [J].
Journal of Yangtze River Scientific Research Institute, 2015, 32(1):
84-87.
[6]  陈瑞华, 杨吉健, 马麟, 等. 小湾水电站泄洪洞洞身数值模拟
[J]. 排灌机械工程学报, 2017, 35(6): 488-494.
CHEN Ruihua, YANG Jijian, MA Lin, et al. Numerical simulation
of tunnel of Xiaowan Hydropower Station [ J]. Journal of Drainage
and Irrigation Machinery Engineering, 2017, 35(6): 488-494.
[7]  翟保林, 刘亚坤. 高水头明流泄洪洞三维数值模拟[ J]. 水利与
建筑工程学报, 2017, 15(3): 31-34.
ZHAI Baolin, LIU Yakun. 3-D Numerical simulation of high water
head spillway tunnel with free surface [ J ]. Journal of Water
Resources and Architectural Engineering, 2017, 15(3): 31-34.
[8]  姜 攀, 尹进步, 何武全, 等. 有压泄洪洞弯道压力特性数值模拟
与试验研究[J]. 水力发电, 2016, 42(2): 49-53.
JIANG Pan, YIN Jinbu, HE Wuquan, et al. Numerical simulation
and experimental research on pressure characteristic of curved section
of pressure spillway tunnel [J]. Water Power, 2016, 42(2): 49-53.
[9]  邓 军, 许唯临, 雷军, 等. 高水头岸边泄洪洞水力特性的数值模
拟[J]. 水利学报, 2005(10): 1209-1212.
DENG Jun, XU Weilin, LEI Jun, et al. Numerical simulation of
hydraulic characteristics of high head spillway tunnel [J]. Journal of
Hydraulic Engineering, 2005(10): 1209-1212.
[10] 史晓薇, 王长新, 李琳. 高流速泄洪隧洞水力特性的三维数值模
拟[J]. 新疆农业大学学报, 2015, 38(6): 495-501.
SHI Xiaowei, WANG Changxin, LI Lin. Three dimensional numerical
simulation of hydraulic characteristics of spillway tunnel with high flow
velocity [ J]. Journal of Xinjiang Agricultural University, 2015, 38
(6): 495-501.
[11] 叶茂, 伍平, 王波, 等. 泄洪洞掺气水流的数值模拟研究[J]. 水
力发电学报, 2014, 33(4): 105-110.
YE Mao, WU Ping, WANG Bo, et al. Numerical simulation of
aerated flow in hydraulic tunnel [ J ]. Journal of Hydroelectric
Engineering, 2014, 33(4): 105-110.
[12] 胡涛, 王均星, 杜少磊. 大流量泄洪洞掺气坎水力特性数值模拟
[J]. 武汉大学学报(工学版), 2014, 47(5): 615-620.
HU Tao, WANG Junxing, DU Shaolei. Numerical simulation of
hydraulic characteristics of aerators in spillway tunnel with large
discharge [J]. Engineering Journal of Wuhan University, 2014, 47
(5): 615-620.
[13] 孙鹏飞, 姜哲, 崔维成, 等. 基于 CFD 的全海深载人潜水器直航
阻力性能研究[J]. 中国造船, 2019, 60(2): 77-87.
SUN Pengfei, JIANG Zhe, CUI Weicheng, et al. Numerical simulation of a full ocean depth manned submersible based on CFD method
[J]. Shipbuilding of China, 2019, 60(2): 77-87.
[14] 宛鹏翔, 范俊, 韩省思, 等. 冲击射流流动换热超大涡模拟研究
[J]. 推进技术, 2020, 41(10): 2237-2247.
WAN Pengxiang, FAN Jun, HAN Xingsi, et al. Very-large eddy
simulation of impinging jet flow and heat transfer [ J]. Journal of
Propulsion Technology, 2020, 41(10): 2237-2247.
[15] 李国杰, 黄萌, 陈斌. 基于 PISO 算法的非结构化网格 VOF 算法
[J]. 工程热物理学报, 2013, 34(3): 476-479.
LI Guojie, HUANG Meng, CHEN Bing. VOF method on unstructured
grid using PISO algorithm [ J]. Journal of Engineering Thermophysics, 2013, 34(3): 476-479.
[16] 董玮, 何庆南, 梁武科, 等. 双蜗壳离心泵泵腔轴向宽度与流动

DONG Wei, HE Qingnan, LIANG Wuke, et al. Relationship
between axial width and flow characteristics of pump chamber in
double volute centrifugal pump [ J ]. Journal of Northwestern
Polytechnical University, 2020, 38(6): 1322-1329.
[17] 陈恺, 张震宇, 王同光, 等. 基于 CFD 的水平轴风力机叶尖小翼
增功研究[J]. 太阳能学报, 2021, 42(1): 272-278.
CHEN Kai, ZHANG Zhenyu, WANG Tongguang, et al. CFD-Based
power enhancement of winglets for horizontal-axis wind turbines [ J].
Acta Energiae Solaris Sinica, 2021, 42(1): 272-278.
[18] 张志君, 金柱男, 辛相锦, 等. 基于 VOF 方法的湿式离合器润滑
油路 CFD 数值模拟[J]. 东北大学学报(自然科学版), 2020, 41
(5): 716-722.
ZHANG Zhijun, JIN Zhunan, XIN Xiangjin, et al. VOF method
based CFD numerical simulation for wet clutch lubricating oil passage
[ J]. Journal of Northeastern University (Natural Science), 2020, 41
(5): 716-722.
[19] 罗永钦, 刁明军, 何大明, 等. 高坝明流泄洪洞掺气减蚀三维数
值模拟分析[J]. 水科学进展, 2012, 23(1): 110-116.
LUO Yongqin, DIAO Mingjun, HE Daming, et al. Numerical simulation of aeration and cavitation in high dam spillway tunnels [ J].
Advances in Water Science, 2012, 23(1): 110-116.
[20] 许文海, 党彦, 李国栋, 等. 双洞式溢洪洞三维流动的数值模拟
[J]. 水力发电学报, 2007(1): 56-60.
XU Wenhai, DANG Yan, LI Guodong, et al. Three dimensional
numerical simulation of the bi-tunnel spillway flow [ J]. Journal of
Hydroelectric Engineering, 2007(1): 56-60.
[21] 李爱华, 王腾, 刘沛清. 溪洛渡坝区岩石河床冲刷过程数值模拟
[J]. 水力发电学报, 2012, 31(5): 154-158.
LI Aihua, WANG Teng, LIU Peiqing. Numerical simulation of rock
bed scour behind the dam of Xiluodu hydropower station [J]. Journal
of Hydroelectric Engineering, 2012, 31(5): 154-15

Watershed area

Analysis on inundation characteristics by compound external forces in coastal areas

연안 지역의 복합 외력에 의한 침수 특성 분석

Taeuk KangaDongkyun SunbSangho Leec*
강 태욱a선 동균b이 상호c*
aResearch Professor, Disaster Prevention Research Institute, Pukyong National University, Busan, KoreabResearcher, Disaster Prevention Research Institute, Pukyong National University, Busan, KoreacProfessor, Department of Civil Engineering, Pukyong National University, Busan, Korea
a부경대학교 방재연구소 전임연구교수b부경대학교 방재연구소 연구원c부경대학교 공과대학 토목공학과 교수*Corresponding Author

ABSTRACT

연안 지역은 강우, 조위, 월파 등 여러가지 외력에 의해 침수가 발생될 수 있다. 이에 이 연구에서는 연안 지역에서 발생될 수 있는 단일 및 복합 외력에 의한 지역별 침수 특성을 분석하였다. 연구에서 고려한 외력은 강우와 폭풍 해일에 의한 조위 및 월파이고, 분석 대상지역은 남해안 및 서해안의 4개 지역이다. 유역의 강우-유출 및 2차원 지표면 침수 분석에는 XP-SWMM이 사용되었고, 폭풍 해일에 의한 외력인 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 모형과 FLOW-3D 모형이 각각 활용되었다. 단일 외력을 이용한 분석 결과, 대부분의 연안 지역에서는 강우에 의한 침수 영향보다 폭풍 해일에 의한 침수 영향이 크게 나타났다. 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 지역의 침수 피해 저감을 위해서는 복합 외력을 고려한 분석이 요구되는 것으로 판단되었다.키워드연안 지역 침수 분석 강우 폭풍 해일 복합 외력

The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn’t appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.KeywordsCoastal area Inundation analysis Rainfall Storm surge Compound external forces

MAIN

1. 서 론

우리나라는 반도에 위치하여 삼면이 바다로 둘러싸여 있는 지리적 특성을 가지고 있다. 이에 따라 해양 산업을 중심으로 부산, 인천, 울산 등 대규모의 광역도시가 발달하였을 뿐만 아니라, 창원, 포항, 군산, 목포, 여수 등의 중․소규모 도시들도 발달되어 있다. 또한, 최근에는 연안 지역이 바다를 전망으로 하는 입지 조건을 가지고 있어 개발 선호도가 높고, 이에 따라 부산시 해운대의 마린시티, 엘시티와 같은 주거 및 상업시설의 개발이 지속되고 있다(Kang et al., 2019b).

한편, 최근 기후변화에 따른 지구 온난화 현상으로 평균 해수면이 상승하고, 해수면 온도도 상승하면서 태풍 및 강우의 강도가 커지고 있어 전 세계적으로 자연 재해로 인한 피해가 증가하고 있다(Kim et al., 2016). 실제로 2020년에는 최장기간의 장마가 발생하여 부산, 울산은 물론, 전국에서 50명의 인명 피해와 3,489세대의 이재민이 발생하였다1). 특히, 연안 지역은 강우, 만조 시 해수면 상승, 폭풍 해일(storm surge)에 의한 월파(wave overtopping) 등 복합적인 외력(compound external forces)에 의해 침수될 수 있다(Lee et al., 2020). 일례로, 2016년 태풍 차바 시 부산시 해운대구의 마린시티는 강우와 폭풍 해일에 의한 월파가 발생함에 따라 대규모 침수를 유발하였다(Kang et al., 2019b). 또한, 2020년 7월 23일에 부산에서는 시간당 81.6 mm의 집중호우와 약최고고조위를 상회하는 만조가 동시에 발생하였고, 이로 인해 감조 하천인 동천의 수위가 크게 상승하여 하천이 범람하였다(KSCE, 2021).

연안 지역의 복합 외력을 고려한 침수 분석에 관한 사례로서, 우선 강우와 조위를 고려한 연구 사례는 다음과 같다. Han et al. (2014)은 XP-SWMM을 이용하여 창원시 배수 구역을 대상으로 침수 모의를 수행하였는데, 연안 도시의 침수 모의에는 조위의 영향을 반드시 고려해야 함을 제시하였다. Choi et al. (2018a)은 경남 사천시 선구동 일대에 대하여 초과 강우 및 해수면 상승 시나리오를 조합하여 침수 분석을 수행하였다. Choi et al. (2018b)은 XP-SWMM을 이용하여 여수시 연등천 및 여수시청 지역에 대하여 강우 시나리오와 해수위 상승 시나리오를 고려한 복합 원인에 의한 침수 모의를 수행하여 홍수예경보 기준표를 작성하였다. 한편, 강우, 조위, 월파를 고려한 연구 사례로서, Song et al. (2017)은 부산시 해운대구 수영만 일원에 대하여 XP-SWMM으로 월파량의 적용 유무에 따른 침수 면적을 비교하였다. Suh and Kim (2018)은 부산시 마린시티 지역을 대상으로 태풍 차바 때 EurOtop의 경험식을 ADSWAN에 적용하여 월파량을 반영하였다. Chen et al. (2017)은 TELEMAC-2D 및 SWMM을 기반으로 한 극한 강우, 월파 및 조위를 고려하여 중국 해안 원자력 발전소의 침수를 예측하고 분석하기 위한 결합 모델을 개발한 바 있다. 한편, Lee et al. (2020)은 수리‧수문학 분야와 해양공학 분야에서 사용되는 물리 모형의 기술적 연계를 통해 연안 지역의 침수 모의의 재현성을 높였다.

상기의 연구들은 공통적으로 연안 지역에 대하여 복합 외력을 고려했을 때 발생되는 침수 현상의 재현 또는 예측을 목적으로 수행되었다. 이 연구는 이와 차별하여 복합 외력을 고려하는 경우 나타날 수 있는 연안 지역의 침수 특성 분석을 목적으로 수행되었다. 이를 위해 단일 외력을 독립적으로 고려했을 때 발생되는 침수 양상과 동시에 고려하는 경우의 침수 현상을 비교, 분석하였다. 복합 외력에 의한 지역적 침수 특성 분석은 우리나라 남해안과 서해안에 위치한 4개 지역에 대하여 적용되었다.

1) 장연제, 47일째 이어진 긴 장마, 50명 인명피해… 9년만에 최대, 동아닷컴, 2020년 8월 9일 수정, 2021년 3월 4일 접속, https://www.donga.com/news/article/all/20200809/102369692/2

2. 연구 방법

2.1 연안 지역의 침수 영향 인자

연안 지역의 침수는 크게 세 가지의 메카니즘으로 발생될 수 있다. 우선, 연안 지역은 바다와 인접하고 있기 때문에 그 영향을 직접적으로 받는다. Kim (2018)에 의하면, 연안 지역의 침수는 폭풍 해일에 의해 상승한 조위와 월파로 인해 발생될 수 있다(Table 1). 특히, 경상남도의 창원과 통영, 인천광역시의 소래포구 어시장 등 남해안 및 서해안 지역의 일부는 백중사리, 슈퍼문(super moon) 등 만조 시 조위의 상승으로 인한 침수가 발생하는 지역이 존재한다(Kang et al., 2019a). 두 번째는 강우에 의한 내수 침수 발생이다. ME (2011)에서는 도시 지역의 우수 관거를 10 ~ 30년 빈도로 계획하도록 지정하고 있고, 펌프 시설은 30 ~ 50년 빈도의 홍수를 배수시킬 수 있도록 정하고 있다. 하지만 최근에는 기후변화의 영향으로 도시 지역 배수시설의 설계 빈도를 초과하는 강우가 빈번하게 나타나고 있다. 실제로 2016년의 태풍 차바 시 울산 기상관측소에 관측된 시간 최대 강우량은 106.0 mm로서, 이는 300년 빈도 이상의 강우량에 해당하였다(Kang et al., 2019a). 따라서 배수시설의 설계 빈도 이상의 강우는 연안 도시 지역의 침수를 유발할 수 있다. 세 번째, 하천이 인접한 연안 도시에서는 하천의 범람으로 인해 침수가 발생할 수 있다. 하천의 경우, 기본계획이 수립되기는 하지만, 설계 빈도를 상회하는 강우의 발생, 제방, 수문 등 홍수 방어시설의 기능 저하, 예산 등의 문제로 하천기본계획 이행의 지연 등에 의해 범람할 가능성이 존재한다.

Table 1.

Type of natural hazard damage in coastal areas (Kim, 2018)

ItemRisk factor
Facilities damage∙ Breaking of coastal facilities by wave
– Breakwater, revetment, lighters wharf etc.
∙ Local scouring at the toe of the structures by wave
∙ Road collapse by wave overtopping
Inundation damage∙ Inundation damage by wave overtopping
∙ Inundation of coastal lowlands by storm surge
Erosion damage∙ Backshore erosion due to high swell waves
∙ Shoreline changes caused by construction of coastal erosion control structure
∙ Sediment transport due to the construction of artificial structures

상기의 내용을 종합하면, 연안 지역은 조위 및 월파에 의한 침수, 강우에 의한 내수 침수, 하천 범람에 의한 침수로 구분될 수 있다. 이 연구에서는 폭풍 해일에 의한 조위 상승 및 월파와 강우를 연안 지역의 침수 유발 외력으로 고려하였다. 하천 범람의 경우, 상대적으로 사례가 희소하여 제외하였다.

2.2 복합 외력을 고려한 침수 모의 방법

이 연구에서는 조위 및 월파와 강우를 연안 지역의 침수 발생에 관한 외력 조건으로 고려하였다. 따라서 해당 외력 조건을 고려하여 침수 분석을 수행할 수 있어야 한다. 이와 관련하여 Lee et al. (2020)은 Fig. 1과 같이 수리‧수문 및 해양공학 분야에서 사용되는 물리 기반 모형의 연계를 통해 조위, 월파, 강우를 고려한 침수 분석 방법을 제시하였고, 이 연구에서는 해당 방법을 이용하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F1.jpg
Fig. 1.

Connection among the models for inundation analysis in coastal areas (Lee et al., 2020)

우선, 태풍에 의해 발생되는 폭풍 해일의 영향을 분석하기 위해서는 태풍에 의해 발생되는 기압 강하, 해상풍, 진행 속도 등을 고려하여 해수면의 변화 양상 및 조석-해일-파랑을 충분히 재현 가능해야 한다. 이 연구에서는 국내․외에서 검증 및 공인된 폭풍 해일 모형인 ADCIRC 모형과 파랑 모형인 UnSWAN이 결합된 ADCSWAN (coupled model of ADCIRC and UnSWAN)을 이용하였다. 정수압 가정의 ADCSWAN은 월파량 산정에 단순 경험식을 적용하는 단점이 있지만 넓은 영역을 모의할 수 있고, FLOW-3D는 해안선의 경계를 고해상도로 재현이 가능하다. 이에 연구에서는 먼 바다 영역에 대해서는 ADCSWAN을 이용하여 분석하였고, 연안 주변의 바다 영역과 월파량 산정에 대해서는 FLOW-3D 모형을 이용하였다. 한편, 연안 지역의 침수 모의를 위해서는 유역에서 발생하는 강우-유출 현상과 우수 관거 등의 배수 체계에 대한 분석이 가능해야 한다. 또한, 배수 체계로부터 범람한 물이 지표면을 따라 흘러가는 현상을 해석할 수 있어야 하고, 바다의 조위 및 월파량을 경계조건으로 반영할 수 있어야 한다. 이 연구에서는 이러한 현상을 모의할 수 있고, 도시 침수 모의에 활용도가 높은 XP-SWMM을 이용하였다.

2.3 침수 분석 대상지역

연구의 대상지역은 조위 및 월파에 의한 침수와 강우에 의한 내수 침수의 영향이 복합적으로 발생할 수 있는 남해안과 서해안에 위치한 4개 지역이다. Table 2는 침수 분석 대상지역을 정리하여 나타낸 표이고, Fig. 2는 각 지역의 유역 경계를 나타낸 그림이다.

Table 2.

Target region for inundation analysis

ClassificationAdministrative districtTarget regionArea
(km2)
Main cause of inundationPump
facility
Number of
major outfall
The south
coast
Haundae-gu, BusanMarine City area0.53Wave overtopping9
Haundae-gu, BusanCentum City area4.76Poor interior drainage at high tide level12
The west
coast
GunsanJungang-dong area0.79Poor interior drainage at high tide level23
BoryeongOcheon Port area0.41High tide level5

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F2.jpg
Fig. 2.

Watershed area

남해안의 분석 대상지역 중 부산시 해운대구의 마린시티는 바다 조망을 중심으로 조성된 주거지 및 상업시설 중심의 개발지역이다. 마린시티는 2016년 태풍 차바 및 2018년 태풍 콩레이 등 태풍 내습 시 월파에 의한 해수 월류로 인해 도로 및 상가 일부가 침수를 겪은 지역이다. 부산시 해운대구의 센텀시티는 과거 수영만 매립지였던 곳에 조성된 주거지 및 상업시설 중심의 신도시 지역이다. 센텀시티 유역의 북쪽은 해발고도 El. 634 m의 장산이 위치하는 등 산지 특성도 가지고 있어 상대적으로 유역 면적이 넓고, 배수시설의 규모도 크고 복잡하다. 하지만 수영강 하구의 저지대 지역에 위치함에 따라 강우 시 내수 배제가 불량하고, 특히 만조 시 침수가 잦은 지역이다.

서해안 분석 대상지역 중 전라북도 군산시의 중앙동 일원은 군산시 내항 내측에 조성된 구도시로서, 금강 및 경포천 하구에 위치하는 저지대이다. 이에 따라 군산시 풍수해저감종합계획에서는 해당 지역을 3개의 영역으로 구분하여 내수재해 위험지구(영동지구, 중동지구, 경암지구)로 지정하였고, 이 연구에서는 해당 지역을 모두 고려하였다. 한편, 군산시 중앙동 일원은 특히, 만조 시 내수 배제가 매우 불량하여 2개의 펌프시설이 운영되고 있다. 충청남도 보령시의 오천면에 위치한 오천항은 배후의 산지를 포함한 소규모 유역에 위치한다. 서해안의 특성에 따라 조석 간만의 차가 크고, 특히 태풍 내습 시 폭풍 해일에 의한 침수가 잦은 지역이다. 산지의 강우-유출수는 복개된 2개의 수로를 통해 바다로 배제되고, 상가들이 위치한 연안 주변 지역에는 강우-유출수 배제를 위한 3개의 배수 체계가 구성되어 있다.

3. 연구 결과

3.1 침수 모의 모형 구축

XP-SWMM을 이용하여 분석 대상지역별 침수 모의 모형을 구축하였다. 적절한 침수 분석 수행을 위해 지역별 수치지형도, 도시 공간 정보 시스템(urban information system, UIS), 하수 관망도 등의 수치 자료와 현장 조사를 통해 유역의 배수 체계를 구성하였다. 그리고 2차원 침수 분석을 위해 무인 드론 및 육상 라이다(LiDAR) 측량을 수행하여 평면해상도가 1 m 이하인 고해상도 수치지형모형(digital terrain model, DTM)을 구성하였고, 침수 모의 격자를 생성하였다.

Fig. 3은 XP-SWMM의 상세 구축 사례로서 부산시 마린시티 배수 유역에 대한 소유역 및 관거 분할 등을 통해 구성한 배수 체계와 고해상도 측량 결과를 이용하여 구성한 수치표면모형(digital surface model, DSM)을 나타낸다. Fig. 4는 각 대상지역에 대해 XP-SWMM을 이용하여 구축한 침수 모의 모형을 나타낸다. 침수 분석을 위해서는 침수 모의 영역에 대한 설정이 필요한데, 다수의 사전 모의를 통해 유역 내에서 침수가 발생되는 지역을 검토하여 결정하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F3.jpg
Fig. 3.

Analysis of watershed drainage system and high-resolution survey for Marine City

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F4.jpg
Fig. 4.

Simulation model for inundation analysis by target region using XP-SWMM

한편, 이 연구에서는 월파량 및 조위의 산정 과정과 침수 모의 모형의 보정에 관한 내용 등은 다루지 않았다. 관련된 내용은 선행 연구인 Kang et al. (2019b)와 Lee et al. (2020)을 참조할 수 있다.

3.2 침수 모의 설정

3.2.1 분석 방법

복합 외력에 의한 침수 영향을 검토하기 위해서는 외력 조건에 대한 빈도와 지속기간의 설정이 필요하다. 이 연구에서는 재해 현상이 충분히 나타날 수 있도록 강우와 조위 및 월파의 빈도를 모두 100년으로 설정하였다. 이때, 조위와 월파량의 산정에는 만조(약최고고조위) 시, 100년 빈도에 해당하는 태풍 내습에 따른 폭풍 해일의 발생 조건을 고려하였다.

지역별 강우 발생 특성과 유역 특성을 고려하기 위해 MOIS (2017)의 방재성능목표 기준에 따라 임계 지속기간을 결정하여 대상지역별 강우의 지속기간으로 설정하였다. 이때, 강우의 시간 분포는 MLTM (2011)의 Huff 3분위를 이용하였다. 그리고 조위와 월파의 경우, 일반적인 폭풍 해일의 지속기간을 고려하여 5시간으로 결정하였다. 한편, 침수 모의를 위한 계산 시간 간격, 2차원 모의 격자 등의 입력자료는 분석 대상지역의 유역 규모와 침수 분석 대상 영역을 고려하여 결정하였다. 참고로 침수 분석에 사용된 수치지형모형은 1 m 급의 고해상도로 구성되었지만, 2차원 침수 모의 격자의 크기는 지역별로 3 ~ 4 m이다. 이는 연구에서 사용된 XP-SWMM의 격자 수(100,000개) 제약에 따른 설정이나, Sun (2021)은 민감도 분석을 통해 2차원 침수 분석을 위한 적정 격자 크기를 3 ~ 4.5 m로 제시한 바 있다.

Table 3은 이 연구에서 설정한 침수 모의 조건과 분석 방법을 정리하여 나타낸 표이다.

Table 3.

Simulation condition and method

ClassificationTarget regionSimulation conditionSimulation method
RainfallStorm surgeSimulation time interval2D
grid size
Return
period
DurationTemporal
distribution
Return
period
DurationWatershed
routing
Channel
routing
2D
inundation
The south coastMarine City area100 yr1 hr3rd quartile
of Huff’s
method
1005 hr5 min10 sec1 sec3 m
Centum City area1 hr1005 min10 sec1 sec4 m
The west coastJungang-dong area2 hr1005 min10 sec1 sec3.5 m
Ocheon Port area1 hr1001 min10 sec1 sec3 m

3.2.2 복합 재해의 동시 고려

이 연구의 대상지역들은 모두 소규모의 해안가 도시지역이고, 이러한 지역에 대한 강우의 임계지속기간은 1시간 ~ 2시간이나, 이 연구에서 분석한 폭풍 해일의 지속기간은 5시간으로 강우의 지속기간과 폭풍 해일의 지속기간이 상이하다. 이에 이 연구에서는 서로 다른 지속기간을 가진 강우와 폭풍 해일 또는 조위를 고려하기 위해 강우의 중심과 폭풍 해일의 중심이 동일한 시간에 위치하도록 설정하였다(Fig. 5).

XP-SWMM은 폭풍 해일이 지속되는 5시간 전체를 모의하도록 설정하였고, 폭풍 해일이 가장 큰 시점에 강우의 중심이 위치하도록 강우 발생 시기를 결정하였다. 다만, 부산 마린시티의 경우, 폭풍 해일에 의한 피해가 주로 월파에 의해 발생되므로 강우의 중심과 월파의 중심을 일치시켰고(Fig. 5(a)), 상대적으로 조위의 영향이 큰 3개 지역은 강우의 중심과 조위의 중심을 맞추었다. Fig. 5(b)는 군산시 중앙동 지역의 복합 외력에 의한 침수 분석에 사용된 강우와 조위의 조합이다.

한편, 100년 빈도의 확률강우량만을 고려한 침수 분석에서는 유역 유출부의 경계조건으로 우수 관거의 설계 조건을 고려하여 약최고고조위가 일정하게 유지되도록 설정하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F5.jpg
Fig. 5.

Consideration of external force conditions with different durations

3.2.3 XP-SWMM의 월파량 고려

XP-SWMM에 ADCSWAN 및 FLOW-3D 모형에 의해 산정된 월파량을 입력하기 위해 해안가 지역에 절점을 생성하여 월파 현상을 구현하였다. XP-SWMM에서 월파량을 입력하기 위한 절점의 위치는 FLOW-3D 모형에서 월파량을 산정한 격자의 중심 위치이다.

Fig. 6(a)는 마린시티 지역에 대한 월파량 입력 지점을 나타낸 것으로서, 유역 경계 주변에 동일 간격으로 원으로 표시한 지점들이 해당된다. Fig. 6(b)는 XP-SWMM에 월파량 입력 지점들을 반영하고, 하나의 절점에 월파량 시계열을 입력한 화면을 나타낸다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F6.jpg
Fig. 6.

Considering wave overtopping on XP-SWMM

3.3 침수 모의 결과

3.3.1 단일 외력에 의한 침수 모의 결과

Fig. 7은 단일 외력을 고려한 지역별 침수 모의 결과이다. 즉, Fig. 7의 왼쪽 그림들은 지역별로 100년 빈도 강우에 의한 침수 모의 결과를 나타내고, Fig. 7의 오른쪽 그림들은 만조 시 100년 빈도 폭풍 해일에 의한 침수 모의 결과이다. 대체로 강우에 의한 침수 영역은 유역 중․상류 지역의 유역 전반에 걸쳐 발생하였고, 폭풍 해일에 의한 침수 영역은 해안가 전면부에 위치하는 것을 볼 수 있다. 이는 폭풍 해일에 의한 조위 상승과 월파의 영향이 상류로 갈수록 감소하기 때문이다.

한편, 4개 지역 모두에서 공통적으로 강우에 비해 폭풍 해일에 의한 침수 영향이 상대적으로 크게 분석되었다. 이러한 결과는 연안 지역의 경우, 폭풍 해일에 대비한 침수 피해 저감 노력이 보다 중요함을 의미한다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F7.jpg
Fig. 7.

Simulation results by single external force (left: rainfall, right: storm surge)

3.3.2 복합 외력에 의한 침수 모의 결과

Fig. 8은 복합 외력을 고려한 지역별 침수 모의 결과이다. 즉, 강우 및 폭풍 해일을 동시에 고려함에 따라 발생된 침수 영역을 나타낸다. 복합 외력을 고려하는 경우, 단일 외력만을 고려한 분석 결과(Fig. 7)보다 침수 영역은 넓어졌고, 침수심은 깊어졌다.

복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였고, 이는 일반적으로 예상할 수 있는 결과이다. 주목할만한 결과는 군산시 중앙동의 침수 분석에서 나타났다. 즉, 군산시 중앙동의 경우, 단일 외력만을 고려한 침수 모의 결과에서 나타나지 않았던 새로운 침수 영역이 발생하였다(Fig. 8(c)). 이와 관련된 상세 내용은 3.4절의 고찰에서 기술하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F8.jpg
Fig. 8.

Simulation results by compound external forces

3.4 결과 고찰

외력 조건별 침수의 영향을 정량적으로 비교하기 위해 침수 면적을 이용하였다. 이 연구에서는 강우만에 의해 유발된 침수 면적을 기준(기준값: 1)으로 하고, 폭풍 해일(조위+월파량)에 의한 침수 면적과 복합 외력에 의한 침수 면적의 상대적 비율로 분석하였다(Table 4).

Table 4.

Impact evaluation for inundation area by external force

ConditionMarine City, BusanCentum City, BusanJungang-dong area,
Gunsan
Ocheon Port area,
Boryeong
Inundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
Rate
Single
external force
Rainfall (①)0.01641.00.07591.00.04571.00.01751.0
Storm surge (②)0.03632.210.06850.900.14633.200.04122.35
Compound
external forces
Combination
(①+②)
0.05243.190.15051.980.26325.760.04732.70

분석 결과, 부산 센텀시티를 제외한 3개 지역은 모두 폭풍 해일에 의한 침수 면적이 강우에 의한 침수 면적에 비해 2.2 ~ 3.2배 넓은 것으로 분석되었다. 한편, 복합 외력에 의한 침수 면적은 마린시티와 센텀시티의 경우, 각각의 외력에 의한 침수 면적의 합과 유사하게 나타났다. 이는 각각의 외력에 의한 침수 영역이 상이하여 거의 중복되지 않음을 의미한다. 반면에, 오천항에서는 각각의 외력에 의한 침수 면적의 합이 복합 외력에 의한 면적보다 크게 나타났다. 이는 오천항의 경우, 유역면적이 작고 배수 체계가 비교적 단순하여 강우와 폭풍 해일에 의한 침수 영역이 중복되기 때문인 것으로 분석되었다(Fig. 7(d)).

군산시 중앙동 일대의 경우, 복합 외력에 의한 침수 면적이 각각의 독립적인 외력 조건에 의한 침수 면적의 합에 비해 37.1% 크게 나타났다. 이러한 현상의 원인을 분석하기 위해 복합 외력 조건에서만 나타난 우수 관거(Fig. 8(c)의 A 구간)에 대하여 종단을 검토하였다(Fig. 9). Fig. 9(a)는 강우만에 의해 분석된 우수 관거 내 흐름 종단을 나타내고, Fig. 9(b)는 폭풍 해일만에 의한 우수 관거의 종단이다. 그림을 통해 각각의 독립적인 외력 조건 하에서는 해당 구간에서 침수가 발생되지 않은 것을 볼 수 있다. 다만, 강우만을 고려하더라도 우수 관거는 만관이 된 상태를 확인할 수 있다(Fig. 9(a)). 반면에, 만관 상태에서 폭풍 해일이 함께 고려됨에 따라 해수 범람과 조위 상승에 의해 우수 배제가 불량하게 되었고, 이로 인해 침수가 유발된 것으로 분석되었다(Fig. 9(c)). 따라서 이러한 지역은 복합 외력에 대한 취약지구로 판단할 수 있고, 단일 외력의 고려만으로는 침수를 예상하기 어려운 지역임을 알 수 있다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F9.jpg
Fig. 9.

A part of drainage profiles by external force in Jungang-dong area, Gunsan

4. 결 론

이 연구에서는 외력 조건에 따른 연안 지역의 침수 특성을 분석하였다. 연구에서 고려된 외력 조건은 두 가지로서 강우와 폭풍 해일(조위와 월파)이다. 분석 대상 연안 지역으로는 남해안에 위치하는 2개 지역(부산시 해운대구의 마린시티와 센텀시티)과 서해안의 2개 지역(군산시 중앙동 일원 및 보령시 오천항)이 선정되었다.

복합 외력을 고려한 연안 지역의 침수 모의를 위해서는 유역의 강우-유출 현상과 바다의 조위 및 월파량을 경계조건으로 반영할 수 있는 침수 모의 모형이 요구되는데, 이 연구에서는 XP-SWMM을 이용하였다. 한편, 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 및 FLOW-3D 모형이 이용되었다.

연안 지역별 침수 모의는 100년 빈도의 강우와 폭풍 해일을 독립적으로 고려한 경우와 복합적으로 고려한 경우를 구분하여 수행되었다. 우선, 외력을 독립적으로 고려한 결과, 대체로 폭풍 해일만 고려한 경우가 강우만 고려한 경우에 비해 침수 영향이 크게 나타났다. 따라서 연안 지역의 경우, 폭풍 해일에 의한 침수 피해 방지 계획이 상대적으로 중요한 것으로 분석되었다. 두 번째, 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수 모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 결과는 독립적인 외력 조건에서는 우수 관거가 만관 또는 그 이하의 상태가 되지만, 두 가지의 외력이 동시에 고려됨에 따라 우수 관거의 통수능 한계를 초과하여 나타났다. 이러한 지역은 복합 외력에 대한 취약지구로 판단되었고, 해당 지역의 적절한 침수 방지 대책 수립을 위해서는 복합적인 외력 조건이 고려되어야 함을 시사하였다.

현행, 자연재해저감종합계획에서는 침수와 관련된 재해 원인 지역을 내수재해, 해안재해, 하천재해 등으로 구분하고 있다. 하지만 이 연구에서 검토된 바와 같이, 연안 지역의 침수 원인은 복합적으로 나타날 뿐만 아니라, 복합 외력을 고려함에 따라 추가적으로 나타날 수 있는 침수 위험 지역도 존재한다. 따라서 기존의 획일적인 재해 원인의 구분보다는 지역의 특성에 맞는 복합적인 재해 원인을 검토할 필요가 있음을 제안한다.

Acknowledgements

본 논문은 행정안전부 극한 재난대응 기반기술 개발사업의 일환인 “해안가 복합재난 위험지역 피해저감 기술개발(연구과제번호: 2018-MOIS31-008)”의 지원으로 수행되었습니다.

References

1
Chen, X., Ji, P., Wu, Y., and Zhao, L. (2017). “Coupling simulation of overland flooding and underground network drainage in a coastal nuclear power plant.” Nuclear Engineering and Design, Vol. 325, pp. 129-134. 10.1016/j.nucengdes.2017.09.028
2
Choi, G., Song, Y., and Lee, J. (2018a). “Analysis of flood occurrence type according to complex characteristics of coastal cities.” 2018 Conference of the Korean Society of Hazard Mitigation, KOSHAM, p. 180.
3
Choi, J., Park, K., Choi, S., and Jun, H. (2018b). “A forecasting and alarm system for reducing damage from inland inundation in coastal urban areas: A case study of Yeosu City.” Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 475-484. 10.9798/KOSHAM.2018.18.7.475
4
Han, H., Kim, Y., Kang, N., and, Kim, H.S. (2014). “Inundation analysis of a coastal urban area considering tide level.” 2014 Conference of Korean Society of Civil Engineers, KSCE, pp. 1507-1508.
5
Kang, T., Lee, S., and Sun, D. (2019a). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in Coastal Areas (1): Proposal for analytical method.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 35-43. 10.9798/KOSHAM.2019.19.5.35
6
Kang, T., Lee, S., Choi, H., and Yoon, S. (2019b). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in coastal areas (2): Case analysis for application.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 45-53. 10.9798/KOSHAM.2019.19.5.45
7
Kim, J.O., Kim, J.Y., and Lee, W.H. (2016). “Analysis on complex disaster information contents for building disaster map of coastal cities.” Journal of the Korean Association of Geographic Information Studies, Vol. 19, No. 3, pp. 43-60. 10.11108/kagis.2016.19.3.043
8
Kim, P.J. (2018). Improvement measures on the risk area designation of coastal disaster in consideration of natural hazards. Ph.D. dissertation, Chonnam National University.
9
Korean Society of Civil Engineers (KSCE) (2021). A report on the cause analysis and countermeasures establishment for Dongcheon flooding and lowland inundation. Busan/Ulsan, Gyungnam branch.
10
Lee, S., Kang, T., Sun, D., and Park, J.J. (2020). “Enhancing an analysis method of compound flooding in coastal areas by linking flow simulation models of coasts and watershed.” Sustainability, Vol. 12, No. 16, 6572. 10.3390/su12166572
11
Ministry of Environment (ME) (2011). Standard for sewerage facilities. Korea Water and Wastewater Works Association.
12
Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Improvement and complementary research for probability rainfall.
13
Ministry of the Interior and Safety (MOIS) (2017). Criteria for establishment and operation of disaster prevention performance target by region: Considering future climate change impacts.
14
Song, Y., Joo, J., Lee, J., and Park, M. (2017). “A study on estimation of inundation area in coastal urban area applying wave overtopping.” Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 501-510. 10.9798/KOSHAM.2017.17.2.501
15
Suh, S.W., and Kim, H.J. (2018). “Simulation of wave overtopping and inundation over a dike caused by Typhoon Chaba at Marine City, Busan, Korea.” Journal of Coastal Research, Vol. 85, pp. 711-715.
16
Sun, D. (2021). Sensitivity analysis of XP-SWMM for inundation analysis in coastal area. M.Sc. Thesis, Pukyong National University.

Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc

School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. China
a yqwang@mail.xjtu.edu.cn,, bwjy2006@stu.xjtu.edu.cn,, c hlchen@mail.xjtu.edu.cn,

Abstract:

This paper presents the fabrication of a novel micro-machined cytometric device, and the experimental investigations for its 3D hydrodynamic focusing performance. The proposed device is simple in structure, with the uniqueness that the depth of its microchannels is non-uniform. Using the SU-8 soft lithography containing two exposures, as well as micro-molding techniques, the PDMS device is successfully fabricated. Two kinds of experiments, i.e., the red ink fluidity observation experiments and the fluorescent optical experiments, are then performed for the device prototypes with different step heights, or channel depth differences, to explore the influence laws of the feature parameter on the devices hydrodynamic focusing behaviors. The experimental results show that the introducing of the steps can efficiently enhance the vertical focusing performance of the device. At appropriate geometry and operating conditions, good 3D hydrodynamic focusing can be obtained.

Korea Abstract

이 논문은 새로운 마이크로 머신 세포 측정 장치의 제조와 3D 유체 역학적 초점 성능에 대한 실험적 조사를 제시합니다. 제안 된 장치는 구조가 단순하며, 마이크로 채널의 깊이가 균일하지 않다는 독특함이 있습니다. 두 가지 노출이 포함 된 SU-8 소프트 리소그래피와 마이크로 몰딩 기술을 사용하여 PDMS 장치가 성공적으로 제작되었습니다. 그런 다음 두 종류의 실험, 즉 적색 잉크 유동성 관찰 실험과 형광 광학 실험을 단계 높이 또는 채널 깊이 차이가 다른 장치 프로토 타입에 대해 수행하여 장치 유체 역학적 초점에 대한 기능 매개 변수의 영향 법칙을 탐색합니다. 행동. 실험 결과는 단계의 도입이 장치의 수직 초점 성능을 효율적으로 향상시킬 수 있음을 보여줍니다. 적절한 형상과 작동 조건에서 우수한 3D 유체 역학적 초점을 얻을 수 있습니다.

Keywords

Flow cytometer, Hydrodynamic focusing, Three-dimensional (3D), Micro-machined

Fig.1 Schematic diagram of the novel cytometric device
Fig.1 Schematic diagram of the novel cytometric device
Fig.2 Overview of the cytometric device fabrication process
Fig.2 Overview of the cytometric device fabrication process
Fig.3 The fabricated micro cytometric device Fig.4 Experiment setup for focusing performance
Fig.3 The fabricated micro cytometric device Fig. 4 Experiment setup for focusing performance
Fig.5 Horizontal focusing images of two devices with and without steps
Fig.5 Horizontal focusing images of two devices with and without steps
Fig.6 Channel cross-section fluorescence images for different step heights
Fig.6 Channel cross-section fluorescence images for different step heights

References 

Fig.7 Effect of the step height on the 3D focusing at different velocity ratios
Fig.7 Effect of the step height on the 3D focusing at different velocity ratios

Conclusions

In this paper, we presented a novel micro-machined cytometric device and its fabrication process,
emphasizing on the experimental investigations for its 3D hydrodynamic focusing performance. The
proposed device is simple in structure, low cost, and easy to be batch produced. Besides this, as a
device based on standard micro-fabrication methodology, it can be conveniently integrated with other
micro-fluidic and/or micro-optical units to form a complete detection and analysis system.
The experimental tests for the prototype devices not only verified the design conception, but also
gave us a comprehensive understanding of the device hydro-focusing performance. The experimental
results show that, as the uniqueness of this design, the introducing of the feature steps can
significantly enhance the vertical focusing performance of the devices, which is crucial for the
achievement of 3D focusing. In summary, for the proposed novel device, good 3D hydrodynamic
focusing can be attained at appropriate geometry and operating conditions.
In addition, an improved design can be obtained by replacing the flat cover with an identical
device unit, in other words, the same two device units are bonded together (The channels are inward
and aligned) to form a new device. Then the sample stream can focused to the center of the assembly
outlet channel due to the hydrodynamic forces equally in both horizontal and vertical directions, and
thus avoiding the adsorption or friction issues of cells/particles to the top channel wall.

References

[1] Mandy FF, Bergeron M, Minkus T, Principles of flow cytometry. Transfusion Science Transfusion Science, 16 (1995) 303.

DOI: 10.1016/0955-3886(95)00041-0

[2] Rieseberg M, Kasper C, Reardon KF, and Scheper T, Flow cytometry in biotechnology, Appl. Microbiol. Biotechnol. 56 (2001) 350.

[3] Chung TD, Kim HC, Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis, Electrophoresis. 28(2007) 4511.

DOI: 10.1002/elps.200700620

[4] Xuan X, Zhu J, Church C, Particle focusing in microfluidic devices, Microfluid Nanofluid. 9(2010) 1-16.

DOI: 10.1007/s10404-010-0602-7

[5] Stone H A, Stroock A D and Ajdari A, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech. 36 (2004) 381-411.

[6] Fu LM, Yang RJ, Lin CH, Pan YJ, and Lee GB, Electrokinetically-driven microflow cytometers with integrated fiber optics for on-line cell/particle collection, Analytica Chimica Acta. 507(2004) 163-169.

DOI: 10.1016/j.aca.2003.10.028

[7] Applegate Jr RW, Schafer DN, Amir W, Squier J, Vestad T, Oakey J and Marr DWM, Optically integrated microfluidic systems for cellular characterization and manipulation, J. Opt. A: Pure Appl. Opt. 9(2007) 122-128.

DOI: 10.1088/1464-4258/9/8/s03

[8] Chang CM, Hsiung SK, Lee GB, Micro flow cytometer chip integrated with micro-pumps/micro-valves for multi-wavelength cell counting and sorting, Jpn. J. Appl. Phys. 46 (2007): 3126-3134.

DOI: 10.1143/jjap.46.3126

[9] Lee GB, Hung CI, Ke BJ, Huang GR, Hwei BH, and Lai Hui-Fang, Hydrodynamic focusing for a micromachined flow cytometer, J Fluids Engineering 123(2001) 672-679.

DOI: 10.1115/1.1385514

[10] Weigl BH, Bardell R, Schulte T, Battrell F and Hayenga J, Design and rapid prototyping of thin-film laminate-based microfluidic devices, Biomed Microdevices. 3(2001) 267-274.

DOI: 10.1023/a:1012448412811

[11] Yang AS, Hsieh WH, Hydrodynamic focusing investigation in a micro-flow cytometer, Biomed Microdevices, 9(2007) 113-122.

DOI: 10.1007/s10544-006-9003-9

[12] Ateya DA, Erickson JS, Howell PB Jr, Hilliard LR, Golden JP, Ligler FS, The good, the bad, and the tiny: a review of microflow cytometry, Anal Bioanal Chem. 391(2008) 1485-1498.

DOI: 10.1007/s00216-007-1827-5

[13] Goranovic G, Perch-Nielsen I, Larsen UD, Wolff A, Kutter J and Telleman P, Three-Dimensional Single Step Flow Sheathing in Micro Cell Sorters, Proceedings of MSM Conference. (2001) pp.242-245.

[14] Lin CH, Lee GB, Fu LM, and Hwey BH, Vertical focusing device utilizing dielectrophoretic force and its application on mocroflow cytometer, J. Microelectromech. Syst. 13 (2004) 923-932.

DOI: 10.1109/jmems.2004.838352

[15] Yang R, Feeback DL, Wang W, Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications, Sens. Actuat. A. 118(2005) 259-267.

DOI: 10.1016/j.sna.2004.09.001

[16] Hairer G, Pärr GS, Svasek P, Jachimowicz A, and Vellekoop MJ, Investigations of micrometer sample stream profiles in a three-dimensional hydrodynamic focusing device, Sens. Actuat. B. 132 (2008) 518-524.

DOI: 10.1016/j.snb.2007.11.018

[17] Mao X, Lin SC, Dong C, and Huang TJ, Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing, Lab Chip. 9 (2009) 1583-1589.

DOI: 10.1039/b820138b

[18] Wang Y, Wang J, Chen H, Zhu Z, and Wang B, Prototype of a novel micro-machined cytometer and its 3D hydrodynamic focusing properties, Microsyst. Technol. 18(2012) 1991-(1997).

DOI: 10.1007/s00542-012-1525-x

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.

Experimental Method for the Measurements and Numerical Investigations of Force Generated on the Rotating Cylinder under Water Flow

by Teresa Abramowicz-Gerigk 1,*,Zbigniew Burciu 1,Jacek Jachowski 1,Oskar Kreft 2,Dawid Majewski 3,Barbara Stachurska 3,Wojciech Sulisz 3 andPiotr Szmytkiewicz 3

1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland
2AREX Ltd., 81-212 Gdynia, Poland
3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland
*Author to whom correspondence should be addressed.
Academic Editor: Remco J. WiegerinkSensors202121(6), 2216; https://doi.org/10.3390/s21062216
Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)

Abstract

본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.

테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.

실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.

The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.

The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.

Keywords: rotating cylinderforce sensor with built-in amplifierstrain gauge sensorCFD analysis

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 2. Scheme of the measurement area.
Figure 2. Scheme of the measurement area.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 16. Measured (EXP) and computed (CFD) lift force values.
Figure 16. Measured (EXP) and computed (CFD) lift force values.

결론

결론은 다음과 같습니다.
계산 결과가 일반적으로 실험 데이터와 일치하는 경우 계산 결과는 검증 된 것으로 간주되며 추가 예측에 사용할 수 있습니다. 검증 실험을 통해 메쉬 밀도와 난류 모델을 결정할 수있었습니다.
작은 전류 속도 0.4m / s 및 0.5m / s에서 직경 D3의 로터에 대해 계산 된 양력 값은 회전 속도가 200rpm 이상일 때의 실험 값과 달랐습니다. 그 이유는 실험 중에 관찰 된 강한 진동과 수치 시뮬레이션에서 모델링되지 않은 유동 분리 때문이었습니다.
D2 직경을 가진 로터의 경우 작은 rpm에서 양력의 반대 부호가 관찰되었습니다. 이 현상은 시뮬레이션 중에 관찰되지 않았습니다.
제시된 실험 테스트 설정은 드라이브,지지 구조물 및 측정 장치에 손상을 주지 않고 진동을 포함한 모든 현상을 관찰 할 수 있도록 구성되었습니다. Wang et al. [14]는 동일한 α 값에서 실린더 종횡비가 증가함에 따라 와류 유발 진동이 증가하는 것을 관찰했습니다.
실험의 원활한 진행은 장치 손상 가능성과 함께 약 4의 α에 영향을 미쳤습니다. 본 연구에서는 α = 4.8에서 시작하는 가장 큰 직경의 실린더에서 가장 강한 진동이 관찰되었습니다.
제시된 연구는 로터 생성 흐름의 능동적 제어에 대한 추가 연구의 첫 번째 부분으로 유체 역학적 힘의 신뢰할 수 있는 실험적 예측 방법을 설명했습니다 [22]. , 바람, 파도 [23].
논문의 참신함은 저상 실린더에 대해 회 전자에서 생성 된 유체 역학적 힘을 모델링 할 수있는 가능성에 대한 조사입니다.
이 방법의 주요 장점은 자유 표면 효과 및 유동 유도 회 전자 진동과 관련된 현상을 포함하여 회 전자 생성 유동장 및 유체 역학적 힘을 관찰 할 수 있다는 것입니다. 제안 된 테스트 설정 구성은 유체 역학적 힘의 매개 변수 연구, 스케일 효과 조사 및 낮은 전류 속도와 큰 회전 속도에서 큰 불일치가 확인 된 CFD 시뮬레이션 모델의 검증에 사용될 것입니다.

References

  1. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res. 201724, 27–34. [Google Scholar] [CrossRef]
  2. Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
  3. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec. 201960, 9–17. [Google Scholar]
  4. Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp. 20159, 591–596. [Google Scholar] [CrossRef]
  5. Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J. 201250, 271–283. [Google Scholar] [CrossRef]
  6. Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech. 1990220, 459. [Google Scholar] [CrossRef]
  7. Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model. 201236, 379–398. [Google Scholar] [CrossRef]
  8. Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol. 201924, 111–122. [Google Scholar] [CrossRef]
  9. Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng. 2015109, 7–13. [Google Scholar] [CrossRef]
  10. Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 1993255, 1–10. [Google Scholar] [CrossRef]
  11. Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 2017829, 486–511. [Google Scholar] [CrossRef]
  12. Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 2014740, 342–380. [Google Scholar] [CrossRef]
  13. Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy 20141, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
  14. Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl. 202019, 388–397. [Google Scholar] [CrossRef]
  15. Mobini, K.; Niazi, M. Simulation of unsteady flow around a rotating circular cylinder at various Reynolds numbers. JMEUT 201746, 249–257. Available online: https://www.researchgate.net/publication/323447030_Simulation_of_Unsteady_Flow_Around_a_Rotating_Circular_Cylinder_at_Various_Reynolds_Numbers (accessed on 15 January 2021).
  16. Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
  17. Nortek Manuals. The Comprehensive Manual for Velocimeters. 2018. Available online: https://support.nortekgroup.com/hc/en-us/articles/360029839351-The-Comprehensive-Manual-Velocimeters (accessed on 15 January 2021).
  18. Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG 20144, 280–290. [Google Scholar]
  19. Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
  20. Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
  21. FLOW-3D. Available online: https://www.flow3d.com/ (accessed on 15 January 2021).
  22. He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys. 2000163, 83–117. [Google Scholar] [CrossRef]
  23. Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies 202013, 1466. [Google Scholar] [CrossRef]
Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링

Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, point-of-care (POC) and home care systems. The design of such systems usually involves fluid being transported by capillary forces. Capillarity can enhance fluid transport for small volumes of fluid and can provide a reliable alternative to micro-scale pumping mechanisms. Advantages of capillary systems include:

  • Low cost due to easy and fast fabrication
  • User friendliness due to the simplicity of their design
  • Increased portability ensured by the capillary actuation of fluids
  • Enhanced accessibility caused by the open-surface nature of their design
  • Complete elimination of air bubbles guaranteed by the uniformly moving fluid front

For these reasons, open capillary systems are the preferred design option for various POC systems.

개방형 표면 미세 유체 시스템은 생물학, 생명 공학, 의학, POC (Point-of-Care) 및 홈 케어 시스템 분야에서 점점 인기를 얻고 있습니다. 이러한 시스템의 설계에는 일반적으로 모세관 힘에 의해 유체가 운반됩니다. 모세관은 소량의 유체에 대한 유체 수송을 향상시킬 수 있으며 마이크로 규모 펌핑 메커니즘에 대한 신뢰할 수있는 대안을 제공 할 수 있습니다. 모세관 시스템의 장점은 다음과 같습니다.

  • 쉽고 빠른 제작으로 인한 저렴한 비용
  • 디자인의 단순성으로 인한 사용자 편의성
  • 유체의 모세관 작동으로 인한 휴대 성 향상
  • 디자인의 개방형 특성으로 인한 접근성 향상
  • 균일하게 움직이는 유체 전면으로 보장되는 기포의 완전한 제거

이러한 이유로 개방형 모세관 시스템은 다양한 POC 시스템에서 선호되는 설계 옵션입니다.

모세관 흐름의 시작 조건

V 홈 치수
그림 1. V 홈 채널의 단면 치수 : W = 150 μm, h1 = 300 μm, h2 = 1200 μm, α = 14.5ο.

University at Buffalo와 University of Grenoble의 연구원들의 최근 논문에서 마이크로 그루브가 잠재적으로 모세관 효과를 향상시킬 수있는 방법을 보여주었습니다 [1]. 이 논문의 결과를 바탕으로, FLOW-3D를 사용하여 평행 한 플레이트로 대체 된 좁은 V- 홈 마이크로 채널 내부 유체의 자발적 모세관 흐름 (SCF)에 대한 사례 연구를 논의 할 것  입니다. 모세관 흐름의 시작에 대한 특정 조건이 충족되면 혈류를 모니터링하기위한 POC 시스템의 설계를 위해 전혈과 같은 점성 유체를 사용해도 큰 유체 속도를 얻을 수 있습니다.

모세관 흐름의 조건은 Gibbs 자유 에너지의 최소화를 기반으로 한 정적 접근 방식을 사용하여 이론적으로 설정할 수 있습니다. 보다 구체적으로, 입구 압력이 0 일 때 모세관 흐름이 시작되는 조건은 다음과 같습니다.

(수식 1)           pF/pW < cos⁡ θ

여기서  θ  는 영 접촉각이고  F  및  W  는 각각 유동의 임의 단면에서 자유 및 습식 둘레입니다. 그림 1에 표시된 것과 같은 반각 α 를 갖는 V- 홈 마이크로 채널의  경우 몇 가지 수학적 조작 후 eq. 1은 다음과 같이 다시 작성할 수 있습니다.

(수식 2)         sin α = cos⁡ θ

우리의 경우  α  ≈ 14.5 ο 가 있으므로 모세관 흐름의 조건은  θ  <75.5 o 입니다.

FLOW-3D 에서 시뮬레이션

정적 접근 방식이 SCF의 시작에 관한 중요한 정보를 제공하지만 수치 접근 방식은 현장 진료 장치에서 유동 역학을 연구하는 데 더 적합합니다. 접촉각이 37 °  이고 전혈의 유체 특성 을 갖는 V- 홈 마이크로 채널에 대해 CFD 분석을 수행했습니다 . 혈액의 점도는 거의 일정하기 때문에 흐름 체제는 뉴턴으로 간주됩니다 [1]. 유체 운동이 모세관 효과에 의해서만 발생하도록 모든 경계와 계산 영역 전체에 균일 한 주변 압력이 적용되었습니다. 시뮬레이션은 처음 4mm의 유체 이동을 포함하는 초기 시뮬레이션과 4mm에서 8mm의 유체 이동을 예측하는 재시작 시뮬레이션의 두 부분으로 나뉩니다.

결과 및 검증

처음 8mm 이동에 대한 유동 역학은 그림 2에 나와 있습니다.이 그림은 세 가지 다른 시간에 슬롯에서 전진 인터페이스의 모양을 보여줍니다. 필라멘트 (Concus-Finn 필라멘트)의 점진적인 확장은 주 흐름보다 앞서 볼 수 있습니다.

모세관 흐름 시뮬레이션
그림 2. 세 가지 다른 시간에서 FLOW-3D를 사용하여 진행하는 모세관 흐름의 동적 계산 : (a) 0.04, (b) 0.07 및 (c) 0.11 초와 삽입물 (i1), (i2) 및 (i3) Concus-Finn 필라멘트의 진화 [1].

분석, 수치 및 실험 결과 간의 비교는 그림 3에 나와 있습니다. 수치 예측과 실험 간에는 탁월한 일치가 있습니다. 분석 솔루션도 플롯되었지만 채널 하단에있는 Concus – Finn 필라멘트의 효과가 고려되지 않았기 때문에 수치 및 실험 결과에 대한 유효한 비교를 나타내지 않을 수 있습니다.

모세관 흐름 검증
그림 3. (A) 시간의 함수로서 채널의 속도. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도. (B) 시간의 함수로서 액체 전면의 원점으로부터의 거리. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도 [1].

전혈 이외에도 식용 색소로 착색 한 물과 점성이 높은 알기 네이트 용액을 포함하여 장치가 고점도 유체를 이동시킬 수있는 가능성을 테스트하는 등 다양한 유체를 연구했습니다. 혈액과 같은 고점도 액체는 1 초 이내에 이동할 수 있습니다 (아래 애니메이션 참조).https://www.youtube.com/embed/v4OYoHStJ1w?controls=1&rel=0&playsinline=0&modestbranding=0&autoplay=0&enablejsapi=1&origin=https%3A%2F%2Fwww.flow3d.com&widgetid=1

사례 연구는 상대적으로 큰 점도 (물의 4 배)를 갖는 전혈의 경우 최대 7.5cm / s의 속도를 달성했음을 보여줍니다. 실험 결과 및  FLOW-3D  예측에 따라 전체 채널은 0.2 초 이내에 혈액으로 채워졌습니다. FLOW-3D  시뮬레이션 결과는 실험 관찰 결과와 매우 일치하며, V-groove 내부의 거리에 따라 속도가 감소하지만 장치의 전체 길이에 걸쳐 중요 함을 나타냅니다.

참고 문헌

  1. Berthier, J., K. Brakke, E. P. Furlani, I. H. Karampelas, and G. Delapierre. “Open-surface microfluidics.” In Proceedings of the Nanotech International Conference, pp. 15-19. 2014.
  2. Hirt, Cyril W., and Billy D. Nichols. “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of computational physics 39, no. 1 (1981): 201-225.
  3. Rajaratnam, N., and M. R. Chamani. “Energy loss at drops.” Journal of Hydraulic Research 33, no. 3 (1995): 373-384.
Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

통합 관성 펌프를 사용하여 마이크로 채널에서 비접촉식 기포-기포 상호 작용 모델링

Physics of Fluids 33, 042002 (2021); https://doi.org/10.1063/5.0041924 B. Hayesa) G. L. Whitingb), and  R. MacCurdyc)

ABSTRACT

In this study, the nonlinear effect of contactless bubble–bubble interactions in inertial micropumps is characterized via reduced parameter one-dimensional and three-dimensional computational fluid dynamics (3D CFD) modeling. A one-dimensional pump model is developed to account for contactless bubble-bubble interactions, and the accuracy of the developed one-dimensional model is assessed via the commercial volume of fluid CFD software, FLOW-3D. The FLOW-3D CFD model is validated against experimental bubble dynamics images as well as experimental pump data. Precollapse and postcollapse bubble and flow dynamics for two resistors in a channel have been successfully explained by the modified one-dimensional model. The net pumping effect design space is characterized as a function of resistor placement and firing time delay. The one-dimensional model accurately predicts cumulative flow for simultaneous resistor firing with inner-channel resistor placements (0.2L < x < 0.8L where L is the channel length) as well as delayed resistor firing with inner-channel resistor placements when the time delay is greater than the time required for the vapor bubble to fill the channel cross section. In general, one-dimensional model accuracy suffers at near-reservoir resistor placements and short time delays which we propose is a result of 3D bubble-reservoir interactions and transverse bubble growth interactions, respectively, that are not captured by the one-dimensional model. We find that the one-dimensional model accuracy improves for smaller channel heights. We envision the developed one-dimensional model as a first-order rapid design tool for inertial pump-based microfluidic systems operating in the contactless bubble–bubble interaction nonlinear regime

이 연구에서 관성 마이크로 펌프에서 비접촉 기포-기포 상호 작용의 비선형 효과는 감소 된 매개 변수 1 차원 및 3 차원 전산 유체 역학 (3D CFD) 모델링을 통해 특성화됩니다. 비접촉식 기포-버블 상호 작용을 설명하기 위해 1 차원 펌프 모델이 개발되었으며, 개발 된 1 차원 모델의 정확도는 유체 CFD 소프트웨어 인 FLOW-3D의 상용 볼륨을 통해 평가됩니다.

FLOW-3D CFD 모델은 실험적인 거품 역학 이미지와 실험적인 펌프 데이터에 대해 검증되었습니다. 채널에 있는 두 저항기의 붕괴 전 및 붕괴 후 기포 및 유동 역학은 수정 된 1 차원 모델에 의해 성공적으로 설명되었습니다. 순 펌핑 효과 설계 공간은 저항 배치 및 발사 시간 지연의 기능으로 특징 지어집니다.

1 차원 모델은 내부 채널 저항 배치 (0.2L <x <0.8L, 여기서 L은 채널 길이)로 동시 저항 발생에 대한 누적 흐름과 시간 지연시 내부 채널 저항 배치로 지연된 저항 발생을 정확하게 예측합니다. 증기 방울이 채널 단면을 채우는 데 필요한 시간보다 큽니다.

일반적으로 1 차원 모델 정확도는 저수지 근처의 저항 배치와 1 차원 모델에 의해 포착되지 않는 3D 기포-저수지 상호 작용 및 가로 기포 성장 상호 작용의 결과 인 짧은 시간 지연에서 어려움을 겪습니다. 채널 높이가 작을수록 1 차원 모델 정확도가 향상됩니다. 우리는 개발 된 1 차원 모델을 비접촉 기포-기포 상호 작용 비선형 영역에서 작동하는 관성 펌프 기반 미세 유체 시스템을 위한 1 차 빠른 설계 도구로 생각합니다.

REFERENCES

1.S. Hassan and X. Zhang, “ Design and fabrication of capillary-driven flow device for point-of-care diagnostics,” Biosensors 10, 39 (2020). https://doi.org/10.3390/bios10040039, Google ScholarCrossref
2.Q. Shizhi and H. Bau, “ Magneto-hydrodynamics based microfluidics,” Mech. Res. Commun. 36, 10 (2009). https://doi.org/10.1016/j.mechrescom.2008.06.013, Google ScholarCrossref
3.N. Mishchuk, T. Heldal, T. Volden, J. Auerswald, and H. Knapp, “ Micropump based on electroosmosis of the second kind,” Electrophoresis 30, 3499 (2009). https://doi.org/10.1002/elps.200900271, Google ScholarCrossref
4.J. Snyder, J. Getpreecharsawas, D. Fang, T. Gaborski, C. Striemer, P. Fauchet, D. Borkholder, and J. McGrath, “ High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes,” Proc. Nat. Acad. Sci. U. S. A. 110, 18425–18430 (2013). https://doi.org/10.1073/pnas.1308109110, Google ScholarCrossref
5.K. Vinayakumar, G. Nadiger, V. Shetty, S. Dinesh, M. Nayak, and K. Rajanna, “ Packaged peristaltic micropump for controlled drug delivery application,” Rev. Sci. Instrum. 88, 015102 (2017). https://doi.org/10.1063/1.4973513, Google ScholarScitation, ISI
6.D. Duffy, H. Gillis, J. Lin, N. Sheppard, and G. Kellogg, “ Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays,” Anal. Chem. 71, 4669 (1999). https://doi.org/10.1021/ac990682c, Google ScholarCrossref
7.V. Gnyawali, M. Saremi, M. Kolios, and S. Tsai, “ Stable microfluidic flow focusing using hydrostatics,” Biomicrofluidics 11, 034104 (2017). https://doi.org/10.1063/1.4983147, Google ScholarScitation, ISI
8.J. Lake, K. Heyde, and W. Ruder, “ Low-cost feedback-controlled syringe pressure pumps for microfluidics applications,” PLoS One 12, e0175089 (2017). https://doi.org/10.1371/journal.pone.0175089, Google ScholarCrossref
9.M. I. Mohammed, S. Haswell, and I. Gibson, “ Lab-on-a-chip or chip-in-a-lab: Challenges of commercialization lost in translation,” Procedia Technology 20, 54–59 (2015), proceedings of The 1st International Design Technology Conference, DESTECH2015, Geelong. Google ScholarCrossref
10.E. Torniainen, A. Govyadinov, D. Markel, and P. Kornilovitch, “ Bubble-driven inertial micropump,” Phys. Fluids 24, 122003 (2012). https://doi.org/10.1063/1.4769755, Google ScholarScitation, ISI
11.H. Hoefemann, S. Wadle, N. Bakhtina, V. Kondrashov, N. Wangler, and R. Zengerle, “ Sorting and lysis of single cells by bubblejet technology,” Sens. Actuators, B 168, 442–445 (2012). https://doi.org/10.1016/j.snb.2012.04.005, Google ScholarCrossref
12.B. Hayes, A. Hayes, M. Rolleston, A. Ferreira, and J. Kirsher, “ Pulsatory mixing of laminar flow using bubble-driven micro-pumps,” in Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition (2018), Vol. 7. Google ScholarCrossref
13.E. Ory, H. Yuan, A. Prosperetti, S. Popinet, and S. Zaleski, “ Growth and collapse of a vapor bubble in a narrow tube,” Phys. Fluids 12, 1268 (2000). https://doi.org/10.1063/1.870381, Google ScholarScitation, ISI
14.Z. Yin and A. Prosperetti, “‘ Blinking bubble’ micropump with microfabricated heaters,” J. Micromech. Microeng. 15, 1683 (2005). https://doi.org/10.1088/0960-1317/15/9/010, Google ScholarCrossref
15.M. Einat and M. Grajower, “ Microboiling measurements of thermal-inkjet heaters,” J. Microelectromech. Syst. 19, 391 (2010). https://doi.org/10.1109/JMEMS.2010.2040946, Google ScholarCrossref
16.A. Govyadinov, P. Kornilovitch, D. Markel, and E. Torniainen, “ Single-pulse dynamics and flow rates of inertial micropumps,” Microfluid. Nanofluid. 20, 73 (2016). https://doi.org/10.1007/s10404-016-1738-x, Google ScholarCrossref
17.E. Sourtiji and Y. Peles, “ A micro-synthetic jet in a microchannel using bubble growth and collapse,” Appl. Therm. Eng. 160, 114084 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114084, Google ScholarCrossref
18.B. Hayes, A. Govyadinov, and P. Kornilovitch, “ Microfluidic switchboards with integrated inertial pumps,” Microfluid. Nanofluid. 22, 15 (2018). https://doi.org/10.1007/s10404-017-2032-2, Google ScholarCrossref
19.P. Kornilovitch, A. Govyadinov, D. Markel, and E. Torniainen, “ One-dimensional model of inertial pumping,” Phys. Rev. E 87, 023012 (2013). https://doi.org/10.1103/PhysRevE.87.023012, Google ScholarCrossref
20.H. Yuan and A. Prosperetti, “ The pumping effect of growing and collapsing bubbles in a tube,” J. Micromech. Microeng. 9, 402–413 (1999). https://doi.org/10.1088/0960-1317/9/4/318, Google ScholarCrossref
21.J. Zou, B. Li, and C. Ji, “ Interactions between two oscillating bubbles in a rigid tube,” Exp. Therm. Fluid Sci. 61, 105 (2015). https://doi.org/10.1016/j.expthermflusci.2014.10.021, Google ScholarCrossref
22.C. Hirt and B. Nichols, “ Volume of fluid (vof) method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5, Google ScholarCrossref
23.C. Borgnakke and R. E. Sonntag, Fundamentals of Thermodynamics, 8th ed. ( Wiley, 1999). Google Scholar
24.O. E. Ruiz, “ CFD model of the thermal inkjet droplet ejection process,” in Proceeding of Heat Transfer Summer Conference (2007), Vol. 3. Google ScholarCrossref
25.T. Theofanous, L. Biasi, H. Isbin, and H. Fauske, “ A theoretical study on bubble growth in constant and time-dependent pressure fields,” Chem. Eng. Sci. 24, 885–897 (1969). https://doi.org/10.1016/0009-2509(69)85008-6, Google ScholarCrossref
26.S. Timoshenko and J. Goodier, Theory of Elasticity, 3rd ed. ( McGaw-Hill, Inc., 1970). Google Scholar

Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.

Numerical Study of Fluctuating Pressure on Stilling Basin Slab with Sudden Lateral Enlargement and Bottom Drop

급격한 측면 확대 및 바닥 낙하에 따른 정류지(stilling basin) 슬래브의 변동 압력에 대한 수치 연구

by Yangliang Lu,Jinbu Yin *OrcID,Zhou Yang,Kebang Wei andZhiming Liu
College of Water Resources and Architectural Engineering, Northwest A&F University, Weihui Road, Yangling 712100, China*
Author to whom correspondence should be addressed.
Water 2021, 13(2), 238; https://doi.org/10.3390/w13020238
Received: 6 November 2020 / Revised: 7 January 2021 / Accepted: 11 January 2021 / Published: 19 January 2021
(This article belongs to the Special Issue Physical Modelling in Hydraulics Engineering)

Abstract

갑작스런 확장 및 바닥 낙하가 있는 고요한 정류지(stilling basin) 유역은 복잡한 수력 특성, 특히 3D 공간 수력 점프 아래에서 변동하는 압력 분포로 이어집니다.

이 논문은 FLOW-3D 소프트웨어를 기반으로 한 LES (Large Eddy Simulation) 모델과 TruVOF 방법을 사용하여 시간 평균 압력, 변동 압력의 RMS (Root Mean Square), 정물(stilling basin) 조 슬래브의 최대 및 최소 압력을 시뮬레이션했습니다.

실제 모델 결과와 비교하여 시뮬레이션 결과는 LES 모델이 정물 유역의 변동하는 수류 압력을 안정적으로 시뮬레이션 할 수 있음을 보여줍니다. 변동 압력의 RMS의 최대 값은 정수조 전면과 측벽의 연장선 부근에 나타납니다.

이 논문은 변동 압력의 생성 메커니즘과 Navier-Stokes 방정식에서 파생된 Poisson 방정식을 기반으로 영향 요인 (변동 속도, 속도 구배, 변동 와도)의 정량 분석과 특성의 정성 분석을 결합하는 연구 방법을 제공합니다.

변동하는 압력의. 정류 지의 소용돌이 영역과 벽에 부착 된 제트 영역의 변동 압력 분포는 주로 각각 와류 및 변동 유속의 영향을 받으며 충돌 영역의 분포는 변동 속도, 속도 구배 및 변동에 의해 발생합니다.

A stilling basin with sudden enlargement and bottom drop leads to complicated hydraulic characteristics, especially a fluctuating pressure distribution beneath 3D spatial hydraulic jumps. This paper used the large eddy simulation (LES) model and the TruVOF method based on FLOW-3D software to simulate the time-average pressure, root mean square (RMS) of fluctuating pressure, maximum and minimum pressure of a stilling basin slab. Compared with physical model results, the simulation results show that the LES model can simulate the fluctuating water flow pressure in a stilling basin reliably. The maximum value of RMS of fluctuating pressure appears in the vicinity of the front of the stilling basin and the extension line of the side wall. Based on the generating mechanism of fluctuating pressure and the Poisson Equation derived from the Navier–Stokes Equation, this paper provides a research method of combining quantitative analysis of influencing factors (fluctuating velocity, velocity gradient, and fluctuating vorticity) and qualitative analysis of the characteristics of fluctuating pressure. The distribution of fluctuating pressure in the swirling zone of the stilling basin and the wall-attached jet zone is mainly affected by the vortex and fluctuating flow velocity, respectively, and the distribution in the impinging zone is caused by fluctuating velocity, velocity gradient and fluctuating vorticity. 

Keywords: submerged jumpsudden lateral enlargement and bottom droplarge eddy simulationvortexfluctuating pressure

Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 1. Schematic design of model test: (a) Sectional view; (b) Plan view.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.
Figure 2. Model layout in laboratory: (a) Discharge chute; (b) The stilling basin.

Table 1. Operating conditions.

ConditionFlow Discharge
(m3/s)
Inflow Froude NumberInflow Velocity (m/s)Inflow Water Depth (m)
10.9425.2955.6110.114
20.6434.5454.4890.097
30.2324.2273.0180.052
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 3. Schematic diagram of fluctuating pressure data-processing process.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.
Figure 4. 3D simulation model: (a) Boundary conditions; (b) Grid mesh.

Table 2. Grid independence test.

GridContaining Block Cell Size (m)Nested Block Cell Size (m)Discharge
(m3/s)
Relative Error (%)
10.0500.0250.9905.10
20.0400.0200.9692.70
30.0300.0150.9561.49
40.0200.0100.9521.06
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 5. Flow pattern of operating condition 1: (a) Physical model flow diagram; (b) Simulation model flow.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 6. Numerical simulation of water surface profile and x-z plane flow rate vector.
Figure 7. Comparison of bottom velocity.
Figure 7. Comparison of bottom velocity.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 8. Comparison of pressure at 10 pressure measurement points: (a) Comparison of root mean square (RMS) of fluctuating and time-average pressure; (b) Comparison of maximum and minimum pressure.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 9. The distribution diagram of time-average pressure and RMS of fluctuating pressure of bottom of stilling basin under three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 10. Speed vector in stilling basin at z = 40 cm horizontal plane and bottom plate plane in three cases.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 11. Distribution of fluctuating velocity and vorticity in the horizontal section of the stilling basin slab: (a) Distribution of fluctuating velocity; (b) Distribution of fluctuating vorticity.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 12. Distribution of root time-average square fluctuating pressure of x = 50 cm cross-section of bottom plate: (a) Distributions of fluctuating velocity and fluctuating pressure; (b) Distributions of fluctuating vorticity and fluctuating pressure.
Figure 13. Variance of fluctuating pressure coefficient (Cp′).
Figure 13. Variance of fluctuating pressure coefficient (Cp′).

References

  1. Liu, P.Q.; Dong, J.R.; Yu, C. Experimental investigation of fluctuation uplift on rock blocks at the bottom of the scour pool downstream of Three-Gorges spillway. J. Hydraul. Res. 199836, 55–68. [Google Scholar] [CrossRef]
  2. Liu, P.Q.; Li, A.H. Model discussion of pressure fluctuations propagation within lining slab joints in stilling basins. J. Hydraul. Eng. 2007133, 618–624. [Google Scholar] [CrossRef]
  3. Mousavi, S.N.; Júnior, R.S.; Teixeira, E.D.; Bocchiola, D.; Nabipour, N.; Mosavi, A.; Shamshirband, S. Predictive Modeling the Free Hydraulic Jumps Pressure through Advanced Statistical Methods. Mathematics 20208, 323. [Google Scholar] [CrossRef]
  4. Sun, S.-K.; Liu, H.-T.; Xia, Q.-F.; Wang, X.-S. Study on stilling basin with step down floor for energy dissipation of hydraulic jump in high dams. J. Hydraul. Eng. 200536, 1188–1193. (In Chinese) [Google Scholar]
  5. Li, Q.; Li, L.; Liao, H. Study on the Best Depth of Stilling Basin with Shallow-Water Cushion. Water 201810, 1801. [Google Scholar] [CrossRef]
  6. Luo, Y.-Q.; He, D.-M.; Zhang, S.-C.; Bai, S. Experimental Study on Stilling Basin with Step-down for Floor Slab Stability Characteristics. J. Basic Sci. Eng. 201220, 228–236. (In Chinese) [Google Scholar]
  7. Zhang, J.; Zhang, Q.; Wang, T.; Li, S.; Diao, Y.; Cheng, M.; Baruch, J. Experimental Study on the Effect of an Expanding Conjunction Between a Spilling Basin and the Downstream Channel on the Height After Jump. Arab. J. Sci. Eng. 201742, 4069–4078. [Google Scholar] [CrossRef]
  8. Ram, K.V.S.; Prasad, R. Spatial B-jump at sudden channel enlargements with abrupt drop. J. Hydraul. Eng. -Asce 1998124, 643–646. [Google Scholar] [CrossRef]
  9. Hassanpour, N.; Hosseinzadeh Dalir, A.; Farsadizadeh, D.; Gualtieri, C. An Experimental Study of Hydraulic Jump in a Gradually Expanding Rectangular Stilling Basin with Roughened Bed. Water 20179, 945. [Google Scholar] [CrossRef]
  10. Siuta, T. The impact of deepening the stilling basin on the characteristics of hydraulic jump. Czas. Tech. 2018. [Google Scholar] [CrossRef]
  11. Babaali, H.; Shamsai, A.; Vosoughifar, H. Computational Modeling of the Hydraulic Jump in the Stilling Basin with Convergence Walls Using CFD Codes. Arab. J. Sci. Eng. 201440, 381–395. [Google Scholar] [CrossRef]
  12. Dehdar-behbahani, S.; Parsaie, A. Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran. Alex. Eng. J. 201655, 467–473. [Google Scholar] [CrossRef]
  13. Macián-Pérez, J.F.; García-Bartual, R.; Huber, B.; Bayon, A.; Vallés-Morán, F.J. Analysis of the Flow in a Typified USBR II Stilling Basin through a Numerical and Physical Modeling Approach. Water 202012, 227. [Google Scholar] [CrossRef]
  14. Tajabadi, F.; Jabbari, E.; Sarkardeh, H. Effect of the end sill angle on the hydrodynamic parameters of a stilling basin. Eur. Phys. J. Plus 2018133. [Google Scholar] [CrossRef]
  15. Valero, D.; Bung, D.B.; Crookston, B.M. Energy Dissipation of a Type III Basin under Design and Adverse Conditions for Stepped and Smooth Spillways. J. Hydraul. Eng. 2018144. [Google Scholar] [CrossRef]
  16. Liu, D.; Fei, W.; Wang, X.; Chen, H.; Qi, L. Establishment and application of three-dimensional realistic river terrain in the numerical modeling of flow over spillways. Water Supply 201818, 119–129. [Google Scholar] [CrossRef]
  17. Epely-Chauvin, G.; De Cesare, G.; Schwindt, S. Numerical Modelling of Plunge Pool Scour Evolution In Non-Cohesive Sediments. Eng. Appl. Comput. Fluid Mech. 20158, 477–487. [Google Scholar] [CrossRef]
  18. Zhang, J.-M.; Chen, J.-G.; Xu, W.-L.; Peng, Y. Characteristics of vortex structure in multi-horizontal submerged jets stilling basin. Proc. Inst. Civ. Eng. Water Manag. 2014167, 322–333. [Google Scholar] [CrossRef]
  19. Li, L.-X.; Liao, H.-S.; Liu, D.; Jiang, S.-Y. Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. J. Hydrodyn. 201527, 522–529. [Google Scholar] [CrossRef]
  20. Ferreri, G.B.; Nasello, C. Hydraulic jumps at drop and abrupt enlargement in rectangular channel. J. Hydraul. Res. 201040, 491–505. [Google Scholar] [CrossRef]
  21. Naseri, F.; Sarkardeh, H.; Jabbari, E. Effect of inlet flow condition on hydrodynamic parameters of stilling basins. Acta Mech. 2017229, 1415–1428. [Google Scholar] [CrossRef]
  22. Zhou, Z.; Wang, J.-X. Numerical Modeling of 3D Flow Field among a Compound Stilling Basin. Math. Probl. Eng. 2019, 5934274. [Google Scholar] [CrossRef]
  23. Qian, Z.; Hu, X.; Huai, W.; Amador, A. Numerical simulation and analysis of water flow over stepped spillways. Sci. China Ser. E Technol. Sci. 200952, 1958–1965. [Google Scholar] [CrossRef]
  24. Liu, F. Study on Characteristics of Fluctuating Wall-Pressure and Its Similarity Law. Ph.D. Thesis, Tianjin University, Tianjin, China, May 2007. (In Chinese). [Google Scholar]
  25. Yan, Z.-M.; Zhou, C.-T.; Lu, S.-Q. Pressure fluctuations beneath spatial hydraulic jumps. J. Hydrodyn. 200618, 723–726. [Google Scholar] [CrossRef]
  26. Moin, P.; Kim, J. Numerical investigation of turbulent channel flow. J. Fluid Mech. 2006118. [Google Scholar] [CrossRef]
  27. Rezaeiravesh, S.; Liefvendahl, M. Effect of grid resolution on large eddy simulation of wall-bounded turbulence. Phys. Fluids 201830. [Google Scholar] [CrossRef]
  28. Stamou, A.I.; Chapsas, D.G.; Christodoulou, G.C. 3-D numerical modeling of supercritical flow in gradual expansions. J. Hydraul. Res. 201046, 402–409. [Google Scholar] [CrossRef]
  29. Savage, B.M.; Crookston, B.M.; Paxson, G.S. Physical and Numerical Modeling of Large Headwater Ratios for a 15 degrees Labyrinth Spillway. J. Hydraul. Eng. 2016142. [Google Scholar] [CrossRef]
  30. Aydin, M.C.; Ozturk, M. Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators. Can. J. Civ. Eng. 200936, 826–836. [Google Scholar] [CrossRef]
  31. Ma, B.; Liang, S.; Liang, C.; Li, Y. Experimental Research on an Improved Slope Protection Structure in the Plunge Pool of a High Dam. Water 20179, 671. [Google Scholar] [CrossRef]
  32. Bai, L.; Zhou, L.; Han, C.; Zhu, Y.; Shi, W.D. Numerical Study of Pressure Fluctuation and Unsteady Flow in a Centrifugal Pump. Processes 20197, 354. [Google Scholar] [CrossRef]
  33. Guven, A. A predictive model for pressure fluctuations on sloping channels using support vector machine. Int. J. Numer. Methods Fluids 201166, 1371–1382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure 5.6 Experimental set-up equipped with high-speed camera system

COMPUTATIONAL FLUID DYNAMIC MODELLING OF LASER ADDITIVE MANUFACTURING PROCESS AND EFFECT OF GRAVITY

전산 유체 역학 레이저 첨가제 모델링 제조 공정 및 중력의 영향

A thesis submitted to
The University of Manchester
For the degree of
Doctor of Philosophy (PhD)
In the Faculty of Science and Engineering
2017
Heng Gu
School of Mechanical, Aerospace and Civil
Engineering

레이저 적층 제조 (LAM)는 재료를 층별로 선택적으로 추가하여 하나 또는 여러 개의 레이저 빔을 사용하여 재료를 융합하거나 응고시키는 3D 부품을 형성하는 것을 기반으로 합니다.

LAM 공정을 조사하는 데 상당한 양의 작업을 할 수 있지만 다른 재료 성장 방향에서 중력 및 동적 유체 흐름 특성의 영향에 대해서는 알려진 바가 거의 없습니다.

레이저 제조 기술의 발전과 함께 LAM은 실린더 본체, 터빈 블레이드의 표면 클래딩, 해양 드릴링 헤드, 다양한 증착 방향이 일반적으로 필요한 슬리브 및 몰드의 측벽을 비롯한 다양한 환경에서 점점 더 많이 사용되고 있습니다. 또한 공간 적층 제조의 경우 운영 환경이 매우 낮거나 무중력을 경험하게 됩니다.

LAM 프로세스를 모델링하기 위한 수치적 방법 개발에 대한 이전 연구에서 많은 노력을 기울였습니다. 그러나 이전 모델링 작업의 대부분은 자유 표면 형성을 고려하지 않고 용융 풀 역학 개발에 초점을 맞추었습니다. 몇 가지 조사에만 동적 유동 용융 풀에 대한 재료 추가 분석이 포함됩니다.

다양한 재료 증착 방향 및 무중력 효과에서 수행 할 때 모든 복잡한 기능을 사용하여 증착 프로세스를 시뮬레이션하고 중력 효과를 고려할 수 있는 모델을 개발하는 작업은 발견되지 않았습니다.

이 연구에서는 재료 추가, 표면 장력, 용융 및 응고, 중력, 온도 의존 재료 속성, 자유 표면 형성 및 이동을 포함한 복합 공정 요인을 고려한 LAM 공정을 위해 3 차원 과도 전산 유체 역학 모델이 ​​구축되었습니다. 열원. 레이저 금속 증착 공정에 대한 더 나은 이해는 수치적으로 그리고 실험적으로 이루어졌습니다.

이 연구는 단일 레이어의 증착, 여러 인접 패스 및 돌출 된 피쳐가 있는 완전한 3 차원 형상을 다루었습니다. 증착 공정 중 다양한 증착 방향과 무중력 및 매우 낮은 중력에 대한 중력의 영향을 조사하고 그 영향을 최소화하기 위해 공정 매개 변수를 최적화 했습니다.

이 연구는 또한 층별 재료 추가를 기반으로 레이저 좁은 갭 용접 공정의 기본 현상과 용접 공정이 다른 방향으로 수행 될 때 중력이 홈 내부의 용융 풀 형성에 미치는 영향을 이해하는 데까지 확장되었습니다.

용융 풀 개발 이력 및 온도 분포를 분석하여 공정 중에 표면 장력 계수의 영향을 논의했습니다. 현재 모델의 도움으로 증착 불균일성, 증착 양단의 돌출부, 경사, 융착 부족, 계단 효과, 표면 파형, 중력 변화로 인한 붕괴 등 다양한 결함을 설명 하였습니다.

이러한 모든 결함을 제거하기 위한 해당 솔루션이 제시되었습니다. 무중력 레이저 적층 제조에 대한 연구는 이전에 보고되지 않았던 몇 가지 새로운 현상을 발견하여 우주에서 미래의 레이저 3D 프린팅을 위한 길을 닦았습니다.

Figure 1.1 Diagram for thesis structure
Figure 1.1 Diagram for thesis structure
Figure 2.1 Basic construction of a laser system [8]
Figure 2.1 Basic construction of a laser system [8]
Figure 2.3 Schematic of a diode laser system [12]
Figure 2.3 Schematic of a diode laser system [12]
Figure 2.4 Principle of a cladding pumped fibre laser [13]
Figure 2.4 Principle of a cladding pumped fibre laser [13]
Figure 2.5 Concept of a thin disk laser [14]
Figure 2.5 Concept of a thin disk laser [14]
Figure 2.7 Lateral powder injection [12]
Figure 2.7 Lateral powder injection [12]
Figure 2.9 Laser additive manufacturing using wire, (a) front feeding, (b) rear feeding,  wire placed at (c) leading edge, (d) centre and (e) trailing edge of melt pool [23, 24]
Figure 2.9 Laser additive manufacturing using wire, (a) front feeding, (b) rear feeding, wire placed at (c) leading edge, (d) centre and (e) trailing edge of melt pool [23, 24]
Figure 2.20 Bead geometry at the beginning of the deposition with different surface  tension gradient (a) Negative, (b) positive, (c) Mixed [85]
Figure 2.20 Bead geometry at the beginning of the deposition with different surface tension gradient (a) Negative, (b) positive, (c) Mixed [85]
Figure 2.22 Simulation of humping effect in high-speed gas tungsten arc welding [91]
Figure 2.22 Simulation of humping effect in high-speed gas tungsten arc welding [91]
Figure 2.25 (a) Melt pool shape formed by Marangoni stress only, (b) Melt pool shape  formed by gravity force only, (c) Melt shape formed by the combination of those two  forces together [122]
Figure 2.25 (a) Melt pool shape formed by Marangoni stress only, (b) Melt pool shape formed by gravity force only, (c) Melt shape formed by the combination of those two forces together [122]
Figure 2.27 Growth rate and temperature gradient on solidification boundary with  different melt pool shape [120]
Figure 2.27 Growth rate and temperature gradient on solidification boundary with different melt pool shape [120]
Figure 2.29 Two different methods to produce overhang structures[136]
Figure 2.29 Two different methods to produce overhang structures[136]
Figure 2.30 Contact angle of a water droplet adhering on a glass window [142]
Figure 2.30 Contact angle of a water droplet adhering on a glass window [142]
Figure 2.31 Stress components of a single track laser deposition (a) x-direction, (b) ydirection, (c) z-direction, (d) von Mises equivalent stress [151]
Figure 2.31 Stress components of a single track laser deposition (a) x-direction, (b) ydirection, (c) z-direction, (d) von Mises equivalent stress [151]
Figure 2.32 Phase fraction of martensite during laser metal deposition [160]
Figure 2.32 Phase fraction of martensite during laser metal deposition [160]
Figure 4.15 Development of melt pool and velocity field 0.588 s, 1.2 s, 1.896 s, 2.4 s
Figure 4.15 Development of melt pool and velocity field 0.588 s, 1.2 s, 1.896 s, 2.4 s
Figure 4.33 Two methods to print C, (A) raster (B) offset out
Figure 4.33 Two methods to print C, (A) raster (B) offset out
Figure 5.4(a) Cavitar laser illumination system (b) High-speed camera in horizontal  position
Figure 5.4(a) Cavitar laser illumination system (b) High-speed camera in horizontal position
Figure 5.5 Schematic diagrams of wire laser deposition process (a) flat (b) vertical
Figure 5.5 Schematic diagrams of wire laser deposition process (a) flat (b) vertical
Figure 5.6 Experimental set-up equipped with high-speed camera system
Figure 5.6 Experimental set-up equipped with high-speed camera system
Figure 5.7 2-layer deposition result and cross-section (a) top view, (b) experimental  cross section, (c) cross-section of modelling result
Figure 5.7 2-layer deposition result and cross-section (a) top view, (b) experimental cross section, (c) cross-section of modelling result
Figure 5.13 Temperature and melt pool-velocity field history for case 8, (a&f:0.36 s,  b&g:1.44 s, c&h:1.80 s, d&i:1.908 s, e&j:2.196 s)
Figure 5.13 Temperature and melt pool-velocity field history for case 8, (a&f:0.36 s, b&g:1.44 s, c&h:1.80 s, d&i:1.908 s, e&j:2.196 s)
Figure 5.16 Comparison of melt pool evolution for cases with big and small spot size
Figure 5.16 Comparison of melt pool evolution for cases with big and small spot size
Figure 6.27 (a,b,c) before re-melting, (d,e,f) after re-melting
Figure 6.27 (a,b,c) before re-melting, (d,e,f) after re-melting

6.5 Conclusion

좁은 갭 용접 공정의 다양한 측면을 다루는 3 차원 모델이 구축되었습니다. 용접 비드와 측벽 사이의 융합 현상이 없는 것은 필러 재료와 측벽을 녹일 수 있는 충분한 에너지를 제공 할 수 없는 낮은 열 입력으로 인한 것일 수 있습니다.

증가된 레이저 출력을 적용하거나 재 용융 패스를 수행 한 후 더 나은 표면 품질을 얻을 수 있고 측벽과의 융합 부족을 제거 할 수 있습니다. 용접 비드의 모양이 볼록한 모양에서 오목한 모양으로 바뀌고 측면 벽과의 좋은 젖음이 실현 될 수 있습니다.

다양한 위치에서 좁은 틈새 용접에 대한 중력의 영향을 조사했습니다. 용융 풀 전면의 경사 모양은 중력의 영향으로 다르게 나타납니다.

반면, 홈이 없는 기판의 증착 공정과 비교할 때 대부분의 열을 전달하는데 도움이 되는 측벽의 존재로 인해 중력의 영향이 감소했습니다.

마지막 패스 중에 중력은 일부 평평하지 않은 위치에서 심각한 낙하 및 붕괴 문제를 일으킬 수 있습니다. 이것은 표면에 더 큰 용융 풀이 형성되어 중력과 표면 장력 사이의 균형이 깨졌기 때문입니다. 수직 업 위치에서 좁은 간격 용접 공정 동안 다른 중력 수준이 적용되었습니다.

용접 비드와 측벽 사이의 융합 부족은 중력 수준이 증가함에 따라 관찰 될 수 있습니다. 중력이 증가하면 용융 풀의 뒤쪽 영역으로 더 많은 액체 재료가 이동하여 더 심각한 물방울과 볼록한 모양의 용접 비드가 발생합니다.

용융 풀 개발 이력의 도움으로 용접 비드가 더 이상 그루브에 있지 않거나 측벽과의 직접적인 접촉이 적을 때 전도를 통해 더 적은 열이 방출 될 수 있기 때문에 용융 풀 부피가 크게 증가한다는 것을 알 수 있습니다.

좁은 간격 용접 공정에 대한 표면 장력 계수의 영향을 조사했습니다. 양의 표면 장력 계수를 적용하면 용접 비드가 홈 내부에서 덜 오목한 것처럼 보였고 측벽의 습윤 조건이 음의 ∂γ / ∂T 조건의 경우만큼 좋지 않았습니다.

측벽이 없으면 용접 비드는 표면의 마지막 패스 동안 음의 계수와 양의 계수 케이스 사이에 더 많은 차이를 보여줍니다. 표면 장력 계수는 홈 내부의 측벽과의 융합 상태를 결정하는 데 중요한 역할을 했습니다.

두꺼운 부분의 좁은 틈새 용접 중에 여러 번 통과하는 용접 비드 개발이 조사되었습니다. 비드 모양은 열 축적으로 인해 더 많은 패스가 증착 될수록 더 오목 해집니다. 패스 간의 융합 부족은 때때로 다음 패스의 재 용융 공정을 통해 제거 될 수 있습니다. 이종 재료를 사용한 좁은 틈새 용접 프로세스가 성공적으로 시뮬레이션되었습니다.

중심선을 따라 용융 풀과 용접 비드의 비대칭 형성은 재료 열 특성의 차이에 기인 할 수 있으며, 결과적으로 측벽과의 융합 부족을 유발할 수 있습니다.

비드 비대칭 문제는 수평 위치에서 용접 공정을 수행하거나 총 열 입력을 증가시켜 열전도율이 높은 측벽을 녹이는 방식으로 피할 수 있습니다. 재 용융 공정은 표면 품질을 향상시키고 모재와의 융착 문제를 제거하기 위해 용접된 표면에 적용 할 때 유용한 것으로 밝혀졌습니다.

圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics

연구자 : Yu-Ren Chen
지도교수 : Dr John R C Hsu
June 2012

기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.

이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.

짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.

중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.

이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.

연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.

요약

서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.

대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.

반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.

예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.

격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.

해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.

바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.

그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.

위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.

최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.

또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.

圖1. 1  南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 2  障礙高度與分層流體厚度關係之示意圖
圖1. 2 障礙高度與分層流體厚度關係之示意圖
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 3  實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場

圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)
圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)

Reference

Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.

Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460

82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20

Liquid Metal 3D Printing

Liquid Metal 3D Printing

This article was contributed by V.Sukhotskiy1,2, I. H. Karampelas3, G. Garg 1, A. Verma1, M. Tong 1, S. Vader2, Z. Vader2, and E. P. Furlani1
1
University at Buffalo SUNY, 2Vader Systems, 3Flow Science, Inc.

Drop-on-demand 잉크젯 인쇄는 상업 및 소비자 이미지 재생을 위한 잘 정립 된 방법입니다. 이 기술을 주도하는 동일한 원리는 인쇄 및 적층 제조 분야에도 적용될 수 있습니다. 기존의 잉크젯 기술은 폴리머에서 살아있는 세포에 이르기까지 다양한 재료를 증착하고 패턴화하여 다양한 기능성 매체, 조직 및 장치를 인쇄하는 데 사용되었습니다 [1, 2]. 이 작업의 초점은 잉크젯 기반 기술을 3D 솔리드 금속 구조 인쇄로 확장하는 데 있습니다 [3, 4]. 현재 대부분의 3D 금속 프린팅 응용 프로그램은 고체 물체를 형성하기 위해 레이저 [6] 또는 전자 빔 [7]과 같은 외부 지향 에너지 원의 영향을 받아 증착 된 금속 분말 소결 또는 용융을 포함합니다. 그러나 이러한 방법은 비용 및 프로세스 복잡성 측면에서 단점이 있습니다. 예를 들어, 3D 프린팅 프로세스에 앞서 분말을 생성하기 위해 시간과 에너지 집약적인 기술이 필요합니다.

이 기사에서는 MHD (자기 유체 역학) drop-on-demand 방출 및 움직이는 기판에 액체 방울 증착을 기반으로 3D 금속 구조의 적층 제조에 대한 새로운 접근 방식에 대해 설명합니다. 프로세스의 각 부분을 연구하기 위해 많은 시뮬레이션이 수행되었습니다.

단순화를 위해 이 연구는 두 부분으로 나뉘었습니다.

첫 번째 부분에서는 MHD 분석을 사용하여 프린트 헤드 내부의 Lorentz 힘 밀도에 의해 생성 된 압력을 추정 한 다음 FLOW-3D 모델의 경계 조건으로 사용됩니다. 액적 방출 역학을 연구하는 데 사용되었습니다.

두 번째 부분에서는 이상적인 액적 증착 조건을 식별하기 위해 FLOW-3D 매개 변수 분석을 수행했습니다. 모델링 노력의 결과는 그림 1에 표시된 장치의 설계를 안내하는데 사용되었습니다.

코일은 배출 챔버를 둘러싸고 전기적으로 펄스되어 액체 금속을 투과하고 폐쇄 루프를 유도하는 과도 자기장을 생성합니다. 그 안에 일시적인 전기장. 전기장은 순환 전류 밀도를 발생시키고, 이는 과도장에 역 결합되고 챔버 내에서 자홍 유체 역학적 로렌츠 힘 밀도를 생성합니다. 힘의 방사형 구성 요소는 오리피스에서 액체 금속 방울을 분출하는 역할을 하는 압력을 생성합니다. 분출된 액적은 기질로 이동하여 결합 및 응고되어 확장된 고체 구조를 형성합니다. 임의의 형태의 3 차원 구조는 입사 액적의 정확한 패턴 증착을 가능하게 하는 움직이는 기판을 사용하여 층별로 인쇄 될 수 있습니다. 이 기술은 상표명 MagnetoJet으로 Vader Systems (www.vadersystems.com)에 의해 특허 및 상용화되었습니다.

MagnetoJet 프린팅 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의 형상의 3D 금속 구조를 인쇄하는 것입니다 [8, 9]. 또한 고유한 금속 입자 구조가 존재하기 때문에 기계적 특성이 개선된 부품을 인쇄 할 수 있습니다.

프로토타입 디바이스 개발

Vader Systems의 3D 인쇄 시스템의 핵심 구성 요소는 두 부분의 노즐과 솔레노이드 코일로 구성된 프린트 헤드 어셈블리입니다. 액체화는 노즐의 상부에서 발생합니다. 하부에는 직경이 100μm ~ 500μm 인 서브 밀리미터 오리피스가 있습니다. 수냉식 솔레노이드 코일은 위 그림에 표시된 바와 같이 오리피스 챔버를 둘러싸고있습니다 (냉각 시스템은 도시되지 않음). 다수의 프린트 헤드 디자인의 반복적인 개발은 액체 금속 배출 거동뿐만 아니라, 액체 금속 충전 거동에 대한 사출 챔버 기하적인 효과를 분석하기 위해 연구되었습니다.

이 프로토타입 시스템은 일반적인 알루미늄 합금으로 만들어진 견고한 3D 구조를 성공적으로 인쇄했습니다 (아래 그림 참조). 액적 직경, 기하학, 토출 빈도 및 기타 매개 변수에 따라 직경이 50 μm에서 500 μm까지 다양합니다. 짧은 버스트에서 최대 5000 Hz까지 40-1000 Hz의 지속적인 방울 분사 속도가 달성 되었습니다.

Computational Models

프로토 타입 장치 개발의 일환으로, 성능 (예 : 액적 방출 역학, 액적-공기 및 액적-기질 상호 작용)에 대한 설계 개념을 스크리닝하기 위해 프로토타입 제작 전에 계산 시뮬레이션을 수행했습니다. 분석을 단순화하기 위해 CFD 분석 뿐만 아니라 컴퓨터 전자기(CE)를 사용하는 두 가지 다른 보완 모델이 개발되었습니다. 첫 번째 모델에서는 2 단계 CE 및 CFD 분석을 사용하여 MHD 기반 액적 분출 거동과 효과적인 압력 생성을 연구했습니다. 두 번째 모델에서는 열-유체 CFD 분석을 사용하여 기판상의 액적 패턴화, 유착 및 응고를 연구했습니다.

MHD 분석 후, 첫 번째 모델에서 등가 압력 프로파일을 추출하여 액적 분출 및 액적-기질 상호 작용의 과도 역학을 탐구하도록 설계된 FLOW-3D 모델의 입력으로 사용되었습니다. FLOW-3D 시뮬레이션은 액적 분출에 대한 오리피스 안과 주변의 습윤 효과를 이해하기 위해 수행되었습니다. 오리피스 내부와 외부 모두에서 유체 초기화 수준을 변경하고 펄스 주파수에 의해 결정된 펄스 사이의 시간을 허용함으로써 크기 및 속도를 포함하여 분출 된 액 적의 특성 차이를 식별 할 수있었습니다.

Droplet 생성

MagnetoJet 인쇄 프로세스에서, 방울은 전압 펄스 매개 변수에 따라 일반적으로 1 – 10m/s 범위의 속도로 배출되고 기판에 충돌하기 전에 비행 중에 약간 냉각됩니다. 기판상의 액적들의 패터닝 및 응고를 제어하는 ​​능력은 정밀한 3D 솔리드 구조의 형성에 중요합니다. 고해상도 3D 모션베이스를 사용하여 패터닝을 위한 정확한 Droplet 배치가 이루어집니다. 그러나 낮은 다공성과 원하지 않는 레이어링 artifacts가 없는 잘 형성된 3D 구조를 만들기 위해 응고를 제어하는 ​​것은 다음과 같은 제어를 필요로하기 때문에 어려움이 있습니다.

  • 냉각시 액체 방울로부터 주변 물질로의 열 확산,
  • 토출된 액적의 크기,
  • 액적 분사 빈도 및
  • 이미 형성된 3D 물체로부터의 열 확산.

이들 파라미터를 최적화 함으로써, 인쇄된 형상의 높은 공간 분해능을 제공하기에 충분히 작으며, 인접한 액적들 및 층들 사이의 매끄러운 유착을 촉진하기에 충분한 열 에너지를 보유 할 것입니다. 열 관리 문제에 직면하는 한 가지 방법은 가열된 기판을 융점보다 낮지만 상대적으로 가까운 온도에서 유지하는 것입니다. 이는 액체 금속 방울과 그 주변 사이의 온도 구배를 감소시켜 액체 금속 방울로부터의 열의 확산을 늦춤으로써 유착을 촉진시키고 고형화하여 매끄러운 입체 3D 덩어리를 형성합니다. 이 접근법의 실행 가능성을 탐구하기 위해 FLOW-3D를 사용한 파라 메트릭 CFD 분석이 수행되었습니다.

액체 금속방울 응집과 응고

우리는 액체 금속방울 분사 주파수뿐만 아니라 액체 금속방울 사이의 중심 간 간격의 함수로서 가열된 기판에서 내부 층의 금속방울 유착 및 응고를 조사했습니다. 이 분석에서 액체 알루미늄의 구형 방울은 3mm 높이에서 가열 된 스테인리스 강 기판에 충돌합니다. 액적 분리 거리 (100)로 변화 될 때 방울이 973 K의 초기 온도를 가지고, 기판이 다소 943 K.도 3의 응고 온도보다 900 K로 유지됩니다. 실선의 인쇄 중에 액적 유착 및 응고를 도시 50㎛의 간격으로 500㎛에서 400㎛까지 연속적으로 유지하고, 토출 주파수는 500Hz에서 일정하게 유지 하였습니다.

방울 분리가 250μm를 초과하면 선을 따라 입자가 있는 응고된 세그먼트가 나타납니다. 350μm 이상의 거리에서는 세그먼트가 분리되고 선이 채워지지 않은 간극이 있어 부드러운 솔리드 구조를 형성하는데 적합하지 않습니다. 낮은 온도에서 유지되는 기질에 대해서도 유사한 분석을 수행했습니다(예: 600K, 700K 등). 3D 구조물이 쿨러 기질에 인쇄될 수 있지만, 그것들은 후속적인 퇴적 금속 층들 사이에 강한 결합의 결여와 같은 바람직하지 않은 공예품을 보여주는 것이 관찰되었습니다. 이는 침전된 물방울의 열 에너지 손실률이 증가했기 때문입니다. 기판 온도의 최종 선택은 주어진 용도에 대해 물체의 허용 가능한 인쇄 품질에 따라 결정될 수 있습니다. 인쇄 중에 부품이 커짐에 따라 더 높은 열 확산에 맞춰 동적으로 조정할 수도 있습니다.

FLOW-3D 결과 검증

위 그림은 가열된 기판 상에 인쇄된 컵 구조 입니다. 인쇄 과정에서 가열된 인쇄물의 온도는 인쇄된 부분의 순간 높이를 기준으로 실시간으로 733K (430 ° C)에서 833K (580 ° C)로 점차 증가했습니다. 이것은 물체 표면적이 증가함에 따라 국부적인 열 확산의 증가를 극복하기 위해 행해졌습니다. 알루미늄의 높은 열전도율은 국부적인 온도 구배에 대한 조정이 신속하게 이루어져야 하기 때문에 특히 어렵습니다. 그렇지 않으면 온도가 빠르게 감소하고 층내 유착을 저하시킵니다.

결론

시뮬레이션 결과를 바탕으로, Vader System의 프로토타입 마그네슘 유체 역학 액체 금속 Drop-on-demand 3D 프린터 프로토 타입은 임의의 형태의 3D 솔리드 알루미늄 구조를 인쇄할 수 있었습니다. 이러한 구조물은 서브 밀리미터의 액체 금속방울을 층 단위로 패턴화하여 성공적으로 인쇄되었습니다. 시간당 540 그램 이상의 재료 증착 속도는 오직 하나의 노즐을 사용하여 달성 되었습니다.

이 기술의 상업화는 잘 진행되고 있지만 처리량, 효율성, 해상도 및 재료 선택면에서 최적의 인쇄 성능을 실현하는 데는 여전히 어려움이 있습니다. 추가 모델링 작업은 인쇄 과정 중 과도 열 영향을 정량화하고, 메니스커스 동작뿐만 아니라 인쇄된 부품의 품질을 평가하는 데 초점을 맞출 것입니다.

References
[1] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J. and Boland, T., “Inkjet printing for high-throughput cell patterning,” Biomaterials 25(17), 3707-3715 (2004).

[2] Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P., “High-resolution inkjet printing of all-polymer transistor circuits,” Science 290(5499), 2123-2126 (2000).

[3] Tseng, A.A., Lee, M.H. and Zhao, B., “Design and operation of a droplet deposition system for freeform fabrication of metal parts,” Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology 123(1), 74-84 (2001).

[4] Suter, M., Weingärtner, E. and Wegener, K., “MHD printhead for additive manufacturing of metals,” Procedia CIRP 2, 102-106 (2012).

[5] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D.Q., “Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,” International Journal of Heat and Mass Transfer 80, 288-300 (2015).

[6] Simchi, A., “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A 428(1), 148-158 (2006).

[7] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. and Wicker, R.B., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” Journal of Materials Science & Technology, 28(1), 1-14 (2012).

[8] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors & Actuators: A. Physical, 80(1), 84-89 (2000).

[9] M. Orme and R. F. Smith, “Enhanced aluminum properties by means of precise droplet deposition,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 122(3), 484-493, (2000)

ANSI/HI 9.8 Pump Intake Design

Hydraulic Jump in a Trench Type Pump Sump

트렌치 형 펌프 배수 조의 유압 점프

이 기사는 Ibis Group의 대표인 Steve Saunders가 기고했습니다.

유압 점프는 개방형 채널 애플리케이션으로 작업하는 사람들에게 친숙한 흐름 현상입니다. Wikipedia는 수력 점프를 “개방형 채널 흐름이 초-임계에서 아임계로 갑자기 변환되는 조건”으로 정의합니다. 점프가 발생하는 위치에서 속도 헤드가 수면 상승으로 거래되는 것을 관찰 할 수 있습니다. 방수로와 같은 흐름 제어 응용 분야에서 수압 점프는 침식을 완화하기 위해 에너지를 소산하는 수단으로 의도적으로 설정됩니다. 또한 레크리에이션 목적으로 사용됩니다. 유압 점프로 생성된 정상 파도는 어떤 바다에서든 수천 마일 떨어진 서핑 공원에서 타는 방법을 서퍼를 훈련시키는데 사용됩니다. 유압 점프의 새로운 응용 분야는 점프의 에너지 전달이 다시 중단되고 정상적인 펌핑 작업 중에 침전된 고형물을 제거하는 자가 세척 트렌치 유형 펌프 섬프(sump)입니다.

트렌치 유형 집수 펌프 시뮬레이션
FLOW-3D는 유압 점프 시뮬레이션에서 신뢰할 수 있는 도구로 입증되었으며 자가 세척 트렌치 유형 펌프 섬프의 설계 및 시연에 사용되었습니다. 트렌치 형 펌프 섬프는 펌프 흡입 라인이 있는 좁은 채널로 구성됩니다. 일반적인 응용 분야는 들어오는 물에서 모래와 자갈을 걸러내는 입구 스크린이 없는 빗물 수집입니다. 아래 회로도에 예가 나와 있습니다.

ANSI/HI 9.8 Pump Intake Design
ANSI/HI 9.8 Pump Intake Design

이 수치는 ANSI / HI 9.8 펌프 흡기 설계 매뉴얼에서 발췌한 것이며 4 개의 펌프가 설치된 섬프의 평면도 및 입면도를 보여줍니다. 유입 암거, 웅덩이 바닥 및 펌프 흡입 바닥을 벗어난 높이의 배열은 이 설계 유형의 자체 청소 기능에 매우 중요합니다. 유입 암거는 최소 작동 웅덩이 수위보다 높은 고도에 있습니다. 또한 유입단의 ​​트렌치 벽은 Ogee 모양입니다. 마지막으로, 트렌치의 맨 끝에 있는 펌프 흡입 벨은 상류 펌프의 절반 높이에 설정됩니다.

Designing for Storm Events

폭풍이 닥친 후 모래와 자갈이 웅덩이 바닥에 쌓입니다. 그들은 점진적인 유압 점프를 통해 다시 매달리고 빠져 나갑니다. 청소 주기 동안 물은 유입 암거를 통해 유입되는 것보다 더 빠른 속도로 트렌치의 맨 끝에 있는 하부 펌프에 의해 배출됩니다.

이 시퀀스 동안 유압 점프는 두 가지 중요한 역할을 수행합니다. 점프 업스트림의 초임계 부분은 섬프 바닥의 모래와 자갈을 휘감아 펌핑이 되도록 다시 일시 중단합니다. 애니메이션의 색상 스케일을 보면 ogee 바닥의 수색 속도가 약 9ft/sec에 가깝다는 것을 알 수 있습니다. 한편, 점프 하류의 계단식 수면 상승은 하단 펌프에 충분한 잠수를 제공하여 섬프가 펌핑 될 때까지 계속 작동합니다.

물이 최소 정상 작동 수준 아래로 떨어지면 유입이 Ogee 모양의 벽 아래로 가속되어 궁극적으로 초임계가됩니다. 섬프의 수위가 바닥에 가까워지면 수압 점프가 형성되고 하단 원단 펌프가 흡입력을 잃을 때까지 섬프를 따라 진행됩니다. 아래 애니메이션에서 이런 일이 일어나는 것을 관찰 할 수 있습니다.

The Magnolia Storm Water Pumping Station

이 자체 세척 섬프 응용 분야에 FLOW-3D를 사용하면 트렌치 형상을 쉽게 조정하여 유압 점프 동작을 최적화 할 수 있습니다. 텍사스 엘파소에있는 Magnolia Storm Water Pumping Station은 FLOW-3D가 설계 및 평가 도구로 사용 된 예입니다. 2016 년에 시운전 된 Magnolia Storm Water Pumping Station은 폭우시 고속도로 10 번의 홍수를 방지하기 위해 건설되었습니다.

Magnolia 스테이션은자가 세척 트렌치 유형 섬프에 3 개의 대형 수직 터빈 펌프로 구성됩니다. 섬프 설계 과정에서 FLOW-3D를 사용하여 몇 가지 기하학적 변형을 평가하여 자체 세척 기능을 통해 펌프 작동 효율성 및 유지 보수 용이성에 이상적인 구성에 도달했습니다.

Scouring Tip2

유체유동이 일어나지 않는 경사면의 scouring 현상에 대한 이해

해석 조건

  • Inflow : velocity=1.23m/s
  • Outflow : Air pressure
  • Sediment condition
Scouring Tip1
Scouring Tip2
  1. 유체유동이 일어나지 않는 경사면에 scouring이 일어나는 이유가 무엇인가?
  2. Sediment가 점착력이 있는 경우(clay)는 어떤 변수로 입력해야 하는가?

Tip 1)유동이없는부분에 scouring이나타나는이유:

현재 scouring model은 물에잠겨있는 부분에 대해 해석을 하게되어 있으므로 packed sediment부분은 fluid region(with infinite drag)이 존재하게됩니다. 그러므로 fluid region이 없다 하더라도 packed sediment가 경사면에 존재하면 중력에 의해  내부유체의 유동이 생겨 위 예제와 같이 미소한  scouring이 표면에 물이 없는 경사면에서도 발생하는것입니다. 그러므로 이를 없애기 위해서는 물이 없는 경사면 부분은 별도의 solid로 규정하면 이 문제를 피할수 있습니다.

Tip2 ) clay가 sticky하면 일반적으로 유동의 상대운동이 감소될것이므로 drag coefficient 나 Richardson Zaki coefficient multiplier를 증가시켜 변화를 조사해 볼 수 있습니다.

<기타 Scouring 자료>

Coastal & Maritime Bibliography

Water & Environmental Bibliography

Sediment Transport Model

CFD simulation of local scour in complex piers under tidal flow

Numerical Simulations of Sediment Transport and Scour Around Mines

The Numerical Investigation of Free Falling Jet’s Effect on the Scour of Plunge Pool

Current-induced seabed scour around a pile-supported horizontal-axis tidal stream turbine

Numerical Investigation of Angle and Geometric of L-Shape Groin on the Flow and Erosion Regime at River Bends

Comparison of CFD Models for Multiphase Flow Evolution in Bridge Scour Processes

FLOW-3D HYDRO Conveyance Infrastructure

FLOW-3D & computational fluid dynamics for civil engineering

Conveyance systems

  • Tunnels
  • Overflows
  • Hydraulic controls
    • Gates
    • Weirs
    • Orifice
  • Drop structures
  • Flow splitting
  • Open channel conveyance
  • Pumps
  • Flap gates (moving objects)
  • Air flow / air supply
  • Entrained air (entrainment, evolution, drift flux, buoyancy, bulking, de-aeration)

Baffle dropshaft

Tangential dropshaft

Sample GUI packaged conveyance examples

Conveyance systems: simulation outputs

해석 결과로 얻을 수 있는 Simulation outputs

  • Pressure, velocity field
  • Water elevation profiles
  • 3D transient behaviors
  • Surges & sloshing
  • Pump approach flow
  • Pump discharge & operations
  • Air phase
  • Entrained air
  • Forces & coupled motion for moving objects

컴팩트 디스크 ELISA 칩 [2]

컴팩트 디스크 미세 유체 장치: Optimizing Real Estate

Compact Disc Microfluidic Devices: Optimizing Real Estate

미세 유체 장치 사용자의 증가하는 기대를 충족하려면 작은 미세 유체 장치에서 제한된 공간을 최적화하는 것이 중요합니다. 사용자는 단일 미세 유체 장치에서 최대의 기능과 여러 병렬 작업을 기대합니다. 제한된 공간을 최적화하는 문제는 이러한 장치의 많은 물리적 이점에도 불구하고 회전하는 미세 유체 장치로 확장됩니다. 회전 에너지를 이용하여 미세 유체 작업을 수행하는 회전 장치를 컴팩트 디스크 (CD) 미세 유체 장치라고합니다.

컴팩트 디스크 ELISA 칩 [1]
컴팩트 디스크 ELISA 칩 [2]
컴팩트 디스크 ELISA 칩 [2]

10 년 넘게 CD는 혈액 진단을위한 신속한 면역 분석 및 임상 생화학에서 지속적으로 장점을 보여 왔습니다. 마이크로 토탈 분석 시스템 (μTAS)으로 사용되며, 여러 개별 분석이 내장되어 단일 칩에서 동시에 실행됩니다. 핸즈프리 제어를 위해 프로그래밍 된 간단하고 저렴한 모터에서 작동하며 자석이나 표면 처리와 같은 외부 액추에이터가 필요하지 않습니다. 기본적으로 CD는 훌륭합니다! 그러나 공짜 점심 같은 것은 없습니다. 단방향 (방사형) 원심력으로 인해 CD는 회전하지 않는 미세 유체 장치보다 빠르게 공간이 부족합니다. 유체는 방사형으로 바깥쪽으로 만 이동하므로 CD가 수행 할 수있는 분석 단계의 수가 제한됩니다.

그림 3. CD 채널 내부의 방사형 물 기둥에 적용되는 다양한 신체 힘을 강조하는 회로도. 방사상으로 바깥쪽으로 작용하는 원심력을 확인합니다.
그림 3. CD 채널 내부의 방사형 물 기둥에 적용되는 다양한 신체 힘을 강조하는 회로도. 방사상으로 바깥쪽으로 작용하는 원심력을 확인합니다.

CD의 단 방향성 극복

Gorkin    [3]에서는 CD의 단 방향성 제약을 극복하기 위해 공압 펌핑이 제안되었습니다. 아이디어는 원심 에너지를 압축 에너지로 저장하고 다시 풀어서 유체를 중심으로 발사하는 것입니다. 아래 이미지는 로딩 챔버, 흡입 하위 구획 및 압축 하위 구획의 세 개의 챔버가있는 비교적 간단한 미세 유체 칩을 보여줍니다.

그림 4. CD 사진
그림 4. CD 사진
그림 5. FLOW-3D에서 모방 된 CD 디자인
그림 5. FLOW-3D에서 모방 된 CD 디자인

공압 펌핑 프로세스

유체가 로딩 챔버로 들어간 다음, 흡입 하위 구획을 통해 공기가 갇힌 압축 하위 구획으로 이동합니다. 공기가 갇 히면 CD가 특정 각속도로 회전하여 갇힌 공기가 압축됩니다. 공기가 더 이상 압축 할 수없는 경우 (안정 상태에 도달했기 때문에), 회전 속도가 감소하거나 완전히 꺼져 (누군가이 작업을 수행하고 있습니까? 아니면 장치가 수행하고 있습니까?) 유체가 로딩 챔버로 다시 펌핑됩니다. 이 마지막 단계는 이완 단계입니다. 공압 펌핑 공정의 5 단계는 다음과 같습니다.

그림 6. CD의 5 단계 공압 펌핑 [3]
그림 6. CD의 5 단계 공압 펌핑 [3]

회전 속도의 영향

회전 속도가 다르면 압축 하위 구획에서 공기의 압축 수준이 다릅니다. 회전 속도가 높을수록 유체가 공기에 더 세게 밀려 공기가 더 많이 압축됩니다. 그러나 공기가 압축 될 수있는 양에는 한계가 있습니다. 사실, 공기의 압축은 특정 회전 속도 이상으로 점진적으로 증가합니다. 압축 하위 구획의 부피는 회전 속도가 증가함에 따라 감소합니다. 흡입구의 액체 위치는 디스크 중앙에서 흡입 하위 구획의 유체 수준까지의 거리입니다. 이 거리는 증가합니다. 즉, 회전 속도가 증가함에 따라 유체가 중심에서 멀어집니다.

그림 7. 회전 주파수가 증가하면 압축이 증가합니다. [3]
그림 7. 회전 주파수가 증가하면 압축이 증가합니다. [3]

CD 미세 유체 장치 모델링

실험은 미세 유체 장치 설계의 핵심입니다. 그러나 충분한 실험을 수행하고 각 실험에 대한 완벽한 제어 환경을 유지하는 것은 불가능할 수 있습니다. 복잡한 설계에는 복잡한 실험 설정 및 분석이 필요합니다. FLOW-3D 의 정확하고 포괄적 인 다중 물리  모델링 기능 은 미세 유체 설계에 대한 통찰력과이를 최적화하는 방법을 제공합니다. FLOW-3D가  위에서 논의한 CD 미세 유체 장치에 대한 실험적 및 이론적 결과와 어떻게 비교되는지 보여 드리겠습니다  .

CD 미세 유체 장치에 대한 실험적 및 이론적 결과와 비교
CD 미세 유체 장치에 대한 실험적 및 이론적 결과와 비교

이미지 시퀀스는 실험 및 FLOW-3D  시뮬레이션 결과 의 시각적 비교를 제공합니다  . 두 유체 (공기 및 물) 압축 가능 모델을 사용하여 서로 다른 회전 속도에 대해 챔버 내부의 유체 역학을 시뮬레이션했습니다. 회귀 분석을 사용하여 아래 플롯에서 이러한 시각적 비교를 정량화하면 FLOW-3D  와 실험 결과,  FLOW-3D  및 분석 결과 간에 탁월한 상관 관계 (R 2 > 0.99)가 제공  됩니다.

그림 9. FLOW-3D 데이터와 실험 데이터의 비교. (Poly는 다항식 곡선 맞춤을 의미합니다.)
그림 9. FLOW-3D 데이터와 실험 데이터의 비교. (Poly는 다항식 곡선 맞춤을 의미합니다.)

시뮬레이션은 또한 다양한 회전 속도에 대한 정상 상태에 대한 접근 방식을 보여줍니다. 아래의 애니메이션은 CD의 운동 에너지 변동을 1000rpm nd 7000rpm에서 보여줍니다. 더 빠른 속도는 더 빠른 정상 상태를 강제하지만 정상 상태에 도달할 때까지 수위를 빠르게 변동시킵니다. 저속 시뮬레이션의 경우 그 반대입니다.

Mean kinetic energy fluctuations for the CD rotating at 1000 rpm
Mean kinetic energy fluctuations for the CD rotating at 1000 rpm
Mean kinetic energy fluctuations for the CD rotating at 7000 rpm
Mean kinetic energy fluctuations for the CD rotating at 7000 rpm

전반적으로  FLOW-3D  는 실험 결과를 정확하게 검증합니다. 사소한 오류는 부정확 한 지오메트리 (CAD) 생성 및 / 또는 물과 공기 사이의 인터페이스를 엄격하게 정의하기 때문일 수 있습니다. 이 사례 연구는 FLOW-3D  가 실험 결과를 검증하고 컴팩트 디스크 설계의 신뢰도를 높이는 데 효과적으로 사용될 수 있음을 보여줍니다  .

References

[1] He, Hongyan et al. “Design and Testing of a Microfluidic Biochip for Cytokine Enzyme-Linked Immunosorbent Assay”. Biomicrofluidics 3(2):22401 February 2009

[2] Roy, Emmanuel, et al. “From Cellular Lysis to Microarray Detection, an Integrated Thermoplastic Elastomer (TPE) Point of Care Lab on a Disc.” Lab on a Chip, vol. 15, no. 2

[3] Gorkin III, Robert et al. “Pneumatic pumping in centrifugal microfluidic platforms”. February 2010 Springerlink.com

Non-Newtonian Fluids

Non-Newtonian Fluids

혈액, 케첩, 치약, 샴푸, 페인트 및 로션과 같은 비 뉴턴 유체는 점도가 다양한 복잡한 유변학을 가지고 있습니다. FLOW-3D는 변형 및 온도에 따라 달라지는 비 뉴턴 점도를 가진 유체를 모델링합니다. 전단 및 온도 의존 점도는 Carreau, 거듭 제곱 법칙 함수 또는 단순히 표 형식 입력을 통해 설명됩니다. 일부 폴리머, 세라믹 및 반고체 금속의 특성인 시간 의존적 또는 요 변성 거동(thixotropic behavior)도 시뮬레이션 할 수 있습니다.

Hand Lotion Pump

핸드 로션 펌프는 종종 몇 가지 설계 문제와 관련이 있습니다. 펌프가 공극을 막지 않고 효과적으로 작동하고 로션을 연속적으로 생성하는 것이 중요합니다. 좋은 디자인은 노력을 덜 필요로하며 이상적으로는 로션을 원하는 위치로 향하게합니다. FLOW-3D의 움직이는 물체 모델은 노즐이 아래로 밀리는 것을 시뮬레이션하여 저장소의 로션을 가압하는 데 사용됩니다. 로션의 압력과 로션을 추출하는 데 필요한 힘을 연구 할 수 있습니다. 동일한 고정 구조화 된 메시 내에서 여러 설계 변수를 쉽게 분석 할 수 있습니다.

FLOW-3D’s TruVOF method accurately captures the pulsating lotion as the ball regulates the frequency of dispensing lotion.

Stormwater

Stormwater

Stormwater

FLOW-3D is an industry leader in free-surface flow modeling and is used extensively by civil engineering professionals for the design and analysis of stormwater collection and treatment systems. Highly accurate 3D simulations provide advanced investigations of conveyance through hydraulic control structures, sewers and wet tunnel designs. FLOW-3D is optimized for modeling both free-surface and constrained flow patterns and seamlessly models situations that switch between free-surface, pressurized, sub-critical, and super-critical flow conditions.

Combined-sewer-overflow
Combined sewer overflow

Engineers can seamlessly navigate the transition between flow regimes with advanced analysis of combined sewer overflow structures with complex shifts in hydraulic controls throughout the system. FLOW-3D accurately models energy dissipating structures, including complex, highly turbulent and aerated flow features in addition to the particle tracking model used to evaluate the efficiency of hydrodynamic separator devices.

Aerated flow feature
Aerated flow feature

Applications include:

  • Hydraulic control structures
  • Combined sewer overflows
  • Detention/Retention basins
  • Hydrodynamics separators
  • Filtration systems
  • Pump stations
  • Wet tunnel hydraulics
  • Entrained air flow bulking
Hydrodynamic separator
Hydrodynamic separator

Electro-osmotic micropump (전기 삼투 마이크로펌프)

  • 흐름을 유도하는 전기 삼투 효과
    – 자유 표면 유무와 관계없이
    – 1~2개의 유체로 구성
  • 슬롯이 있는 채널에서 전위를 이용하여 유체 흐름을 제어할 수 있음
    – 순수한 전기 동력 흐름으로
  • 갇힌 입자로 표시된 재순환 영역은 설계의 비효율성을 나타냄
  • 각 슬롯 쌍 사이에 플러그형 속도 프로파일이 나타남

Compact Discs (소형 디스크)

  • 마이크로 토탈 분석 시스템에 사용
    – 신속한 면역 측정
    – 혈액 진단을 위한 임상 생화학
  • 미세 유체 작업을 수행하기 위해 회전 에너지 활용
    – 손쓰지 않아도 되는 제어
    – 외부 액추에이터 또는 표면 처리가 필요하지 않음
  • 면적이 빠르게 소진됨
    – 유동의 단방향(방사형)이동만 가능

Compact disc의 공압 펌핑

  • 회전 에너지를 공압 압축으로 저장하고 방출을 사용하여 유체를 중심으로 추진
  • 두 유체(공기와 혈액)의 문제
    – 압축량은 디스크의 회전 속도에 따라 달라짐
    – 압축에 저장된 운동 에너지는 방출 속도를 결정함.
  • 완전 압축성의 두 유체의 유동 모델
  • 회전 시뮬레이션을 위한 NIRF
    – NIRF는 유체 영역에서 신체력을 규정함 : 계산 효율성을 위해
  • 실험과 시뮬레이션 결과 사이의 뛰어난 시각적 상관 관계
  • 측정 된 데이터의 7%내에서 자유 표면의 정량화 된 위치
  • FLOW-3D 시뮬레이션을 통해 실험 부하를 공유함으로써 더 큰 설계 공간을 탐색할 수 있음.

Electro (&magneto) hydro-dynamics

Electro (&magneto) hydro-dynamics 사례

  • FLOW-3D models
  • Electrophoresis
  • Dielecrophoresis
  • Conductive fluid model
  • Electro-wetting
  • Electro-osmosis
  • Joules heating

Electrophoresis

  • Electric charge / electrophoresis
  • Particle sorting

Electro-wetting

  • Integrates effects of electrophoresis and dielectrophoresis
  • Induced charges manipulate fluid at micro/nano volumes
  • Electrowetting on dielectric (EWOD).

Dielectrophoresis (DEP)

DEP는 particle/fluid의 dielectric 특성이 주변 매체의 dielectric 특성과 다를 때만 발생한다.

Inputs required:

  • Dielectric constant of the fluid and or particles
  • Dielectric constant of any components, that may influence the electric field
  • Define electric potential on the components or on the mesh boundaries
  • Permittivity of vacuum.

섬세한 경계를 가진 두 개의 유체, 표면 장력, electric potential, fluid electric charge, dielectrophoresis, newtonian viscosity

Electro osmosis

Micro-pump example

  • Zeta potential
  • Electric field defined by the electric potential on the components or on the mesh boundaries.
  • Permittivity of vacuum
  • Flow rate control through device

Inputs required:

  • Zeta potential
  • Electric field defined by the electric potential on the components or on the mesh boundaries.
  • Permittivity of vacuum
  • Flow rate control through device

Electro-thermal effects (Joules heating)

  • 전류가 물질을 통해 흐를 때 그 저항성은 물질을 가열하게 하며, 이 효과를 joule heating이라고 한다.
  • 온도 구배 설정 속도 필드 및 장치의 유체 순환

Magneto Hydrodynamics

  • 자력에 의해 입자가 유선으로부터 이탈한다.

Xiaozheng Xue1, Ioannis H. Karampelas1, Chenxu Liu2 and Edward P. Furlani1,2
1 Department of Chemical and Biological Engineering
2 Department of Electrical Engineering
SUNY at Buffalo
FLOW-3D Americas User Conference , Toronto, 2014

Magneto Hydrodynamics

  • 자기 제어로 유체 혼합 사용

Use of magnetic field to align beads

John Wendelbo MEng, MSc.
Senior CFD Engineer, Flow Science
john.wendelbo@flow3d.com

THE ELASTIC MEMBRANE AND WALL MODEL IN FLOW-3D [FLOW-3D의 탄성 멤브레인과 벽 모델]

1. Introduction
An elastic membrane and wall model has been developed to provide a limited Fluid-Structure Interaction (FSI) capability in FLOW-3D. In the model, deformation of an elastic membrane or an elastic wall impacts the adjacent fluid flow, while fluid pressure, in turn, affects the deformation. These interactions are described in the code in a fully coupled fashion.
The main assumption of the model is that the deformations are small, i.e., the deflections are much smaller than the size of the deforming object (for elastic membranes) or the characteristic lengths of fluid flow and wall thickness (for elastic walls), allowing for a few useful simplifications. The geometries of membranes and elastic walls are assumed to be time-invariant, while the effects of their deformation on fluid flow are described with volume sources and sinks distributed along the fixed fluid-structure interface. With the further assumption that the pressure force is uniformly distributed on the membrane surface, analytical solutions rather than structural analysis algorithms are used to determine the membrane deformation.
There are many potential applications for the model in microfluidic systems, e.g., chemical analysis systems, medical microdosage systems and inkjet devices. The model can be used to simulate flow in piezoelectric valveless pumps which convert membrane vibrations into a pumping action. The model can also be used to simulate droplet formation for piezoelectric inkjet printheads where a membrane or an elastic tube deforms under the force of a piezoelectric actuator to produce a droplet of ink.

Computational Model for Simulation of Electroosmotic Flow in Microsystems

ABSTRACT
A numerical model has been developed to simulate three-dimensional and transient electroosmotic °ow oc-curring in various microdevices for handling °uid °ow and transport. The model can simulate one °uid °ow, with or without a free surface, and two-°uid °ow, with or without a sharp interface, using a VOF method. The model is validated by comparing numerical predictions against available analytical solution. Capabilities of the model to simulate processes such as sample focusing, mi-cropumping, and micromixing. are demonstrated through examples.
Keywords: Electroosmotic Flow, Micropump, Micromixer, and Sample Injection

Microfluidics Bibliography

Microfluidics Bibliography

다음은 Microfluidics Bibliography의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 특징으로  합니다. 미세 유체 공정 및 장치 를 성공적으로 시뮬레이션하기 위해 FLOW-3D 를 사용 하는 방법에 대해 자세히 알아보십시오  .

2024년 11월 20일 Update

109-24 Dileep Karnam, Yu-Lung Lo, Chia-Hua Yang, Spray mist-assisted drilling of through silicon vias (TSV) using nanosecond laser: Influence of CNT nanofluid, Journal of Materials Research and Technology, 31; pp. 679-688, 2024. doi.org/10.1016/j.jmrt.2024.06.109

22-24   Bin-Jie Lai, Li-Tao Zhu, Zhe Chen, Bo Ouyang, Zheng-Hong Luo, Review on blood flow dynamics in lab-on-a-chip systems: an engineering perspective, Chem & Bio Engineering, 1.1; pp. 26-43, 2024. doi.org/10.1021/cbe.3c00014

196-23 Daicong Zhang, Chunhui Jing, Wei Guo, Yuan Xiao, Jun Luo, Lehua Qi, Microchannels formed using metal microdroplets, Micromachines, 14.10; 1922, 2023. doi.org/10.3390/mi14101922

121-23 Feng Lin Ng, Zhanhong Cen, Yi-Chin Toh, Lay Poh Tan, A 3D-printed micro-perfused culture device with embedded 3D fibrous scaffold for enhanced biomimicry, International Journal of Bioprinting, 2023. doi.org/10.36922/ijb.0226

104-23 Cristina González-Fernández, Jenifer Gómez-Pastora, Eugenio Bringas, Inmaculada Ortiz, Computer-aided design of magnetophoretic microfluidic systems for enhanced recovery of target products, 33rd European Symposium on Computer-Aided Engineering (ESCAPE), 2023.

64-23   Tihomir Tjankov, Dimitar Trifonov, Conceptual design and 3D modeling of a microfluidic device for liver cells investigation, Industry 4.0, 8.2; pp. 39-41, 2023.

34-23   Chao Kang, Ikki Ikeda, Motoki Sakaguchi, Recoil and solidification of a paraffin droplet impacted on a metal substrate: Numerical study and experimental verification, Journal of Fluids and Structures, 118; 103839, 2023. doi.org/10.1016/j.jfluidstructs.2023.103839

64-22   Babatunde Aramide, Computational modelling of electrohydrodynamic jetting (Taylor cone formation, dripping & jet evolution): Case study of electrospinning, Thesis, University College London, 2022.

42-22   Islam Hassan, P. Ravi Selvaganapathy, Microfluidic printheads for highly switchable multimaterial 3D printing of soft materials, Advanced Materials Technologies, 2101709, 2022. doi.org/10.1002/admt.202101709

138-21   Enver Guler, Mine Eti, Aydin Cihanoglu, Esra Altiok, Kadriye Ozlem Hamaloglu, Burcu Gokcal, Ali Tuncel, Nalan Kabay, Ion exchange membranes with enhanced antifouling properties to produce energy from renewable sources, Proceedings of the 6th International Symposium on Green and Smart Technologies for a Sustainable Society, Santander, Cantabria, Spain, December 9-10, 2021.

45-21   Navid Tonekaboni, Mahdi Feizbahr, Nima Tonekaboni, Guang-Jun Jiang, Hong-Xia Chen, Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid, Mathematical Problems in Engineering, 2021; 9984940, 2021. doi.org/10.1155/2021/9984840

40-21   B. Hayes, G.L. Whiting, R. MacCurdy, Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps, Physics of Fluids, 33.4; 042002, 2021. doi.org/10.1063/5.0041924

Below is a collection of technical papers in our Microfluidics Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate microfluidic processes and devices.

14-21   Jian-Chiun Liou, Chih-Wei Peng, Philippe Basset, Zhen-Xi Chen, DNA printing integrated multiplexer driver microelectronic mechanical system head (IDMH) and microfluidic flow estimation, Micromachines, 12.1; 25, 2021. doi.org/10.3390/mi12010025

08-20   Li Yong-Qiang, Dong Jun-Yan and Rui Wei, Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity, Microgravity Science and Technology, 2020. doi.org/10.1007/s12217-019-09773-z

89-19   Tim Dreckmann, Julien Boeuf, Imke-Sonja Ludwig, Jorg Lumkemann, and Jorg Huwyler, Low volume aseptic filling: impact of pump systems on shear stress, European Journal of Pharmeceutics and Biopharmeceutics, in press, 2019. doi:10.1016/j.ejpb.2019.12.006

88-19   V. Amiri Roodan, J. Gomez-Pastora, C. Gonzalez-Fernandez, I.H. Karampelas, E. Bringas, E.P. Furlani, and I. Ortiz, CFD analysis of the generation and manipulation of ferrofluid droplets, TechConnect Briefs, pp. 182-185, 2019. TechConnect World Innovation Conference & Expo, Boston, Massachussetts, USA, June 17-19, 2019.

55-19     Julio Aleman, Sunil K. George, Samuel Herberg, Mahesh Devarasetty, Christopher D. Porada, Aleksander Skardal, and Graça Almeida‐Porada, Deconstructed microfluidic bone marrow on‐a‐chip to study normal and malignant hemopoietic cell–niche interactions, Small, 2019. doi: 10.1002/smll.201902971

37-19     Feng Lin Ng, Miniaturized 3D fibrous scaffold on stereolithography-printed microfluidic perfusion culture, Doctoral Thesis, Nanyang Technological University, Singapore, 2019.

32-19     Jenifer Gómez-Pastora, Ioannis H. Karampelas, Eugenio Bringas, Edward P. Furlani, and Inmaculada Ortiz, Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions, Nature: Scientific Reports, Vol. 9, No. 7265, 2019. doi: 10.1038/s41598-019-43827-x

01-19  Jelena Dinic and Vivek Sharma, Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method, Physics of Fluids, Vol. 31, 2019. doi: 10.1063/1.5061715

75-18   Tobias Ladner, Sebastian Odenwald, Kevin Kerls, Gerald Zieres, Adeline Boillon and Julien Bœuf, CFD supported investigation of shear induced by bottom-mounted magnetic stirrer in monoclonal antibody formulation, Pharmaceutical Research, Vol. 35, 2018. doi: 10.1007/s11095-018-2492-4

53-18   Venoos Amiri Roodan, Jenifer Gómez-Pastora, Aditi Verma, Eugenio Bringas, Inmaculada Ortiz and Edward P. Furlani, Computational analysis of magnetic droplet generation and manipulation in microfluidic devices, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 154, 2018.  doi: 10.11159/ffhmt18.154

35-18   Jenifer Gómez-Pastora, Cristina González Fernández, Marcos Fallanza, Eugenio Bringas and Inmaculada Ortiz, Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies, Chemical Engineering Journal, vol. 344, pp. 487-497, 2018. doi: 10.1016/j.cej.2018.03.110

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

15-18   J. Gómez-Pastora, I.H. Karampelas, A.Q. Alorabi, M.D. Tarn, E. Bringas, A. Iles, V.N. Paunov, N. Pamme, E.P. Furlani, I. Ortiz, CFD analysis and experimental validation of magnetic droplet generation and deflection across multilaminar flow streams, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 182-185, 2018.

14-18   J. Gómez-Pastora, C. González-Fernández, I.H. Karampelas, E. Bringas, E.P. Furlani, and I. Ortiz, Design of Magnetic Blood Cleansing Microdevices through Experimentally Validated CFD Modeling, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 170-173, 2018.

10-18   A. Gupta, I.H. Karampelas, J. Kitting, Numerical modeling of the formation of dynamically configurable L2 lens in a microchannel, Biotech, Biomaterials and Biomedical TechConnect Briefs, Vol. 3, pp. 186 – 189, 2018.

17-17   I.H. Karampelas, J. Gómez-Pastora, M.J. Cowan, E. Bringas, I. Ortiz and E.P. Furlani, Numerical Analysis of Acoustophoretic Discrete Particle Focusing in Microchannels, Biotech, Biomaterials and Biomedical TechConnect Briefs 2017, Vol. 3

16-17   J. Gómez-Pastora, I.H. Karampelas, E. Bringas, E.P. Furlani and I. Ortiz, CFD analysis of particle magnetophoresis in multiphase continuous-flow bioseparators, Biotech, Biomaterials and Biomedical TechConnect Briefs 2017, Vol. 3

15-17   I.H. Karampelas, S. Vader, Z. Vader, V. Sukhotskiy, A. Verma, G. Garg, M. Tong and E.P. Furlani, Drop-on-Demand 3D Metal Printing, Informatics, Electronics and Microsystems TechConnect Briefs 2017, Vol. 4

102-16   J. Brindha, RA.G. Privita Edwina, P.K. Rajesh and P.Rani, “Influence of rheological properties of protein bio-inks on printability: A simulation and validation study,” Materials Today: Proceedings, vol. 3, no.10, pp. 3285-3295, 2016. doi: 10.1016/j.matpr.2016.10.010

99-16   Ioannis H. Karampelas, Kai Liu, Fatema Alali, and Edward P. Furlani, Plasmonic Nanoframes for Photothermal Energy Conversion, J. Phys. Chem. C, 2016, 120 (13), pp 7256–7264

98-16   Jelena Dinic and Vivek Sharma, Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluidshttp://meetings.aps.org/link/BAPS.2016.MAR.B53.12, APS March Meeting 2016, Volume 61, Number 2, March 14–18, 2016, Baltimore, Maryland

67-16  Vahid Bazargan and Boris Stoeber, Effect of substrate conductivity on the evaporation of small sessile droplets, PHYSICAL REVIEW E 94, 033103 (2016), doi: 10.1103/PhysRevE.94.033103

57-16   Ioannis Karampelas, Computational analysis of pulsed-laser plasmon-enhanced photothermal energy conversion and nanobubble generation in the nanoscale, PhD Dissertation: Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, July 2016

44-16   Takeshi Sawada et al., Prognostic impact of circulating tumor cell detected using a novel fluidic cell microarray chip system in patients with breast cancer, EBioMedicine, Available online 27 July 2016, doi: 10.1016/j.ebiom.2016.07.027.

39-16   Chien-Hsun Wang, Ho-Lin Tsai, Yu-Che Wu and Weng-Sing Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, IOP Publishing, J. Micromech. Microeng. 26 (2016) 095012 (14pp), doi: 10.1088/0960-1317/26/9/095012, July 8, 2016

30-16   Ioannis H. Karampelas, Kai Liu and Edward P. Furlani, Plasmonic Nanocages as Photothermal Transducers for Nanobubble Cancer Therapy, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

29-16   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Advances in Magnetohydrodynamic Liquid Metal Jet Printing, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

02-16  Stephen D. Hoath (Editor), Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets, ISBN: 978-3-527-33785-9, 472 pages, February 2016 (see chapters 2 and 3 for FLOW-3D results)

125-15   J. Berthier, K.A. Brakke, E.P. Furlani, I.H. Karampelas, V. Poher, D. Gosselin, M. Cubinzolles and P. Pouteau, Whole blood spontaneous capillary flow in narrow V-groove microchannels, Sensors and Actuators B: Chemical, 206, pp. 258-267, 2015.

86-15   Yousub Lee and Dave F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing, J. Laser Appl. 28, 012006 (2016). doi: 10.2351/1.4935711, published online 2015.

77-15   Ho-Lin Tsai, Weng-Sing Hwang, Jhih-Kai Wang, Wen-Chih Peng and Shin-Hau Chen, Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids, Materials 2015, 8(10), 7006-7016. doi: 10.3390/ma8105355

63-15   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Magnetohydrodynamic Liquid Metal Jet Printing, TechConnect World Innovation Conference & Expo, Washington, D.C., June 14-17, 2015

46-15   Adwaith Gupta, 3D Printing Multi-Material, Single Printhead Simulation, Advanced Qualification of Additive Manufacturing Materials Workshop, July 20 – 21, 2015, Santa Fe, NM

28-15   Yongqiang Li, Mingzhu Hu, Ling Liu, Yin-Yin Su, Li Duan, and Qi Kang, Study of Capillary Driven Flow in an Interior Corner of Rounded Wall Under MicrogravityMicrogravity Science and Technology, June 2015

20-15   Pamela J. Waterman, Diversity in Medical Simulation Applications, Desktop Engineering, May 2015, pp 22-26,

16-15   Saurabh Singh, Ann Junghans, Erik Watkins, Yash Kapoor, Ryan Toomey, and Jaroslaw Majewski, Effects of Fluid Shear Stress on Polyelectrolyte Multilayers by Neutron Scattering Studies, © 2015 American Chemical Society, DOI: 10.1021/acs.langmuir.5b00037, Langmuir 2015, 31, 2870−2878, February 17, 2015

11-15   Cheng-Han Wu and Weng-Sing Hwang, The effect of process condition of the ink-jet printing process on the molten metallic droplet formation through the analysis of fluid propagation direction, Canadian Journal of Physics, 2015. doi: 10.1139/cjp-2014-0259

03-15 Hanchul Cho, Sivasubramanian Somu, Jin Young Lee, Hobin Jeong and Ahmed Busnaina, High-Rate Nanoscale Offset Printing Process Using Directed Assembly and Transfer of Nanomaterials, Adv. Materials, doi: 10.1002/adma.201404769, February 2015

122-14  Albert Chi, Sebastian Curi, Kevin Clayton, David Luciano, Kameron Klauber, Alfredo Alexander-Katz, Sebastián D’hers and Noel M Elman, Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics, Research Gate, doi: 10.1007/s13346-014-0198-7, July 2014

113-14 Cihan Yilmaz, Arif E. Cetin, Georgia Goutzamanidis, Jun Huang, Sivasubramanian Somu, Hatice Altug, Dongguang Wei and Ahmed Busnaina, Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed Assembly of Nanoparticles, 10.1021/nn500084g, © 2014 American Chemical Society, April 2014

110-14 Koushik Ponnuru, Jincheng Wu, Preeti Ashok, Emmanuel S. Tzanakakis and Edward P. Furlani, Analysis of Stem Cell Culture Performance in a Microcarrier Bioreactor System, Nanotech, Washington, D.C., June 15-18, 2014

109-14   Ioannis H. Karampelas, Young Hwa Kim and Edward P. Furlani, Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures, Nanotech, Washington, D.C., June 15-18, 2014

108-14   Chenxu Liu, Xiaozheng Xue and Edward P. Furlani, Numerical Analysis of Fully-Coupled Particle-Fluid Transport and Free-Flow Magnetophoretic Sorting in Microfluidic Systems, Nanotech, Washington, D.C., June 15-18, 2014

95-14   Cheng-Han Wu, Weng-Sing Hwang, The effect of the echo-time of a bipolar pulse waveform on molten metallic droplet formation by squeeze mode piezoelectric inkjet printing, Accepted November 2014, Microelectronics Reliability (2014) , © 2014 Elsevier Ltd. All rights reserved.

85-14   Sudhir Srivastava, Lattice Boltzmann method for contact line dynamics, ISBN: 978-90-386-3608-5, Copyright © 2014 S. Srivastava

61-14   Chenxu Liu, A Computational Model for Predicting Fully-Coupled Particle-Fluid Dynamics and Self-Assembly for Magnetic Particle Applications, Master’s Thesis: State University of New York at Buffalo, 2014, 75 pages; 1561583, http://gradworks.umi.com/15/61/1561583.html

41-14 Albert Chi, Sebastian Curi, Kevin Clayton, David Luciano, Kameron Klauber, Alfredo Alexander-Katz, Sebastian D’hers, and Noel M. Elman, Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics, Drug Deliv. and Transl. Res., DOI 10.1007/s13346-014-0198-7, # Controlled Release Society 2014. Available for purchase online at SpringerLink.

21-14  Suk-Hee Park, Ung Hyun Koh, Mina Kim, Dong-Yol Yang, Kahp-Yang Suh and Jennifer Hyunjong Shin, Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding, Biofabrication 6 (2014) 024107 (10pp), doi:10.1088/1758-5082/6/2/024107, IOP Publishing, 2014. Available for purchase online at IOP.

17-14   Vahid Bazargan, Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles, Ph.D. Thesis: Department of Mechanical Engineering, The University of British Columbia, March 2014, © Vahid Bazargan, 2014

73-13  Oliver G. Harlen, J. Rafael Castrejón-Pita, and Arturo Castrejon-Pita, Asymmetric Detachment from Angled Nozzles Plates in Drop-on Demand Inkjet Printing, NIP & Digital Fabrication Conference, 2013 International Conference on Digital Printing Technologies. Pages 253-549, pp. 277-280(4)

63-13  Fatema Alali, Ioannis H. Karampelas, Young Hwa Kim, and Edward P. Furlani, Photonic and Thermofluidic Analysis of Colloidal Plasmonic Nanorings and Nanotori for Pulsed-Laser Photothermal ApplicationsJ. Phys. Chem. C, Article ASAP, DOI: 10.1021/jp406986y, Copyright © 2013 American Chemical Society, September 2013.

25-13  Sudhir Srivastava, Theo Driessen, Roger Jeurissen, Herma Wijshoff, and Federico Toschi, Lattice Boltzmann Method to Study the Contraction of a Viscous Ligament, International Journal of Modern Physics © World Scientific Publishing Company, May 2013.

11-13  Li-Chieh Hsu, Yong-Jhih Chen, Jia-Huang Liou, Numerical Investigation in the Factors on the Pool Boiling, Applied Mechanics and Materials Vol. 311 (2013) pp 456-461, © (2013) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.311.456. Available for purchase online at Scientific.Net.

10-13 Pamela J. Waterman, CFD: Shaping the Medical World, Desktop Engineering, April 2013. Full article available online at Desktop Engineering.

90-12 Charles R. Ortloff and Martin Vogel, Spray Cooling Heat Transfer- Test and CFD Analysis, Electronics Cooling, June 2012. Available online at Electronics Cooling.

79-12    Daniel Parsaoran Siregar, Numerical simulation of evaporation and absorption of inkjet printed droplets, Ph.D. Thesis: Technische Universiteit Eindhoven, September 18, 2012, Copyright 2012 by D.P. Siregar, ISBN: 978-90-386-3190-5.

71-12   Jong-hyeon Chang, Kyu-Dong Jung, Eunsung Lee, Minseog Choi, Seungwan Lee, and Woonbae Kim, Varifocal liquid lens based on microelectrofluidic technology, Optics Letters, Vol. 37, Issue 21, pp. 4377-4379 (2012) http://dx.doi.org/10.1364/OL.37.004377

70-12   Jong-hyeon Chang, Kyu-Dong Jung, Eunsung Lee, Minseog Choi, and Seunwan Lee, Microelectrofluidic Iris for Variable ApertureProc. SPIE 8252, MOEMS and Miniaturized Systems XI, 82520O (February 9, 2012); doi:10.1117/12.906587

69-12   Jong-hyeon Chang, Eunsung Lee, Kyu-Dong Jung, Seungwan Lee, Minseog Choi, and  Woonbae Kim, Microelectrofluidic Lens for Variable CurvatureProc. SPIE 8486, Current Developments in Lens Design and Optical Engineering XIII, 84860X (October 11, 2012); doi:10.1117/12.925852.

61-12  Biddut Bhattacharjee, Study of Droplet Splitting in an Electrowetting Based Digital Microfluidic System, Thesis: Doctor of Philosophy in the College of Graduate Studies (Applied Sciences), The University of British Columbia, September 2012, © Biddut Bhattacharjee.

55-12 Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301. Available for purchase online at SciVerse.

54-12   Edward P. Furlani, Anthony Nunez, Gianmarco Vizzeri, Modeling Fluid Structure-Interactions for Biomechanical Analysis of the Human Eye, Nanotech Conference & Expo, June 18-21, 2012, Santa Clara, CA.

53-12   Xinyun Wu, Richard D. Oleschuk and Natalie M. Cann, Characterization of microstructured fibre emitters in pursuit of improved nano electrospray ionization performance, The Royal Society of Chemistry 2012, http://pubs.rsc.org, DOI: 10.1039/c2an35249d, May 2012

25-12    Edward P. Furlani, Ioannis H. Karampelas and Qian Xie, Analysis of Pulsed Laser Plasmon-assisted Photothermal Heating and Bubble Generation at the Nanoscale, Lab on a Chip, 10.1039/C2LC40495H, Received 01 May 2012, Accepted 07 Jun 2012. First published on the web 13 Jun 2012.

22-12  R.A. Sultanov, D. Guster, Numerical Modeling and Simulations of Pulsatile Human Blood Flow in Different 3D-Geometries, Book chapter #21 in Fluid Dynamics, Computational Modeling and Applications (2012), ISBN: 978-953-51-0052-2, p. 475 [18 pages]. Available online at INTECH.

21-12  Guo-Wei Huang, Tzu-Yi Hung, and Chin-Tai Chen, Design, Simulation, and Verification of Fluidic Light-Guide Chips with Various Geometries of Micro Polymer Channels, NEMS 2012, Kyoto, Japan, March 5-8, 2012. Available for purchase online at IEEE.

103-11   Suk-Hee Park, Development of Three-Dimensional Scaffolds containing Electrospun Nanofibers and their Applications to Tissue Regeneration, Ph.D. Thesis: School of Mechanical, Aersospace and Systems Engineering, Division of Mechanical Engineering, KAIST, 2011.

81-11   Xinyun Wu, Modeling and Characterization of Microfabricated Emitters-In Pursuit of Improved ESI-MS Performance, thesis: Department of Chemistry, Queen’s University, December 2011, Copyright © Xinyun Wu, 2011

79-11  Cong Lu, A Cell Preparation Stage for Automatic Cell Injection, thesis: Graduate Department of Mechanical and Industrial Engineering, University of Toronto, Copyright © Cong Lu, 2011

77-11 Ge Bai, W. Thomas Leach, Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development, International Journal of Pharmaceutics, Available online 8 December 2011, ISSN 0378-5173, 10.1016/j.ijpharm.2011.11.044. Available online at SciVerse.

72-11  M.R. Barkhudarov, C.W. Hirt, D. Milano, and G. Wei, Comments on a Comparison of CFD Software for Microfluidic Applications, Flow Science Technical Note #93, FSI-11-TN93, December 2011

45-11  Chang-Wei Kang, Jiak Kwang Tan, Lunsheng Pan, Cheng Yee Low and Ahmed Jaffar, Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying, Applied Surface Science, In Press, Corrected Proof, Available online 20 July 2011, ISSN 0169-4332, DOI: 10.1016/j.apsusc.2011.06.081. Available to purchase online at SciVers

33-11  Edward P. Furlani, Mark T. Swihart, Natalia Litchinitser, Christopher N. Delametter and Melissa Carter, Modeling Nanoscale Plasmon-assisted Bubble Nucleation and Applications, Nanotech Conference and Expo 2011, Boston, MA, June 13-16, 2011

32-11  Lu, Cong and Mills, James K., Three cell separation design for realizing automatic cell injection, Complex Medical Engineering (CME), 2011 IEEE/ICME, pp: 599 – 603, Harbin, China, 10.1109/ICCME.2011.5876811, June 2011. Available online at IEEEXplore.

25-11 Issam M. Bahadur, James K. Mills, Fluidic vacuum-based biological cell holding device with piezoelectrically induced vibration, Complex Medical Engineering (CME), 2011 IEEE/ICME International Conference on, 22-25 May 2011, pp: 85 – 90, Harbin, China. Available online at: IEEE Xplore.

14-11  Edward P. Furlani, Roshni Biswas, Alexander N. Cartwright and Natalia M. Litchinitser, Antiresonant guiding optofluidic biosensor, doi:10.1016/j.optcom.2011.04.014, Optics Communication, April 2011

05-11 Hyeju Eom and Keun Park, Integrated numerical analysis to evaluate replication characteristics of micro channels in a locally heated mold by selective induction, International Journal of Precision Engineering and Manufacturing, Volume 12, Number 1, 53-60, DOI: 10.1007/s12541-011-0007-x, 2011. Available online at: SpringerLink.

70-10  I.N. Volnov, V.S. Nagornyi, Modeling Processes for Generation of Streams of Monodispersed Fluid Droplets in Electro-inkjet Applications, Science and Technology News, St. Petersburg State Polytechnic University, 4, pp 294-300, 2010. In Russian.

62-10  F. Mobadersani, M. Eskandarzade, S. Azizi and S. Abbasnezhad, Effect of Ambient Pressure on Bubble Growth in Micro-Channel and Its Pumping Effect, ESDA2010-24436, pp. 577-584, doi:10.1115/ESDA2010-24436, ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (ESDA2010), Istanbul, Turkey, July 12–14, 2010. Available online at the ASME Digital Library.

58-10 Tsung-Yi Ho, Jun Zeng, and Chakrabarty, K, Digital microfluidic biochips: A vision for functional diversity and more than moore, Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference on, DOI: 10.1109/ICCAD.2010.5654199, © IEEE, November 2010. Available online at IEEE Explore.

51-10  Regina Bleul, Marion Ritzi-Lehnert, Julian Höth, Nico Scharpfenecker, Ines Frese, Dominik Düchs, Sabine Brunklaus, Thomas E. Hansen-Hagge, Franz-Josef Meyer-Almes, Klaus S. Drese, Compact, cost-efficient microfluidics-based stopped-flow device, Anal Bioanal Chem, DOI 10.1007/s00216-010-4446-5, Available online at Springer, November 2010

22-10    Krishendu Chakrabarty, Richard B. Fair and Jun Zeng, Design Tools for Digital Microfluidic Biochips Toward Functional Diversification and More than Moore, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 29, No. 7, July 2010

14-10 E. P. Furlani and M. S. Hanchak, Nonlinear analysis of the deformation and breakup of viscous microjets using the method of lines, International Journal for Numerical Methods in Fluids (2010), © 2010 John Wiley & Sons, Ltd., Published online in Wiley InterScience. DOI: 10.1002/fld.2205

55-09 R.A. Sultanov, and D. Guster, Computer simulations of  pulsatile human blood flow through 3D models of the human aortic arch, vessels of simple geometry and a bifurcated artery, Proceedings of the 31st Annual International Conference of the IEEE EMBS (Engineering in Medicine and Biology Society), Minneapolis, September 2-6, 2009, p.p. 4704-4710.

30-09 Anurag Chandorkar and Shayan Palit, Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method, Sensors & Transducers journal, ISSN 1726-5479 © 2009 by IFSA, Vol.7, Special Issue “MEMS: From Micro Devices to Wireless Systems,” October 2009, pp. 136-149.

13-09 E.P. Furlani, M.C. Carter, Analysis of an Electrostatically Actuated MEMS Drop Ejector, Presented at Nanotech Conference & Expo 2009, Houston, Texas, USA, May 3-7, 2009

12-09 A. Chandorkar, S. Palit, Simulation of Droplet-Based Microfluidics Devices Using a Volume-of-Fluid Approach, Presented at Nanotech Conference & Expo 2009, Houston, Texas, USA, May 3-7, 2009

3-09 Christopher N. Delametter, FLOW-3D Speeds MEMS Inkjet Development, Desktop Engineering, January 2009

42-08  Tien-Li Chang, Jung-Chang Wang, Chun-Chi Chen, Ya-Wei Lee, Ta-Hsin Chou, A non-fluorine mold release agent for Ni stamp in nanoimprint process, Microelectronic Engineering 85 (2008) 1608–1612

26-08 Pamela J. Waterman, First-Pass CFD Analyses – Part 2, Desktop Engineering, November 2008

09-08 M. Ren and H. Wijshoff, Thermal effect on the penetration of an ink droplet onto a porous medium, Proc. Eurotherm2008 MNH, 1 (2008)

04-08 Delametter, Christopher N., MEMS development in less than half the time, Small Times, Online Edition, May 2008

02-08 Renat A. Sultanov, Dennis Guster, Brent Engelbrekt and Richard Blankenbecler, 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch – Investigation of Non-Newtonian Characteristics of Human Blood, The Journal of Computational Physics, arXiv:0802.2362v1 [physics.comp-ph], February 2008

01-08 Herman Wijshoff, thesis: University of Twente, Structure- and fluid dynamics in piezo inkjet printheads, ISBN 978-90-365-2582-4, Venlo, The Netherlands January 2008.

30-07 A. K. Sen, J. Darabi, and D. R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications, Microfluidics and Nanofluidics, Volume 3, Number 3, June 2007, pp. 283-298(16)

28-07 Dan Soltman and Vivek Subramanian, Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect, Langmuir; 2008; ASAP Web Release Date: 16-Jan-2008; (Research Article) DOI: 10.1021/la7026847

23-07 A K Sen and J Darabi, Droplet ejection performance of a monolithic thermal inkjet print head, Journal of Micromechanical and Microengineering,vol.17, pp.1420-1427 (2007) doi:10.1088/0960-1317/17/8/002; Abstract only.

18-07 Herman Wisjhoff, Better Printheads Via Simulation, Desktop Engineering, October 2007, Vol. 13, Issue 2

17-07 Jos de Jong, Ph.D. Thesis: University of Twente, Air entrapment in piezo inkjet printing, ISBN 978-90-365-2483-4, April 2007

15-07 Krishnendu Chakrabarty and Jun Zeng, (Ed.), Design Automation Methods and Tools for Microfluidics-Based Biochips, Springer, September 2006.

14-07 Fei Su and Jun Zeng, Computer-aided design and test for digital microfluidics, IEEE Design & Test of Computers, 24(1), 2007, 60-70.

13-07 Jun Zeng, Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(2), 2006, 224-233.

12-07 Krishnendu Chakrabarty and Jun Zeng, (2005), Automated top-down design for microfluidic biochips, ACM Journal on Emerging Technologies in Computing Systems, 1(3), 2005, 186–223.

01-07 Wijshoff, Herman, Drop formation mechanisms in piezo-acoustic inkjet, NSTI-Nanotech 2007, ISBN 1420061844 Vol. 3, 2007)

23-06 John J. Uebbing, Stephan Hengstler, Dale Schroeder, Shalini Venkatesh, and Rick Haven, Heat and Fluid Flow in an Optical Switch Bubble, Journal of Microelectromechanical Systems, Vol. 15, No. 6, December 2006

21-06 Wijshoff, Herman, Manipulating Drop Formation in Piezo Acoustic Inkjet, Proc. IS&T’s NIP22, 79 (2006)

20-06 J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, M. Versluis, G. de Bruin, A. Prosperetti and D. Lohse, Air entrapment in piezo-driven inkjet printheads, J. Acoust. Soc. Am. 120(3), 1257 (2006)

11-06 A. K. Sen, J. Darabi, D. R. Knapp and J. Liu, Modeling and Characterization of a Carbon Fiber Emitter for Electrospray Ionization, 1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA, 2 Department of Pharmacology, Medical University of South Carolina, Charleston, SC

5-06 E. P. Furlani, B. G. Price, G. Hawkins, and A. G. Lopez, Thermally Induced Marangoni Instability of Liquid Microjets with Application to Continuous Inkjet Printing, Proceedings of NSTI Nanotech Conference 2006, Vol. 2, pp 534-537.

28-05 O B Fawehinmi, P H Gaskell, P K Jimack, N Kapur, and H M Thompson, A combined experimental and computational fluid dynamics analysis of the dynamics of drop formation, May 2005. DOI: 10.1243/095440605X31788

5-05 E. P. Furlani, Thermal Modulation and Instability of Newtonian Liquid Microjets, presented at Nanotech 2005, Anaheim, CA, May 8-12, 2005.

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying, Flow Science Technical Note #70, FSI-05-TN70

19-04 G. F. Yao, Modeling of Electroosmosis Without Resolving Physics Inside a Electric Double Layer, Flow Science Technical Note (FSI-04-TN69)

12-04 Jun Zeng and Tom Korsmeyer, Principles of Droplet Electrohydrodynamics for Lab-on-a-Chip, Lab. Chip. Journal, 2004, 4(4), 265-277

9-04 Constantine N. Anagnostopoulos, James M. Chwalek, Christopher N. Delametter, Gilbert A. Hawkins, David L. Jeanmaire, John A. Lebens, Ali Lopez, and David P. Trauernicht, Micro-Jet Nozzle Array for Precise Droplet Metering and Steering Having Increased Droplet Deflection, Proceedings of the 12th International Conference on Solid State Sensors, Actuators and Microsystems, sponsored by IEEE, Boston, June 8-12, 2003, pp. 368-71

8-04 Christopher N. Delametter, David P. Trauernicht, James M. Chwalek, Novel Microfluidic Jet Deflection – Significant Modeling Challenge with Great Application Potential, Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems sponsored by NSTI, San Juan, Puerto Rico, April 21-25, 2002, pp. 44-47

6-04 D. Vadillo*, G. Desie**, A Soucemarianadin*, Spreading Behavior of Single and Multiple Drops, *Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), and **AGFA-Gevaert Group N.V., XXI ICTAM, 15-21 August 2004, Warsaw, Poland

2-04 Herman Wijshoff, Free Surface Flow and Acousto-Elastic Interaction in Piezo Inkjet, Nanotech 2004, sponsored by the Nano Science & Technology Institute, Boston, MA, March 2004

30-03 D Souders, I Khan and GF Yao, Alessandro Incognito, and Matteo Corrado, A Numerical Model for Simulation of Combined Electroosmotic and Pressure Driven Flow in Microdevices, 7th International Symposium on Fluid Control, Measurement and Visualization

27-03 Jun Zeng, Daniel Sobek and Tom Korsmeyer, Electro-Hydrodynamic Modeling of Electrospray Ionization – CAD for a µFluidic Device-Mass Spectrometer Interface, Agilent Technologies Inc, paper presented at Transducers 2003, June 03 Boston (note: Reference #10 is to FLOW-3D)

17-03 John Uebbing, Switching Fiber-optic Circuits with Microscopic Bubbles, Sensors Magazine, May 2003, Vol 20, No 5, p 36-42

16-03 CFD Speeds Development of MEMS-based Printing Technology, MicroNano Magazine, June 2003, Vol 8, No 6, p 16

3-03 Simulation Speeds Design of Microfluidic Medical Devices, R&D Magazine, March 2003, pp 18-19

1-03 Simulations Help Microscopic Bubbles Switch Fiber-Optic Circuits, Agilent Technologies, Fiberoptic Product News, January 2003, pp 22-23

27-02 Feng, James Q., A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices, Journal of Imaging Science and Technology®, Volume 46, Number 5, September/October 2002

1-02 Feixia Pan, Joel Kubby, and Jingkuang Chen, Numerical Simulation of Fluid Structure Interaction in a MEMS Diaphragm Drop Ejector, Xerox Wilson Research Center, Institute of Physics Publishing, Journal of Micromechanics and Microengineering, 12 (2002), PII: SO960-1317(02)27439-2, pp. 70-76

48-01   Rainer Gruber, Radial Mass Transfer Enhancement in Bubble-Train Flow, PhD thesis in Engineering Sciences, Rheinisch- Westf alischen Technische Hochschule Aachen, December 2001.

34-01 Furlani, E.P., Delametter, C.N., Chwalek, J.M., and Trauernicht, D., Surface Tension Induced Instability of Viscous Liquid Jets, Fourth International Conference on Modeling and Simulation of Microsystems, April 2001

12-01 C. N. Delametter, Eastman Kodak Company, Micro Resolution, Mechanical Engineering, Col 123/No 7, July 2001, pp 70-72

11-01 C. N. Delametter, Eastman Kodak Company, Surface Tension Induced Instability of Viscous Liquid Jets, Technical Proceeding of the Fourth International Conference on Modeling and Simulation of Microsystems, April 2001

9-01 Aman Khan, Unipath Limited Research and Development, Effects of Reynolds Number on Surface Rolling in Small Drops, PVP-Col 431, Emerging Technologies for Fluids, Structures and Fluids, Structures and Fluid Structure Interaction — 2001

2-00 Narayan V. Deshpande, Significance of Inertance and Resistance in Fluidics of Thermal Ink-Jet Transducers, Journal of Imaging Science and Technology, Volume 40, Number 5, Sept./Oct. 1996, pp.457-461

4-98 D. Deitz, Connecting the Dots with CFD, Mechanical Engineering Magazine, pp. 90-91, March 1998

14-94 M. P. O’Hare, N. V. Deshpande, and D. J. Drake, Drop Generation Processes in TIJ Printheads, Xerox Corporation, Adv. Imaging Business Unit, IS&T’s Tenth International Congress on Advances in Non-Impact Printing, Tech. 1994

14-92 Asai, A.,Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer, Journal of Fluids Engineering Vol. 114 December 1992:638-641

Coating Bibliography

아래는 코팅 참고 문헌의 기술 문서 모음입니다. 
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 코팅 공정을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

Coating Bibliography

2024년 11월 20일 Update

98-24 Fabiano I. Indicatti, Bo Cheng, Michael Rädler, Elisabeth Stammen, Klaus Dilger, Experimental and numerical investigation of the squeegee process during stencil printing of thick adhesive sealings, The Journal of Adhesion, 2024. doi.org/10.1080/00218464.2024.2356105

130-22   Md Didarul Islam, Himendra Perera, Benjamin Black, Matthew Phillips, Muh-Jang Chen, Greyson Hodges, Allyce Jackman, Yuxuan Liu, Chang-Jin Kim, Mohammed Zikry, Saad Khan, Yong Zhu, Mark Pankow, Jong Eun Ryu, Template-free scalable fabrication of linearly periodic microstructures by controlling ribbing defects phenomenon in forward roll coating for multifunctional applications, Advanced Materials Interfaces, 9.27; 2201237, 2022. doi.org/10.1002/admi.202201237

03-21   Delong Jia, Peng Yi, Yancong Liu, Jiawei Sun, Shengbo Yue, Qi Zhao, Effect of laser­ textured groove wall interface on molybdenum coating diffusion and metallurgical bonding, Surface and Coatings Technology, 405; 126561, 2021. doi.org/10.1016/j.surfcoat.2020.126561

50-19     Peng Yi, Delong Jia, Xianghua Zhan, Pengun Xu, and Javad Mostaghimi, Coating solidification mechanism during plasma-sprayed filling the laser textured grooves, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi:10.1016/j.ijheatmasstransfer.2019.118451

01-19   Jelena Dinic and Vivek Sharma, Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method, Physics of Fluids, Vol. 31, 2019. doi: 10.1063/1.5061715

85-18   Zia Jang, Oliver Litfin and Antonio Delgado, A semi-analytical approach for prediction of volume flow rate in nip-fed reverse roll coating process, Proceedings in Applied Mathematics and Mechanics, Vol. 18, no. 1, Special Issue: 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics, 2018. doi: 10.1002/pamm.201800317

80-14   Hiroaki Koyama, Kazuhiro Fukada, Yoshitaka Murakami, Satoshi Inoue, and Tatsuya Shimoda, Investigation of Roll-to-Sheet Imprinting for the Fabrication of Thin-film Transistor Electrodes, IEICE TRAN, ELECTRON, VOL.E97-C, NO.11, November 2014

46-14   Isabell Vogeler, Andreas Olbers, Bettina Willinger and Antonio Delgado, Numerical investigation of the onset of air entrainment in forward roll coating, 17th International Coating Science and Technology Symposium September 7-10, 2014 San Diego, CA, USA

17-12  Chi-Feng Lin, Bo-Kai Wang, Carlos Tiu and Ta-Jo Liu, On the Pinning of Downstream Meniscus for Slot Die Coating, Advances in Polymer Technology, Vol. 00, No. 0, 1-9 (2012) © 2012 Wiley Periodicals, Inc. Available online at Wiley.

01-11  Reid Chesterfield, Andrew Johnson, Charlie Lang, Matthew Stainer, and Jonathan Ziebarth, Solution-Coating Technology for AMOLED Displays, Information Display Magazine, 1/11 0362-0972/01/2011-024 © SID 2011.

61-09 Yi-Rong Chang, Chi-Feng Lin and Ta-Jo Liu, Start-up of slot die coating, Polymer Engineering and Science, Vol. 49, pp. 1158-1167, 2009. doi:10.1002/pen.21360

26-06  James M. Brethour, 3-D transient simulation of viscoelastic coating flows, 13th International Coating Science and Technology Symposium, September 2006, Denver, Colorado

19-06  Ivosevic, M., Cairncross, R. A., and Knight, R., 3D Predictions of Thermally Sprayed Polymer Splats Modeling Particle Acceleration, Heating and Deformation on Impact with a Flat Substrate, Int. J. of Heat and Mass Transfer, 49, pp. 3285 – 3297, 2006

9-06  M. Ivosevic, R. A. Cairncross, R. Knight, T. E. Twardowski, V. Gupta, Drexel University, Philadelphia, PA; J. A. Baldoni, Duke University, Durham, NC, Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles Modeling and Experiments, International Thermal Spray Conference, Seattle, WA, May 2006.

26-05  Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc. International Thermal Spray Conference [ITSC-2005], Eds., DVS/IIW/ASM-TSS, Basel, Switzerland, May 2005.

11-05  Brethour, J., Simulation of Viscoelastic Coating Flows with a Volume-of-fluid Technique, in Proceedings of the 6th European Coating Symposium, Bradford, UK, 2005

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying, Flow Science Technical Note #70, FSI-05-TN70

38-04 K.H. Ho and Y.Y. Zhao, Modelling thermal development of liquid metal flow on rotating disc in centrifugal atomisation, Materials Science and Engineering, A365, pp. 336-340, 2004. doi:10.1016/j.msea.2003.09.044

30-04  M. Ivosevic, R.A. Cairncross, and R. Knight, Impact Modeling of HVOF Sprayed Polymer Particles, Presented at the 12th International Coating Science and Technology Symposium, Rochester, New York, September 23-25, 2004

29-04  J.M. Brethour and C.W. Hirt, Stains Arising from Dried Liquid Drops, Presented at the 12th International Coating Science and Technology Symposium, Rochester, New York, September 23-25, 2004

20-03  James Brethour, Filling and Emptying of Gravure Cells–A CFD Analysis, Convertech Pacific October 2002, Vol. 10, No 4, p 34-37

4-03   M. Toivakka, Numerical Investigation of Droplet Impact Spreading in Spray Coating of Paper, In Proceedings of 2003 TAPPI 8th Advanced Coating Fundamentals Symposium, TAPPI Press, Atlanta, 2003

28-02  J.M. Brethour and H. Benkreira, Filling and Emptying of Gravure Cells—Experiment and CFD Comparison, 11th International Coating Science and Technology Symposium, September 23-25, 2002, Minneapolis, Minnesota

22-02  Hirt, C.W., and Brethour, J.M., Contact Line on Rough Surfaces with Application to Air Entrainment, Presented at the 11th International Coating Science and Technology Symposium, September 23-25, 2002, Minneapolis, Minnesota. Unpublished.

17-01  J. M. Brethour, C. W. Hirt, Moving Contact Lines on Rough Surfaces, 4th European Coating Symposium, 2001, Belgium

16-01  J. M. Brethour, Filling and Emptying of Gravure Cells–-A CFD Analysis, proceedings of the 4th European Coating Symposium 2001, October 1-4, 2001, Brussels, Belgium

26-00 Ronald H. Miller and Gary S. Strumolo, A Self-Consistent Transient Paint Simulation, Proceedings of IMEC2000: 2000 ASME International Mechanical Engineering Congress and Exposition, November 2000, Orlando, Florida

6-99  C. W. Hirt, Direct Computation of Dynamic Contact Angles and Contact Lines, ECC99 Coating Conference, Erlangen, Germany (FSI-99-00-2), Sept. 1999

7-98 J. E. Richardson and Y. Becker, Three-Dimensional Simulation of Slot Coating Edge Effects, Flow Science Inc, and Polaroid Corporation, presented at the 9th International Coating Science and Technology Symposium, Newark, DE, May 18-20, 1998

6-98  C. W. Hirt and E. Choinski, Simulation of the Wet-Start Process in Slot Coating, Flow Science Inc, and Polaroid Corporation, presented at the 9th International Coating Science and Technology Symposium, Newark, DE, May 18-20, 1998

3-97  C. W. Hirt and J. E. Richardson of Flow Science Inc, and K.S. Chen, Sandia National Laboratory, Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique, presented at the 50th Annual Conference of the Society for Imaging and Science Technology, Boston, MA 18-23 May 1997

2-96 C. W. Hirt, K. S. Chen, Simulation of Slide-Coating Flows Using a Fixed Grid and a Volume-of-Fluid Front-Tracking Technique, presented a the 8th International Coating Process Science & Technology Symposium, February 25-29, 1996, New Orleans, LA

General Applications Bibliography

다음은 일반 응용 분야의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. 복잡한 다중 물리와 관련된 문제를 성공적으로 시뮬레이션하기 위해 FLOW-3D를 사용 하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our General Applications Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate problems that involve complex multiphysics.

2024년 8월 12일 Upate

204-23   Togo Shinonaga, Hibiki Tajima, Yasuhiro Okamoto, Akira Okada, Application of large-area electron beam irradiation to micro-edge filleting, Journal of Manufacturing Processes, 107; pp. 65-73, 2023. doi.org/10.1016/j.jmapro.2023.10.039

167-23   Xiaoyong Cheng, Zhixian Cao, Ji Li, Alistair Borthwick, A numerical study of the settling of non-spherical particles in quiescent water, Physics of Fluids, 35.9; 2023. doi.org/10.1063/5.0165555

109-23 Dileep Karnam, Yu-Lung Lo, Chia-Hua Yang, Simulation study and parameter optimization of laser TSV using artificial neural networks, Journal of Materials Research and Technology, 25; pp. 3712-3727, 2023. doi.org/10.1016/j.jmrt.2023.06.199

66-23   Erik Holmen Olofsson, Michael Roland, Jon Spangenberg, Ninna Halberg Jokil, Jesper Henri Hattel, A CFD model with free surface tracking: predicting fill level and residence time in a starve-fed single-screw extruder, The International Journal of Advanced Manufacturing Technology, 126; pp. 3579-3591, 2023. doi.org/10.1007/s00170-023-11329-w

20-23   Giampiero Sciortino, Valentina Lombardi, Pietro Prestininzi, Modelling of cantilever-based flow energy harvesters featuring C-shaped vibration inducers: The role of the fluid/beam interaction, Applied Sciences, 13.1; 416, 2023. doi.org/10.3390/app13010416

134-22   Guozheng Ma, Shuying Chen, Haidou Wang, Impact spread behavior of flying droplets and properties of splats, Micro Process and Quality Control of Plasma Spraying, pp. 87-202, 2022. doi.org/10.1007/978-981-19-2742-3_3

111-22   Chia-Lin Chiu, Chia-Ming Fan, Chia-Ren Chu, Numerical analysis of two spheres falling side by side, Physics of Fluids, 34; 072112, 2022. doi.org/10.1063/5.0096534

58-21   Ruizhe Liu, Haidong Zhao, Experimental study and numerical simulation of infiltration of AlSi12 alloys into Si porous preforms with micro-computed tomography inspection characteristics, Journal of the Ceramic Society of Japan, 129.6; pp. 315-322, 2021. doi.org/10.2109/jcersj2.21018

56-20   Nils Steinau, CFD modeling of ascending Strombolian gas slugs through a constricted volcanic conduit considering a non-linear rheology, Thesis, Universität Hamburg, Hamburg, Germany, 2020.

30-20   Bita Bayatsarmadi, Mike Horne, Theo Rodopoulos and Dayalan Gunasegaram, Intensifying diffusion-limited reactions by using static mixer electrodes in a novel electrochemical flow cell, Journal of The Electrochemical Society, 167.6, 2020. doi.org/10.1149/1945-7111/ab7e8f

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

35-19     Sung-Won Ha, Tae-Won Kim, Joo-Hwan Choi, and Young-Jin Park, Study for flow phenomenon in the circulation water pump chamber using the Flow-3D model, Journal of the Korea Academia-Industrial Cooperation Society, Vol. 20, No. 4, pp. 580-589, 2019. doi: 10.5762/KAIS.2019.20.4.580

27-19     Rolands Cepuritis, Elisabeth L. Skare, Evgeny Ramenskiy, Ernst Mørtsell, Sverre Smeplass, Shizhao Li, Stefan Jacobsen, and Jon Spangeberg, Analysing limitations of the FlowCyl as a one-point viscometer test for cement paste, Construction and Building Materials, Vol. 218, pp. 333-340, 2019. doi: 10.1016.j.conbuildmat.2019.05.127

26-19     Shanshan Hu, Lunliang Duan, Qianbing Wan, and Jian Wang, Evaluation of needle movement effect on root canal irrigation using a computational fluid dynamics model, BioMedical Engineering OnLine, Vol. 18, No. 52, 2019. doi: 10.1186/s12938-019-0679-5

83-18   Elisabeth Leite Skare, Stefan Jacobsen, Rolands Cepuritis, Sverre Smeplass and Jon Spangenberg, Decreasing the magnitude of shear rates in the FlowCyl, Proceedings of the 12th fib International PhD Symposium in Civil Engineering, Prague, Czech Republic, August 29-31, 2018.

71-18   Marc Bascompta, Jordi Vives, Lluís Sanmiqeul and José Juan de Felipe, CFD friction factors verification in an underground mine, Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering, August 16 – 18, 2018, Madrid, Spain, Paper No. MMME 105, 2018. doi.org/10.11159/mmme18.105

56-18   J. Spangenberg, A. Uzala, M.W. Nielsen and J.H. Hattel, A robustness analysis of the bonding process of joints in wind turbine blades, International Journal of Adhesion and Adhesives, vol. 85, pp. 281-285, 2018. doi.org/10.1016/j.ijadhadh.2018.06.009

21-18   Zhang Weikang and Gong Hongwei, Numerical Simulation Study on Characteristics of Airtight Water Film with Flow Deflectors, IOP Conference Series: Earth and Environmental Science vol. 153, no. 3, pp. 032025, 2018. doi.org/10.1088/1755-1315/153/3/032025

59-17  Han Eol Park and In Cheol Bang, Design study on mixing performance of rotational vanes in subchannel with fuel rod bundles, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2017.

58-17  Jian Zhou, Claudia Cenedese, Tim Williams and Megan Ball, On the propagation of gravity currents over and through a submerged array of circular cylinders, Journal of Fluid Mechanics, Vol. 831, pp. 394-417, 2017. doi.org/10.1017/jfm.2017.604

24-17   Zhiyuan Ge, Wojciech Nemec, Rob L. Gawthorpe, Atle Rotevatn and Ernst W.M. Hansen, Response of unconfined turbidity current to relay-ramp topography: insights from process-based numerical modelling, doi: 10.1111/bre.12255 This article is protected by copyright. All rights reserved.

06-17   Masoud Hosseinpoor, Kamal H. Khayat, Ammar Yahia, Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: coupled effect of reinforcing bars and aggregate content on flow characteristics, A. Mater Struct (2017) 50: 163. doi:10.1617/s11527-017-1032-8

94-16   Mehran Seyed Ahmadi, Markus Bussmann and Stavros A. Argyropoulos, Mass transfer correlations for dissolution of cylindrical additions in liquid metals with gas agitation, International Journal of Heat and Mass Transfer, Volume 97, June 2016, Pages 767-778

83-16   Masoud Hosseinpoor, Numerical simulation of fresh SCC flow in wall and beam elements using flow dynamics models, Ph.D. Thesis: University of Sherbrooke, September 2016.

51-16   Aditi Verma, Application of computational transport analysis – Oil spill dynamics, Master Thesis: State University of New York at Buffalo, 2016, 56 pages; 1012775

37-16   Hannah Dietterich, Einat Lev, and Jiangzhi Chen, Benchmarking computational fluid dynamics models for lava flow simulation, Geophysical Research Abstracts, Vol. 18, EGU2016-2202, 2016, EGU General Assembly 2016, © Author(s) 2016. CC Attribution 3.0 License.

 19-16   A.J. Vellinga, M.J.B. Cartigny, E.W.M. Hansen, P.J. Tallinga, M.A. Clare, E.J. Sumner and J.T. Eggenhuisen, Process-based Modelling of Turbidity Currents – From Computational Fluid-dynamics to Depositional Signature, Second Conference on Forward Modelling of Sedimentary Systems, 25 April 2016, DOI: 10.3997/2214-4609.201600374

106-15    Hidetaka Oguma, Koji Tsukimoto, Saneyuki Goya, Yoshifumi Okajima, Kouichi Ishizaka, and Eisaku Ito, Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines, Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4, December 2015

93-15   James M. Brethour, Modelling of Cavitation within Highly Transient Flows with the Volume of Fluid Method, 1st Pan-American Congress on Computational Mechanics, April 27-29, 2015

90-15   Troy Shinbrot, Matthew Rutala, Andrea Montessori, Pietro Prestininzi and Sauro Succi, Paradoxical ratcheting in cornstarch, Phys. Fluids 27, 103101 (2015); http://dx.doi.org/10.1063/1.4934709

84-15   Nicolas Roussel, Annika Gram, Massimiliano Cremonesi, Liberato Ferrara, Knut Krenzer, Viktor Mechtcherine, Sergiy Shyshko, Jan Skocec, Jon Spangenberg, Oldrich Svec, Lars Nyholm Thrane and Ksenija Vasilic, Numerical simulations of concrete flow: A benchmark comparison, Cem. Concr. Res. (2015), http://dx.doi.org/10.1016/j.cemconres.2015.09.022

02-15   David Souders, FLOW-3D Version 11 Enhances CFD Simulation, Desktop Engineering, January 2015

125-14   Herbert Obame Mve, Romuald Rullière, Rémi Goulet and Phillippe Haberschill, Numerical Analysis of Heat Transfer of a Flow Confined by Wire Screen in Lithium Bromide Absorption Process, Defect and Diffusion Forum, ISSN: 1662-9507, Vol. 348, pp 40-50, doi:10.4028/www.scientific.net/DDF.348.40, © 2014 Trans Tech Publications, Switzerland

55-14   Agni Arumugam Selvi, Effect of Linear Direction Oscillation on Grain Refinement, Master’s Thesis: The Ohio State University, Graduate Program in Mechanical Engineering, Copyright by Agni Arumugam Selvi, 2014

99-13   R. C. Givler and M. J. Martinez, Computational Model of Miniature Pulsating Heat Pipes, SANDIA REPORT, SAND2012-4750, Unlimited Release, Printed January 2013.

82-13    Shizhao Li, Jon Spangenberg, Jesper Hattel, A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam A Preliminary Study, 8th International Conference on Porous Metals and Metallic Foams (METFOAM 2013), Raleigh, NC, June 2013

81-13   S. Li, J. Spangenberg, J. H. Hattel, A CFD Model for Prediction of Unintended Porosities in Metal Matrix Composites A Preliminary Study, 19th International Conference on Composite Materials (ICCM 2013), Montreal, Canada, July 2013

78-13   Haitham A. Hussein, Rozi Abdullah, Sobri, Harun and Mohammed Abdulkhaleq, Numerical Model of Baffle Location Effect on Flow Pattern in Oil and Water Gravity Separator Tanks, World Applied Sciences Journal 26 (10): 1351-1356, 2013, ISSN 1818-4952, DOI: 10.5829/idosi.wasj.2013.26.10.1239, © IDOSI Publications, 2013

74-13  Laetitia Martinie, Jean-Francois Lataste, and Nicolas Roussel, Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations, Materials and Structures, DOI 10.1617/s11527-013-0205-3, November 2013. Available for purchase online at SpringerLink.

67-13 Stefan Jacobsen, Rolands Cepuritis, Ya Peng, Mette R. Geiker, and Jon Spangenberg, Visualizing and simulating flow conditions in concrete form filling using Pigments, Construction and Building Materials 49 (2013) 328–342, © 2013 Elsevier Ltd. All rights reserved. Available for purchase at ScienceDirect.

60-13 Huey-Jiuan Lin, Fu-Yuan Hsu, Chun-Yu Chiu, Chien-Kuo Liu, Ruey-Yi Lee, Simulation of Glass Molding Process for Planar Type SOFC Sealing Devices, Key Engineering Materials, 573, 131, September 2013. Available for purchase at Scientific.net.

32-13 M A Rashid, I Abustan and M O Hamzah, Numerical simulation of a 3-D flow within a storage area hexagonal modular pavement systems, 4th International Conference on Energy and Environment 2013 (ICEE 2013), IOP Conf. Series: Earth and Environmental Science 16 (2013) 012056 doi:10.1088/1755-1315/16/1/012056. Full paper available at IOP.

105-12 Jon Spangenberg, Numerisk modellering af formfyldning ved støbning i selvkompakterende beton, Ph.D. Thesis: Technical University of Denmark, ID: 0eeede98-fb07-4800-86e2-0a6baeb1e7a3, 2012.

100-12 Nurul Hasan, Validation of CFD models using FLOW-3D for a Submerged Liquid Jet, Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 10-12 December 2012.

87-12  Abustan, Ismail, Hamzah, Meor Othman and Rashid, Mohd Aminur, A 3-Dimensional Numerical Study of a Flow within a Permeable Pavement, OIDA International Journal of Sustainable Development, Vol. 04, No. 02, pp. 37-44, April 2012.

86-12 Abustan, Ismail, Hamzah, Meor Othman and Rashid, Mohd Aminur, Review of Permeable Pavement Systems in Malaysia Conditions, OIDA International Journal of Sustainable Development, Vol. 04, No. 02, pp. 27-36, April 2012.

85-12  Mohd Aminur Rashid, Ismail Abustan, Meor Othman Hamzah, Infiltration Characteristic Modeling Using FLOW-3D within a Modular Pavement, Procedia Engineering, Volume 50, 2012, Pages 658-667, ISSN 1877-7058, 10.1016/j.proeng.2012.10.072.

73-12  Mohd Aminur Rashid, Ismail Abustan, Meor Othman Hamzah, Infiltration Characteristic Modeling Using FLOW-3D within a Modular Pavement, Procedia Engineering, Volume 50, 2012, Pages 658-667, ISSN 1877-7058, 10.1016/j.proeng.2012.10.072.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

56-12  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, Flow structures around large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, DOI: 10.1615/JFlowVisImageProc.2012005088, 2012. Available for purchase online at Begell Digital Library.

49-12  M. Janocko, M.B.J. Cartigny, W. Nemec, E.W.M. Hansen, Turbidity current hydraulics and sediment deposition in erodible sinuous channels: laboratory experiments and numerical simulations, Marine and Petroleum Geology, Available online 17 September 2012. Available for purchase online at SciVerse.

32-12  Fatih Karadagli, Bruce E. Rittmann, Drew C. McAvoy, and John E. Richardson, Effect of Turbulence on the Disintegration Rate of Flushable Consumer Products, Water Environment Research, Volume 84, Number 5, May 2012

31-12    D. Valero Huerta and R. García-Bartual, Optimization of Air Conditioning Diffusers Location in Large Agricultural Warehouses Using CFD Techniques, International Conference of Agricultural Engineering (CIGR-AgEng2012) Valencia, Spain, July 8-12, 2012

16-12 Yi Fan Fu, Wei Dong, Ying Li, Yi Tan, Ming Hui Yi, Akira Kawasaki, Simulation of the Effects of the Physical Properties on Particle Formation of Pulsated Orifice Ejection Method (POEM), 2012, Advanced Materials Research, 509, 161. Available for purchase online at Scientific.Net.

92-11  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, The lower vertical structure past the Ahmed car model, International Conference on Computational Science, ICCS 2011. Available for purchase online at Begell Digital Library.

80-11  Ismail Abustan, Meor Othman Hamzah, Mohd Aminur Rashid, A 3-Dimensional Numerical Study of a Flow within a Permeable Pavement, OIDA International Conference on Sustainable Development, ISSN 1923-6670, Putrajaya, Malaysia, 5-7th December 2011

66-11   H. Kondo, T. Furukawa, Y. Hirakawa, K. Nakamura, M. Ida, K.Watanabe, T. Kanemura, E. Wakai, H. Horiike, N. Yamaoka, H. Sugiura, T. Terai, A. Suzuki, J. Yagi, S. Fukada, H. Nakamura, I. Matsushita, F. Groeschel, K. Fujishiro, P. Garin and H. Kimura, IFMIF-EVEDA lithium test loop design and fabrication technology of target assembly as a key componentNuclear Fusion Volume 51 Number 12, doi:10.1088/0029-5515/51/12/123008

49-11     N.I. Vatin, A.A. Girgidov, K.I. Strelets, Numerical modelling the three-dimensional velocity field in the cyclone, Inzhenerno-Stroitel’nyi Zhurnal, No. 4, 2011. In Russian.

41-11    Maiko Hosoda, Taichi Hirano, and Keiji Sakai, Low-Viscosity Measurement by Capillary Electromagnetically Spinning Technique, © 2011 The Japan Society of Applied Physics, Japanese Journal of Applied Physics, July 20, 2011.

18-11  Ortloff, C.R., Vogel, M., Spray cooling heat transfer — Test and CFD analysis, Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2011 27th Annual IEEE, 20-24 March 2011, pp 245 – 252, San Jose, CA, 10.1109/STHERM.2011.5767208.

82-10   Dr. John Abbott, Two problems on the flow of viscous sheets of molten glass, 26th Annual Workshop on Mathematical Problems in Industry, Rensselear Polytechnic Institute, June 14-18, 2010

57-10  Chouet, B. A., Dawson, P. B., James, M. R. and Lane, S. J., Seismic source mechanism of degassing bursts at Kilauea Volcano, Hawaii: Results from waveform inversion in the 10–50 s band, J. Geophys. Res., 115, B09311, doi:10.1029/2009JB006661, September 2010. Available online at JOURNAL OF GEOPHYSICAL RESEARCH.

55-10 Pamela Waterman, FEA and CFD: Getting Better All the Time, Desktop Engineering, December 2010.

53-10  Nicolas Fries, Capillary transport processes in porous materials – experiment and model, Cuvillier Verlag Göttingen; 2010; ISBN 978-3-86955-507-2. Available at www.cuvillier.de  and www.amazon.de.

45-10  Meiring Beyers, Thomas Harms, and Johan Stander, Mitigating snowdrift at the elevated SANAE IV research station in Antarctica CFD simulation and field application, The Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA, May 23-27, 2010.

31-10 J. Spangenberg, N. Roussel, J.H. Hattel, J. Thorborg, M.R. Geiker, H. Stang and J. Skocek, Prediction of the Impact of Flow-Induced Inhomogeneities in Self-Compacting Concrete (SCC), Ch. 25 of “Design, Production and Placement of Self-Consolidating Concrete,” RILEM Bookseries, 2010, Volume 1, Part 5, 209-215, DOI: 10.1007/978-90-481-9664-7_18. Available online at Springer Link.

28-10 Sirisha Burra, Daniel P. Nicolella, W. Loren Francis, Christopher J. Freitas, Nicholas J. Mueschke, Kristin Poole, and Jean X. Jiang, Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels, Proc Natl Acad Sci U S A. 2010 Jul 19. [Epub ahead of print], Available for purchase at PNAS.

19-10 Michael T. Tolley, Michael Kalontarov, Jonas Neubert, David Erickson and Hod Lipson, Stochastic Modular Robotic Systems A Study of Fluidic Assembly Strategies, IEEE Transactions on Robotics, Vol. 26, NO. 3, June 2010

59-17   Han Eol Park and In Cheol Bang, Design study on mixing performance of rotational vanes in subchannel with fuel rod bundles, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2017.

44-09 Micah Fuller, Fabian Bombardelli, Deb Niemeier, Particulate Matter Modeling in Near-Road Vegetation Environments, Contract AQ-04-01: Developing Effective and Quantifiable Air Quality Mitigation Measures, UC Davis, Caltrans, September 2009

28-09 D. C. Lo, Dong-Taur Su and Jan-Ming Chen (2009), Application of Computational Fluid Dynamics Simulations to the Analysis of Bank Effects in Restricted Waters, Journal of Navigation, 62, pp 477-491, doi:10.1017/S037346330900527X; Purchase the article online (clicking on this link will take you to the Cambridge Journals website).

24-09 Richard C. Givler and Mario J. Martinez, Modeling of Pulsating Heat Pipes, Sandia Report, SAND2009-4520, Sandia National Laboratories, August 2009.

45-08  J. Saeki, Seikei Kakou, Three-Dimensional Flow Analysis of a Thermosetting Compound in a Motor Stator, 20, 750-754 (2008) [in Japanese] (Zipped file contains paper and appendices)

38-08 Yoshifumi Kuriyama, Ken’ichi Yano and Masafumi Hamaguchi, Trajectory Planning for Meal Assist Robot Considering Spilling Avoidance, 17th IEEE International Conference on Control Applications, Part of 2008 1EEE Multi-conference on Systems and Control, San Antonio, Texas, September 3-5, 2008

29-08 Ernst W.M. Hansen, Wojciech Nemec and Snorre Heimsund, Numerical CFD simulations — a new tool for the modelling of turbidity currents and sand dispersal in deep-water basins, Production Geoscience 2008 in Stavanger, Norway, © 2008

17-08 James, M. R., Lane, S. J. & Corder, S. B., Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas, In Lane S. J., Gilbert J. S. (eds) Fluid Motion in Volcanic Conduits: A Source of Seismic and Acoustic Signals. Geol. Soc., London, Spec. Pub., 307, 147-167, doi: 10.1144/SP307.9. 2008

16-08 Stefano Malavasi, Nicola Trabucchi, Numerical Investigation of the Flow Around a Rectangular Cylinder Near a Solid Wall, BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications, Milano, Italy, July 2008

41-07 Nicolas Roussel, Mette R. Geiker, Frederic Dufour, Lars N. Thrane and Peter Szabo, Computational modeling of concrete flow General Overview, Cement and Concrete Research 37 (2007) 1298-1307, © 2007 Elsevier Ltd.

40-07 Nemec, W., Heimsund, S., Xu, J. & Hansen, E.W.M., Numerical CFD simulation of turbidity currents, British Sedimentological Research Group (BSRG) Annual Meeting, Birmingham, 17-18 December 2007

39-07 Heimsund, S, Xu, J. & Nemec, W., Numerical Simulation of Recent Turbidity Currents in the Monterey Canyon System, Offshore California, American Geophysical Union Fall Meeting, 10-14 December 2007

32-07 James, M. R., Lane, S. J. & Corder, S. B., Modeling the near-surface expansion of gas slugs in basaltic magmaEos Trans. A.G.U., 88(52), Fall Meet. Suppl.. Abs. V12B-03. 2007

31-07 James, M. R., Lane, S. J. and Corder, S. B., Degassing low-viscosity magma: Quantifying the transition between passive bubble-burst and explosive activityE.G.U. Geophys. Res. Abstr., 905336, SRef-ID: 1607-7962/gra/EGU2007-A-05336. 2007

35-06  S. Green and C. Manepally, Software Validation Report for FLOW-3D Version 9.0, Center for Nuclear Waste Regulatory Analyses, August 2006

33-06 N. Roussel, Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results, © RILEM 2006, Materials and Structures (2006) 39:501-509, Purchase online at Springer Link.

32-06 Heimsund, S., Möller, N. and Guargena, C., FLOW-3D simulation of the Ormen Lange field, mid-Norway, In: Hoyanagi, K., Takano, O. and Kano, K. (Ed.), Abstracts, International Association of Sedimentologists 17th International Sedimentological Congress, Fukuoka, Vol. B, p. 107, 2006

10-06 Gengsheng Wei, An Implicit Method to Solve Problems of Rigid Body Motion Coupled with Fluid Flow, Flow Science Technical Note #76, FSI-05-TN76.

8-06 Gengsheng Wei, Three-Dimensional Collision Modeling for Rigid Bodies and its Coupling with Fluid Flow Computation, Flow Science Technical Note #75, FSI-06-TN75.

34-05  Young Bae Kim, Kyung Do Kim, Sang Eui Hong, Jong Goo Kim, Man Ho Park, and Ju Hyun Kim, and Jae Keun Kweon, 3D Simulation of PU Foaming Flow in a Refrigerator Cabinet, Appliance Magazine.com, January 2005.

33-05 N. Roussel, Fifty-cent rheo-meter for yield stress measurements From slump to spreading flow, @2005 by The Society of Rheolgoy, Inc., J. Rheol. 49(3), 705-718 May/June (2005)

32-05 Heimsund, S., Möller, N., Guargena, C. and Thompson, L., Field-scale modeling of turbidity currents by FLOW-3D simulations, In: Workshop Abstracts, Modeling of Turbidity Currents and Related Gravity Currents, University of California, Santa Barbara, 2 p., (2005)

15-05 Gengsheng Wei, A Fixed-Mesh Method for General Moving Objects, Flow Science Technical Note #73, FSI-05-TN73

14-05 James M. Brethour, Incremental Thermoelastic Stress Model, Flow Science Technical Note #72, FSI-05-TN72

9-05 Gengsheng Wei, A Fixed-Mesh Method for General Moving Objects in Fluid Flow, Modern Physics Letters B, Vol. 19, Nos. 28-29 (2005) 1719-1722

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying Flow Science Technical Note #70, FSI-05-TN70

35-04  J. Saeki, T. Kono and T. Teramae, Seikei Kakou, Formulation of Mathematical Models for Estimating Residual Stress and Strain Components Correlated with 3-D Flow of Thermosetting Compounds, 16, 5, 309-316 (2004) [in Japanese]. (Zipped file contains paper and appendices)

31-04 Heimsund, S., Möller, N., Guargena, C. and Thompson, L., The control of seafloor topography on turbidite sand dispersal in the Ormen Lange field: a large-scale application of FLOW-3D simulations, In: Martinsen, O.J. (Ed.), Abstracts and Proceedings of the Geological Society of Norway (NGF), Deep Water Sedimentary Systems of Arctic and North Atlantic Margins, Stavanger, 3, p. 25, (2004)

26-04 Beyers, J.H.M., Harms, T.M. and Sundsbø, P.A., 2004, Numerical simulation of three dimensional, transient snow drifting around a cube, Journal of wind engineering and industrial aerodynamics, vol. 92, pp. 725-747, ISSN 0167-6105

25-04 Beyers, J.H.M, Harms, T.M. and Sundsbø, P.A., 2004, Numerical simulation of snow drifting around an elevated obstacle, Proceedings of the 5th conference on snow engineering, Davos, Switzerland, pp.185-191

17-04 Michael Barkhudarov, Multi-Block Gridding Technique for FLOW-3D (Revised), Flow Science Technical Note #59-R2, FSI-00-TN59-R2

36-03 Heimsund, S., Hansen, E.W.M. and Nemec, W., Numerical CFD simulation of turbidity currents and comparison with laboratory data, In: Hodgetts, D., Hodgson, D. and Smith, R. (Ed.), Slope Modelling Workshop Abstracts, Experimental, Reservoir and Forward Modelling of Turbidity Currents and Deep-Water Sedimentary Systems, Liverpool Univ., p. 13., (2003b)

35-03 Heimsund, S., Hansen, E.W.M. and Nemec, W. Computational 3-D fluid-dynamics model for sediment transport, erosion and deposition by turbidity currents, In: Nakrem, H.A. (Ed.), Abstracts and Proceedings of the Geological Society of Norway (NGF), Den 18. Vinterkonferansen, Oslo, 1, p. 39., (2003a)

33-03 Beyers, J.H.M., Sundsbø, P.A. and Harms, T.M., 2003, Numerical simulation and verification of drifting snow around a cube, Proceedings of the 11th international conference on wind engineering, Texas Tech University, Lubbock, Texas, USA, pp. 1886-1893

27-03 Jun Zeng, Daniel Sobek and Tom Korsmeyer, Electro-Hydrodynamic Modeling of Electrospray Ionization CAD for a µFluidic Device-Mass Spectrometer Interface, Agilent Technologies Inc, paper presented at Transducers 2003, June 03 Boston (note: Reference #10 is to FLOW-3D)

25-03 J. M Brethour, Moving Boundaries an Eularian Approach, Moving Boundaries VII, Computational Modelling of Free and Moving Boundary Problems, A. A. Mammoli & C.A. Brebbia, WIT Press

19-03 James Brethour, Incremental Elastic Stress Model, Flow Science Technical Note (FSI-03-TN64)

18-03 Michael Barkhudarov, Semi-Lagrangian VOF Advection Method for FLOW-3D, Flow Science Technical Note (FSI-03-TN63)

11-02 Junichi Saeki and Tsutomu Kono, Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling, Polymer Processing Society 18th Annual Meeting, June 2002, Guimares, Portugal.

46-01 Yasunori Iwai, Takumi Hayashi, Toshihiko Yamanishi, Kazuhiro Kobayashi and Masataka Nishi, Simulation of Tritium Behavior after Intended Tritium Release in Ventilated Room, Journal of Nuclear Science and Technology, Vol. 38, No. 1, p. 63-75, January 2001

23-01 Borre Bang, Dag Lukkassen, Application of Homogenization Theory Related to Stokes Flow in Porous Media, Applications of Mathematics, Narvik, Norway, No 4, pp. 309-319.

15-01 Ernst Hansen, SINTEF Energy Research, Trondheim, Norway, Computer Simulation Helps Increase Flow Rate in Three-Phase Separator, Drilling Marketplace, Vol 55, No 10, May 15, 2001, pp.14

10-01 Ernst Hansen, SINTEF Energy Research, Phenomeological Modeling and Simulation of Fluid Flow and Separation Behaviour in Offshore Gravity Separators, PVP-Col 431, Emerging Technologies for Fluids, Structures and Fluids, Structures and Fluid Structure Interaction — 2001, ASME 2001, pp. 23-29

7-01 C. Bohm, D. A. Weiss, and C. Tropea, Multi-droplet Impact onto Solid Walls Droplet-droplet Interaction and Collision of Kinemeatic Discontinuities, DaimlerChrysler Research and Technology, ILASS-Europe 2000, September 11-13, 2000

6-01 Ernst Hansen, Simulation Raises Separator Flow RateEngineering Talk, March 21, 2001

3-01 M. Sick, H. Keck, G. Vullioud, and E. Parkinson, New Challenges in Pelton Research

1-01 Y. Darsht, K. Kuvanov, A. Puzanov, I. Kholkin, FLOW-3D in Designing Hydraulic Systems for Heavy Machinery  (in Russian), SAPR I Grafika (CAD and Graphics), August 2000, pp. 50-55.

22-00 A. K. Temu, O. K. Sønju and E. W. M. Hansen, Criteria for Minimum Particle Deposition onto a Cylinder in Crossflow, International Symposium on Multiphase Flow and Transport Phenomena, November 2000, Tekirova, Antalya, Turkey

21-00 Claus Maier, Stefan aus der Wiesche and Eberhard P. Hofer, Impact of Microdrops on Solid Surfaces for DNA-Synthesis, Department of Measurement, Control and Microtechnology, University of Ulm, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, pp. 586-589

11-00 Thomas K. Thiis, A Comparison of Numerical Simulations and Full-scale Measurements of Snowdrifts around Buildings, Wind and Structures – ISSN: 1226-6116,Vol. 3, nr. 2 (2000), pp. 73-81

10-00 P.A. Sundsbo and B. Bang, Snow drift control in residential areas-Field measurements and numerical simulations, Fourth International Conference on Snow Engineering, pp. 377-382

9-00 Thomas K. Thiis and Christian Jaedicke, The Snowdrift Pattern Around Two Cubical Obstacles with Varying Distance—Measurement and Numerical Simulations, Snow Engineering, edited by Hjorth-Hansen, et al, Balkema, Rotterdam, 2000, pp.369-375.

8-00 Thomas K. Thiis and Christian Jaedicke, Changes in the Snowdrift Pattern Caused by a Building Extension—Investigations Through Scale Modeling and Numerical Simulations, Snow Engineering, edited by Hjorth-Hansen, et al, Balkema, Rotterdam, 2000, pp. 363-368

7-00 Bruce Letellier, Louis Restrepo, and Clinton Shaffer, Near-Field Dispersion of Fission Products in Complex Terrain Using a 3-D Turbulent Fluid-Flow Model, CCPS International Conference, San Francisco, CA, September 28-October 1, 1999

6-00 Bruce Letellier, Patrick McClure, and Louis Restrepo, Source-Term and Building-Wake Consequence Modeling for the GODIVA IV Reactor at Los Alamos National Laboratory, 1999 Safety Analysis Workshop, Portland, Oregon, June 13-18, 1999

11-99 Thomas K. Thiis and Yngvar Gjessing, Large-scale Measurements of Snowdrifts Around Flat-roofed and Single-pitch-roofed Buildings, Cold Regions Science and Technology 30, Narvik, Norway, May 17, 1999, pp. 175-181

3-99 A. A. Gubaidullin, Jr., T. N. Dinh, and B. R. Sehgal, Analysis of Natural Convection Heat Transfer and Flows in Internally Heated Stratified Liquid, accepted for publication 33rd Natl. Heat Transfer Conf. CD proceedings, Albuquerque, NM, August 15-17, 1999

20-98 Mark W. Silva, A Computational Study of Highly Viscous Impinging Jets, published by the Amarillo National Resource Center for Plutonium, ANRCP-1998-18, November 1998

17-98 P. A. Sundsbo and B. Bang, 1998, Calculation of Snowdrift Around Roadside Safety Barriers, Proc of the International Snow Science Workshop, Sept. 1998, Sunriver, Oregon, USA 279-283

11-98 P-A Sundsbo, Numerical simulations of wind deflection fins to control snow accumulation in building steps, Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998) 543-552

23-97  P.E. O’Donoghue, M.F. Kanninen, C.P. Leung, G. Demofonti, and S. Venzi, The development and validation of a dynamic propagation model for gas transmission pipelines, Intl J. Pres. Ves. & Piping 70 (1997) 11-25, P11 : S0308 – 0161 (96) 00012 – 9.

22-97  Christopher J. Matice, Simulation of High Speed Filling, Presented at High Speed Processing & Filling of Plastic Containers, SME, Chicago, Illinois, November 11, 1997.

12-97 B. Entezam and W. K. Van Moorhem, University of Utah, Salt Lake City, UT and J. Majdalani, Marquette University, Milwaukee, WI, Modeling of a Rijke-Tube Pulse Combustor Using Computational Fluid Dynamics, presented at 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Seattle, WA, July 6-9, 1997.

11-97 B. Entezam, Computational and Experimental Investigation of Unsteady Flowfield Inside the Rijke Tube, doctoral thesis submitted to University of Utah, Dept. Mechanical Engineering, Salt Lake City, UT, June 1997

2-97 K. Fujisaki, T. Ueyama, and K. Okazawa, Magnetohydrodynamic Calculation of In-Mold Electromagnetic Stirring, Nippon Steel Corp., IEEE Transactions on Magnetics, Vol. 33, No. 2, March 1997

1-97 P. A. Sundsbo, Four Layer Modelling and Numerical Simulations of Snow Drift, to be submitted to the Journal of Glaciology, 1997

23-96 Andy K Palmer, Computational Fluid Dynamic Software Comparison and Electrostatic Precipitator Modeling, Presented to the Faculty of California State University, Summer 1996

21-96 P. A. Sundsbo, Computer Simulation of Snow-Drift around Structures, Proceedings of the 4th Symposium on Building Physics in the Nordic Countries, Vol. 2, 533-539, Finland, 9-10 Sep. 1996

20-96 P. A. Sundsbo and E.W.M. Hansen, Modelling and Numerical Simulation of Snow-Drift around Snow Fences, Proceedings of the 3rd International Conference on Snow Engineering, Sendai, Japan, 26-31 May 1996

19-96 P. A. Sundsbo, Numerical Modelling and Simulation of Snow Accumulations around Porous FencesProceedings of the International Snow Science Workshop, Banff, Alberta, Canada, 6-10 Oct. 1996

18-96 T. Iverson, Editor, Applied Modelling and Simulation, Proceedings of the 38th SIMS Simulation Conference, Norwegian University of Science and Technology, Trondheim, Norway, June 11-13, 1996

17-96 C. L. Parish, Modeling Compressible Flow Through an Orifice Stack Using Numerical Methods, thesis submitted for M.S. Mech. Engineering, NM State University, Las Cruces, NM, December 1996

15-96 T. Wiik and R. K. Calay, A Study of Balcony on Flow-Field and Wind Loads for Low-Rise Buildings, Fourth Symposium on Building Physics in the Nordic Countries, Dipoli, Espoo, Finland, September 1996

14-96 T. Wiik, E.W.M. Hansen, The Assessment of Wind Loads on Roof Overhang of Low-Rise Buildings, Second International Symposium Wind Engineering, Fort Collins, CO, September 1996

13-96 T. Wiik, R. K. Calay, and A. Holdo, A Study of Effects of Eaves on Flow-Field and Wind Loads for Low-Rise Houses, Third International Colloquium on Bluff Body Aerodynamics and Applications, Blacksburg, Virginia, August 1996

11-96 Y. Miyamoto and M. Harada, A Flow Analysis accompanied by Formation of the Liquid Droplets shown with an Animation Display Technique, SEA Corporation, presented at Visualization Information Conference, Tokyo, Japan, July 17, 1996

8-96 J. Bakken, E. Naess, T. Engebretsen, and E. W. M. Hansen, Fluid Flow in Porous Media, proceedings of the 38th SIMS Simulations Conference, Norwegian Univ. of Science & Technology, Trondheim, Norway, June 11-13, 1996

7-96E. W. M. Hansen, Performance of Oil/Water Gravity Separators Imposed to Motion, proceedings of the 38th SIMS Simulations Conference, Norwegian Univ. of Science & Technology, Trondheim, Norway, June 11-13, 1996

8-95 J. J. Francis, Computational Hydrodynamic Study of Flow through a Vertical Slurry Heat Exchanger, NSF Summer Research Program, Dept. Mech. Engineering, Univ. of Nevada Las Vegas, August 9, 1995

4-94 J. L. Ditter and C. W. Hirt, A Scalable Model for Mixing Vessels, Flow Science report, FSI-94-00-1, presented at the 1994 ASME Fluids Engineering Summer Meeting, Incline Village, NV, June 1994

3-94 A. Nielsen, B. Bang, P. A. Sundsbo and T. Wiik, Computer Simulation of Windspeed, Windpressure and Snow Accumulation around Buildings (SNOW-SIM), 1st International Conference on HVAC in Cold Climate, Rovaniemi, Finland, from Narvik Institute of Technology, Narvik, Norway, March 1994

2-94 J. M. Sicilian, Addition of an Extended Bubble Model to FLOW-3D, Flow Science report, FSI-94-58-1, March 1994

1-94 T. Hong, C. Zhu, P. Cal and L-S Fan, Numerical Modeling of Basic Modes of Formation and Interactions of Bubbles in Liquids, Dept. Chem. Engineering, Ohio State University, Columbus, OH 43210, March 1994

14-93 J. L. Ditter and C. W. Hirt, A Scalable Model for Stir Tanks, Flow Science Technical Note #38, December 1993 (FSI-93-TN38)

13-93 J. Partinen, N. Saluja and J. K. Kirtley, Jr., Experimental and Computational Investigation of Rotary Electromagnetic Stirring in a Woods Metal System, Dept. of Math, Science and Engr. and Dept. of Electrical Engr. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

12-93 J. Partinen, N. Saluja and J. K. Kirtley, Jr., Modeling of Surface Deformation in an Electromagnetically Stirred Metallic Melt, Dept. of Math, Science, and Engr. and Dept. of Electrical Engr. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

10-93 C. Philippe, Summary Report on Test Calculations with FLOW-3D/CAST93, (coupled-rigid-body dynamics model), ESTEC, Noordwijk, The Netherlands, September 17, 1993

5-93 J. M. Sicilian, J. L. Ditter and C. L. Bronisz, FLOW-3D Analyses of CFD Triathlon Benchmark, Flow Science report, presented at the ASME Fluids Engineering Conference, Washington DC, June 20-24, 1993

4-93 T. Wiik, Ventilation of the Attic due to Wind Loads on Low-Rise Buildings, paper for 3rd Symposium of Building Physics in Nordic Countries, Narvik Institute of Technology, Narvik, Norway, summer 1993

3-93 E. W. M. Hansen, Modelling and Simulation of Separation Effects and Fluid Flow Behaviour in Process-Units, SIMS’93 – 35th Simulation Conference, Kongsberg, Norway, June 9-11, 1993

2-93 M. A. Briones, R. S. Brodsky and J. J. Chalmers, Computer Simulation of the Rupture of a Gas Bubble at a Gas-Liquid Interface and its Implications in Animal Cell Damage, Dept. Chemical Engineering, Ohio State University, Manuscript No. RB68, April 1993

11-92 G. Trapaga, E. F. Matthys, J. J. Valencia and J. Szekely, Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results, Metallurgical Transactions B, Vol. 23B, pp. 701-718, December 1992

10-92 J. B. Dalin, J. M. Le Guilly, P. Le Roy and E. Maas, Numerical Simulations Applied to the Production of Automotive Foundry Components, Numerical Methods in Industrial Forming Processes, Wood & Zienkiewicz (eds), Balkema, Rotterdam, 1992

5-92 C. W. Hirt, Volume-Fraction Techniques: Powerful Tools for Flow Modeling, Flow Science report (FSI-92-00-02), presented at the Computational Wind Engineering Conference, University of Tokyo, August 1992

3-92 C. L. Bronisz and C.W. Hirt, Lubricant Flow in a Rotary Lip Seal, Flow Science Technical Note #33, February 1992 (FSI-92-TN33)

16-91 A. Nielsen, SNOW-SIM – Computer Model for Simulation of Wind and Snow Loads on Buildings and Structures, Building Science, Narvik Institute of Technology, Narvik, Norway, (not dated)

15-91 E. W. M. Hansen, H. Heitmann, B. Laska, A. Ellingsen, O. Ostby, T. B. Morrow and F. T. Dodge, Fluid Flow Modelling of Gravity Separators, SINTEF, Norway and Southwest Research Institute, Texas, Elsevier Science Publishers, 1991

14-91 E. W. M. Hansen, H. Heitmann, B. Laska and M. Loes, Numerical Simulation of Fluid Flow Behaviour Inside, and Redesign of a Field Separator, SINTEF, Norway and STATOIL, Norway (not dated)

13-91 G. Trapaga and J. Szekely, Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metallurgical Transactions, Vol. 22B, pp. 901-914, December 1991

11-91 N. Saluja and J. Szekely, Velocity Fields and Free Surface Phenomena in an Inductively Stirred Mercury Pool, European Journal of Mechanics, B/Fluids, Vol. 10, No. 5, pp. 563-572, Oct. 1991

4-90 J. M. Sicilian, A Note on Implementing Specified Velocities and Momentum Sources, Flow Science report, September 1990 (FSI-90-00-5)

13-90 P. Jonsson, N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow Phenomena in the Filling of Cylindrical Molds Using Newtonian (Turbulent) and Non-Newtonian (Power Law) Fluids, submitted to Trans. of the American Foundrymen’s Soc., June 1990

12-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Computation of the Velocity Fields and the Dynamic Free Surface Generated in a Liquid Metal Column by a Rotating Magnetic Field, submitted to J. Fluid Mech., July 1990

7-90 C. L. Bronisz and C. W. Hirt, Modeling Unsaturated Flow in Porous Media: A FLOW-3D Extension, Flow Science report, July 1990 (FSI-90-48-2)

5-90 C. L. Bronisz and C. W. Hirt, Hydrodynamic Ram Simulations Using FLOW-3D, Flow Science report, May 1990 (FSI-90-49-1)

3-90 C. W. Hirt, Turbojet Plume Flow Analysis, Flow Science report, February 1990 (FSI-90-45-1)

5-89 K. S. Eckhoff and E. W. M. Hansen, Mathematical Modelling and Numerical Investigation of Separation in Two-Phase Rotating Flow, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. OR 22 1907.00.01.89, 29 April 1989

2-89 J. M. Sicilian and J. R. Tegart, Comparisons of FLOW-3D Calculations with Very Large Amplitude Slosh Data, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

2-88 J. M. Sicilian and C. W. Hirt, AFT Field Joint: CFD Analysis Using the FLOW-3D Program, in Redesigned Solid Rocket Motor Circumferential Flow Technical Interchange Meeting Final Report, NASA-TWR-17788, February 1988

14-87 C. J. Freitas, S. T. Green, and T. B. Morrow, Fluid Dynamics Associated with Ductile Pipeline Fracture, Southwest Research Institute report presented at ASME Winter Annual Meeting, Boston, MA, December 1987

13-87 J. Sicilian, The FLOW-3D Model for Thermal Conduction in Solids, Flow Science report, Dec. 1987 (FSI-87-00-4)

7-87 C.W. Hirt, Vectored Nozzle Flow with Turbulence Modeling, Flow Science report, Sept. 1987 (FSI-87-29-1)

4-87 J.M. Sicilian, C.W. Hirt, and R. P. Harper, FLOW-3D: Computational Modeling Power for Scientists and Engineers, Flow Science report, 1987 (FSI-87-00-1)

3-86 J. M. Sicilian, Natural-Convection Heat-Transfer Analysis, Flow Science Technical Note #4, June 1986 (FSI-86-00-TN4)

2-86 J. Navickas and C. R. Cross, Air Circulation Characteristics and Convective Losses in a 5-MW Molten Salt Cavity Solar Receiver, ASME 8th Annual Conference on Solar Engineering, Anaheim, California, April 13-16, 1986

5-85 C. W. Hirt and R. P. Harper, Calculations of Vent Clearing in a Chemical Process Tank, Flow Science report, December 1985 (FSI-85-28-1)

2-84 Applications of SOLA-3D/FSI to Fluid Slosh, Flow Science report, May 1984

Metal Casting Bibliography

다음은 금속 주조 참고 문헌의 기술 문서 모음입니다. 
이 모든 논문은 FLOW-3D  CAST  결과를 포함하고 있습니다. FLOW-3D  CAST 를 사용하여 금속 주조 산업의 어플리케이션을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

2024년 11월 20일 Update

93-24 Benedict Baumann, Andreas Kessler, Claudia Dommaschk, Gotthard Wolf , Influence of filter structure and casting system on filtration efficiency in aluminum mold casting, Multifunctional Ceramic Filter Systems for Metal Melt Filtration, Eds. C.G. Aneziris, H. Biermann, Springer Series in Materials Science, 337; 2024. doi.org/10.1007/978-3-031-40930-1_28

93-24 Benedict Baumann, Andreas Kessler, Claudia Dommaschk, Gotthard Wolf , Influence of filter structure and casting system on filtration efficiency in aluminum mold casting, Multifunctional Ceramic Filter Systems for Metal Melt Filtration, Eds. C.G. Aneziris, H. Biermann, Springer Series in Materials Science, 337; 2024. doi.org/10.1007/978-3-031-40930-1_28

87-24 Rahul Jayakumar, T.P.D. Rajan, Sivaraman Savithri, A GPU based accelerated solver for simulation of heat transfer during metal casting process, Modelling and Simulation in Materials Science and Engineering, 32.5; 055013, 2024. doi.org/10.1088/1361-651X/ad4406

46-24 Masyrukan, Irwan Mawarda, Sunardi Wiyono, Bibit Sugito, Ummi Kultsum, Dessy Ade Pratiwi, Desi Gustiani, Nur Annisa Istiqamah, The effect of differences in in-gate diameter size on the structure and mechanical properties of aluminum (Al) castings in pipe products with a red sand mold, AIP Conference Proceedings, 2838.1; 2024. doi.org/10.1063/5.0185773

43-24 German Alberto Barragán De Los Rios, Silvio Andrés Salazar Martínez, Emigdio Mendoza Fandiño, Patricia Fernández-Morales, Numerical simulation of aluminum foams by space holder infiltration, International Journal of Metalcasting, 2024. doi.org/10.1007/s40962-024-01287-8

40-24 Bin Zhang, Gary P. Grealy, Thermomechanical modeling on AirSlip® billet DC casting of high-strength crack-prone aluminum alloys, Light Metals 2024, Eds. S. Wagstaff, pp. 1015-1025, 2024. doi.org/10.1007/978-3-031-50308-5_128

35-24 Balaji Chandrakanth, Ved Prakash, Adwaita Maiti, Diya Mukherjee, Development of triply periodic minimal surface (TPMS) inspired structured cast iron foams through casting route, International Journal of Metalcasting, 2024. doi.org/10.1007/s40962-023-01247-8

19-24   Diya Mukherjee, Himadri Roy, Balaji Chandrakanth, Nilrudra Mandal, Sudip Kumar Samanta, Manidipto Mukherjee, Enhancing properties of Al-Zn-Mg-Cu alloy through microalloying and heat treatment, Materials Chemistry and Physics, 314; 128881, 2024. doi.org/10.1016/j.matchemphys.2024.128881

46-24 Masyrukan, Irwan Mawarda, Sunardi Wiyono, Bibit Sugito, Ummi Kultsum, Dessy Ade Pratiwi, Desi Gustiani, Nur Annisa Istiqamah, The effect of differences in in-gate diameter size on the structure and mechanical properties of aluminum (Al) castings in pipe products with a red sand mold, AIP Conference Proceedings, 2838.1; 2024. doi.org/10.1063/5.0185773

43-24 German Alberto Barragán De Los Rios, Silvio Andrés Salazar Martínez, Emigdio Mendoza Fandiño, Patricia Fernández-Morales, Numerical simulation of aluminum foams by space holder infiltration, International Journal of Metalcasting, 2024. doi.org/10.1007/s40962-024-01287-8

40-24 Bin Zhang, Gary P. Grealy, Thermomechanical modeling on AirSlip® billet DC casting of high-strength crack-prone aluminum alloys, Light Metals 2024, Eds. S. Wagstaff, pp. 1015-1025, 2024. doi.org/10.1007/978-3-031-50308-5_128

35-24 Balaji Chandrakanth, Ved Prakash, Adwaita Maiti, Diya Mukherjee, Development of triply periodic minimal surface (TPMS) inspired structured cast iron foams through casting route, International Journal of Metalcasting, 2024. doi.org/10.1007/s40962-023-01247-8

19-24   Diya Mukherjee, Himadri Roy, Balaji Chandrakanth, Nilrudra Mandal, Sudip Kumar Samanta, Manidipto Mukherjee, Enhancing properties of Al-Zn-Mg-Cu alloy through microalloying and heat treatment, Materials Chemistry and Physics, 314; 128881, 2024. doi.org/10.1016/j.matchemphys.2024.128881

181-23   Daichi Minamide, Ken’ichi Yano, Masahiro Sano, Takahiro Aoki, Overflow design system to decrease gas defects considering the direction of molten metal flow, 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1-6, 2023. doi.org/10.1109/ICECCME57830.2023.10253413

102-23 Daichi Minamide, Ken’ichi Yano, Masahiro Sano, Takahiro Aoki, Automatic design of overflow system for preventing gas defects by considering the direction of molten metal flow, Computer-Aided Design, 163; 103586, 2023. doi.org/10.1016/j.cad.2023.103586

87-23 Prosenjit Das, Optimisation of melt pouring temperature and low superheat casting of Al-15Mg2Si-4.5Si composite, International Journal of Cast Metals Research, 36.1-3; 2023. doi.org/10.1080/13640461.2023.2211895

60-23   Yuanhao Gu, Feng Wang, Jian Jiao, Zhi Wang, Le Zhou, Pingli Mao, Zheng Liu, Study on semisolid rheo-diecasting process, microstructure and mechanical properties of Mg-6Al-1Ca-0.5Sb alloy with high solid fraction, International Journal of Metalcasting, 2023. doi.org/10.1007/s40962-023-01001-0

48-23   Patricia Fernández‑Morales, Lauramaría Echeverrí, Emigdio Mendoza Fandiño, Alejandro Alberto Zuleta Gil, Replication casting and additive manufacturing for fabrication of cellular aluminum with periodic topology: optimization by CFD simulation, The International Journal of Advanced Manufacturing Technology, 26; pp. 1789-1797, 2023. doi.org/10.1007/s00170-023-11124-7

45-23   Daniel Martinez, Philip King, Santosh Reddy Sama, Jay Sim, Hakan Toykoc, Guha Manogharan, Effect of freezing range on reducing casting defects through 3D sand-printed mold designs, The International Journal of Advanced Manufacturing Technology, 2023. doi.org/10.1007/s00170-023-11112-x

38-23   Emanuele Pagone, Christopher Jones, John Forde, William Shaw, Mark Jolly, Konstantinos Salonitis, Defect minimization in vacuum-assisted plaster mould investment casting through simulation of high-value aluminium alloy components, TMS 2023: Light Metals, pp. 1078-1086, 2023.

33-23   Philip King, Guha Manogharan, Novel experimental method for metal flow analysis using open molds for sand casting, International Journal of Metalcasting, 2023. doi.org/10.1007/s40962-023-00966-2

32-23   Sujeet Kumar Gautam, Himadri Roy, Aditya Kumar Lohar, Sudip Kumar Samanta, Studies on mold filling behavior of Al–10.5Si–1.7Cu Al alloy during rheo pressure die casting system, International Journal of Metalcasting, 2023. doi.org/10.1007/s40962-023-00958-2

31-23   Anand Kumbhare, Prasenjit Biswas, Anil Bisen, Chandan Choudary, Investigation of effect of the rheological parameters on the flow behavior of ADC12 Al alloy in rheo-pressure die casting, International Journal of Metalcasting, 2023. doi.org/10.1007/s40962-023-00962-6

24-23   Natalia Raźny, Anna Dmitruk, Maria Serdechnova, Carsten Blawert, Joanna Ludwiczak, Krzysztof Naplocha, The performance of thermally conductive tree-like cast aluminum structures in PCM-based storage units, International Communications in Heat and Mass Transfer, 142; 106606, 2023. doi.org/10.1016/j.icheatmasstransfer.2022.106606

172-22 J. Yokesh Kumar, S. Gopi, K.S. Amirthagadeswaran, Redesigning and numerical simulation of gating system to reduce cold shut defect in submersible pump part castings, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022. doi.org/10.1177/0954408922114218

125-22   Maximilian Erber, Tobias Rosnitschek, Christoph Hartmann, Bettina Alber-Laukant, Stephan Tremmel, Wolfram Volk, Geometry-based assurance of directional solidification for complex topology-optimized castings using the medial axis transform, Computer-Aided Design, 152; 103394, 2022. doi.org/10.1016/j.cad.2022.103394

74-22    Vasilios Fourlakidis, Ilia Belov, Attila Diószeg, Experimental model of the pearlite interlamellar spacing in lamellar graphite iron, Tecnologia em Metalurgia, Materiais e Mineração, 19; e2634, 2022. doi.org/10.4322/2176-1523.20222634

71-22   M. G. Mahmoud, Amr Abdelghany, Serag Salem, Numerical simulation of door lock plates castings produced by high pressure die casting process, International Journal of Metalcasting, 2022. doi.org/10.1007/s40962-022-00797-7

70-22   Andreas Schilling, Daniel Schmidt, Jakob Glück, Niklas Schwenke, Husam Sharabi, Martin Fehlbier, About the impact on gravity cast salt cores in high pressure die casting and rheocasting, Simulation Modelling Practice and Theory, 119; 102585, 2022. doi.org/10.1016/j.simpat.2022.102585

52-22   Manthan Dhisale, Jitesh Vasavada, Asim Tewari, An approach to optimize cooling channel parameters of low pressure die casting process for reducing shrinkage porosity in aluminium alloy wheels, Materials Today: Proceedings, in print, 2022. doi.org/10.1016/j.matpr.2022.03.478

44-22   Zihan Lang, Feng Wang, Wei Wang, Zhi Wang, Le Zhou, Pingli Mao, Zheng Liu, Numerical simulation and experimental study on semi-solid forming process of 319s aluminum alloy test bar, International Journal of Metalcasting, 2022. doi.org/10.1007/s40962-022-00788-8

32-22   Elisa Fracchia, Federico Simone Gobber, Claudio Mus, Raul Pirovino, Mario Russo, The local squeeze technology for challenging aluminium HPDC automotive components, Light Metals, pp. 772-778, 2022. doi.org/10.1007/978-3-030-92529-1_102

141-21   O. Ayer, O. Kaya, Mould design optimisation by FEM, Journal of Physics: Conference Series, 2130; 012021, 2021. doi.org/10.1088/1742-6596/2130/1/012021

117-21   I. Rajkumar, N. Rajini, T. Ram Prabhu, Sikiru O. Ismail, Suchart Siengchin, Faruq Mohammad, Hamad A. Al-Lohedan , Applicability of angular orientations of gating designs to quality of sand casting components using two-cavity mould set-up, Transactions of the Indian Institute of Metals, 2021. doi.org/10.1007/s12666-021-02434-z

106-21   M. Ahmed, E. Riedel, M. Kovalko, A. Volochko, R. Bähr, A. Nofal, Ultrafine ductile and austempered ductile irons by solidification in ultrasonic field, International Journal of Metalcasting, 2021. doi.org/10.1007/s40962-021-00683-8

97-21   J. Glueck, A. Schilling, N. Schwenke, A. Fros, M.Fehlbier, Efficiency and agility of a liquid CO2 cooling system for molten metal systems, Case Studies in Thermal Engineering, 28; 101485, 2021. doi.org/10.1016/j.csite.2021.101485

82-21   Giulia Scampone, Raul Pirovano, Stefano Mascetti, Giulio Timelli, Experimental and numerical investigations of oxide-related defects in Al alloy gravity die castings, The International Journal of Advanced Manufacturing Technology, 117; pp. 1765-1780, 2021. doi.org/10.1007/s00170-021-07680-5

74-21   Shuyang Ren, Feng Wang, Jingying Sun, Zheng Liu, Pingli Mao, Gating system design based on numerical simulation and production experiment verification of aluminum alloy bracket fabricated by semi-solid rheo-die casting process, International Journal of Metalcasting, 2021. doi.org/10.1007/s40962-021-00648-x

69-21   Ozen Gursoy, Murat Colak, Kazim Tur, Derya Dispinar, Characterization of properties of Vanadium, Boron and Strontium addition on HPDC of A360 alloy, Materials Chemistry and Physics, 271; 124931, 2021. doi.org/10.1016/j.matchemphys.2021.124931

54-21   K. Munpakdee, P. Ninpetch, S. Otarawanna, R. Canyook, P. Kowitwarangkul, Effect of feed sprue size on porosity defects in Platinum 950 centrifugal investment casting via numerical modelling, IOP Conference Series: Materials Science and Engineering, 11th TSME-International Conference on Mechanical Engineering, Ubon Ratchathani, Thailand, December 1-4, 2020, 1137; 012021, 2021. doi.org/10.1088/1757-899X/1137/1/012021/

44-21   Yunxiang Zhang, Haidong Zhao, Fei Liu, Microstructure characteristics and mechanical properties improvement of gravity cast Al-7Si-0.4Mg alloys with Zr additions, Materials Characterization, 176; 111117, 2021. doi.org/10.1016/j.matchar.2021.111117

05-21   Heqian Song, Lunyong Zhang, Fuyang Cao, Xu Gu, Jianfei Sun, Oxide bifilm defects in aluminum alloy castings, Materials Letters, 285; 129089, 2021. doi.org/10.1016/j.matlet.2020.129089

127-20   Eric Riedel, Niklas Bergedieck, Stefan Scharf, CFD simulation based investigation of cavitation cynamics during high intensity ultrasonic treatment of A356, Metals, 10.11; 1529, 2020. doi.org/10.3390/met10111529

86-20       Malte Leonhard, Matthias Todte, Jörg Schäfer, Realistic simulation of the combustion of exothermic feeders, Modern Casting, August 2020; pp. 35-40, 2020. (See also 58-19)

52-20       Mingfan Qi, Yonglin Kang, Jingyuan Li, Zhumabieke Wulabieke, Yuzhao Xu, Yangde Li, Aisen Liu, Junchen Chen, Microstructures refinement and mechanical properties enhancement of aluminum and magnesium alloys by combining distributary-confluence channel process for semisolid slurry preparation with high pressure die-casting, Journal of Materials Processing Technology, 285; 116800, 2020. doi.org/10.1016/j.jmatprotec.2020.116800

46-20       Yasushi Iwata, Shuxin Dong, Yoshio Sugiyama, Jun Yaokawa, Melt permeability changes during solidification of aluminum alloys and application to feeding simulation for die castings, Materials Transactions, 61.7; pp. 1381-1386, 2020. doi.org/10.2320/matertrans.F-M2020822

45-20       Daniel Bernal, Xabier Chamorro, Iñaki Hurtado, Iñaki Madariaga, Effect of boron content and cooling rate on the microstructure and boride formation of β-solidifying γ-TiAl TNM alloy, Metals, 10.5; 698, 2020. doi.org/10.3390/met10050698

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019.

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019.

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi:10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi:10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi: 10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi: 10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi: 10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi: 10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi: 10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi: 10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi: 10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi: 10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi: 10.1016/j.jmatprotec.2018.11.016

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi: 10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi: 10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi: 10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi: 10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. /doi: 10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi: 10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi: 10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi: 10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi: 10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi:10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, http://hdl.handle.net/1822/40132, 2015

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, DOI: 10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), DOI 10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, DOI: 10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi:10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi:10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, DOI: 10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi:10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, 10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, DOI: 10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), http://dx.doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, DOI: 10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order Form; Europe Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. Jolly, Casting Simulation – How Well Do Reality and Virtual Casting Match – A State of the Art Review, Intl. J. Cast Metals Research, 2002, 14, pp. 303-313

10-03 Gebelin., J-C and Jolly, M.R., Modeling of the Investment Casting Process, Journal of  Materials Processing Tech., Vol. 135/2-3, pp. 291 – 300

9-03 Cox, M, Harding, R.A. and Campbell, J., Optimised Running System Design for Bottom Filled Aluminium Alloy 2L99 Investment Castings, J. Mat. Sci. Tech., May 2003, Vol. 19, pp. 613-625

8-03 Von Alexander Schrey and Regina Reek, Numerische Simulation der Kernherstellung, (Numerical Simulation of Core Blowing), Giesserei, June 2003, pp. 64-68 (in German)

7-03 J. Zuidema Jr., L Katgerman, Cyclone separation of particles in aluminum DC Casting, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 607-614

6-03 Jean-Christophe Gebelin and Mark Jolly, Numerical Modeling of Metal Flow Through Filters, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 431-438

5-03 N.W. Lai, W.D. Griffiths and J. Campbell, Modelling of the Potential for Oxide Film Entrainment in Light Metal Alloy Castings, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 415-422

21-02 Boris Lukezic, Case History: Process Modeling Solves Die Design Problems, Modern Casting, February 2003, P 59

20-02 C.W. Hirt and M.R. Barkhudarov, Predicting Defects in Lost Foam Castings, Modern Casting, December 2002, pp 31-33

19-02 Mark Jolly, Mike Cox, Ric Harding, Bill Griffiths and John Campbell, Quiescent Filling Applied to Investment Castings, Modern Casting, December 2002 pp. 36-38

18-02 Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Foundry Management and Technology, October 2002, pp 13-15

17-02 G Messmer, Simulation of a Thixoforging Process of Aluminum Alloys with FLOW-3D, Institute for Metal Forming Technology, University of Stuttgart

16-02 Barkhudarov, Michael, Computer Simulation of Lost Foam Process, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 319-324

15-02 Barkhudarov, Michael, Computer Simulation of Inclusion Tracking, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 341-346

14-02 Barkhudarov, Michael, Advanced Simulation of the Flow and Heat Transfer of an Alternator Housing, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 219-228

8-02 Sayavur I. Bakhtiyarov, and Ruel A. Overfelt, Experimental and Numerical Study of Bonded Sand-Air Two-Phase Flow in PUA Process, Auburn University, 2002 American Foundry Society, AFS Transactions 02-091, Kansas City, MO

7-02 A Habibollah Zadeh, and J Campbell, Metal Flow Through a Filter System, University of Birmingham, 2002 American Foundry Society, AFS Transactions 02-020, Kansas City, MO

6-02 Phil Ward, and Helen Atkinson, Final Report for EPSRC Project: Modeling of Thixotropic Flow of Metal Alloys into a Die, GR/M17334/01, March 2002, University of Sheffield

5-02 S. I. Bakhtiyarov and R. A. Overfelt, Numerical and Experimental Study of Aluminum Casting in Vacuum-sealed Step Molding, Auburn University, 2002 American Foundry Society, AFS Transactions 02-050, Kansas City, MO

4-02 J. C. Gebelin and M. R. Jolly, Modelling Filters in Light Alloy Casting Processes, University of Birmingham, 2002 American Foundry Society AFS Transactions 02-079, Kansas City, MO

3-02 Mark Jolly, Mike Cox, Jean-Christophe Gebelin, Sam Jones, and Alex Cendrowicz, Fundamentals of Investment Casting (FOCAST), Modelling the Investment Casting Process, Some preliminary results from the UK Research Programme, IRC in Materials, University of Birmingham, UK, AFS2001

49-01   Hua Bai and Brian G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B, Vol. 32, No. 6, pp. 1143-1159, 2001. doi.org/10.1007/s11663-001-0102-y

45-01 Jan Zuidema; Laurens Katgerman; Ivo J. Opstelten;Jan M. Rabenberg, Secondary Cooling in DC Casting: Modelling and Experimental Results, TMS 2001, New Orleans, Louisianna, February 11-15, 2001

43-01 James Andrew Yurko, Fluid Flow Behavior of Semi-Solid Aluminum at High Shear Rates,Ph.D. thesis; Massachusetts Institute of Technology, June 2001. Abstract only; full thesis available at http://dspace.mit.edu/handle/1721.1/8451 (for a fee).

33-01 Juang, S.H., CAE Application on Design of Die Casting Dies, 2001 Conference on CAE Technology and Application, Hsin-Chu, Taiwan, November 2001, (article in Chinese with English-language abstract)

32-01 Juang, S.H. and C. M. Wang, Effect of Feeding Geometry on Flow Characteristics of Magnesium Die Casting by Numerical Analysis, The Preceedings of 6th FADMA Conference, Taipei, Taiwan, July 2001, Chinese language with English abstract

26-01 C. W. Hirt., Predicting Defects in Lost Foam Castings, December 13, 2001

21-01 P. Scarber Jr., Using Liquid Free Surface Areas as a Predictor of Reoxidation Tendency in Metal Alloy Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

20-01 P. Scarber Jr., J. Griffin, and C. E. Bates, The Effect of Gating and Pouring Practice on Reoxidation of Steel Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

19-01 L. Wang, T. Nguyen, M. Murray, Simulation of Flow Pattern and Temperature Profile in the Shot Sleeve of a High Pressure Die Casting Process, CSIRO Manufacturing Science and Technology, Melbourne, Victoria, Australia, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, To1-014

18-01 Rajiv Shivpuri, Venkatesh Sankararaman, Kaustubh Kulkarni, An Approach at Optimizing the Ingate Design for Reducing Filling and Shrinkage Defects, The Ohio State University, Columbus, OH, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, TO1-052

5-01 Michael Barkhudarov, Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Diecasting World, March 2001, pp. 5-6

2-01 J. Grindling, Customized CFD Codes to Simulate Casting of Thermosets in Full 3D, Electrical Manufacturing and Coil Winding 2000 Conference, October 31-November 2, 20

20-00 Richard Schuhmann, John Carrig, Thang Nguyen, Arne Dahle, Comparison of Water Analogue Modelling and Numerical Simulation Using Real-Time X-Ray Flow Data in Gravity Die Casting, Australian Die Casting Association Die Casting 2000 Conference, September 3-6, 2000, Melbourne, Victoria, Australia

15-00 M. Sirvio, Vainola, J. Vartianinen, M. Vuorinen, J. Orkas, and S. Devenyi, Fluid Flow Analysis for Designing Gating of Aluminum Castings, Proc. NADCA Conf., Rosemont, IL, Nov 6-8, 1999

14-00 X. Yang, M. Jolly, and J. Campbell, Reduction of Surface Turbulence during Filling of Sand Castings Using a Vortex-flow Runner, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

13-00 H. S. H. Lo and J. Campbell, The Modeling of Ceramic Foam Filters, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

12-00 M. R. Jolly, H. S. H. Lo, M. Turan and J. Campbell, Use of Simulation Tools in the Practical Development of a Method for Manufacture of Cast Iron Camshafts,” Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August, 2000

14-99 J Koke, and M Modigell, Time-Dependent Rheological Properties of Semi-solid Metal Alloys, Institute of Chemical Engineering, Aachen University of Technology, Mechanics of Time-Dependent Materials 3: 15-30, 1999

12-99 Grun, Gerd-Ulrich, Schneider, Wolfgang, Ray, Steven, Marthinusen, Jan-Olaf, Recent Improvements in Ceramic Foam Filter Design by Coupled Heat and Fluid Flow Modeling, Proc TMS Annual Meeting, 1999, pp. 1041-1047

10-99 Bongcheol Park and Jerald R. Brevick, Computer Flow Modeling of Cavity Pre-fill Effects in High Pressure Die Casting, NADCA Proceedings, Cleveland T99-011, November, 1999

8-99 Brad Guthrie, Simulation Reduces Aluminum Die Casting Cost by Reducing Volume, Die Casting Engineer Magazine, September/October 1999, pp. 78-81

7-99 Fred L. Church, Virtual Reality Predicts Cast Metal Flow, Modern Metals, September, 1999, pp. 67F-J

19-98 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Numerical Modeling of Fluid Flow Phenomena in the Launder-integrated Tool Within Casting Unit Development, Proc TMS Annual Meeting, 1998, pp. 1175-1182

18-98 X. Yang & J. Campbell, Liquid Metal Flow in a Pouring Basin, Int. J. Cast Metals Res, 1998, 10, pp. 239-253

15-98 R. Van Tol, Mould Filling of Horizontal Thin-Wall Castings, Delft University Press, The Netherlands, 1998

14-98 J. Daughtery and K. A. Williams, Thermal Modeling of Mold Material Candidates for Copper Pressure Die Casting of the Induction Motor Rotor Structure, Proc. Int’l Workshop on Permanent Mold Casting of Copper-Based Alloys, Ottawa, Ontario, Canada, Oct. 15-16, 1998

10-98 C. W. Hirt, and M.R. Barkhudarov, Lost Foam Casting Simulation with Defect Prediction, Flow Science Inc, presented at Modeling of Casting, Welding and Advanced Solidification Processes VIII Conference, June 7-12, 1998, Catamaran Hotel, San Diego, California

9-98 M. R. Barkhudarov and C. W. Hirt, Tracking Defects, Flow Science Inc, presented at the 1st International Aluminum Casting Technology Symposium, 12-14 October 1998, Rosemont, IL

5-98 J. Righi, Computer Simulation Helps Eliminate Porosity, Die Casting Management Magazine, pp. 36-38, January 1998

3-98 P. Kapranos, M. R. Barkhudarov, D. H. Kirkwood, Modeling of Structural Breakdown during Rapid Compression of Semi-Solid Alloy Slugs, Dept. Engineering Materials, The University of Sheffield, Sheffield S1 3JD, U.K. and Flow Science Inc, USA, Presented at the 5th International Conference Semi-Solid Processing of Alloys and Composites, Colorado School of Mines, Golden, CO, 23-25 June 1998

1-98 U. Jerichow, T. Altan, and P. R. Sahm, Semi Solid Metal Forming of Aluminum Alloys-The Effect of Process Variables Upon Material Flow, Cavity Fill and Mechanical Properties, The Ohio State University, Columbus, OH, published in Die Casting Engineer, p. 26, Jan/Feb 1998

8-97 Michael Barkhudarov, High Pressure Die Casting Simulation Using FLOW-3D, Die Casting Engineer, 1997

15-97 M. R. Barkhudarov, Advanced Simulation of the Flow and Heat Transfer Process in Simultaneous Engineering, Flow Science report, presented at the Casting 1997 – International ADI and Simulation Conference, Helsinki, Finland, May 28-30, 1997

14-97 M. Ranganathan and R. Shivpuri, Reducing Scrap and Increasing Die Life in Low Pressure Die Casting through Flow Simulation and Accelerated Testing, Dept. Welding and Systems Engineering, Ohio State University, Columbus, OH, presented at 19th International Die Casting Congress & Exposition, November 3-6, 1997

13-97 J. Koke, Modellierung und Simulation der Fließeigenschaften teilerstarrter Metallegierungen, Livt Information, Institut für Verfahrenstechnik, RWTH Aachen, October 1997

10-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics – Part 2 Fiber Orientation, Body-in-White Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 6, June 1997

9-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics. Part 1 – Injection Pressures and Flow, Manufacturing Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 3, March 1997

8-97 H. Grazzini and D. Nesa, Thermophysical Properties, Casting Simulation and Experiments for a Stainless Steel, AT Systemes (Renault) report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

7-97 R. Van Tol, L. Katgerman and H. E. A. Van den Akker, Horizontal Mould Filling of a Thin Wall Aluminum Casting, Laboratory of Materials report, Delft University, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

6-97 M. R. Barkhudarov, Is Fluid Flow Important for Predicting Solidification, Flow Science report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

22-96 Grun, Gerd-Ulrich & Schneider, Wolfgang, 3-D Modeling of the Start-up Phase of DC Casting of Sheet Ingots, Proc TMS Annual Meeting, 1996, pp. 971-981

9-96 M. R. Barkhudarov and C. W. Hirt, Thixotropic Flow Effects under Conditions of Strong Shear, Flow Science report FSI96-00-2, to be presented at the “Materials Week ’96” TMS Conference, Cincinnati, OH, 7-10 October 1996

4-96 C. W. Hirt, A Computational Model for the Lost Foam Process, Flow Science final report, February 1996 (FSI-96-57-R2)

3-96 M. R. Barkhudarov, C. L. Bronisz, C. W. Hirt, Three-Dimensional Thixotropic Flow Model, Flow Science report, FSI-96-00-1, published in the proceedings of (pp. 110- 114) and presented at the 4th International Conference on Semi-Solid Processing of Alloys and Composites, The University of Sheffield, 19-21 June 1996

1-96 M. R. Barkhudarov, J. Beech, K. Chang, and S. B. Chin, Numerical Simulation of Metal/Mould Interfacial Heat Transfer in Casting, Dept. Mech. & Process Engineering, Dept. Engineering Materials, University of Sheffield and Flow Science Inc, 9th Int. Symposium on Transport Phenomena in Thermal-Fluid Engineering, June 25-28, 1996, Singapore

11-95 Barkhudarov, M. R., Hirt, C.W., Casting Simulation Mold Filling and Solidification-Benchmark Calculations Using FLOW-3D, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pp 935-946

10-95 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Optimal Design of a Distribution Pan for Level Pour Casting, Proc TMS Annual Meeting, 1995, pp. 1061-1070

9-95 E. Masuda, I. Itoh, K. Haraguchi, Application of Mold Filling Simulation to Die Casting Processes, Honda Engineering Co., Ltd., Tochigi, Japan, presented at the Modelling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals & Materials Society, 1995

6-95 K. Venkatesan, Experimental and Numerical Investigation of the Effect of Process Parameters on the Erosive Wear of Die Casting Dies, presented for Ph.D. degree at Ohio State University, 1995

5-95 J. Righi, A. F. LaCamera, S. A. Jones, W. G. Truckner, T. N. Rouns, Integration of Experience and Simulation Based Understanding in the Die Design Process, Alcoa Technical Center, Alcoa Center, PA 15069, presented by the North American Die Casting Association, 1995

2-95 K. Venkatesan and R. Shivpuri, Numerical Simulation and Comparison with Water Modeling Studies of the Inertia Dominated Cavity Filling in Die Casting, NUMIFORM, 1995

1-95 K. Venkatesan and R. Shivpuri, Numerical Investigation of the Effect of Gate Velocity and Gate Size on the Quality of Die Casting Parts, NAMRC, 1995.

15-94 D. Liang, Y. Bayraktar, S. A. Moir, M. Barkhudarov, and H. Jones, Primary Silicon Segregation During Isothermal Holding of Hypereutectic AI-18.3%Si Alloy in the Freezing Range, Dept. of Engr. Materials, U. of Sheffield, Metals and Materials, February 1994

13-94 Deniece Korzekwa and Paul Dunn, A Combined Experimental and Modeling Approach to Uranium Casting, Materials Division, Los Alamos National Laboratory, presented at the Symposium on Liquid Metal Processing and Casting, El Dorado Hotel, Santa Fe, New Mexico, 1994

12-94 R. van Tol, H. E. A. van den Akker and L. Katgerman, CFD Study of the Mould Filling of a Horizontal Thin Wall Aluminum Casting, Delft University of Technology, Delft, The Netherlands, HTD-Vol. 284/AMD-Vol. 182, Transport Phenomena in Solidification, ASME 1994

11-94 M. R. Barkhudarov and K. A. Williams, Simulation of ‘Surface Turbulence’ Fluid Phenomena During the Mold Filling Phase of Gravity Castings, Flow Science Technical Note #41, November 1994 (FSI-94-TN41)

10-94 M. R. Barkhudarov and S. B. Chin, Stability of a Numerical Algorithm for Gas Bubble Modelling, University of Sheffield, Sheffield, U.K., International Journal for Numerical Methods in Fluids, Vol. 19, 415-437 (1994)

16-93 K. Venkatesan and R. Shivpuri, Numerical Simulation of Die Cavity Filling in Die Castings and an Evaluation of Process Parameters on Die Wear, Dept. of Industrial Systems Engineering, Presented by: N.A. Die Casting Association, Cleveland, Ohio, October 18-21, 1993

15-93 K. Venkatesen and R. Shivpuri, Numerical Modeling of Filling and Solidification for Improved Quality of Die Casting: A Literature Survey (Chapters II and III), Engineering Research Center for Net Shape Manufacturing, Report C-93-07, August 1993, Ohio State University

1-93 P-E Persson, Computer Simulation of the Solidification of a Hub Carrier for the Volvo 800 Series, AB Volvo Technological Development, Metals Laboratory, Technical Report No. LM 500014E, Jan. 1993

13-92 D. R. Korzekwa, M. A. K. Lewis, Experimentation and Simulation of Gravity Fed Lead Castings, in proceedings of a TMS Symposium on Concurrent Engineering Approach to Materials Processing, S. N. Dwivedi, A. J. Paul and F. R. Dax, eds., TMS-AIME Warrendale, p. 155 (1992)

12-92 M. A. K. Lewis, Near-Net-Shaiconpe Casting Simulation and Experimentation, MST 1992 Review, Los Alamos National Laboratory

2-92 M. R. Barkhudarov, H. You, J. Beech, S. B. Chin, D. H. Kirkwood, Validation and Development of FLOW-3D for Casting, School of Materials, University of Sheffield, Sheffield, UK, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

1-92 D. R. Korzekwa and L. A. Jacobson, Los Alamos National Laboratory and C.W. Hirt, Flow Science Inc, Modeling Planar Flow Casting with FLOW-3D, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

12-91 R. Shivpuri, M. Kuthirakulathu, and M. Mittal, Nonisothermal 3-D Finite Difference Simulation of Cavity Filling during the Die Casting Process, Dept. Industrial and Systems Engineering, Ohio State University, presented at the 1991 Winter Annual ASME Meeting, Atlanta, GA, Dec. 1-6, 1991

3-91 C. W. Hirt, FLOW-3D Study of the Importance of Fluid Momentum in Mold Filling, presented at the 18th Annual Automotive Materials Symposium, Michigan State University, Lansing, MI, May 1-2, 1991 (FSI-91-00-2)

11-90 N. Saluja, O.J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Melts, accepted in J. Appl. Physics, 1990

10-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Molds in Continuous Castings, presented at the 6th Iron and Steel Congress of the Iron and Steel Institute of Japan, Nagoya, Japan, October 1990

9-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow in Phenomena in the Electromagnetic Stirring of Continuous Casting Systems, Part I. The Behavior of a Cylindrically Shaped, Laboratory Scale Installation, accepted for publication in Steel Research, 1990

8-89 C. W. Hirt, Gravity-Fed Casting, Flow Science Technical Note #20, July 1989 (FSI-89-TN20)

6-89 E. W. M. Hansen and F. Syvertsen, Numerical Simulation of Flow Behaviour in Moldfilling for Casting Analysis, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. STS20 A89001, June 1989

1-88 C. W. Hirt and R. P. Harper, Modeling Tests for Casting Processes, Flow Science report, Jan. 1988 (FSI-88-38-01)

2-87 C. W. Hirt, Addition of a Solidification/Melting Model to FLOW-3D, Flow Science report, April 1987 (FSI-87-33-1)

Coastal & Maritime Bibliography

Coastal & Maritime Bibliography

다음은 연안 및 해양 분야의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 연안 및 해양 시설물을 성공적으로 시뮬레이션 하는 방법에 대해 자세히 알아보십시오.

2024년 11월 20일 Update

119-24 Faris Ali Hamood Al-Towayti, Hee-Min Teh, Zhe Ma, Idris Ahmed Jae, Agusril Syamsir, Ebrahim Hamid Hussein Al-Qadami, Hydrodynamic performance assessment of emerged, alternatively submerged and submerged semicircular breakwater: An experimental and computational study, Journal of Marine Science and Engineering, 12; 1105, 2024. doi.org/10.3390/jmse12071105

117-24 Dong Zeng, Wuyang Bi, Yi Yu, Yun Yan, Weiqiu Chen, Yong Yao, Cheng Zhang, Tianyu Wu, Prediction of local scouring of offshore wind turbine foundations based on the amplification principle of local seabed shear stress, The 34th International Ocean and Polar Engineering Conference, ISOPE-I-24-125, 2024.

116-24 Chen-Shan Kung, Ya-Cing You, Pei-Yu Lee, Siu-Yu Pan, The air entrainment effect of pump blades operation under different water depths, The 34th International Ocean and Polar Engineering Conference, ISOPE-I-24-595, 2024.

114-24 Chen-Shan Kung, Siu-Yu Pan, Pei-Yu Lee, Ya-Cing You, Sediment flushing of different angle on density outflow, The 34th International Ocean and Polar Engineering Conference, ISOPE-I-24-183, 2024.

102-24 Mary Kathryn Walker, Computational fluid dynamics study of perforated monopiles, Thesis, Florida Institute of Technology, 2024.

80-24 Deniz Velioglu Sogut, Erdinc Sogut, Ali Farhadzadeh, Tian-Jian Hsu, Non-equilibrium scour evolution around an emerged structure exposed to a transient wave, Journal of Marine Science and Engineering, 12; 946, 2024. doi.org/10.3390/jmse12060946

79-24 Sujantoko, D.R. Ahidah, W. Wardhana, E.B. Djatmiko, M. Mustain, Numerical modeling of wave reflection and transmission in I-shaped floating breakwater series, IOP Conference Series: Earth and Environmental Science, 1321; 012010, 2024. doi.org/10.1088/1755-1315/1321/1/012010

75-24 Sahel Sohrabi, Mohamad Ali Lofollahi Yaghin, Alireza Mojtahedi, Mohamad Hosein Aminfar, Mehran Dadashzadeh, Experimental and numerical investigation of a hybrid floating breakwater-WEC system, Ocean Engineering, 303; 117613, 2024. doi.org/10.1016/j.oceaneng.2024.117613

73-24 Penghui Wang, Chunning Ji, Xiping Sun, Dong Xu, Chao Ying, Development and test of FDEM–FLOW-3D—A CFD–DEM model for the fluid–structure interaction of AccropodeTM blocks under wave loads, Ocean Engineering, 303; 117735, 2024. doi.org/10.1016/j.oceaneng.2024.117735

67-24 Alexander Schendel, Stefan Schimmels, Mario Welzel, Philippe April-LeQuéré, Abdolmajid Mohammadian, Clemens Krautwald, Jacob Stolle, Ioan Nistor, Nils Goseberg, Spatiotemporal scouring processes around a square column on a sloped beach induced by tsunami bores, Journal of Waterway, Port, Coastal, and Ocean Engineering, 150.3; 2024. https://doi.org/10.1061/JWPED5.WWENG-2052

65-24 Kaiqi Yu, Elda Miramontes, Matthieu J.B. Cartigny, Yuping Yang, Jingping Xu, The impacts of profile concavity on turbidite deposits: Insights from the submarine canyons on global continental margins, Geomorphology, 454; 109157, 2024. doi.org/10.1016/j.geomorph.2024.109157

61-24 M.T. Mansouri Kia, H.R. Sheibani, A. Hoback, Initial maintenance notes about the first river ship lock in Iran, Journal of Hydraulic and Water Engineering, 1.2; pp. 143-162, 2024.

47-24 Cheng Yee Ng, Nauman Riyaz Maldar, Muk Chen Ong, Numerical investigation on performance enhancement in a drag-based hydrokinetic turbine with a diffuser, Ocean Engineering, 298; 117179, 2024. doi.org/10.1016/j.oceaneng.2024.117179

26-24 Zegao Yin, Guoqing Li, Fei Wu, Zihan Ni, Feifan Li, Experimental and numerical study on hydrodynamic characteristics of a bottom-hinged pitching flap breakwater under regular waves, Ocean Engineering, 293; 116665, 2024. doi.org/10.1016/j.oceaneng.2024.116665

21-24   Young-Ki Moon, Chang-Ill Yoo, Jong-Min Lee, Sang-Hyub Lee, Han-Sam Yoon, Evaluation of pedestrian safety for wave overtopping by ship-induced waves in waterfront revetment, Journal of Coastal Research, 116; pp.314-318, 2024. doi.org/10.2112/JCR-SI116-064.1

14-24   Hongliang Wang, Xuanwen Jia, Chuan Wang, Bo Hu, Weidong Cao, Shanshan Li, Hui Wang, Study on the sand-scouring characteristics of pulsed submerged jets based on experiments and numerical models, Journal of Marine Science and Engineering, 12.1; 57, 2024. doi.org/10.3390/jmse12010057

239-23 Sara Tuozzo, Angela Di Leo, Mariano Buccino, Fabio Dentale, Eugenio Pugliese Carratelli, Mario Calabrese, The effect of wind stress on wave overtopping on vertical seawall, Coastal Engineering Proceedings, 37; 2023. doi.org/10.9753/icce.v37.papers.49

224-23   Helia Molaei Nodeh, Reza Dezvareh, Mahdi Yousefifard, Numerical analysis of the effects of rubble mound breakwater geometry under the effect of nonlinear wave force, Arabian Journal for Science and Engineering, 2023. doi.org/10.1007/s13369-023-08520-2

212-23   Feifei Cao, Mingqi Yu, Meng Han, Bing Liu, Zhiwen Wei, Juan Jiang, Huiyuan Tian, Hongda Shi, Yanni Li, WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system, Renewable Energy, 219.2; 119476, 2023. doi.org/10.1016/j.renene.2023.119476

210-23   H. Omara, Sherif M. Elsayed, Karim Adel Nassar, Reda Diab, Ahmed Tawfik, Hydrodynamic and morphologic investigating of the discrepancy in flow performance between inclined rectangular and oblong piers, Ocean Engineering, 288.2; 116132, 2023. doi.org/10.1016/j.oceaneng.2023.116132

190-23   M.F. Ahmad, M.I. Ramli, M.A. Musa, S.E.G. Goh, C.W.M.N Che Wan Othman, E.H. Ariffin, N.A. Mokhtar, Numerical simulation for overtopping discharge on tetrapod breakwater, AIP Conference Proceedings, 2746.1; 2023. doi.org/10.1063/5.0153371

183-23   Youkou Dong, Enjin Zhao, Lan Cui, Yizhe Li, Yang Wang, Dynamic performance of suspended pipelines with permeable wrappers under solitary waves, Journal of Marine Science and Engineering, 11.10; 1872, 2023. doi.org/10.3390/jmse11101872

176-23   Guoxu Niu, Yaoyong Chen, Jiao Lu, Jing Zhang, Ning Fan, Determination of formulae for the hydrodynamic performance of a fixed box-type free surface breakwater in the intermediate water, Journal of Marine Science and Engineering, 11.9; 1812, 2023. doi.org/10.3390/jmse11091812

168-23   Yupeng Ren, Huiguang Zhou, Houjie Wang, Xiao Wu, Guohui Xu, Qingsheng Meng, Study on the critical sediment concentration determining the optimal transport capability of submarine sediment flows with different particle size composition, Marine Geology, 464; 107142, 2023. doi.org/10.1016/j.margeo.2023.107142

163-23   Ahmad Fitriadhy, Sheikh Fakruradzi, Alamsyah Kurniawan, Nita Yuanita, Anuar Abu Bakar, 3D computational fluid dynamic investigation on wave transmission behind low-crested submerged geo-bag breakwater, CFD Letters, 15.10; 2023. doi.org/10.37934/cfdl.15.10.1222

162-23   Ramtin Sabeti, Landslide-generated tsunami waves-physical and numerical modelling, International Seminar on Tsunami Research, University of Bath, 2023.

161-23   Duy Linh Du, Study on the optimal location for pile-rock breakwater in reducing wave height in Dong Hai District, Bac Lieu Province, Vietnam, Thesis, Can Tho University, 2023.

160-23   Duy Linh Du, Dai Bang Pham, Van Duy Dinh, Tan Ngoc Cao, Van Ty Tran, Gia Bao Tran, Hieu Duc Tran, Modelling the wave reduction effectiveness of pile-rock breakwater using FLOW-3D, (in Vietnamese) Journal of Materials and Construction, 13.04; 2023. doi.org/10.54772/jomc.04.2023.537

151-23 Zhiguo Zhang, Jinpeng Chen, Tong Ye, Zhengguo Zhu, Mengxi Zhang, Yutao Pan, Wave-induced response of seepage pressure around shield tunnel in sand seabed slope, International Journal of Geomechanics, 23.10; 2023. doi.org/10.1061/IJGNAI.GMENG-8072

147-23 Jiale Li, Jijian Lian, Haijun Wang, Yaohua Guo, Sha Liu, Yutong Zhang, FengWu Zhang, Numerical study of the local scour characteristics of bottom-supported installation platforms during the installation of a monopile, Ships and Offshore Structures, 2023. doi.org/10.1080/17445302.2023.2243700

144-23 Weixang Liang, Min Lou, Changhong Fan, Deguang Zhao, Xiang Li, Coupling effect of vortex-induced vibration and local scour of double tandem pipelines in steady current, Ocean Engineering, 286.1; 115495, 2023. doi.org/10.1016/j.oceaneng.2023.11549

136-23 Zegao Yin, Jiahao Li, Yanxu Wang, Haojian Wang, Tianxu Yin, Solitary wave attenuation characteristics of mangroves and multi-parameter prediction model, Ocean Engineering, 285.2; 115372, 2023. doi.org/10.1016/j.oceaneng.2023.115372

130-23 Sheng Wang, Chaozhe Yuan, Yuchi Hao, Xiaowei Yan, Feasibility analysis of laying and construction of deep-water dredging sinking pipeline, The 33rd International Ocean and Polar Engineering Conference, ISOPE-1-23-030, 2023.

127-23 Chen-Shan Kung, Ya-Cing You, Pei-Yu Lee, Siu-Yu Pan, Yu-Chun Chen, The air entrainment effect stability on the marine pipeline, The 33rd International Ocean and Polar Engineering Conference, ISOPE-I-23-242, 2023.

126-23 Yuting Wang, Zhaode Zhang, Yuan Zhang, Numerical simulationa and measurement of artificial flow creation in reclamation projects, The 33rd International Ocean and Polar Engineering Conference, ISOPE-1-23-168, 2023.

125-23 Chen-Shan Kung, Siu-Yu Pan, Pei-Yu Lee, Ya-Cing You, Yu-Chun Chen, Numerical simulation of wave motion on the submarine HDPE pipe system, The 33rd International Ocean and Polar Engineering Conference, ISOPE-I-23-327, 2023.

115-23 Qishun Li, Yanpeng Hao, Peng Zhang, Haotian Tan, Wanxing Tian, Linhao Chen, Lin Yang, Numerical study of the local scouring process and influencing factors of semi-exposed submarine cables, Journal of Marine Science and Engineering, 11.7; 1349, 2023. doi.org/10.3390/jmse11071349

113-23 Minxi Zhang, Hanyan Zhao, Dongliang Zhao, Shaolin Yue, Huan Zhou, Xudong Zhao, Carlo Gualtieri, Guoliang Yu, Numerical study of the flow at a vertical pile with net-like scour protection mat, Journal of Ocean Engineering and Science, 2023. doi.org/10.1016/j.joes.2023.06.002

108-23 Seyed A. Ghaherinezhad, M. Behdarvandi Askar, Investigating effect of changing vegetation height with irregular layout on reduction of waves using FLOW-3D numerical model, Journal of Hydraulic and Water Engineering, 1.1; pp.55-64, 2023. doi.org/10.22044/JHWE.2023.12844.1004

92-23 Tongshun Yu, Xingyu Chen, Yuying Tang, Junrong Wang, Yuqiao Wang, Shuting Huang, Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters, Applied Energy, 344; 121255, 2023. doi.org/10.1016/j.apenergy.2023.121255

85-23   Emilee A. Wissmach, Biomimicry of natural reef hydrodynamics in an artificial spur and groove reef formation, Thesis, Florida Institute of Technology, 2023.

81-23   Zhi Fan, Feifei Cao, Hongda Shi, Numerical simulation on the energy capture spectrum of heaving buoy wave energy converter, Ocean Engineering, 280; 114475, 2023. doi.org/10.1016/j.oceaneng.2023.114475

72-23   Zegao Yin, Fei Wu, Yingni Luan, Xuecong Zhang, Xiutao Jiang, Jie Xiong, Hydrodynamic and aeration characteristics of an aerator of a surging water tank with a vertical baffle under a horizontal sinusoidal motion, Ocean Engineering, 287; 114396, 2023. doi.org/10.1016/j.oceaneng.2023.114396

71-23   Erfan Amini, Mahdieh Nasiri, Navid Salami Pargoo, Zahra Mozhgani, Danial Golbaz, Mehrdad Baniesmaeil, Meysam Majidi Nezhad, Mehdi Neshat, Davide Astiaso Garcia, Georgios Sylaios, Design optimization of ocean renewable energy converter using a combined Bi-level metaheuristic approach, Energy Conversion and Management: X, 19; 100371, 2023. doi.org/10.1016/j.ecmx.2023.100371

70-23   Ali Ghasemi, Rouholla Amirabadi, Ulrich Reza Kamalian, Numerical investigation of hydrodynamic responses and statistical analysis of imposed forces for various geometries of the crown structure of caisson breakwater, Ocean Engineering, 278; 114358, 2023. doi.org/10.1016/j.oceaneng.2023.114358

67-23   Aisyah Dwi Puspasari, Jyh-Haw Tang, Numerical simulation of scouring around groups of six cylinders with different flow directions, Journal of the Chinese Institute of Engineers, 46.4; 2023. doi.org/10.1080/02533839.2023.2194919

62-23   Rob Nairn, Qimiao Lu, Rebecca Quan, Matthew Hoy, Dain Gillen, Data collection and modeling in support of the Mid-Breton Sediment Diversion Project, Coastal Sediments, 2023. doi.org/10.1142/9789811275135_0246

55-23   Yupeng Ren, Hao Tian, Zhiyuan Chen, Guohui Xu, Lejun Liu, Yibing Li, Two kinds of waves causing the resuspension of deep-sea sediments: excitation and internal solitary waves, Journal of Ocean University of China, 22; pp. 429-440, 2023. doi.org/10.1007/s11802-023-5293-2

42-23   Antonija Harasti, Gordon Gilja, Simulation of equilibrium scour hole development around riprap sloping structure using the numerical model, EGU General Assembly, 2023. doi.org/10.5194/egusphere-egu23-6811

25-23   Ke Hu, Xinglan Bai, Murilo A. Vaz, Numerical simulation on the local scour processing and influencing factors of submarine pipeline, Journal of Marine Science and Engineering, 11.1; 234, 2023. doi.org/10.3390/jmse11010234

12-23   Fan Zhang, Zhipeng Zang, Ming Zhao, Jinfeng Zhang, Numerical investigations on scour and flow around two crossing pipelines on a sandy seabed, Journal of Marine Science and Engineering, 10.12; 2019, 2023. doi.org/10.3390/jmse10122019

10-23 Wenshe Zhou, Yongzhou Cheng, Zhiyuan Lin, Numerical simulation of long-wave wave dissipation in near-water flat-plate array breakwaters, Ocean Engineering, 268; 113377, 2023. doi.org/10.1016/j.oceaneng.2022.113377

181-22   Ramtin Sabeti, Mohammad Heidarzadeh, Numerical simulations of water waves generated by subaerial granular and solid-block landslides: Validation, comparison, and predictive equations, Ocean Engineering, 266.3; 112853, 2022. doi.org/10.1016/j.oceaneng.2022.112853 

167-22 Zhiyong Zhang, Cunhong Pan, Jian Zeng, Fuyuan Chen, Hao Qin, Kun He, Kui Zhu, Enjin Zhao, Hydrodynamics of tidal bore overflow on the spur dike and its infuence on the local scour, Ocean Engineering, 266.4; 113140, 2022. doi.org/10.1016/j.oceaneng.2022.113140

166-22 Nguyet-Minh Nguyen, Duong Do Van, Duy Tu Le, Quyen Nguyen, Bang Tran, Thanh Cong Nguyen, David Wright, Ahad Hasan Tanim, Phong Nguyen Thanh, Duong Tran Anh, Physical and numerical modeling of four different shapes of breakwaters to test the suspended sediment trapping capacity in the Mekong Delta, Estuarine, Coastal and Shelf Science, 279; 108141, 2022. doi.org/10.1016/j.ecss.2022.108141

163-22 Sahameddin Mahmoudi Kurdistani, Giuseppe Roberto Tomasicchio, Felice D’Alessandro, Antonio Francone, Formula for wave transmission at submerged homogeneous porous breakwaters, Ocean Engineering, 266.4; 113053, 2022. doi.org/10.1016/j.oceaneng.2022.113053

162-22 Kai Wei, Xueshuang Yin, Numerical study into configuration of horizontal flanges on hydrodynamic performance of moored box-type floating breakwater, Ocean Engineering, 266.4; 112991, 2022. doi.org/10.1016/j.oceaneng.2022.112991

161-22 Sung-Chul Jang, Jin-Yong Jeong, Seung-Woo Lee, Dongha Kim, Identifying hydraulic characteristics related to fishery activities using numerical analysis and an automatic identification system of a fishing vessel, Journal of Marine Science and Engineering, 10; 1619, 2022. doi.org/10.3390/jmse10111619

156-22 Keith Adams, Mohammad Heidarzadeh, Extratropical cyclone damage to the seawall in Dawlish, UK: Eyewitness accounts, sea level analysis and numerical modelling, Natural Hazards, 2022. doi.org/10.1007/s11069-022-05692-2

155-22 Youxiang Lu, Zhenlu Wang, Zegao Yin, Guoxiang Wu, Bingchen Liang, Experimental and numerical studies on local scour around closely spaced circular piles under the action of steady current, Journal of Marine Science and Engineering, 10; 1569, 2022. doi.org/10.3390/jmse10111569

152-22 Nauman Riyaz Maldar, Ng Cheng Yee, Elif Oguz, Shwetank Krishna, Performance investigation of a drag-based hydrokinetic turbine considering the effect of deflector, flow velocity, and blade shape, Ocean Engineering, 266.2; 112765, 2022. doi.org/10.1016/j.oceaneng.2022.112765

148-22   Ramtin Sabeti, Mohammad Heidarzadeh, Numerical simulations of water waves generated by subaerial granular and solid-block landslides: Validation, comparison, and predictive equations, Ocean Engineering, 266.3; 112853, 2022. doi.org/10.1016/j.oceaneng.2022.112853

145-22   I-Fan Tseng, Chih-Hung Hsu, Po-Hung Yeh, Ting-Chieh Lin, Physical mechanism for seabed scouring around a breakwater—a case study in Mailiao Port, Journal of Marine Science and Engineering, 10; 1386, 2022. doi.org/10.3390/jmse10101386

144-22   Jiarui Yu, Baozeng Yue, Bole Ma, Isogeometric analysis with level set method for large-amplitude liquid sloshing, Ocean Engineering, 265; 112613, 2022. doi.org/10.1016/j.oceaneng.2022.112613

141-22   Qi Yang, Peng Yu, Hongjun Liu, Computational investigation of scour characteristics of USAF in multi-specie sand under steady current, Ocean Engineering, 262; 112141, 2022. doi.org/10.1016/j.oceaneng.2022.112141

128-22   Atish Deoraj, Calvin Wells, Justin Pringle, Derek Stretch, On the reef scale hydrodynamics at Sodwana Bay, South Africa, Environmental Fluid Mechanics, 2022. doi.org/10.1007/s10652-022-09896-9

108-22   Angela Di Leo, Mariano Buccino, Fabio Dentale, Eugenio Pugliese Carratelli, CFD analysis of wind effect on wave overtopping, 32nd International Ocean and Polar Engineering Conference,  ISOPE-I-22-428, 2022.

105-22   Pin-Tzu Su, Chen-shan Kung, Effects of currents and sediment flushing on marine pipes, 32nd International Ocean and Polar Engineering Conference, ISOPE-I-22-153, 2022.

89-22   Kai Wei, Cong Zhou, Bo Xu, Spatial distribution models of horizontal and vertical wave impact pressure on the elevated box structure, Applied Ocean Research, 125; 103245, 2022. doi.org/10.1016/j.apor.2022.103245

87-22   Tran Thuy Linh, Numerical modelling (3D) of wave interaction with porous structures in the Mekong Delta coastal zone, Thesis, Ho Chi Minh City University of Technology, 2022.

82-22   Seyyed-Mahmood Ghassemizadeh, Mohammad Javad Ketabdari, Modeling of solitary wave interaction with curved-facing seawalls using numerical method, Advances in Civil Engineering, 5649637, 2022. doi.org/10.1155/2022/5649637

81-22   Raphael Alwan, Boyin Ding, David M. Skene, Zhaobin Li, Luke G. Bennetts, On the structure of waves radiated by a submerged cylinder undergoing large-amplitude heave motions, 32nd International Ocean and Polar Engineering Conference, Shanghai, China, June 5-10, 2022. doi.org/10.1111/jfr3.12828

77-22   Weiyun Chen, Linchong Huang, Dan Wang, Chao Liu, Lingyu Xu, Zhi Ding, Effects of siltation and desiltation on the wave-induced stability of foundation trench of immersed tunnel, Soil Dynamics and Earthquake Engineering, 160; 107360, 2022. doi.org/10.1016/j.soildyn.2022.107360

63-22   Yongzhou Cheng, Zhiyuan Lin, Gan Hu, Xing Lyu, Numerical simulation of the hydrodynamic characteristics of the porous I-type composite breakwater, Journal of Marine Science and Application, 21; pp. 140-150, 2022. doi.org/10.1007/s11804-022-00251-4

37-22   Ray-Yeng Yang, Chuan-Wen Wang, Chin-Cheng Huang, Cheng-Hsien Chung, Chung-Pang, Chen, Chih-Jung Huang, The 1:20 scaled hydraulic model test and field experiment of barge-type floating offshore wind turbine system, Ocean Engineering, 247.1; 110486, 2022. doi.org/10.1016/j.oceaneng.2021.110486

35-22   Mingchao Cui, Zhisong Li, Chenglin Zhang, Xiaoyu Guo, Statistical investigation into the flow field of closed aquaculture tanks aboard a platform under periodic oscillation, Ocean Engineering, 248; 110677, 2022. doi.org/10.1016/j.oceaneng.2022.110677

30-22   Jijian Lian, Jiale Li, Yaohua Guo, Haijun Wang, Xu Yang, Numerical study on local scour characteristics of multi-bucket jacket foundation considering exposed height, Applied Ocean Research, 121; 103092. doi.org/10.1016/j.apor.2022.103092

19-22   J.J. Wiegerink, T.E. Baldock, D.P. Callaghan, C.M. Wang, Slosh suppression blocks – A concept for mitigating fluid motions in floating closed containment fish pen in high energy environments, Applied Ocean Research, 120; 103068, 2022. doi.org/10.1016/j.apor.2022.103068

9-22   Amir Bordbar, Soroosh Sharifi, Hassan Hemida, Investigation of scour around two side-by-side piles with different spacing ratios in live-bed, Lecture Notes in Civil Engineering, 208; pp. 302-309, 2022. doi.org/10.1007/978-981-16-7735-9_33

7-22   Jinzhao Li, Xuan Kong, Yilin Yang, Lu Deng, Wen Xiong, CFD investigations of tsunami-induced scour around bridge piers, Ocean Engineering, 244; 110373, 2022. doi.org/10.1016/j.oceaneng.2021.110373

3-22   Ana Gomes, José Pinho, Wave loads assessment on coastal structures at inundation risk using CFD modelling, Climate Change and Water Security, 178; pp. 207-218, 2022. doi.org/10.1007/978-981-16-5501-2_17

2-22   Ramtin Sabeti, Mohammad Heidarzadeh, Numerical simulations of tsunami wave generation by submarine landslides: Validation and sensitivity analysis to landslide parameters, Journal of Waterway, Port, Coastal, and Ocean Engineering, 148.2; 05021016, 2022. doi.org/10.1061/(ASCE)WW.1943-5460.0000694

146-21   Ming-ming Liu, Hao-cheng Wang, Guo-qiang Tang, Fei-fei Shao, Xin Jin, Investigation of local scour around two vertical piles by using numerical method, Ocean Engineering, 244; 110405, 2021. doi.org/10.1016/j.oceaneng.2021.110405

135-21   Jian Guo, Jiyi Wu, Tao Wang, Prediction of local scour depth of sea-crossing bridges based on the energy balance theory, Ships and Offshore Structures, 16.10, 2021. doi.org/10.1080/17445302.2021.2005362

133-21   Sahel Sohrabi, Mohamad Ali Lofollahi Yaghin, Mohamad Hosein Aminfar, Alireza Mojtahedi, Experimental and numerical investigation of hydrodynamic performance of a sloping floating breakwater with and without chain-net, Iranian Journal of Science and Technology: Transactions of Civil Engineering, , 2021. doi.org/10.1007/s40996-021-00780-y

131-21   Seyed Morteza Marashian, Mehdi Adjami, Ahmad Rezaee Mazyak, Numerical modelling investigation of wave interaction on composite berm breakwater, China Ocean Engineering, 35; pp. 631-645, 2021. doi.org/10.1007/s13344-021-0060-x

124-21   Ramin Safari Ghaleh, Omid Aminoroayaie Yamini, S. Hooman Mousavi, Mohammad Reza Kavianpour, Numerical modeling of failure mechanisms in articulated concrete block mattress as a sustainable coastal protection structure, Sustainability, 13.22; pp. 1-19, 2021.

118-21   A. Keshavarz, M. Vaghefi, G. Ahmadi, Investigation of flow patterns around rectangular and oblong peirs with collar located in a 180-degree sharp bend, Scientia Iranica A, 28.5; pp. 2479-2492, 2021.

109-21   Jacek Jachowski, Edyta Książkiewicz, Izabela Szwoch, Determination of the aerodynamic drag of pneumatic life rafts as a factor for increasing the reliability of rescue operations, Polish Maritime Research, 28.3; p. 128-136, 2021. doi.org/10.2478/pomr-2021-0040

107-21   Jiay Han, Bing Zhu, Baojie Lu, Hao Ding, Ke Li, Liang Cheng, Bo Huang, The influence of incident angles and length-diameter ratios on the round-ended cylinder under regular wave action, Ocean Engineering, 240; 109980, 2021. doi.org/10.1016/j.oceaneng.2021.109980

96-21   Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, Bernhard Gems, Triggers and consequences of landslide-induced impulse waves – 3D dynamic reconstruction of the Taan Fiord 2015 tsunami event, Engineering Geology, 294; 106384, 2021. doi.org/10.1016/j.enggeo.2021.106384

95-21   Ahmed A. Romya, Hossam M. Moghazy, M.M. Iskander, Ahmed M. Abdelrazek, Performance assessment of corrugated semi-circular breakwaters for coastal protection, Alexandria Engineering Journal, in press, 2021. doi.org/10.1016/j.aej.2021.08.086

87-21   Ruigeng Hu, Hongjun Liu, Hao Leng, Peng Yu, Xiuhai Wang, Scour characteristics and equilibrium scour depth prediction around umbrella suction anchor foundation under random waves, Journal of Marine Science and Engineering, 9; 886, 2021. doi.org/10.3390/jmse9080886

78-21   Sahir Asrari, Habib Hakimzadeh, Nazila Kardan, Investigation on the local scour beneath piggyback pipelines under clear-water conditions, China Ocean Engineering, 35; pp. 422-431, 2021. doi.org/10.1007/s13344-021-0039-7

64-21   Pin-Tzu Su, Chen-shan Kung, Effects of diffusers on discharging jet, 31st International Ocean and Polar Engineering Conference (ISOPE), Rhodes, Greece, June 20-25, 2021.

62-21   Fei Wu, Wei Li, Shuzhao Li, Xiaopeng Shen, Delong Dong, Numerical simulation of scour of backfill soil by jetting flows on the top of buried caisson, 31st International Ocean and Polar Engineering Conference (ISOPE), Rhodes, Greece, June 20-25, 2021.

56-21   Murat Aksel, Oral Yagci, V.S. Ozgur Kirca, Eryilmaz Erdog, Naghmeh Heidari, A comparitive analysis of coherent structures around a pile over rigid-bed and scoured-bottom, Ocean Engineering, 226; 108759, 2021. doi.org/10.1016/j.oceaneng.2021.108759

52-21   Byeong Wook Lee, Changhoon Lee, Equation for ship wave crests in a uniform current in the entire range of water depths, Coastal Engineering, 167; 103900, 2021. doi.org/10.1016/j.coastaleng.2021.103900

43-21   Agnieszka Faulkner, Claire E. Bulgin, Christopher J. Merchant, Characterising industrial thermal plumes in coastal regions using 3-D numerical simulations, Environmental Research Communications, 3; 045003, 2021. doi.org/10.1088/2515-7620/abf62e

39-21   Fan Yang, Yiqi Zhang, Chao Liu, Tieli Wang, Dongin Jiang, Yan Jin, Numerical and experimental investigations of flow pattern and anti-vortex measures of forebay in a multi-unit pumping station, Water, 13.7; 935, 2021. doi.org/10.3390/w13070935

30-21   Norfadhlina Khalid, Aqil Azraie Che Shamshudin, Megat Khalid Puteri Zarina, Analysis on wave generation and hull: Modification for fishing vessels, Advanced Engineering for Processes and Technologies II: Advanced Structured Materials, 147; pp. 77-89, 2021. doi.org/10.1007/978-3-030-67307-9_9

28-21   Jae-Sang Jung, Jae-Seon Yoon, Seokkoo Kang, Seokil Jeong, Seung Oh Lee, Yong-Sung Park, Discharge characteristics of drainage gates on Saemangeum tidal dyke, South Korea, KSCE Journal of Engineering, 25; pp. 1308-1325, 2021. doi.org/10.1007/s12205-021-0590-z

24-21   Ali Temel, Mustafa Dogan, Time dependent investigation of the wave induced scour at the trunk section of a rubble mound breakwater, Ocean Engineering, 221; 108564, 2021. doi.org/10.1016/j.oceaneng.2020.108564

13-21   P.X. Zou, L.Z. Chen, The coupled tube-mooring system SFT hydrodynamic characteristics under wave excitations, Proceedings, 14th International Conference on Vibration Problems, Crete, Greece, September 1 – 4, 2019, pp. 907-923, 2021. doi.org/10.1007/978-981-15-8049-9_55

122-20  M.A. Musa, M.F. Roslan, M.F. Ahmad, A.M. Muzathik, M.A. Mustapa, A. Fitriadhy, M.H. Mohd, M.A.A. Rahman, The influence of ramp shape parameters on performance of overtopping breakwater for energy conversion, Journal of Marine Science and Engineering, 8.11; 875, 2020. doi.org/10.3390/jmse8110875

120-20  Lee Hooi Chie, Ahmad Khairi Abd Wahab, Derivation of engineering design criteria for flow field around intake structure: A numerical simulation study, Journal of Marine Science and Engineering, 8.10; 827, 2020.  doi.org/10.3390/jmse8100827

109-20  Mario Maiolo, Riccardo Alvise Mel, Salvatore Sinopoli, A stepwise approach to beach restoration at Calabaia Beach, Water, 12.10; 2677, 2020. doi.org/10.3390/w12102677

107-20  S. Deshpande, P. Sundsbø, S. Das, Ship resistance analysis using CFD simulations in Flow-3D, International Journal of Multiphysics, 14.3; pp. 227-236, 2020. doi.org/10.21152/1750-9548.14.3.227

103-20   Mahmood Nematollahi, Mohammad Navim Moghid, Numerical simulation of spatial distribution of wave overtopping on non-reshaping berm breakwaters, Journal of Marine Science and Application, 19; pp. 301-316, 2020. doi.org/10.1007/s11804-020-00147-1

98-20   Lin Zhao, Ning Wang, Qian Li, Analysis of flow characteristics and wave dissipation performances of a new structure, Proceedings, 30th International Ocean and Polar Engineering Conference (ISOPE), Online, October 11-16, ISOPE-I-20-3289, 2020.

96-20   Xiaoyu Guo, Zhisong Li, Mingchao Cui, Benlong Wang, Numerical investigation on flow characteristics of water in the fish tank on a force-rolling aquaculture platform, Ocean Engineering, 217; 107936, 2020. doi.org/10.1016/j.oceaneng.2020.107936

92-20   Yong-Jun Cho, Scour controlling effect of hybrid mono-pile as a substructure of offshore wind turbine: A numerical study, Journal of Marine Science and Engineering, 8.9; 637, 2020. doi.org/10.3390/jmse8090637

89-20   Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, Bernhard Gems, The
1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software
Flow-3D
, Natural Hazards and Earth Systems Sciences, 20; pp. 2255–2279, 2020. doi.org/10.5194/nhess-20-2255-2020

81-20   Eliseo Marchesi, Marco Negri, Stefano Malavasi, Development and analysis of a numerical model for a two-oscillating-body wave energy converter in shallow water, Ocean Engineering, 214; 107765, 2020. doi.org/10.1016/j.oceaneng.2020.107765

79-20   Zegao Yin, Yanxu Wang, Yong Liu, Wei Zou, Wave attenuation by rigid emergent vegetation under combined wave and current flows, Ocean Engineering, 213; 107632, 2020. doi.org/10.1016/j.oceaneng.2020.107632

71-20   B. Pan, N. Belyaev, FLOW-3D software for substantiation the layout of the port water area, IOP Conference Series: Materials Science and Engineering, Construction Mechanics, Hydraulics and Water Resources Engineering (CONMECHYDRO), Tashkent, Uzbekistan, 23-25 April, 883; 012020, 2020. doi.org/10.1088/1757-899X/883/1/012020

51-20       Yupeng Ren, Xingbei Xu, Guohui Xu, Zhiqin Liu, Measurement and calculation of particle trajectory of liquefied soil under wave action, Applied Ocean Research, 101; 102202, 2020. doi.org/10.1016/j.apor.2020.102202

50-20       C.C. Battiston, F.A. Bombardelli, E.B.C. Schettini, M.G. Marques, Mean flow and turbulence statistics through a sluice gate in a navigation lock system: A numerical study, European Journal of Mechanics – B/Fluids, 84; pp.155-163, 2020. doi.org/10.1016/j.euromechflu.2020.06.003

49-20     Ahmad Fitriadhy, Nur Amira Adam, Nurul Aqilah Mansor, Mohammad Fadhli Ahmad, Ahmad Jusoh, Noraieni Hj. Mokhtar, Mohd Sofiyan Sulaiman, CFD investigation into the effect of heave plate on vertical motion responses of a floating jetty, CFD Letters, 12.5; pp. 24-35, 2020. doi.org/10.37934/cfdl.12.5.2435

40-20       P. April Le Quéré, I. Nistor, A. Mohammadian, Numerical modeling of tsunami-induced scouring around a square column: Performance assessment of FLOW-3D and Delft3D, Journal of Coastal Research (preprint), 2020. doi.org/10.2112/JCOASTRES-D-19-00181

38-20       Sahameddin Mahmoudi Kurdistani, Giuseppe Roberto Tomasicchio, Daniele Conte, Stefano Mascetti, Sensitivity analysis of existing exponential empirical formulas for pore pressure distribution inside breakwater core using numerical modeling, Italian Journal of Engineering Geology and Environment, 1; pp. 65-71, 2020. doi.org/10.4408/IJEGE.2020-01.S-08

36-20       Mohammadamin Torabi, Bruce Savage, Efficiency improvement of a novel submerged oscillating water column (SOWC) energy harvester, Proceedings, World Environmental and Water Resources Congress (Cancelled), Henderson, Nevada, May 17–21, 2020. doi.org/10.1061/9780784482940.003

32-20       Adriano Henrique Tognato, Modelagem CFD da interação entre hidrodinâmica costeira e quebra-mar submerso: estudo de caso da Ponta da Praia em Santos, SP (CFD modeling of interaction between sea waves and submerged breakwater at Ponta de Praia – Santos, SP: a case study, Thesis, Universidad Estadual de Campinas, Campinas, Brazil, 2020.

29-20   Ana Gomes, José L. S. Pinho, Tiago Valente, José S. Antunes do Carmo and Arkal V. Hegde, Performance assessment of a semi-circular breakwater through CFD modelling, Journal of Marine Science and Engineering, 8.3, art. no. 226, 2020. doi.org/10.3390/jmse8030226

23-20  Qi Yang, Peng Yu, Yifan Liu, Hongjun Liu, Peng Zhang and Quandi Wang, Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents, Ocean Engineering, 202, art. no. 106701, 2020. doi.org/10.1016/j.oceaneng.2019.106701

04-20  Bingchen Liang, Shengtao Du, Xinying Pan and Libang Zhang, Local scour for vertical piles in steady currents: review of mechanisms, influencing factors and empirical equations, Journal of Marine Science and Engineering, 8.1, art. no. 4, 2020. doi.org/10.3390/jmse8010004

104-19   A. Fitriadhy, S.F. Abdullah, M. Hairil, M.F. Ahmad and A. Jusoh, Optimized modelling on lateral separation of twin pontoon-net floating breakwater, Journal of Mechanical Engineering and Sciences, 13.4, pp. 5764-5779, 2019. doi.org/10.15282/jmes.13.4.2019.04.0460

103-19  Ahmad Fitriadhy, Nurul Aqilah Mansor, Nur Adlina Aldin and Adi Maimun, CFD analysis on course stability of an asymmetrical bridle towline model of a towed ship, CFD Letters, 11.12, pp. 43-52, 2019.

90-19   Eric P. Lemont and Karthik Ramaswamy, Computational fluid dynamics in coastal engineering: Verification of a breakwater design in the Torres Strait, Proceedings, pp. 762-768, Australian Coasts and Ports 2019 Conference, Hobart, Australia, September 10-13, 2019.

86-19   Mohammed Arab Fatiha, Benoît Augier, François Deniset, Pascal Casari, and Jacques André Astolfi, Morphing hydrofoil model driven by compliant composite structure and internal pressure, Journal of Marine Science and Engineering, 7:423, 2019. doi.org/10.3390/jmse7120423

83-19   Cong-Uy Nguyen, So-Young Lee, Thanh-Canh Huynh, Heon-Tae Kim, and Jeong-Tae Kim, Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation, Smart Structures and Systems, 23:5, pp. 405-420, 2019. doi.org/10.12989/sss.2019.23.5.405

68-19   B.W. Lee and C. Lee, Development of an equation for ship wave crests in a current in whole water depths, Proceedings, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019; pp. 207-212, 2019. doi.org/10.1007/978-981-15-0291-0_29

62-19   Byeong Wook Lee and Changhoon Lee, Equation for ship wave crests in the entire range of water depths, Coastal Engineering, 153:103542, 2019. doi.org/10.1016/j.coastaleng.2019.103542

23-19     Mariano Buccino, Mohammad Daliri, Fabio Dentale, Angela Di Leo, and Mario Calabrese, CFD experiments on a low crested sloping top caisson breakwater, Part 1: Nature of loadings and global stability, Ocean Engineering, Vol. 182, pp. 259-282, 2019. doi.org/10.1016/j.oceaneng.2019.04.017

21-19     Mahsa Ghazian Arabi, Deniz Velioglu Sogut, Ali Khosronejad, Ahmet C. Yalciner, and Ali Farhadzadeh, A numerical and experimental study of local hydrodynamics due to interactions between a solitary wave and an impervious structure, Coastal Engineering, Vol. 147, pp. 43-62, 2019. doi.org/10.1016/j.coastaleng.2019.02.004

15-19     Chencong Liao, Jinjian Chen, and Yizhou Zhang, Accumulation of pore water pressure in a homogeneous sandy seabed around a rocking mono-pile subjected to wave loads, Vol. 173, pp. 810-822, 2019. doi.org/10.1016/j.oceaneng.2018.12.072

09-19     Yaoyong Chen, Guoxu Niu, and Yuliang Ma, Study on hydrodynamics of a new comb-type floating breakwater fixed on the water surface, 2018 International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2018), Wuhan, China, December 14-16, 2018, E3S Web of Conferences Vol. 79, Art. No. 02003, 2019. doi.org/10.1051/e3sconf/20197902003

08-19     Hongda Shi, Zhi Han, and Chenyu Zhao, Numerical study on the optimization design of the conical bottom heaving buoy convertor, Ocean Engineering, Vol. 173, pp. 235-243, 2019. doi.org/10.1016/j.oceaneng.2018.12.061

06-19   S. Hemavathi, R. Manjula and N. Ponmani, Numerical modelling and experimental investigation on the effect of wave attenuation due to coastal vegetation, Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), Vol. 2, pp. 99-110, 2019. doi.org/10.1007/978-981-13-3134-3_9

87-18   Muhammad Syazwan Bazli, Omar Yaakob and Kang Hooi Siang, Validation study of u-oscillating water column device using computational fluid dynamic (CFD) simulation, 11thInternational Conference on Marine Technology, Kuala Lumpur, Malaysia, August 13-14, 2018.

86-18   Nur Adlina Aldin, Ahmad Fitriadhy, Nurul Aqilah Mansor, and Adi Maimun, CFD analysis on unsteady yaw motion characteristic of a towed ship, 11th International Conference on Marine Technology, Kuala Lumpur, Malaysia, August 13-14, 2018.

78-18 A.A. Abo Zaid, W.E. Mahmod, A.S. Koraim, E.M. Heikal and H.E. Fath, Wave interaction of partially immersed semicircular breakwater suspended on piles using FLOW-3D, CSME Conference Proceedings, Toronto, Canada, May 27-30, 2018.

73-18   Jian Zhou and Subhas K. Venayagamoorthy, Near-field mean flow dynamics of a cylindrical canopy patch suspended in deep water, Journal of Fluid Mechanics, Vol. 858, pp. 634-655, 2018. doi.org/10.1017/jfm.2018.775

69-18   Keisuke Yoshida, Shiro Maeno, Tomihiro Iiboshi and Daisuke Araki, Estimation of hydrodynamic forces acting on concrete blocks of toe protection works for coastal dikes by tsunami overflows, Applied Ocean Research, Vol. 80, pp. 181-196, 2018. doi.org/10.1016/j.apor.2018.09.001

68-18   Zegao Yin, Yanxu Wang and Xiaoyu Yang, Regular wave run-up attenuation on a slope by emergent rigid vegetation, Journal of Coastal Research (in-press), 2018. doi.org/10.2112/JCOASTRES-D-17-00200.1

65-18   Dagui Tong, Chencong Liao, Jinjian Chen and Qi Zhang, Numerical simulation of a sandy seabed response to water surface waves propagating on current, Journal of Marine Science and Engineering, Vol. 6, No. 3, 2018. doi.org/10.3390/jmse6030088

61-18   Manuel Gerardo Verduzco-Zapata, Aramis Olivos-Ortiz, Marco Liñán-Cabello, Christian Ortega-Ortiz, Marco Galicia-Pérez, Chris Matthews, and Omar Cervantes-Rosas, Development of a Desalination System Driven by Low Energy Ocean Surface Waves, Journal of Coastal Research: Special Issue 85 – Proceedings of the 15th International Coastal Symposium, pp. 1321 – 1325, 2018. doi.org/10.2112/SI85-265.1

37-18   Songsen Xu, Chunshuo Jiao, Meng Ning and Sheng Dong, Analysis of Buoyancy Module Auxiliary Installation Technology Based on Numerical Simulation, Journal of Ocean University of China, vol. 17, no. 2, pp. 267-280, 2018. doi.org/10.1007/s11802-018-3305-4

36-18   Deniz Velioglu Sogut and Ahmet Cevdet Yalciner, Performance comparison of NAMI DANCE and FLOW-3D® models in tsunami propagation, inundation and currents using NTHMP benchmark problems, Pure and Applied Geophysics, pp. 1-39, 2018. doi.org/10.1007/s00024-018-1907-9

26-18   Mohammad Sarfaraz and Ali Pak, Numerical investigation of the stability of armour units in low-crested breakwaters using combined SPH–Polyhedral DEM method, Journal of Fluids and Structures, vol. 81, pp. 14-35, 2018. doi.org/10.1016/j.jfluidstructs.2018.04.016

25-18   Yen-Lung Chen and Shih-Chun Hsiao, Numerical modeling of a buoyant round jet under regular waves, Ocean Engineering, vol. 161, pp. 154-167, 2018. doi.org/10.1016/j.oceaneng.2018.04.093

13-18   Yizhou Zhang, Chencong Liao, Jinjian Chen, Dagui Tong, and Jianhua Wang, Numerical analysis of interaction between seabed and mono-pile subjected to dynamic wave loadings considering the pile rocking effect, Ocean Engineering, Volume 155, 1 May 2018, Pages 173-188, doi.org/10.1016/j.oceaneng.2018.02.041

11-18  Ching-Piao Tsai, Chun-Han Ko and Ying-Chi Chen, Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter, Open Access Sustainability 2018, 10(3), 643; doi:10.3390/su10030643, © Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.

58-17   Jian Zhou, Claudia Cenedese, Tim Williams and Megan Ball, On the propagation of gravity currents over and through a submerged array of circular cylinders, Journal of Fluid Mechanics, Vol. 831, pp. 394-417, 2017. doi.org/10.1017/jfm.2017.604

56-17   Yu-Shu Kuo, Chih-Yin Chung, Shih-Chun Hsiao and Yu-Kai Wang, Hydrodynamic characteristics of Oscillating Water Column caisson breakwaters, Renewable Energy, vol. 103, pp. 439-447, 2017. doi.org/10.1016/j.renene.2016.11.028

47-17   Jae-Nam Cho, Chang-Geun Song, Kyu-Nam Hwang and Seung-Oh Lee, Experimental assessment of suspended sediment concentration changed by solitary wave, Journal of Marine Science and Technology, Vol. 25, No. 6, pp. 649-655 (2017) 649 DOI: 10.6119/JMST-017-1226-04

45-17   Muhammad Aldhiansyah Rifqi Fauzi, Haryo Dwito Armono, Mahmud Mustain and Aniendhita Rizki Amalia, Comparison Study of Various Type Artificial Reef Performance in Reducing Wave Height, Regional Conference in Civil Engineering (RCCE) 430 The Third International Conference on Civil Engineering Research (ICCER) August 1st-2nd 2017, Surabaya – Indonesia.

44-17   Fabio Dentale, Ferdinando Reale, Angela Di Leo, and Eugenio Pugliese Carratelli, A CFD approach to rubble mound breakwater design, International Journal of Naval Architecture and Ocean Engineering, Available online 30 December 2017.

39-17   Milad Rashidinasab and Mehdi Behdarvandi Askar, Modeling the Pressure Distribution and the Changes of Water Level around the Offshore Platforms Exposed to Waves, Using the Numerical Model of FLOW-3D, Computational Water, Energy, and Environmental Engineering, 2017, 6, 97-106, http://www.scirp.org/journal/cweee, ISSN Online: 2168-1570, ISSN Print: 2168-1562

30-17   Omid Nourani and Mehdi Behdarvandi Askar, Comparison of the Effect of Tetrapod Block and Armor X block on Reducing Wave Overtopping in Breakwaters, Open Journal of Marine Science, 2017, 7, 472-484 http://www.scirp.org/journal/ojms ISSN Online: 2161-7392.

29-17   J.A. Vasquez, Modelling the generation and propagation of landslide generated waves, Leadership in Sustainable Infrastructure, Annual Conference – Vancouver, May 31 – June 3, 2017

28-17   Manuel G. Verduzco-Zapata, Francisco J. Ocampo-Torres, Chris Matthews, Aramis Olivos-Ortiz, Diego E. and Galván-Pozos, Development of a Wave Powered Desalination Device Numerical Modelling, Proceedings of the 12th European Wave and Tidal Energy Conference 27th Aug -1st Sept 2017, Cork, Ireland

20-17   Chu-Kuan Lin, Jaw-Guei Lin, Ya-Lan Chen, Chin-Shen Chang, Seabed Change and Soil Resistance Assessment of Jack up Foundation, Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference, San Francisco, CA, USA, June 25-30, 2017, Copyright © 2017 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-97-5; ISSN 1098-6189.

19-17   Velioğlu Deniz, Advanced Two- and Three-Dimensional Tsunami – Models Benchmarking and Validation, Ph.D Thesis:, Middle East Technical University, June 2017

18-17   Farrokh Mahnamfar and Abdüsselam Altunkaynak, Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems, Ocean Engineering 130 (2017) 10–24.

07-17   Jonas Čerka, Rima Mickevičienė, Žydrūnas Ašmontas, Lukas Norkevičius, Tomas Žapnickas, Vasilij Djačkov and Peilin Zhou, Optimization of the research vessel hull form by using numerical simulation, Ocean Engineering 139 (2017) 33–38

05-17   Liang, B.; Ma, S.; Pan, X., and Lee, D.Y., Numerical modelling of wave run-up with interaction between wave and dolosse breakwater, In: Lee, J.L.; Griffiths, T.; Lotan, A.; Suh, K.-S., and Lee, J. (eds.), 2017, The 2nd International Water Safety Symposium. Journal of Coastal Research, Special Issue No. 79, pp. 294-298. Coconut Creek (Florida), ISSN 0749-0208.

02-17   A. Yazid Maliki, M. Azlan Musa, Ahmad M.F., Zamri I., Omar Y., Comparison of numerical and experimental results for overtopping discharge of the OBREC wave energy converter, Journal of Engineering Science and Technology, In Press, © School of Engineering, Taylor’s University

01-17   Tanvir Sayeed, Bruce Colbourne, David Molyneux, Ayhan Akinturk, Experimental and numerical investigation of wave forces on partially submerged bodies in close proximity to a fixed structure, Ocean Engineering, Volume 132, Pages 70–91, March 2017

101-16 Xin Li, Liang-yu Xu, Jian-Min Yang, Study of fluid resonance between two side-by-side floating barges, Journal of Hydrodynamics, vol. B-28, no. 5, pp. 767-777, 2016. doi.org/10.1016/S1001-6058(16)60679-0

81-16   Loretta Gnavi, Deep water challenges: development of depositional models to support geohazard assessment for submarine facilities, Ph.D. Thesis: Politecnico di Torino, May 2016

80-16   Mohammed Ibrahim, Hany Ahmed, Mostafa Abd Alall and A.S. Koraim, Proposing and investigating the efficiency of vertical perforated breakwater, International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March 2016, ISSN 2229-5518

72-16   Yen-Lung Chen and Shih-Chun Hsiao, Generation of 3D water waves using mass source wavemaker applied to Navier–Stokes model, Coastal Engineering 109 (2016) 76–95.

64-16   Jae Nam Cho, Dong Hyun Kim and Seung Oh Lee, Experimental Study of Shape and Pressure Characteristics of Solitary Wave generated by Sluice Gate for Various Conditions, Journal of the Korean Society of Safety, Vol. 31, No. 2, pp. 70-75, April 2016, Copyright @ 2016 by The Korean Society of Safety (pISSN 1738-3803, eISSN 2383-9953) All right reserved. http://dx.doi.org/10.14346/JKOSOS.2016.31.2.70

56-16   Ali A. Babajani, Mohammad Jafari and Parinaz Hafezi Sefat, Numerical investigation of distance effect between two Searasers for hydrodynamic performance, Alexandria Engineering Journal, June 2016.

53-16   Hwang-Ki Lee, Byeong-Kuk Kim, Jongkyu Kim and Hyeon-Ju Kim, OTEC thermal dispersion in coastal waters of Tarawa, Kiribati, OCEANS 2016 – Shanghai, April 2016, 10.1109/OCEANSAP.2016.7485548, © IEEE.

50-16   Mohsin A. R. Irkal, S. Nallayarasu and S. K. Bhattacharyya, CFD simulation of roll damping characteristics of a ship midsection with bilge keel, Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2016, June 19-24, 2016, Busan, South Korea

49-16   Bill Baird, Seth Logan, Wim Van Der Molen, Trevor Elliot and Don Zimmer, Thoughts on the future of physical models in coastal engineering, Proceedings of the 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright ©: Creative Commons CC BY-NC-ND 4.0

47-16   KH Kim et. al, Numerical analysis on the effects of shoal on the ship wave, Applied Engineering, Materials and Mechanics: Proceedings of the 2016 International Conference on Applied Engineering, Materials and Mechanics (ICAEMM 2016)

17-16  Nan-Jing Wu, Shih-Chun Hsiao, Hsin-Hung Chen, and Ray-Yeng Yang, The study on solitary waves generated by a piston-type wave maker, Ocean Engineering, 117(2016)114–129

13-16   Maryam Deilami-Tarifi, Mehdi Behdarvandi-Askar, Vahid Chegini, and Sadegh Haghighi-Pou, Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3DSoftware, Open Journal of Marine Science, 2016, 6, 317-322, Published Online April 2016 in SciRes.

01-16   Mohsin A.R. Irkal, S. Nallayarasu, and S.K. Bhattacharyya, CFD approach to roll damping of ship with bilge keel with experimental validation, Applied Ocean Research, Volume 55, February 2016, Pages 1–17

121-15   Josh Carter, Scott Fenical, Craig Hunter and Joshua Todd, CFD modeling for the analysis of living shoreline structure performance, Coastal Structures and Solutions to Coastal Disasters Joint Conference, Boston, MA, Sept. 9-11, 2015. © 2017 by the American Society of Civil Engineers. doi.org/10.1061/9780784480304.047

114-15   Jisheng Zhang, Peng Gao, Jinhai Zheng, Xiuguang Wu, Yuxuan Peng and Tiantian Zhang, Current-induced seabed scour around a pile-supported horizontal-axis tidal stream turbine, Journal of Marine Science and Technology, Vol. 23, No. 6, pp. 929-936 (2015) 929, DOI: 10.6119/JMST-015-0610-11

108-15  Tiecheng Wang, Tao Meng, and Hailong Zha, Analysis of Tsunami Effect and Structural Response, ISSN 1330-3651 (Print), ISSN 1848-6339 (Online), DOI: 10.17559/TV-20150122115308

107-15   Jie Chen, Changbo Jiang, Wu Yang, Guizhen Xiao, Laboratory study on protection of tsunami-induced scour by offshore breakwaters, Natural Hazards, 2015, 1-19

85-15   Majid A. Bhinder, M.T. Rahmati, C.G. Mingham and G.A. Aggidis, Numerical hydrodynamic modelling of a pitching wave energy converter, European Journal of Computational Mechanics, Volume 24, Issue 4, 2015, DOI: 10.1080/17797179.2015.1096228

65-15   Giancarlo Alfonsi, Numerical Simulations of Wave-Induced Flow Fields around Large-Diameter Surface-Piercing Vertical Circular CylinderComputation 20153(3), 386-426; doi:10.3390/computation3030386

61-15   Bingchen Liang, Duo Li, Xinying Pan and Guangxin Jiang, Numerical Study of Local Scour of Pipeline under Combined Wave and Current Conditions, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015 Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-89-0; ISSN 1098-6189.

60-15   Chun-Han Ko, Ching-Piao Tsai, Ying-Chi Chen, and Tri-Octaviani Sihombing, Numerical Simulations of Wave and Flow Variations between Submerged Breakwaters and Slope Seawall, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015 Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-89-0; ISSN 1098-6189.

57-15   Giacomo Viccione and Settimio Ferlisi, A numerical investigation of the interaction between debris flows and defense barriers, Advances in Environmental and Geological Science and Engineering, ISBN: 978-1-61804-314-6, 2015

56-15   Vittorio Bovolin, Eugenio Pugliese Carratelli and Giacomo Viccione, A numerical study of liquid impact on inclined surfaces, Advances in Environmental and Geological Science and Engineering, ISBN: 978-1-61804-314-6, 2015

49-15   Fabio Dentale, Giovanna Donnarumma, Eugenio Pugliese Carratelli, and Ferdinando Reale, A numerical method to analyze the interaction between sea waves and rubble mound emerged breakwaters, WSEAS TRANSACTIONS on FLUID MECHANICS, E-ISSN: 2224-347X, Volume 10, 2015

45-15   Diego Vicinanza, Daniela Salerno, Fabio Dentale and Mariano Buccino, Structural Response of Seawave Slot-cone Generator (SSG) from Random Wave CFD Simulations, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, June 21-26, 2015, Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-89-0; ISSN 1098-6189

38-15   Yen-Lung Chen, Shih-Chun Hsiao, Yu-Cheng Hou, Han-Lun Wu and Yuan Chieh Wu, Numerical Simulation of a Neutrally Buoyant Round Jet in a Wave Environment, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

34-15   Dieter Vanneste and Peter Troch, 2D numerical simulation of large-scale physical model tests of wave interaction with a rubble-mound breakwater, Coastal Engineering, Volume 103, September 2015, Pages 22–41.

29-15   Masanobu Toyoda, Hiroki Kusumoto, and Kazuo Watanabe, Intrinsically Safe Cryogenic Cargo Containment System of IHI-SPB LNG Tank, IHI Engineering Review, Vol. 47, No. 2, 2015.

24-15   Xixi Pan, Shiming Wang, and Yongcheng Liang, Three-dimensional simulation of floating wave power device, International Power, Electronics and Materials Engineering Conference (IPEMEC 2015)

05-15   M. A. Bhinder, A. Babarit, L. Gentaz, and P. Ferrant, Potential Time Domain Model with Viscous Correction and CFD Analysis of a Generic Surging Floating Wave Energy Converter, (2015), doi: http://dx.doi.org/10.1016/j.ijome.2015.01.005

137-14   A. Najafi-Jilani, M. Zakiri Niri and Nader Naderi, Simulating three dimensional wave run-up over breakwaters covered by antifer units, Int. J. Nav. Archit. Ocean Eng. (2014) 6:297~306

128-14   Dong Chule Kim, Byung Ho Choi, Kyeong Ok Kim and Efim Pelinovsky, Extreme tsunami runup simulation at Babi Island due to 1992 Flores tsunami and Okushiri due to 1993 Hokkido tsunami, Geophysical Research Abstracts, Vol. 16, EGU2014-1341, 2014, EGU General Assembly 2014, © Author(s) 2013. CC Attribution 3.0 License.

123-14   Irkal Mohsin A.R., S. Nallayarasu and S.K. Bhattacharyya, Experimental and CFD Simulation of Roll Motion of Ship with Bilge Keel, International Conference on Computational and Experimental Marine Hydrodynamics MARHY 2014 3-4 December 2014, Chennai, India.

101-14  Dieter Vanneste, Corrado Altomare, Tomohiro Suzuki, Peter Troch and Toon Verwaest, Comparison of Numerical Models for Wave Overtopping and Impact on a Sea Wall, Coastal Engineering 2014

91-14   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, Numerical wave interaction with tetrapods breakwater, Int. J. Nav. Archit. Ocean Eng. (2014) 6:0~0, http://dx.doi.org/10.2478/IJNAOE-2013-0214, ⓒSNAK, 2014, pISSN: 2092-6782, eISSN: 2092-6790

87-14   Philipp Behruzi, Simulation of breaking wave impacts on a flat wall, The 15th International Workshop on Trends In Numerical and Physical Modeling for Industrial Multiphase Flows, Cargèse, Corsica, October 13th–17th, 2014

86-14   Chuan Sim and Sung-uk Choi, Three-Dimensional Scour at Submarine Pipelines under Indefinite Boundary Conditions, 2014

83-14   Hongda Shi, Dong Wang, Jinghui Song, and Zhe Ma, Systematic Design of a Heaving Buoy Wave Energy Device, 5th International Conference on Ocean Energy, 4th November, Halifax, 2014

71-14   Hadi Sabziyan, Hassan Ghassemi, Farhood Azarsina, and Saeid Kazemi, Effect of Mooring Lines Pattern in a Semi-submersible Platform at Surge and Sway Movements, Journal of Ocean Research, 2014, Vol. 2, No. 1, 17-22 Available online at http://pubs.sciepub.com/jor/2/1/4 © Science and Education Publishing DOI:10.12691/jor-2-1-4

56-14   Fernandez-Montblanc, T., Izquierdo, A., and Bethencourt, M., Modelling the oceanographic conditions during storm following the Battle of Trafalgar, Encuentro de la Oceanografıa Fısica Espanola 2014

52-14   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, A new numerical approach to the study of the interaction between wave motion and roubble mound breakwaters, Latest Trends in Engineering Mechanics, Structures, Engineering Geology, ISBN: 978-960-474-376-6

49-14   H. Ahmed and A. Schlenkhoff, Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls, World Academy of Science, Engineering and Technology, International Journal of Environmental, Ecological, Geological and Mining Engineering Vol:8 No:8, 2014

32-14  Richard Keough, Victoria Mullaley, Hilary Sinclair, and Greg Walsh, Design, Fabrication and Testing of a Water Current Energy Device, Memorial University of Newfoundland, Faculty of Engineering and Applied Science, Mechanical Design Project II – ENGI 8926, April 2014

25-14    Paulius Rapalis, Vytautas Smailys, Vygintas Daukšys, Nadežda Zamiatina, and Vasilij Djačkov, Vandens  – Duju Silumos Mainai Gaz-Lifto Tipo Skruberyje,Technologijos mokslo darbai Vakarų Lietuvoje, Vol 9 > Rapalis. Available for download at http://journals.ku.lt/index.php/TMD/article/view/259.

92-13   Matteo Tirindelli, Scott Fenical and Vladimir Shepsis, State-of-the-Art Methods for Extreme Wave Loading on Bridges and Coastal Highways, Seventh National Seismic Conference on Bridges and Highways (7NSC), May 20-22, 2013, Oakland, CA

89-13 Worakanok Thanyamanta, Don Bass and David Molyneux, Prediction of sloshing effects using a coupled non-linear seakeeping and CFD code, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2013, June 9-14, 2013, Nantes, France. Available for purchase online at ASME.

83-13   B.W. Lee and C. Lee, Development of Wave Power Generation Device with Resonance Channels, Proceedings of the 7th International Conference on Asian and Pacific Coasts (APAC 2013) Bali, Indonesia, September 24-26, 2013

68-13   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, Rubble Mound Breakwater Run-Up, Reflection and Overtopping by Numerical 3D Simulation, ICE Conference, September 2013, Edinburgh (UK).

66-13  Peter Arnold, Validation of FLOW-3D against Experimental Data for an Axi-Symmetric Point Absorber WEC, © wavebob™, 2013

62-13 Yanan Li, Junwei Zhou, Dazheng Wang and Yonggang Cui, Resistance and Strength Analysis of Three Hulls with ifferent Knuckles, Advanced Materials Research Vols. 779-780 (2013) pp 615-618, © (2013) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMR.779-780.615.

61-13  M.R. Soliman, Satoru Ushijima, Nobu Miyagi and Tetsuay Sumi, Density Current Simulation Using Two-Dimensional High Resolution Model, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No 56 B, 2013.

59-13  Guang Wei Liu, Qing He Zhang, and Jin Feng Zhang, Wave Forces on the Composite Bucket Foundation of Offshore Wind Turbines, Applied Mechanics and Materials, 405-408, 1420, September 2013. Available for purchase online at Scientific.net.

50-13  Joel Darnell and Vladimir Shepsis, Pontoon Launch Analysis, Design and Performance, Ports 2013, © ASCE 2013. Available for purchase online at ASCE.

45-13 Min-chi Li, Numerical Simulation of Wave Overtopping Rate at Sloping Seawalls with Different Configurations of Wave Dissipators, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-Sen University. Abstract only available here: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0701113-144919.

22-13  Nahidul Khan, Jonathan Smith, and Michael Hinchey, Models with all the right curves, © Journal of Ocean Technology, The Journal of Ocean Technology, Vol. 8, No. 1, 2013.

20-13  Efim Pelinovsky, Dong-Chul Kim, Kyeong-Ok Kim and Byung-Ho Choi, Three-dimensional simulation of extreme runup heights during the 2004 Indonesian and 2011 Japanese tsunamis, EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-1760. Online at: http://adsabs.harvard.edu/abs/2013EGUGA..15.1760P.

18-13 Dazheng Wang, Fei Ma, and Lei Mei, Optimization of a 17m Catamaran based on the Resistance Performance, Advanced Materials Research Vols. 690-693, pp 3414-3418, © Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMR.690-693.3414, May 2013.

16-13  Dong Chule Kim, Kyeong Ok Kim, Efim Pelinovsky, Ira Didenkulova, and Byung Ho Choi, Three-dimensional tsunami runup simulation for the port of Koborinai on the Sanriku coast of Japan, Journal of Coastal Research, Special Issue No. 65, 2013.

15-13  Dong Chule Kim, Kyeong Ok Kim, Byung Ho Choi, Kyung Hwan Kim, and Efin Pelinovsky, Three –dimensional runup simulation of the 2004 Ocean tsunami at the Lhok Nga twin peaks, Journal of Coastal Research, Special Issue No. 65, 2013.

14-13  Jae-Seol Shim, Jinah Kim, Dong-Shul Kim, Kiyoung Heo, Kideok Do, and Sun-Jung Park, Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea, Journal of Coastal Research, Special Issue No. 65, 2013.

115-12  Worakanok Thanyamanta and David Molyneux, Prediction of Stabilizing Moments and Effects of U-Tube Anti-Roll Tank Geometry Using CFD, ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Volume 5: Ocean Engineering; CFD and VIV, Rio de Janeiro, Brazil, July 1–6, 2012, ISBN: 978-0-7918-4492-2, Copyright © 2012 by ASME

114-12   Dane Kristopher Behrens, The Russian River Estuary: Inlet Morphology, Management, and Estuarine Scalar Field Response, Ph.D. Thesis: Civil and Environmental Engineering, UC Davis, © 2012 by Dane Kristopher Behrens. All Rights Reserved.

111-12  James E. Beget, Zygmunt Kowalik, Juan Horrillo, Fahad Mohammed, Brian C. McFall, and Gyeong-Bo Kim, NEeSR-CR Tsunami Generation by Landslides Integrating Laboratory Scale Experiments, Numerical Models and Natural Scale Applications, George E. Brown, Jr. Network for Earthquake Engineering Simulation Research, July 2012, Boston, MA.

110-12   Gyeong-Bo Kim, Numerical Simulation of Three-Dimensional Tsunami Generation by Subaerial Landslides, M.S. Thesis: Texas A&M University, Copyright 2012 Gyeong-Bo Kim, December 2012

109-12 D. Vanneste, Experimental and Numerical study of Wave-Induced Porous Flow in Rubble-Mound Breakwaters, Ph.D. thesis (Chapters 5 and 6), Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium), 2012.

104-12 Junwoo Choi, Kab Keun Kwon, and Sung Bum Yoon, Tsunami Inundation Simulation of a Built-up Area using Equivalent Resistance Coefficient, Coastal Engineering Journal, Vol. 54, No. 2 (2012) 1250015 (25 pages), © World Scientific Publishing Company and Japan Society of Civil Engineers, DOI: 10.1142/S0578563412500155

94-12 Parviz Ghadimi, Abbas Dashtimanesh, Mohammad Farsi, and Saeed Najafi, Investigation of free surface flow generated by a planing flat plate using smoothed particle hydrodynamics method and FLOW-3D simulations, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, December 7, 2012 1475090212465235. Available for purchase online at sage journals.

92-12    Panayotis Prinos, Maria Tsakiri, and Dimitris Souliotis, A Numerical Simulation of the WOS and the Wave Propagation along a Coastal Dike, Coastal Engineering 2012.

88-12  Nahidul Khan and Michael Hinchey, Adaptive Backstepping Control of Marine Current Energy Conversion System, PKP Open Conference Systems, IEEE Newfoundland and Labrador Section, 2012.

72-12   F. Dentale, G. Donnarumma, and E. Pugliese Carratelli, Wave Run Up and Reflection on Tridimensional Virtual, Journal of Hydrogeology & Hydrologic Engineering, 2012, 1:1, http://dx.doi.org/10.4172/jhhe.1000102.

64-12  Anders Wedel Nielsen, Xiaofeng Liu, B. Mutlu Sumer, Jørgen Fredsøe, Flow and bed shear stresses in scour protections around a pile in a current, Coastal Engineering, Volume 72, February 2013, Pages 20–38.

56-12  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, Flow structures around large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, 2012. DOI:10.1615/JFlowVisImageProc.2012005088.

51-12  Chun-Ho Chen, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University, July 2012. In Chinese.

37-12  Yu-Ren Chen, Numerical Modeling on Internal Solitary Wave propagation over an obstacle using FLOW-3D, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University June 2012. In Chinese.

26-12  D.C. Lo Numerical simulation of hydrodynamic interaction produced during the overtaking and the head-on encounter process of two ships, Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 29 No. 1, 2012. pp. 83-10, Emerald Group Publishing Limited, www.emeraldinsight.com/0264-4401.htm.

14-12  Bahaa Elsharnouby, Akram Soliman, Mohamed Elnaggar, and Mohamed Elshahat, Study of environment friendly porous suspended breakwater for the Egyptian Northwestern Coast, Ocean Engineering 48 (2012) 47-58. Available for purchase online at Science Direct.

11-12  Sang-Ho Oh, Young Min Oh, Ji-Young Kim, Keum-Seok Kang, A case study on the design of condenser effluent outlet of thermal power plant to reduce foam emitted to surrounding seacoast, Ocean Engineering, Volume 47, June 2012, Pages 58–64. Available for purchase online at SciVerse.

101-11 Tsunami – A Growing Disaster, edited by Mohammad Mokhtari, ISBN 978-953-307-431-3, 232 pages, Publisher: InTech, Chapters published December 16, 2011 under CC BY 3.0 license, DOI: 10.5772/922. Available for download at Intech.

100-11 Kwang-Oh Ko, Jun-Woo Choi, Sung-Bum Yoon, and Chang-Beom Park, Internal Wave Generation in FLOW-3D Model, Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference, Maui, Hawaii, USA, June 19-24, 2011, Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-96-8 (Set); ISSN 1098-6189 (Set); www.isope.org

95-11  S. Brizzolara, L. Savio, M. Viviani, Y. Chen, P. Temarel, N. Couty, S. Hoflack, L. Diebold, N. Moirod and A. Souto Iglesias, Comparison of experimental and numerical sloshing loads in partially filled tanks, Ships and Offshore StructuresVol. 6, Nos. 1–2, 2011, 15–43. Available for purchase online at Francis & Taylor.

85-11 Andrew Eoghan Maguire, Hydrodynamics, control and numerical modelling of absorbing wavemakers, thesis: The University of Edinburgh, 2011.

74-11  Jonathan Smith, Nahidul Khan and Michael Hinchey, CFD Simulation of AUV Depth Control, Paper presented at NECEC 2011, St. John’s, Newfoundland and Labrador, Canada. Abstract available online.

70-11  G. Kim, S.-H. Oh, K.S. Lee, I.S. Han, J.W. Chae, and S.-J Ahn, Numerical Investigation on Water Discharge Capability of Sluice Caisson of Tidal Power Plant, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

69-11  G. Alfonsi, A. Lauria, and L. Primavera, Wave-Field Flow Structures Developing Around Large-Diameter Vertical Circular Cylinder, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

68-11    C. Lee, B.W. Lee, Y.J. Kim, and K.O. Ko, Ship Wave Crests in Intermediate-Depth Water, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

63-11   Worakanok Thanyamanta, Paul Herrington, and David Molyneux, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands, June 19-24, 2011.

61-11  Jun Jin and Bo Meng, Computation of wave loads on the superstructures of coastal highway bridges, Ocean Engineering, available online October 19, 2011, ISSN 0029-8018, 10.1016/j.oceaneng.2011.09.029. Available for purchase at Science Direct.

36-11    Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich, CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp: 537-541

28-11  Rodolfo Bolaños, Laurent O. Amoudry and Ken Doyle, Effects of Instrumented Bottom Tripods on Process Measurements, Journal of Atmospheric and Oceanic Technology, June 2011, Vol. 28, No. 6: pp. 827-837. Available online at: AMS Journals Online.

81-10    Ashwin Lohithakshan Parambath, Impact of Tsunamis on Near Shore Wind Power Units, M.S. Thesis: Texas A&M University, Copyright 2010 Ashwin Lohithakshan Parambath December 2010.

80-10    Juan J. Horrillo, Amanda L. Wood, Charles Williams, Ashwin Parambath, and Gyeong-Bo Kim, Construction of Tsunami Inundation Maps in the Gulf of Mexico, Report to the National Tsunami Hazard Mitigation Program, December 2010.

69-10    George A Aggidis and Clive Mingham, A Joint Numerical and Experimental Study of a Surging Point Absorbing Wave Energy Converter (WRASPA), Joule Centre Research Grant Joint Final Report (Lancaster University and Macnhester Metropolitan University), Joule Grant No: JIRP306/02, 2010

67-10  Kazuhiko Terashima, Ryuji Ito, Yoshiyuki Noda, Yoji Masui and Takahiro Iwasa, Innovative Integrated Simulator for Agile Control Design on Shipboard Crane Considering Ship and Load Sway, 2010 IEEE International Conference on Control Applications, Part of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, Japan, September 8-10, 2010

66-10  Shan-Hwei Ou, Tai-Wen Hsu, Jian-Feng Lin, Jian-Wu Lai, Shih-Hsiang Lin, Chen-Chen Chang, Yuan-Jyh Lan, Experimental and Numerical Studies on Wave Transformation over Artificial Reefs, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China, 2010.

65-10 Tai-Wen Hsu, Jian-Wu Lai, Yuan-Jyh Lan, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China, 2010.

26-10 R. Marcer, C. Berhault, C. de Jouëtte, N. Moirod and L. Shen, Validation of CFD Codes for Slamming, V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, J.C.F. Pereira and A. Sequeira (Eds), Lisbon, Portugal, 14-17 June 2010

25-10 J.M. Zhan, Z. Dong, W. Jiang, and Y.S. Li, Numerical Simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models, Ocean Engineering (2010), doi: 10.1016/j.oceaneng.2010.06.005. Available for purchase at Science Direct.

17-10 F. Dentale, S.D. Russo, E. Pugliese Carratelli, S. Mascetti, A New Numerical Approach to Study the Wave Motion with Breakwaters and the Armor Stability, Marine Technology Reporter, May 2010

01-10 F. Dentale, S.D. Russo, E. Pugliese Carratelli, Innovative Numerical Simulation to Study the Fluid withing Rubble Mound Breakwaters and the Armour Stability, 17th Armourstone Wallingford Armourstone Meeting, Wallingford, UK, February 2010.

52-09  Mark Reed, Øistein Johansen, Frode Leirvik, and Bård Brørs, Numerical Algorithm to Compute the Effects of Breaking Waves on Surface Oil Spilled at Sea, Final Report, Second revision, SINTEF, October 2009.

49-09  Anna Pellicioli, Indagine Numerica Sulla Resistenza Idrodinamica Di Uno Scafo In Presenza Di Superficie Libera, thesis: Univerista Degli Studi Di Bergamo, 2008/2009. In Italian. Available upon request.

46-09 Carlos Guedes Soares, P.K. Das, Analysis and Design of Marine Structures, CRC Press; 1 Har/Cdr edition (March 2, 2009), 0415549345

32-09 M.A. Binder, C.G. Mingham, D.M. Causon, M.T. Rahmati, G.A. Aggidis, R.V. Chaplin, Numerical Modelling of a Surging Point Absorber Wave Energy Converter, 8th European Wave and Tidal Energy Conference EWTEC 2009, Uppsala, Sweden, 7-10 September 2009

28-09 D. C. Lo, Dong-Taur Su and Jan-Ming Chen (2009), Application of Computational Fluid Dynamics Simulations to the Analysis of Bank Effects in Restricted Waters, Journal of Navigation, 62, pp 477-491, doi:10.1017/S037346330900527X; Purchase the article online (clicking on this link will take you to the Cambridge Journals website).

26-09 Fabio Dentale, E. Pugliese Carratelli, S.D. Russo, and Stefano Mascetti, Advanced Numerical Simulations on the Interaction between Waves and Rubble Mound Breakwaters, Journal of the Engineering Association for Offshore and Marine in Italy, (translation from the Italian)

25-09 F. Dentale, B. Messina, E. Pugliese Carratelli, S. Mascetti, Studio numerico avanzato sul moto di filtrazione in ambito marittimo, A & C, Analisi e Calcolo, Giugno 2009 (in Italian)

22-09 M.A. Bhinder, C.G. Mingham, D.M. Causon, M.T. Rahmati, G.A. Aggidis and R.V. Chaplin, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA)2, Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii, May 31-June 5, 2009

8-09 Basu, D., S. Green, K. Das, R. Janetzke, and J. Stamatakos, Numerical Simulation of Surface Waves Generated by a Subaerial Landslide at Lituya Bay, 28th International Conference on Ocean, Offshore and Arctic Engineering, May 31–June 5, 2009, Honolulu, Hawaii

17-09 Das, K., R. Janetzke, D. Basu, S. Green, and J. Stamatakos, Numerical Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides Using RANS and SPH Models, 28th International Conference on Ocean, Offshore and Arctic Engineering, May 31–June 5, 2009, Honolulu, Hawaii

16-09 Basu, D., S. Green, K. Das, R. Janetzke, and J. Stamatakos, Navier-Stokes Simulations of Surface Waves Generated by Submarine Landslides Effect of Slide Geometry and Turbulence, 2009 Society of Petroleum Engineering Americas E&P Environmental & Safety Conference, March 23–25, 2009, San Antonio, Texas.

48-08    Osamu Kiyomiya1 and Kazuya Kuroki, Flap Gate to Prevent Urban Area from Tsunami, The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China

43-08  Eldina Fatimah, Ahmad Khairi Abd. Wahab, and Hadibah Ismail, Numerical modeling approach of an artificial mangrove root system (ArMs) submerged breakwater as wetland habitat protector, COPEDEC VII, Dubai UAE, 2008.

40-08 Giacomo Viccione, Fabio Dentale, and Vittorio Bovolin, Simulation of Wave Impact Pressure on Vertical Structures with the SPH Method, 3rd ERCOFTAC SPHERIC workshop on SPH applications, Laussanne, Switzerland, June 4-6, 2008.

39-08 Kang, Young-Seung, Kim, Pyeong-Joong, Hyun, Sang-Kwon and Sung, Ha-Keun, Numerical Simulation of Ship-induced Wave Using FLOW-3D, Journal of Korean Society of Coastal and Ocean Engineers / v.20, no.3, 2008, pp.255-267, ISSN: 1976-8192, http://ksci.kisti.re.kr/search/article/articleView.ksci?articleBean.artSeq=HOHODK_2008_v20n3_255

35-08 B.W. Nam, S.H. Shin, K.Y. Hong, S.W. Hong, Numerical Simulation of Wave Flow over the Spiral-Reef Overtopping Device, Proceedings of the Eighth (2008) ISOPE Pacific/Asia Offshore Mechanics Symposium, Bangkok, Thailand, November 10-14, 2008, © 2008 by The International Society of Offshore and Polar Engineers, ISBN 978-1-880653-52-4

34-08 B. H. Choi, E. Pelinovsky, D.C. Kim, I. Didenkulova and S.-B. Woo, Two and three-dimensional computation of solitary wave runup on non-plane beach, Nonlin. Processes Geophys., 15, 489-502, 2008, www.nonlin-processes-geophys.net/15/489/2008 (c) Author(s) 2008.

23-08 Barb Schmitz, Tecplot, Nastran & FLOW-3D Win the Race, Desktop Engineering’s Elements of Analysis, September 2008

38-07 Choi, B.-H., Kim, D. C., Pelinovsky, E., and Woo, S. B., Three-dimensional simulation of tsunami run-up around conical island, Coast. Eng., Vol. 54, Issue 8, 618-629, 2007.

33-07 Mirela Zalar, Sime Malenica, Zoran Mravak, Nicolas Moirod, Some Aspects of Direct Calculation Methods for the Assessment of LNG Tank Structure Under Sloshing Impacts, La Asociación Española del Gas (sedigas) Spain 2007

20-07 Oceanic Consulting Corporation, Berthing Studies for LNG Carriers in the Calcasieu River Waterway, Making Waves: Newsletter of Oceanic Consulting Corporation, Winter 2007

10-07 Gildas Colleter, Breaking wave uplift and overtopping on a horizontal deck using physical and numerical modeling, Coasts and Ports 2007 Conference in Melbourne, Australia

18-06 Brizzolara, Stefano and Rizzuto, Enrico, Wind Heeling Moments on Very Large Ships. Some Insights through CFD Results, Proceedings on the 9th International Conference on Stability of Ships and Ocean Vehicles, Rio de Janeiro, September 25, 2006

16-06 Ransau, Samuel R, and Hansen, Ernst W.M., Numerical Simulations of Sloshing in Rectangular Tanks, Proceedings of OMAE2006, 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4-9, 2006

15-06 Ema Muk-Pavic, Shin Chin and Don Spencer, Validation of the CFD code FLOW-3D for the free surface flow around the ships’; hulls, 14th Annual Conference of the CFD Society of Canada, Kingston, Canada, July 16-18, 2006

3-06 Hansen, E.W.M. and Geir J. Rørtveit, Numerical Simulation of Fluid Mechanisms and Separation Behaviour in Offshore Gravity Separators, Chapter 16 in Emulsions and Emulsion Stability, 2nd Edition, edited by Johan Sjøblom, Taylor & Francis, 2006

24-05 Hansen E.W., Separation Offshore Survey – Design-Redesign of Gravity Separators, Exploration & Production: The Oil & Gas Review 2005 – Issue 2

8-05 T. Kristiansen, R. Baarholm, C.T. Stansberg, G. Rortveit and E.W.M. Hansen, Kinematics in a Diffracted Wave Field Particle Image Velocimetry (PIV) and Numerical Models, Presented at the 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE 67176, Halkidiki, Greece, June 12-17, 2005

7-05 C.T. Stansberg, R. Baarholm, T. Kristiansen, E.W.M. Hansen and G. Rortveit, Extreme Wave Amplification and Impact Loads on Offshore Structures, presented at the 2005 Offshore Technology Conference, Houston, TX, May 2-5, 2005

16-04 Carl Trygve Stansberg, Kjetil Berget, Oyvind Hellan, Ole A. Hermundstad, Jan R. Hoff and Trygve Kristiansen and Ernst Hansen, Prediction of Green Sea Loads on FPSO in Random Seas, presented at the 14th International Offshore and Polar Engineering Conference (ISOPE 2004), Toulon, France, May 2004

15-04 Š. Malenica, M. Zalar, J.M. Orozco, B. LeGallo & X.B. Chen, Linear and Non-Linear Effects of Sloshing on Ship Motions, 23rd International Conference on Offshore Mechanics and Artic Engineering, OMAE 2004, Vancouver, June 2004

11-04 Don Bass, David Molyneux, Kevin McTaggart, Simulating Wave Action in the Well Deck of Landing Platform Dock Ships Using Computational Fluid Dynamics

37-03  Sreenivasa C Chopakatla, A CFD Model for Wave Transformations and Breaking in the Surf Zone, thesis: Master of Science, The Ohio State Univeristy, 2003.

29-02   O. Bayle, V. L’Hullier, M. Ganet, P. Delpy, J.L. Francart and D. Paris, Influence of the ATV Propellant Sloshing on the GNC Performance, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 5-8 August 2002, © 2002 by EADS Launch Vehicles

25-02 Y. Kim, Numerical Analysis of Sloshing Problem, American Bureau of Shipping, Research Dept, Houston, TX

10-02 Peter Chang III & Xiongjun Wu, Entrainment Correlations Based on a Fuel-Water Stratified Shear Flow, Proceedings of FEDSM2002, 2002 ASME Fluids Engineering Decision Summer Meeting, July 14-18, 2002, Montreal, Quebec, Canada

37-01 Ismail B. Celik, Allen E. Badeau Jr., Andrew Burt and Sherif Kandil, A Single Fluid Transport Model For Computation of Stratified Immiscible Liquid-Liquid Flows, Mechanical and Aerospace Engineering Department, West Virginia University, Proceedings of the XXIX IAHR Congress, September 2001. Beijing, China

14-01 Charles Ortloff, CTC/United Defense, Computer Simulation Analyzed Typhoon Damage to FPSOs, Marine News, April 30, 2001, pp. 22-23

8-01 Charles Ortloff, Computer Simulations Analyze Wave Damage to Offloading Vessels, Marine News, April 30, 2001, pp. 22-23

25-00 Faltinsen, O.A. and Rognebakke, O.F., Sloshing in Rectangular Tanks and Interaction with Ship Motions-Sloshing, Int. Conf. on Ship and Shipping Research NAV, Venice, Italy, 2000.

20-97   C.R. Ortloff, Numerical Test Tank Simulation of Ocean Engineering Problems by Computational Fluid Dynamics, Offshore Technology Conference Paper 8269B, Houston, TX, 1997

19-97   C.R. Ortloff and M. Krafft, Numerical Test Tanks-Computer Simulation-Test Verification of Major Ocean Engineering Problems for the Off-Shore Oil Industry, OTC 8269A, Offshore Technology Conference, Copyright 1997, Houston, Texas, May 1997

9-94 P. A. Chang, C-W Lin, CD-NSWC, Hydrodynamic Analysis of Oil Outflow from Double Hull Tankers, The Advanced Double-Hull Technical Symposium, Gaithersburg, MD, October 25-26, 1994.

8-90 C. W. Hirt, Computational Modeling of Cavitation, Flow Science report, July 1990, presented at the 2nd International Symposium on Performance Enhancement for Marine Applications, Newport, RI, October 14-16, 1990

10-87 H. W. Meldner, USA’s Revolutionary Appendages and CFD, CORDTRAN Corp. Report presented at AIAA and SNAME 17th Annual International Symposium on Sailing, Stanford University, Palo Alto, CA, Oct. 31-Nov. 1, 1987

3-85 C. W. Hirt and J. M. Sicilian, A Porosity Technique for the Definition of Obstacles in Rectangular Cell Meshes, Fourth International Conference on Ship Hydrodynamics, Washington, DC, September 1985

Water & Environmental Bibliography

다음은 수자원 및 환경 분야에 대한 참고 문 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  해석 결과를 사용하였습니다. FLOW-3D  를 사용하여 수처리 및 환경 산업을 위한 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Water and Environmental Bibliography

2024년 11월 20일 Update

118-24 Lei Liao, Jia Li, Min Chen, Ruidong An, Effects of hydraulic cues in barrier environments on fish navigation downstream of dams, Journal of Environmental Management, 365; 121495, 2024. doi.org/10.1016/j.jenvman.2024.121495

115-24 H. Liu, Y.G. Cheng, Z.Y. Yang, J. Zhang, J.Y. Fan, W.X. Li, Effect of uneven inflow on hydrodynamic performance of bulb turbine, Journal of Physics: Conference Series, 2752; 012032, 2024. doi.org/10.1088/1742-6596/2752/1/012032

112-24 Jian Guo, Bowen Weng, Jiyi Wu, Investigation of the energy loss in cylindrical bridge piers scour depth prediction on sand-bed, Ocean Engineering, 309.1; 118513, 2024. doi.org/10.1016/j.oceaneng.2024.118513

110-24 Siyu Chen, Xiyen Liu, Junyao Tang, Ying Gao, Tianyou Zhang, Linhao Gu, Tao Ma, Can Chen, Study on the influence of design parameters of porous asphalt pavement on drainage performance, Journal of Hydrology, 638; 131514, 2024. doi.org/10.1016/j.jhydrol.2024.131514

108-24 Abubaker Sami Dheyab, Mustafa Günal, Experimental and numerical study for local scour around cylindrical bridge pier in non-cohesive sediment bed, 4th International Congress of Engineering and Natural Sciences (ICENSS), 2024.

106-24 P. Asabian, C.D. Rennie, N. Egsgard, Experimental and numerical investigation of the flow-structure of river surf waves, River Flow 2022, eds. Ana Maria Ferreira da Silva, Colin Rennie, Susan Gaskin, Jay Lacey, Bruce MacVicar, 2024.

105-24 M. Cihan Aydin, Ali Emre Ulu, Ercan Işık, Nizamettin Hamidi, An experimental and numerical investigation of hydraulic performance of in-channel triangular labyrinth weir for free overflow, ISH Journal of Hydraulic Engineering, pp. 1-10, 2024. doi.org/10.1080/09715010.2024.2363224

103-24 Yazhou Wang, Jinrong Da, Yuchen Luo, Sirui He, Zuocong Tian, Ziyi Xue, Zehao Li, Xianyu Zhao, Desheng Yin, Hui Peng, Xiang Liu, Xiaoning Liu , Minimization of heavy metal adsorption in struvite through effective separation and manipulation of flow field, Journal of Hazardous Materials, 474; 134820, 2024. doi.org/10.1016/j.jhazmat.2024.134820

101-24 Davut Yilmaz, Tugce Basar, Arzu Ozkaya, Assessing the pressure variation in the plunge pool of Yusufeli dam, Dams and Reservoirs, 2024. doi.org/10.1680/jdare.2024.1

99-24 Azim Turan, High resolution flash flood forecasting by combining a hydrometeorological modeling system with a computational fluid dynamics model, Thesis, Middle East Technical University, 2024.

97-24 Umut Aykan, Numerical investigation of vortex formation at single and multiple symmetric horizontal intakes, Thesis, Middle East Technical University, 2024.

91-24 Di Wang, Xiaoyong Cheng, Zhixuan Cao, Jinyun Deng, Three-dimensional flow structure in a confluence-bifurcation unit, Engineering Applications of Computational Fluid Mechanics, 18.1; 2024. doi.org/10.1080/19942060.2024.2349076

86-24 M.Z. Qamar, M.K. Verma, A.P. Meshram, Physical and numerical modelling for settling efficiency of desilting chamber, ISH Journal of Hydraulic Engineering, 30.3; 2024. doi.org/10.1080/09715010.2024.2345338

85-24 Ruichen Xu, Duane C. Chapman, Caroline M. Elliott, Bruce C. Call, Robert B. Jacobson, Binbin Wang, Ecological inferences on invasive carp survival using hydrodynamics and egg drift models, Scientific Reports, 14; 9556, 2024. doi.org/10.1038/s41598-024-60189-1

84-24 M. Cihan Aydin, Ali Emre Ulu, Ercan Işik, Experimental and numerical investigation of rectangular labyrinth weirs in an open channel, Water Management , 2024. doi.org/10.1680/jwama.22.00112

76-24 Chyan-Deng Jan, Litan Dey, Slump-flow channel test for evaluating the relations between spreading and rheological parameters of sediment mixtures, European Journal of Mechanics – B/Fluids, 106; pp. 137-147, 2024. doi.org/10.1016/j.euromechflu.2024.04.005

74-24 Abhishek K. Pandey, Pranab K. Mohapatra, 3D numerical simulations of the bed evolution at an open-channel junction in flood conditions, Journal of Irrigation and Drainage Engineering, 150.3; 2024. doi.org/10.1061/JIDEDH.IRENG-10321

70-24 Jianing Rao, Qi Wei, Lian Tang, Yuanming Wang, Ruifeng Liang, Kefeng Li, A design of a nature-like fishway to solve the fractured river connectivity caused by small hydropower based on hydrodynamics and fish behaviors, Environmental Science and Pollution Research, 31; pp. 27883-27896, 2024. doi.org/10.1007/s11356-024-33034-1

69-24 M. Cihan Aydin, Ali Emre Ulu, Ercan Işık, Determination of effective flow behaviors on discharge performance of trapezoidal labyrinth weirs using numerical and physical models, Modeling Earth Systems and Environment, 10; pp. 3763-3776, 2024. doi.org/10.1007/s40808-024-01996-3

62-24 Ramtin Sabeti, Mohammad Heidarzadeh, Estimating maximum initial wave amplitude of subaerial landslide tsunamis: A three-dimensional modelling approach, Ocean Modelling, 189; 102360, 2024. doi.org/10.1016/j.ocemod.2024.102360

60-24 Mahdi Ebrahimi, Mirali Mohammadi, Sayed Mohammad Hadi Meshkati, Farhad Imanshoar, Embankment dams overtopping breach: A numerical investigation of hydraulic results, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2024. doi.org/10.1007/s40996-024-01387-9

59-24 Behshad Mardasi, Rasoul Ilkhanipour Zeynali, Majid Heydari, Conducting experimental and numerical studies to analyze the impact of the base nose shape on flow hydraulics in PKW weir using FLOW-3D, Journal of Hydraulic Structures, 9.4; pp. 88-113, 2024. doi.org/10.22055/JHS.2024.45888.1284

58-24 Ramtin Sabeti, Mohammad Heidarzadeh, Alessandro Romano, Gabriel Barajas Ojeda, Javier L. Lara, Three-dimensional simulations of subaerial landslide-generated waves: Comparing OpenFOAM and FLOW-3D HYDRO models, Pure and Applied Geophysics, 181; pp. 1075-1093, 2024. doi.org/10.1007/s00024-024-03443-x

56-24 Ali Poorkarimi, Khaled Mafakheri, Shahrzad Maleki, Effect of inlet and baffle position on the removal efficiency of sedimentation tank using FLOW-3D software, Journal of Hydraulic Structures, 9.4; pp. 76-87, 2024. doi.org/10.22055/jhs.2024.44817.1265

55-24 P Sujith Nair, Aniruddha D. Ghare, Ankur Kapoor, An approach to hydraulic design of conical central baffle flumes, Flow Measurement and Instrumentation, 97; 102573, 2024. doi.org/10.1016/j.flowmeasinst.2024.102573

54-24 Isabelle Cheff, Julie Taylor, Andrew Mitchell, Kathleen Horita, Darren Shepherd, Steven Rintoul, Rob Millar, Evaluating uncertainty in debris flood modelling for the design of a steep built channel, EGU General Assembly, EGU24-20781, 2024. doi.org/10.5194/egusphere-egu24-20781

53-24 Antonija Harasti, Gordon Gilja, Josip Vuco, Jelena Boban, Manousos Valyrakis, Temporal development of the scour hole next to the riprap sloping structure, EGU General Assembly, EGU24-10349, 2024. doi.org/10.5194/egusphere-egu24-10349

52-24 Gordon Gilja, Antonija Harasti, Dea Delija, Iva Mejašić, Manousos Valyrakis, Change in flow field next to riprap sloping structure caused by variability of scoured bathymetry, EGU General Assembly, EGU24-10417, 2024. doi.org/10.5194/egusphere-egu24-10417

49-24 Mehdi Hamidi, Mehran Sadeqlu, Ali Mahdian Khalili, Investigating the design and arrangement of dual submerged vanes as mitigation countermeasure of bridge pier scour depth using a numerical approach, Ocean Engineering, 299; 117270, 2024. doi.org/10.1016/j.oceaneng.2024.117270

48-24 Yingying Wang, Mouchao Lv, Wen’e Wang, Ming Meng, Discharge formula and hydraulics of rectangular side weirs in the small channel and field inlet, Water, 16.5; 713, 2024. doi.org/10.3390/w16050713

45-24 José Saldanha Matos, Filipa Ferreira, Lisbon Master Plans and nature-based solutions, Urban Green Spaces – New Perspectives for Urban Resilience, Eds. Cristina M. Monteiro, Cristina Santos, Cristina Matos, Ana Briga Sá. doi.org/10.5772/intechopen.113870

44-24 Muhanad Al-Jubouri, Richard P. Ray, Enhancing pier local scour prediction in the presence of floating debris, Pollack Periodica, 2024. doi.org/10.1556/606.2023.00952

42-24 Huanquan Yang, Jiabao Ma, Xueying Liu, Numerical simulation research on energy dissipation characteristics of fish scale weir, ES3 Web of Conferences, 490; 03005, 2024. doi.org/10.1051/e3sconf/202449003005

39-24 Henry-John Wright, Investigation of novel deflector shapes for uncontrolled spillways, Thesis, Stellenbosch University, 2024.

37-24 Filipe Romão, Ana L. Quaresma, Joana Simão, Francisco J. Bravo-Córdoba, Teresa Viseu, José M. Santos, Francisco J. Sanz-Ronda, António N. Pi, Debating the rules: an experimental approach to assess cyprinid passage performance thresholds in vertical slot fishways, Water, 16.3; 439, 2024. doi.org/10.3390/w16030439

36-24 Berkay Erat, Efe Barbaros, Kerem Taştan, Experimental and numerical investigation on flow and scour upstream of pipe intake structures, Arabian Journal for Science and Engineering, 49; pp. 5973-5987, 2024. doi.org/10.1007/s13369-023-08539-5

31-24 Mahmoud T. Ghonim, Ashraf Jatwary, Magdy H. Mowafy, Martina Zelenakova, Hany F. Abd-Elhamid, H. Omara, Hazem M. Eldeeb, Estimating the peak outflow and maximum erosion rate during the breach of embankment dam, Water, 16.3; 399, 2024. doi.org/10.3390/w16030399

30-24 Deli Qiu, Jiangdong Xu, Hai Lin, Numerical analysis of the overtopping failure of the tailings dam model based on inception similarity optimization, Applied Sciences, 14.3; 990, 2024. doi.org/10.3390/app14030990

29-24 Tino Kostić, Yuanjie Ren, Stephan Theobald, 3D-CFD analysis of bedload transport in channel bifurcations, Journal of Hydroinformatics, 26.2; 480, 2024. doi.org/10.2166/hydro.2024.175

28-24 Chenhao Zhang, Xin Li, Renyu Zhou, Bernard A. Engel, Yubao Wang, Hydraulic characteristics and flow measurement performance of portable primary and subsidiary fish-shaped flumes in U-shaped channels, Flow Measurement and Instrumentation, 96; 102539, 2024. doi.org/10.1016/j.flowmeasinst.2024.102539

23-24   Arash Ahmadi, Amir H. Azimi, Effects of ramp slope and discharge on hydraulic performance of submerged hump weirs, Flow Measurement and Instrumentation, 96; 102520, 2024. doi.org/10.1016/j.flowmeasinst.2023.102520

20-24   Parisa Mirkhorli, Amir Ghaderi, Forough Alizadeh Sanami, Mirali Mohammadi, Alban Kuriqi, An investigation on hydraulic aspects of rectangular labyrinth pool and weir fishway using FLOW-3D, Arabian Journal for Science and Engineering, 2024. doi.org/10.1007/s13369-023-08537-7

17-24   Veysi Kartal, M. Emin Emiroglu, Numerical simulation of the flow passing through the side weir-gate, Flow Measurement and Instrumentation, 95; 102519, 2024. doi.org/10.1016/j.flowmeasinst.2023.102519

16-24   Junqi Chen, Wen Zhang, Chen Cao, Han Yin, Jia Wang, Wankun Li, Yanhao Zheng, The effect of the check dam on the sediment transport and control in debris flow events, Engineering Geology, 329; 107397, 2024. doi.org/10.1016/j.enggeo.2023.107397

15-24   Jingxin Mao, Yijun Wang, Hao Zhang, Xiaofei Jing, Study on the influence of urban water supply pipeline leakage on the scouring failure law of cohesive soil subgrade, Water, 16.1; 93, 2024. doi.org/10.3390/w16010093

13-24   Ramtin Sabeti, Mohammad Heidarzadeh, Alessandro Romano, Gabriel Barajas Ojeda, Javier L. Lara, Three-dimensional simulations of subaerial landslide-generated wave: comparing OpenFOAM and FLOW-3D HYDRO models, Pure and Applied Geophysics, 2024. doi.org/10.1007/s00024-024-03443-x

12-24   Damoon Mohammad Ali Nezhadian, Hossein Hamidifar, Effects of floating debris on flow characteristics around slotted bridge piers: a numerical simulation, Water, 16.1; 90, 2024. doi.org/10.3390/w16010090

10-24   Zhong Gao, Jinpeng Liu, Wen He, Bokai Lu, Manman Wang, Zikai Tang, Study of a tailings dam failure pattern and post-failure effects under flooding conditions, Water, 16.1; 68, 2024. doi.org/10.3390/w16010068

9-24   Yilin Yang, Jinzhao Li, Waner Zou, Benshuang Chen, Numerical investigation of flow and scour around complex bridge piers in wind-wave-current conditions, Journal of Marine Science and Engineering, 12.1; 23, 2024. doi.org/10.3390/jmse12010023

7-24   Penfeng Li, Haixiao Jing, Guodong Li, Generation and prediction of water waves induced by rigid piston-like landslide, Natural Hazards, 120; pp. 2683-2704, 2024. doi.org/10.1007/s11069-023-06300-7

6-24   Jie-yuan Zhang, Xing-Guo Yang, Gang Fan, Hai-bo Li, Jia-wen Zhou, Physical and numerical modeling of a landslide dam breach and flood routing process, Journal of Hydrology, 628; 130552, 2024. doi.org/10.1016/j.jhydrol.2023.130552

241-23 Kamyab Habibi, Farinaz Erfani Fard, Seyed Amin Asghari Pari, Investigation of the flow field around bridge piers on a non-eroding bed using FLOW-3D, 22nd Iranian Conference on Hydraulics, 2023.

240-23 Dong Hyun Kim, Su-Hyun Yang, Sung Sik Joo, Seung Oh Lee, Analysis of flow velocity in the channel according to the type of revetments blocks using 3D numerical model, Journal of Korean Society of Disaster and Security, 16.4; pp. 9-18, 2023.

238-23 Mohamed Elberry, Abdelazim Ali, Fahmy Abdelhaleem, Amir Ibrahim, Numerical investigations of stilling basin efficiency downstream radial gates – A case study of New Assuit Barrage, Egypt, Journal of Water and Land Development, 59 (X-XII); pp. 126-134, 2023. doi.org/10.24425/jwld.2023.147237

237-23 Oğuzhan Uluyurt, Numerical investigation of energy dissipation using macro roughness elements in a stilling basin, Thesis, Middle East Technical University, 2023.

236-23   Mohamed Galal Eltarabily, Mohamed Kamel Elshaarawy, Mohamed Elkiki, Tarek Selim, Computational fluid dynamics and artificial neural networks for modelling lined irrigation canals with low-density polyethylene and cement concrete liners, Irrigation and Drainage, 2023. doi.org/10.1002/ird.2911

234-23   Saman Baharvand, Babak Lashkar-Ara, Hydrodynamic and biological assessment of modified meander C-type fishway to pass rainbow trout (Oncorhynchus mykiss) fish species, Scientia Iranica, 2023.

232-23   Chung R. Song, Richard L. Wood, Basil Abualshar, Bashar Al-Nimri, Mark O’Brien, Mitra Nasimi, Erosion resistant rock shoulder, Nebraska Department of Transportation, Final Report SPR-P1(20), 2023.

230-23   Rongzhao Zhang, Wen Xiong, Xiaolong Ma, C.S. Cai, A forensic investigation of progressive bridge collapse under floods and asymmetric scour validated by incident video footages, Structure and Infrastructure Engineering, 2023. doi.org/10.1080/15732479.2023.2290701

229-23   Vivek Sharma Jai, Hydraulic simulation and numerical investigation of the flow in the stepped spillway with the help of FLOW-3D software, International Journal of Innovative Science and Research Technology, 8; 2023. doi.org/10.5281/zenodo.8076943

228-23   Hao Chen, Yang Tang, Jinyuan Li, Faxin Zhu, Xianbin Teng, The influence of impinging distance variable on the effect of submerged jet scour, Journal of Physics: Conference Series, 2660; 012004, 2023. doi.org/10.1088/1742-6596/2660/1/012004

225-23   Kyle Thomson, Towards safer bridges: Overcoming 2D model limitations and reducing flood risks through computational fluid dynamics, IPWEA Annual Conference Gold Coast, 2023.

223-23   Chong-xun Wang, Jia-wen Zhou, Chang-bing Zhang, Yu-xiang Hu, Hao Chen, Hai-bo Li, Failure mechanism analysis and mass movement assessment of a post‑earthquake high slope, Arabian Journal of Geosciences, 16; 683, 2023. doi.org/10.1007/s12517-023-11737-y

222-23   Alaa Ghzayel, Anthony Beaudoin, Sébastien Jarny, Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D, Comptes Rendus. Mécanique, 351.G2; pp. 525-550, 2023. doi.org/10.5802/crmeca.223

221-23   Othon José Rocha, Luiz Renato Martini Filho, Caio Gripp Benevente, Letícia Imbuzeiro, Modelagem CFD-3D aplicada ao setor de mineração (3D CFD modeling applied to the mining sector), 34th Seminario Nacional de Grandes Barragens, 2023.

220-23   Gaetano Crispino, David Dorthe, Corrado Gisonni, Michael Pfister, Optimal hydraulic design of supercritical bend manholes, Proceedings of the 40th IAHR World Congress, Eds. Helmut Habersack, Michael Tritthart, Lisa Waldenberger, 2023. doi.org/10.3850/978-90-833476-1-5_iahr40wc-p0090-cd

218-23   Arun Goel, Aditya Thakare, M.K. Verma, M.Z. Qamar, Evaluation of design approaches of desilting basins for hydroelectric projects in Himalayan region, ISH Journal of Hydraulic Engineering, 30.1; pp. 122-131, 2023. doi.org/10.1080/09715010.2023.2283593

215-23   Ahmed Ashour, Emam Salah, Numerical study of energy dissipation in baffled stepped spillway using FLOW-3D, International Journal of Research in Engineering, Science and Management, 6.11; 2023.

214-23   Farshid Mosaddeghi, Mete Koken, Ismail Aydin, Finite volume analysis of dam breaking subjected to earthquake accelerations, Journal of Hydraulic Research, 61.6; pp. 845-865, 2023. doi.org/10.1080/00221686.2023.2259858

213-23   Habib Ahmari, Ashish Bhurtyal, Srinivas Prabakar, Qazi Ashique Mowla, Saman Baharvand, Hassan Alsaud, Laboratory testing of engineered media for biofiltration swales, University of Texas Arlington, Project No. TRN6835 Final Report, 2023.

209-23   Cong Trieu Tran, Cong Ty Trinh, Prediction of the vortex evolution and influence analysis of rough bed in a hydraulic jump with the Omega-Liutex method, Tehnički Vjesnik, 30.6; 2023. doi.org/10.17559/TV-20230206000327

203-23   Muhammad Waqas Zaffar, Ishtiaq Hassan, Zulfiqar Ali, Kaleem Sarwar, Muhammad Hassan, Muhammad Taimoor Mustafa, Faizan Ahmed Waris, Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater, AQUA – Water Infrastructure, Ecosystems and Society, 72.11; 2081, 2023. doi.org/10.2166/aqua.2023.261

201-23   E.F.R. Bollaert, Digital cloud-based platform to predict rock scour at high-head dams, Role of Dams and Reservoirs in a Successful Energy Transition, Eds. Robert Boes, Patrice Droz, Raphael Leroy, 2023. doi.org/10.1201/9781003440420

200-23   Iacopo Vona, Oysters’ integration on submerged breakwaters as nature-based solution for coastal protection within estuarine environments, Thesis, University of Maryland, 2023.

198-23   Hao Chen, Xianbin Teng, Zhibin Zhang, Faxin Zhu, Jie Wang, Zhaohao Zhang, Numerical analysis of the influence of the impinging distance on the scouring efficiency of submerged jets, Fluid Dynamics & Materials Processing, 20.2; pp. 429-445, 2023. doi.org/10.32604/fdmp.2023.030585

193-23   Chen Peng, Liuweikai Gu, Qiming Zhong, Numerical simulation of dam failure process based on FLOW-3D, Advances in Frontier Research on Engineering Structures, pp. 545-550, 2023. doi.org/10.3233/ATDE230245

189-23   Rebecca G. Englert, Age J. Vellinga, Matthieu J.B. Cartigny, Michael A. Clare, Joris T. Eggenhuisen, Stephen M. Hubbard, Controls on upstream-migrating bed forms in sandy submarine channels, Geology, 51.12; PP. 1137-1142, 2023. doi.org/10.1130/G51385.1

187-23   J.W. Kim, S.B. Woo, A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant, Renewable Energy, 219.1; 119408, 2023. doi.org/10.1016/j.renene.2023.119408

186-23   Chan Jin Jeong, Hyung Jun Park, Hyung Suk Kim, Seung Oh Lee, Study on fish-friendly flow characteristic in stepped fishway, Proceedings of the Korean Water Resources Association Conference, 2023. (In Korean)

185-23   Jaehwan Yoo, Sedong Jang, Byunghyun Kim, Analysis of coastal city flooding in 2D and 3D considering extreme conditions and climate change, Proceedings of the Korean Water Resources Association Conference, 2023. (In Korean)

180-23   Prathyush Nallamothu, Jonathan Gregory, Jordan Leh, Daniel P. Zielinski, Jesse L. Eickholt, Semi-automated inquiry of fish launch angle and speed for hazard analysis, Fishes, 8.10; 476, 2023. doi.org/10.3390/fishes8100476

179-23   Reza Norouzi, Parisa Ebadzadeh, Veli Sume, Rasoul Daneshfaraz, Upstream vortices of a sluice gate: an experimental and numerical study, AQUA – Water Infrastructure, Ecosystems and Society, 72.10; 1906, 2023. doi.org/10.2166/aqua.2023.269

178-23   Bai Hao Li, How Tion Puay, Muhammad Azfar Bin Hamidi, Influence of spur dike’s angle on sand bar formation in a rectangular channel, IOP Conference Series: Earth and Environmental Science, 1238; 012027, 2023. doi.org/10.1088/1755-1315/1238/1/012027

177-23   Hao Zhe Khor, How Tion Puay, Influence of gate lip angle on downpull forces for vertical lift gates, IOP Conference Series: Earth and Environmental Science, 1238; 012019, 2023. doi.org/10.1088/1755-1315/1238/1/012019

175-23   Juan Francisco Macián-Pérez, Rafael García-Bartual, P. Amparo López-Jiménez, Francisco José Vallés-Morán, Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins, Applied Water Science, 13.203; 2023. doi.org/10.1007/s13201-023-01985-4

174-23   Ahintha Kandamby, Dusty Myers, Narrows bypass chute CFD analysis, Dam Safety, 2023.

173-23   H. Jalili, R.C. Mahon, M.F. Martinez, J.W. Nicklow, Sediment sluicing from the reservoirs with high efficiency, SEDHYD, 2023.

170-23   Ramith Fernando, Gangfu Zhang, Beyond 2D: Unravelling bridge hydraulics with CFD modelling, 24th Queensland Water Symposium, 2023.

169-23   K. Licht, G. Lončar, H. Posavčić, I. Halkijević, Short-time numerical simulation of ultrasonically assisted electrochemical removal of strontium from water, 18th International Conference on Environmental Science and Technology (CEST), 2023.

166-23   Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Wawan Septiawan Damanik, Zahiraniza Mustaffa, Eduardo Martinez-Gomariz, Fang Yenn Teo, Anwar Ameen Hezam Saeed, Understanding the stability of passenger vehicles exposed to water flows through 3D CFD modelling, Sustainability, 15.17; 13262, 2023. doi.org/10.3390/su151713262

165-23   Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Wawan Septiawan Damanik, Zahiraniza Mustaffa, Eduardo Martinez-Gomariz, Fang Yenn Teo, Anwar Ameen Hezam Saeed, 3-dimensional numerical study on the critical orientation of the flooded passenger vehicles, Engineering Letters, 31.3; 2023.

159-23 Ruosi Zha, Weiwen Zhao, Decheng Wan, Numerical study of wave-ice floe interactions and overwash by a meshfree particle method, Ocean Engineering, 286.2; 115681, 2023. doi.org/10.1016/j.oceaneng.2023.115681

157-23 Hamidreza Abbaszadeh, Kiyoumars Roushangar, Zahra Salahpour, Theoretical and numerical investigation of the sluice and radial gates discharge coefficient in the conditions of sill application, Iranian Journal of Irrigation and Drainage, 2023.

155-23 Ting Zhang, Qunwei Dai, Dejun An, R. Agustin Mors, Qiongfang Li, Ricardo A. Astini, Jingwen He, Jie Cui, Ruiyang Jiang, Faqin Dong, Zheng Dang, Effective mechanisms in the formation of pool-rimstone dams in continental carbonate systems: The case study of Huanglong, China, Sedimentary Geology, 455; 106486, 2023. doi.org/10.1016/j.sedgeo.2023.106486

153-23 Jyh-Haw Tang, Aisyah Puspasari, Numerical simulation of scouring around four cylindrical piles with different inclination angles arrangements, Proceedings of the 4th International Conference on Advanced Engineering and Technology (ICATECH), 1; pp. 139-145, 2023. doi.org/10.5220/0012115500003680

152-23 Yasser El-Saie, Osama Saleh, Marihan El-Sayed, Abdelazim Ali, Eslam El-Tohamy, Yasser Mohamed Sadek, Dissipation of water energy by using a special stilling basin via three-dimensional numerical model, The Open Civil Engineering Journal, 17; 2023.

150-23 Shelby J. Koldewyn, Using computational fluid dynamics for predicting hydraulic performance of arced labyrinth weirs, Thesis, Utah State University, 2023.

146-23 Lav Kumar Gupta, Manish Pandey, P. Anand Raj, Numerical modeling of scour and erosion processes around spur dike, CLEAN Soil Air Water, 2023. doi.org/10.1002/clen.202300135

145-23 Nariman Mehranfar, Morteza Kolahdoozan, Shervin Faghihirad, Development of multiphase solver for the modeling of turbidity currents (the case study of Dez Dam), International Journal of Multiphase Flow, 168; 104586, 2023. doi.org/10.1016/j.ijmultiphaseflow.2023.104586

143-23 Fei Ma, Lei You, Jin Liu, Estimation in jet deflection angle of deflector on the chutes, ISH Journal of Hydraulic Engineering, 2023. doi.org/10.1080/09715010.2023.2241416

142-23 Ali Emre Ulu, M. Cihan Aydin, Fevzi Önen, Energy dissipation potentials of grouped spur dikes in an open channel, Water Resources Management, 37; pp. 4491-4506, 2023. doi.org/10.1007/s11269-023-03571-4

141-23 Haofei Feng, Shengtao Du, David Z. Zhu, Numerical study of effects of flushing gate height and sediment bed properties on cleaning efficiency in a simplified self-cleaning device, Water Science & Technology, 88.3; pp. 542-555, 2023. doi.org/10.2166/wst.2023.245

140-23 Brian Fox, 3D CFD modeling with FLOW-3D HYDRO, Proceedings, SEDHYD, 2023.

139-23 Masoumeh (Negar) Ghahramani, Improved empirical and numerical predictive modelling of potential tailings dam breaches and their downstream impacts, Thesis, The University of British Columbia, 2023.

138-23 Rui-Tao Yin, Bing Zhu, Shuai-Wei Yuan, Jun-Nan Li, Zhen-Yu Yang, Zhi-Ying Yang, Dynamic analyses of long-span cable-stayed and suspension cooperative system bridge under combined actions of wind and regular wave loads, Applied Ocean Research, 138; 103683, 2023. doi.org/10.1016/j.apor.2023.103683

137-23 Xuefeng Chen, Shikang Liu, Yuanming Wang, Yuetong Hao, Kefeng Li, Hongtao Wang, Ruifeng Liang, Restoration of a fish-attracting flow field downstream of a dam based on the swimming ability of endemic fishes: A case study in the upper Yangtze River basin, Journal of Environmental Management, 345; 118694, 2023. doi.org/10.1016/j.jenvman.2023.118694

135-23 Nelson Cely Calixto, Melquisedec Cortés Zambrano, Alberto Galvis Castaño, Gustavo Carrillo Soto, Analysis of a three-dimensional numerical modeling approach for predicting scour processes in longitudinal walls of granular bedding rivers, EUREKA: Physics and Engineering, 4; 2023. doi.org/10.21303/2461-4262.2023.002682

134-23 Tarek Selim, Abdelrahman Kamal Hamed, Mohamed Elkiki, Mohamed Galal Eltarabily, Numerical investigation of flow characteristics and energy dissipation over piano key and trapezoidal labyrinth weirs under free-flow conditions, Modeling Earth Systems and Environment, 2023. doi.org/10.1007/s40808-023-01844-w

132-23 Gang Lei, Hongbao Huang, Xiongan Fan, Junan Su, Qingxiang Wang, Xiaoliang Wang, Kai Peng, Jianmin Zhang, Influence of the transition section shape on the cavitation characteristics of the bottom outlet, Water Supply, 23.8; pp. 3061-3077, 2023. doi.org/10.2166/ws.2023.181

129-23 Rasoul Daneshfaraz, Reza Norouzi, John Patrick Abraham, Parisa Ebadzadeh, Behnaz Akhondi, Maryam Abar, Determination of flow characteristics over sharp-crested triangular plan form weirs using numerical simulation, Water Science, 37.1; 2023. doi.org/10.1080/23570008.2023.2236384

124-23 Imad Habeeb Obead, Ahmed Rahim Sahib, Mathematical models for simulating the hydraulic behavior of flow deflectors: laboratory and CFD-based study, Innovative Infrastructure Solutions, 8; 213, 2023. doi.org/10.1007/s41062-023-01170-1

120-23 Kwang-Su Kim, Jong-Song Jo, Improving the power output estimation for a tidal power plant: a case study, Energy, 2023. doi.org/10.1680/jener.23.00007

119-23 Hanif Pourshahbaz, Tadros Ghobrial, Ahmad Shakibaeinia, Evaluating a CFD model for three-dimensional simulation of ice structure interaction, CGU HS Committee on River Ice Processes and the Environment (CRIPE), 22nd Workshop on the Hydraulics of Ice-Covered Rivers, 2023.

118-23 Sruthi T. Kalathil, Venu Chandra, Experimental and numerical investigation on the hydraulic design criteria for a step-pool nature-like fishway, Progress in Physical Geography: Earth and Environment, 2023. doi.org/10.1177/03091333231187619

117-23 Lav Kumar Gupta, Manish Pandey, P. Anand Raj, Numerical simulation of local scour around the pier with and without airfoil collar (AFC) using FLOW-3D, Environmental Fluid Mechanics, 2023. doi.org/10.1007/s10652-023-09932-2

116-23 Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, Gianluca Botter, Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration, Biogeosciences, 20; pp. 3261-3271, 2023. doi.org/10.5194/bg-20-3261-2023

114-23 Muhammad Waqas Zaffar, Ishtiaq Hassan, Numerical investigation of hydraulic jump for different stilling basins using FLOW-3D, AQUA – Water Infrastructure, Ecosystems and Society, 72.7; pp. 1320-1343, 2023. doi.org/10.2166/aqua.2023.290

112-23 J. Chandrashekhar Iyer, E.J. James, Indispensability of model studies in the design of settling basins of hydropower projects in river basins with high sediment yield, Fluid Mechanics and Hydraulics, pp. 367-381, 2023. doi.org/10.1007/978-981-19-9151-6_30

110-23 Ehsan Afaridegan, Nosratollah Amanian, Abbas Parsaie, Amin Gharehbaghi, Hydraulic investigation of modified semi-cylindrical weirs, Flow Measurement and Instrumentation, 93; 102405, 2023. doi.org/10.1016/j.flowmeasinst.2023.102405

103-23 Jin Yang, Weqiang Su, Binhua Li, Calculation of natural alluvial separation of sandy tailings slurry based on FLOW-3D, Mechanics in Engineering, 45.3; pp. 559-564, 2023.

101-23 Tutku Ezgi Yönter, Modeling of river flow and flow dynamics near junctions, Thesis, Middle East Technical University, 2023.

99-23 Mohammad Sadeghpour, Mohammad Vaghefi, Seyed Hamed Meraji, Artificial roughness dimensions and their influence on bed topography variations downstream of a culvert: An experimental study, Water Resources Management, 37; pp. 4143-4157, 2023. doi.org/10.1007/s11269-023-03543-8

98-23 M. Aksel, Numerical analysis of the flow structure around inclined solid cylinder and its effect on bed shear stress distribution, Journal of Applied Fluid Mechanics, 16.8; pp. 1627-1639, 2023. doi.org/10.47176/jafm.16.08.1697

96-23 Waqed H. Hassan, Nidaa Ali Shabat, Numerical investigation of the optimum angle for open channel junction, Civil Engineering Journal, 9.5; 2023. doi.org/10.28991/CEJ-2023-09-05-07

94-23 Emad Khanahmadi, Amir Ahmad Dehghani, Seyed Nasrollah Alenabi, Navid Dehghani, Edward Barry, Hydraulic of curved type-B piano key weirs characteristics under free flow conditions, Modeling Earth Systems and Environment, 2023. doi.org/10.1007/s40808-023-01790-7

93-23 Laura-Louise Alicke, Improved priming of a siphon spillway with the use of a flexible membrane researched through numerical modeling, Thesis, Idaho State University, 2023.

91-23 Wahidullah Hakim Safi, Pranab K. Mohapatra, Flow past: An artificial channel confluence with mobile bed, World Environmental and Water Resources Congress, 2023. doi.org/10.1061/9780784484852.023

86-23 Ghasem Aghashirmohammadi, Mohammad Heidarnejad, Mohammad Hossein Purmohammadi, Alireza Masjedi, Experimental and numerical study the effect of flow splitters on trapezoidal and triangular labyrinth weirs, Water Science, 37.1; 2023. doi.org/10.1080/23570008.2023.2210391

84-23 Nikolaos Xafoulis, Evangelia Farsirotou, Spyridon Kotsopoulos, Three-dimensional computational flow dynamics analysis of free-surface flow in a converging channel, Energy Systems, 2023. doi.org/10.1007/s12667-023-00575-2

83-23 Navid Zarrabi, Mohammad Navid Moghim, Mohammad Reza Eftakhar, A semi-analytical study of fiber reinforced concrete abrasion-erosion through water-borne sand-jet flow in hydraulic structures, Tribology International, 185; 108568, 2023. doi.org/10.1016/j.triboint.2023.108568

82-23 Somayyeh Saffar, Abbas Safaei, Farnoush Aghaee Daneshvar, Mohsen Solimani Babarsad, FLOW-3D numerical modeling of converged side weir, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2023. doi.org/10.1007/s40996-023-01077-y

79-23 Wangshu Wei, Optimization of the mixing in a produced water storage tank using CFD, World Environmental and Water Resources Congress, Eds. Sajjad Ahmad, Regan Murray, 2023. doi.org/10.1061/9780784484852

77-23   Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, Gianluca Botter, Local processes with global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration, Biogeosciences, 2023. doi.org/10.5194/bg-2023-68

74-23   Kaywan Othman Ahmed, Nazim Nariman, Dara Muhammad Hawez, Ozgur Kisi, Ata Amini, Predicting and optimizing the influenced parameters for culvert outlet scouring utilizing coupled FLOW 3D-surrogate modeling, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 47; pp. 1763-1776, 2023. doi.org/10.1007/s40996-023-01096-9

73-23   Ashkan Pilbala, Mahmood Shafai Bejestan, Seyed Mohsen Sajjadi, Luigi Fraccarollo, Investigation of the different models of elliptical-Lopac gate performance under submerged flow conditions, Water Resources Management, 2023. doi.org/10.1007/s11269-023-03512-1

69-23   Chonoor Abdi Chooplou, Masoud Ghodsian, Davoud Abediakbar, Aram Ghafouri, An experimental and numerical study on the flow field and scour downstream of rectangular piano key weirs with crest indentations, Innovative Infrastructure Solutions, 8; 140, 2023. doi.org/10.1007/s41062-023-01108-7

68-23   Mahmood Shafai Bajestan, Mostafa Adineh, Hesam Ghodousi, Numerical modeling of sediment washing (flushing) in dams (Case study of Sefidrood dam), Journal of Irrigation Sciences and Engineering, 2023.

65-23   Charles R. Ortloff, CFD investigations of water supply and distribution systems of ancient old and new world archaeological sites to recover ancient water engineering technologies, Water, 15.7; 1363, 2023. doi.org/10.3390/w15071363

63-23   Rasoul Daneshfaraz, Reza Norouzi, Parisa Ebadzadeh, Alban Kuriqi, Effect of geometric shapes of chimney weir on discharge coefficient, Journal of Applied Water Engineering and Research, 2023. doi.org/10.1080/23249676.2023.2192977

59-23   Hongbo Mi, Chuan Wang, Xuanwen Jia, Bo Hu, Hongliang Wang, Hui Wang, Yong Zhu, Hydraulic characteristics of continuous submerged jet impinging on a wall by using numerical simulation and PIV experiment, Sustainability, 15.6; 5159, 2023. doi.org/10.3390/su15065159

58-23   O.P. Maurya, K.K. Nandi, S. Modalavalasa, S. Dutta, Flow hydrodynamics influences due to flood plain sand mining in a meandering channel, Sustainable Environment (NERC 2022), Eds. D. Deka, S.K. Majumder, M.K., Purkait, 2023. doi.org/10.1007/978-981-19-8464-8_16

57-23   Harshvardhan Harshvardhan, Deo Raj Kaushal, CFD modelling of local scour and flow field around isolated and in-line bridge piers using FLOW-3D, EGU General Assembly, EGU23-3820, 2023. doi.org/10.5194/egusphere-egu23-3820

54-23   Reza Nematzadeh, Gholam-Abbas Barani, Ehsan Fadaei-Kermani, Numerical investigation of bed-load changes on sediment flushing cavity, Journal of Hydraulic Structures, 4; 2023. doi.org/10.22055/jhs.2023.42542.1237

53-23   Rasoul Daneshfaraz, Reza Norouzi, Parisa Ebadzadeh, Alban Kuriqi, Influence of sill integration in labyrinth sluice gate hydraulic performance, Innovative Infrastructure Solutions, 8.118; 2023. doi.org/10.1007/s41062-023-01083-z

52-23   Shu Jiang, Yutong Hua, Mengxing He, Ying-Tien Lin, Biyun Sheng, Effect of a circular cylinder on hydrodynamic characteristics over a strongly curved channel, Sustainability, 15.6; 4890, 2023. doi.org/10.3390/su15064890

51-23   Ehsan Aminvash, Kiyoumars Roushangar, Numerical investigation of the effect of the frontal slope of simple and blocky stepped spillway with sem-circular crest on its hydraulic parameters, Iranian Journal of Irrigation and Drainage, 17.1; pp. 102-116, 2023.

50-23   Shizhuang Chen, Anchi Shi, Weiya Xu, Long Yan, Huanling Wang, Lei Tian, Wei-Chau Xie, Numerical investigation of landslide-induced waves: a case study of Wangjiashan landslide in Baihetan Reservoir, China, Bulletin of Engineering Geology and the Environment, 82.110; 2023. doi.org/10.1007/s10064-023-03148-w

49-23   Jiří Procházka, Modelling flow distribution in inlet galleries, VTEI, 1; 2023. doi.org/10.46555/VTEI.2022.11.002

47-23   M. Cihan Aydin, Ali Emre Ulu, Numerical investigation of labyrinth‑shaft spillway, Applied Water Science, 13.89; 2023. doi.org/10.1007/s13201-023-01896-4

46-23   Guangwei Lu, Jinxin Liu, Zhixian Cao, Youwei Li, Xueting Lei, Ying Li, A computational study of 3D flow structure in two consecutive bends subject to the influence of tributary inflow in the middle Yangtze River, Engineering Applications of Computational Fluid Mechanics, 17.1; 2183901, 2023. doi.org/10.1080/19942060.2023.2183901

44-23   Xun Huang, Zhijian Zhang, Guoping Xiang, Sensitivity analysis of a built environment exposed to the synthetic monophasic viscous debris flow impacts with 3-D numerical simulations, Natural Hazards and Earth Systems Sciences, 23; pp. 871-889, 2023. doi.org/10.5194/nhess-23-871-2023

43-23   Yisheng Zhang, Jiangfei Wang, Qi Zhou, Haisong Li, Wei Tang, Investigation of the reduction of sediment deposition and river flow resistance around dimpled surface piers, Environmental Science and Pollution Research, 2023. doi.org/10.1007/s11356-023-26034-0

41-23   Nejib Hassen Abdullahi, Zulfequar Ahmad, Experimental and CFD studies on the flow field and bed morphology in the vicinity of a sediment mining pit, EGU General Assembly, 2023. doi.org/10.5194/egusphere-egu23-446

40-23   Seonghyeon Ju, Jongchan Yi, Junho Lee, Jiyoon Kim, Chaehwi Lim, Jihoon Lee, Kyungtae Kim, Yeojoon Yoon, High-efficiency microplastic sampling device improved using CFD analysis, Sustainability, 15.5; 3907, 2023. doi.org/10.3390/su15053907

37-23   Muhammad Waqas Zaffar, Ishtiaq Hassan, Hydraulic investigation of stilling basins of the barrage before and after remodelling using FLOW-3D, Water Supply, 23.2; pp. 796-820, 2023. doi.org/10.2166/ws.2023.032

35-23   Mehmet Cihan, Ali Emre Ulu, Developing and testing a novel pressure-controlled hydraulic profile for siphon-shaft spillways, Flow Measurement and Instrumentation, 90; 102332, 2023. doi.org/10.1016/j.flowmeasinst.2023.102332

28-23   Yuhan Li, Deshen Chen, Yan Zhang, Hongliang Qian, Jiangyang Pan, Yinghan Huang, Boo Cheong Khoo, Thermal structure and hydrodynamic analysis for a new type of flexible temperature-control curtain, Journal of Hydrology, 618; 129170, 2023. doi.org/10.1016/j.jhydrol.2023.129170

22-23   Rong Lu, Wei Jiang, Jingjing Xiao, Dongdong Yuan, Yupeng Li, Yukai Hou, Congcong Liu, Evaluation of moisture migration characteristics of permeable asphalt pavement: Field research, Journal of Environmental Management, 330; 117176, 2023. doi.org/10.1016/j.jenvman.2022.117176

18-23   Thu Hien-T. Le, Van Chien Nguyen, Cong Phuc Dang, Thanh Thin-T. Nguyen, Bach Quynh-T. Pham, Ngoc Thoa Le, Numerical assessment on hydraulic safety of existing conveyance structures, Modeling Earth Systems and Environment, 2023. doi.org/10.1007/s40808-022-01685-z

17-23   Meysam Nouri, Parveen Sihag, Ozgur Kisi, Mohammad Hemmati, Shamsuddin Shahid, Rana Muhammad Adnan, Prediction of the discharge coefficient in compound broad-crested weir gate by supervised data mining techniques, Sustainability, 15.1; 433, 2023. doi.org/10.3390/su15010433

16-23   Mohammad Bananmah, Mohammad Reza Nikoo, Mehrdad Ghorbani Mooselu, Amir H. Gandomi, Optimum design of the chute-flip bucket system using evolutionary algorithms considering conflicts between decision-makers, Expert Systems with Applications, 216; 119480, 2023. doi.org/10.1016/j.eswa.2022.119480

13-23   Xiaoyu Yi, Wenkai Feng, Botao Li, Baoguo Yin, Xiujun Dong, Chunlei Xin, Mingtang Wu, Deformation characteristics, mechanisms, and potential impulse wave assessment of the Wulipo landslide in the Baihetan reservoir region, China, Landslides, 20; pp. 615-628, 2023. doi.org/10.1007/s10346-022-02010-6

11-23 Şebnem Elçi, Oğuz Hazar, Nisa Bahadıroğlu, Derya Karakaya, Aslı Bor, Destratification of thermally stratified water columns by air diffusers, Journal of Hydro-environment Research, 46; pp. 44-59, 2023. doi.org/10.1016/j.jher.2022.12.001

7-23 Shikang Liu, Yuxiang Jian, Pengcheng Li, Ruifeng Liang, Xuefeng Chen, Yunong Qin, Yuanming Wang, Kefeng Li, Optimization schemes to significantly improve the upstream migration of fish: A case study in the lower Yangtze River basin, Ecological Engineering, 186; 106838, 2023. doi.org/10.1016/j.ecoleng.2022.106838

6-23 Maryam Shahabi, Javad Ahadiyan, Mehdi Ghomeshi, Marjan Narimousa, Christos Katopodis, Numerical study of the effect of a V-shaped weir on turbulence characteristics and velocity in V-weir fishways, River Research and Applications, 2023. doi.org/10.1002/rra.4064

5-23 Muhammad Nur Aiman Bin Roslan, Hee Min Teh, Faris Ali Hamood Al-Towayti, Numerical simulations of wave diffraction around a low-crested semicircular breakwater, Proceedings of the 5th International Conference on Water Resources (ICWR), Lecture Notes in Civil Engineering, 293.1; pp. 421-433, 2023. doi.org/10.1007/978-981-19-5947-9_34

4-23 V.K. Krishnasamy, M.H. Jamal, M.R. Haniffah, Modelling of wave runup and overtopping over Accropode II breakwater, Proceedings of the 5th International Conference on Water Resources (ICWR), Lecture Notes in Civil Engineering, 293.1; pp. 435-444, 2023. doi.org/10.1007/978-981-19-5947-9_35

3-23 Anas S. Ghamam, Mohammed A. Abohatem, Mohd Ridza Bin Mohd Haniffah, Ilya K. Othman, The relationship between flow and pressure head of partially submerged orifice through CFD modelling using Flow-3D, Proceedings of the 5th International Conference on Water Resources (ICWR), Lecture Notes in Civil Engineering, 293.1; pp. 235-250, 2023. doi.org/10.1007/978-981-19-5947-9_20

2-23 M.Y. Zainab, A.L.S. Zebedee, A.W. Ahmad Khairi, I. Zulhilmi, A. Shahabuddin, Modelling of an embankment failure using Flow-3D, Proceedings of the 5th International Conference on Water Resources (ICWR), Lecture Notes in Civil Engineering, 293.1; pp. 273-282, 2023. doi.org/10.1007/978-981-19-5947-9_23

1-23 Gaetano Crispino, David Dorthe, Corrado Gisonni, Michael Pfister, Hydraulic capacity of bend manholes for supercritical flow, Journal of Irrigation and Drainage Engineering, 149.2; 2022. doi.org/10.1061/JIDEDH.IRENG-10014

178-22 Greg Collecutt, Urs Baeumer, Shuang Gao, Bill Syme, Bridge deck afflux modelling — benchmarking of CFD and SWE codes to real-world data, Hydrology & Water Resources Symposium, 2022.

177-22 Kyle Thomson, Mitchell Redenbach, Understanding cone fishway flow regimes with CFD, Hydrology & Water Resources Symposium, 2022.

176-22 Kyle Thomson, Practical application of CFD for fish passage design, Hydrology & Water Resources Symposium, 2022.

173-22 Melquisedec Cortés Zambrano, Helmer Edgardo Monroy González, Wilson Enrique Amaya Tequia, Three-dimensional numerical evaluation of hydraulic efficiency and discharge coefficient in grate inlets, Environmental Research, Engineering and Management, 78.4; 2022. doi.org/10.5755/j01.erem.78.4.31243

168-22 Mohammad Javadi Rad, Pedram Eshaghieh Firoozbadi, Fatemeh Rostami, Numerical investigation of the effect dimensions of rectangular sedimentation tanks on its hydraulic efficiency using Flow-3D Software, Acta Technica Jaurinensis, 15.4; 2022. doi.org/10.14513/actatechjaur.00672

165-22 Saman Mostafazadeh-Fard, Zohrab Samani, Dissipating culvert end design for erosion control using CFD platform FLOW-3D numerical simulation modeling, Journal of Pipeline Systems Engineering and Practice, 14.1; 2022. doi.org/10.1061/JPSEA2.PSENG-1373

164-22 Mohammad Ahmadi, Alban Kuriqi, Hossein Mohammad Nezhad, Amir Ghaderi, Mirali Mohammadi, Innovative configuration of vertical slot fishway to enhance fish swimming conditions, Journal of Hydrodynamics, 34; pp. 917-933, 2022. doi.org/10.1007/s42241-022-0071-y

160-22 Serife Yurdagul Kumcu, Kamil Ispir, Experimental and numerical modeling of various energy dissipator designs in chute channels, Applied Water Science, 12; 266, 2022. doi.org/10.1007/s13201-022-01792-3

154-22 Usama Majeed, Najam us Saqib, Muhammad Akbar, Numerical analysis of energy dissipator options using computational fluid dynamics modeling — a case study of Mirani Dam, Arabian Journal of Geosciences, 15; 1614, 2022. doi.org/10.1007/s12517-022-10888-8

151-22 Meibao Chen, Xiaofei Jing, Xiaohua Liu, Xuewei Huang, Wen Nie, Multiscale investigations of overtopping erosion in reinforced tailings dam induced by mud-water mixture overflow, Geofluids, 7209176, 2022. doi.org/10.1155/2022/7209176

150-22   Daniel Damov, Francis Lepage, Michel Tremblay, Arian Cueto Bergner, Marc Villaneuve, Frank Scarcelli, Gord McPhail, Calabogie GS redevelopment—Capacity upgrade and hydraulic design, CDA Annual Conference, Proceedings, 2022.

147-22   Hien T.T. Le, Chien Van Nguyen, Duc-Hau Le, Numerical study of sediment scour at meander flume outlet of boxed culvert diversion work, PLoS One, 17.9; e0275347, 2022. doi.org/10.1371/journal.pone.0275347

140-22   Jackson Tellez-Alvarez, Manuel Gómez, Beniamino Russo, Numerical simulation of the hydraulic behavior of stepped stairs in a metro station, Advances in Hydroinformatics, Eds. P. Gourbesville, G. Caignaert, pp. 1001-1009, 2022. doi.org/10.1007/978-981-19-1600-7_62

139-22   Juan Yu, Keyao Liu, Anbin Li, Mingfei Yang, Xiaodong Gao, Xining Zhao, Yaohui Cai, The effect of plug height and inflow rate on water flow characteristics in furrow irrigation, Agronomy, 12; 2225, 2022. doi.org/10.3390/agronomy12092225

138-22   Nejib Hassen Abdullahi, Zulfequar Ahmad, Flow and morphological characteristics in mining pits of a river through numerical and experimental modeling, Modeling Earth Systems and Environment, 2022. doi.org/10.1007/s40808-022-01530-3

137-22   Romain N.H.M. Van Mol, Christian Mörtl, Azin Amini, Sofia Siachou, Anton Schleiss, Giovanni De Cesare, Plunge pool scour and bank erosion: assessment of protection measures for Ilarion dam by physical and numerical modelling, HYDRO 2022, Proceedings, 27.02, 2022.

136-22   Yong Cheng, Yude Song, Chunye Liu, Wene Wang, Xiaotao Hu, Numerical simulation research on the diversion characteristics of a trapezoidal channel, Water, 14.17; 2706, 2022. doi.org/10.3390/w14172706

135-22   Zegao Yin, Yao Li, Jiahao Li, Zihan Zheng, Zihan Ni, Fuxiang Zheng, Experimental and numerical study on hydrodynamic characteristics of a breakwater with inclined perforated slots under regular waves, Ocean Engineering, 264; 112190, 2022. doi.org/10.1016/j.oceaneng.2022.112190

133-22   Azin Amini, Martin Wickenhauser, Azad Koliji, Three-dimensional numerical modelling of Al-Salam storm water pumping station in Saudi Arabia, 39th IAHR World Congress, 2022. doi.org/10.3850/IAHR-39WC2521716X20221013

131-22   Alireza Koshkonesh, Mohammad Daliri, Khuram Riaz, Fariba Ahmadi Dehrashid, Farhad Bahmanpouri, Silvia Di Francesco, Dam-break flow dynamics over a stepped channel with vegetation, Journal of Hydrology, 613.A; 128395, 2022. doi.org/10.1016/j.jhydrol.2022.128395

129-22   Leona Repnik, Samuel Vorlet, Mona Seyfeddine, Asin Amini, Romain Dubuis, Giovanni De Cesare, Pierre Bourqui, Pierre-Adil Abdelmoula, Underground flow section modification below the new M3 Flon Metro station in Lausanne, Advances in Hydroinformatics, Eds. P. Gourbesville, G. Caignaert, pp. 979-999, 2022. doi.org/10.1007/978-981-19-1600-7_61

127-22   Qin Panpan, Huang Bolin, Li Bin, Chen Xiaoting, Jiang Xiannian, Hazard analysis of landslide blocking a river in Guang’an Village, Wuxi County, Chongqing, China, Landslides, 2022. doi.org/10.1007/s10346-022-01943-2

124-22   Vaishali P. Gadhe, S.R. Patnaik, M.R. Bhajantri, V.V. Bhosekar, Physical and numerical modeling of flow pattern near upstream guide wall of Jigaon Dam spillway, Maharashtra, River and Coastal Engineering, Water Science and Technology Library 117; pp. 237-247, 2022. doi.org/10.1007/978-3-031-05057-2_21

123-22   M.Z. Qamar, M.K. Verma, A.P. Meshram, Neena Isaac, Numerical simulation of desilting chamber using Flow 3D, River and Coastal Engineering, Water Science and Technology Library 117; pp. 177-186, 2022. doi.org/10.1007/978-3-031-05057-2_16

122-22   Abbas Parsaie, Saleh Jaafer Suleiman Shareef, Amir Hamzeh Haghiabi, Raad Hoobi Irzooki, Rasul M. Khalaf, Numerical simulation of flow on circular crested stepped spillway, Applied Water Science, 12; 215, 2022. doi.org/10.1007/s13201-022-01737-w

121-22   Kazuki Kikuchi, Hajime Naruse, Morphological function of trace fossil Paleodictyon: An approach from fluid simulation, Paleontological Research, 26.4; pp. 378-389, 2022. doi.org/10.2517/PR210001

120-22   Najam us Saqib, Muhammad Akbar, Huali Pan, Guoqiang Ou, Numerical investigation of pressure profiles and energy dissipation across the stepped spillway having curved treads using FLOW 3D, Arabian Journal of Geosciences, 15; 1363, 2022. doi.org/10.1007/s12517-022-10505-8

116-22   Ayşegül Özgenç Aksoy, Mustafa Doğan, Semire Oğuzhan Güven, Görkem Tanır, Mehmet Şükrü Güney, Experimental and numerical investigation of the flood waves due to partial dam break, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2022. doi.org/10.1007/s40996-022-00919-5

115-22   Abdol Mahdi Behroozi, Mohammad Vaghefi, Experimental and numerical study of the effect of zigzag crests with various geometries on the performance of A-type piano key weirs, Water Resources Management, 2022. doi.org/10.1007/s11269-022-03261-7

114-22   Xun Huang, Zhijian Zhang, Guoping Xiang, Sensitivity analysis of a built environment exposed to debris flow impacts with 3-D numerical simulations, Natural Hazards and Earth Systems Sciences, 2022. doi.org/10.5194/nhess-2022-173

113-22   Ahmad Ferdowsi, Mahdi Valikhan-Anaraki, Saeed Farzin, Sayed-Farhad Mousavi, A new combination approach for optimal design of sedimentation tanks based on hydrodynamic simulation model and machine learning algorithms, Physics and Chemistry of the Earth, 103201, 2022. doi.org/10.1016/j.pce.2022.103201

103-22   Wangshu Wei, Optimization of the mixing in produced water (PW) retention tank with computational fluid dynamics (CFD) modeling, Produced Water Society Permian Basin, 2022.

100-22   Michael Rasmussen, Using computational fluid dynamics to predict flow through the West Crack Breach of the Great Salt Lake railroad causeway, Thesis, Utah State University, 2022.

99-22   Emad Khanahmadi, Amir Ahmad Dehghani, Mehdi Meftah Halaghi, Esmaeil Kordi, Farhad Bahmanpouri, Investigating the characteristic of hydraulic T-jump on rough bed based on experimental and numerical modeling, Modeling Earth Systems and Environment, 2022. doi.org/10.1007/s40808-022-01434-2

97-22   Andrea Franco, A multidisciplinary approach for landslide-generated impulse wave assessment in natural mountain basins from a cascade analysis perspective, Thesis, University of Innsbruck, 2022.

96-22   Geng Li, Binbin Wang, Simulation of the flow field and scour evolution by turbulent wall jets under a sluice gate, Journal of Hydro-environment Research, 43; pp. 22-32, 2022. doi.org/10.1016/j.jher.2022.06.002

95-22   Philippe April LeQuéré, Ioan Nistor, Abdolmajid Mohammadian, Stefan Schimmels, Hydrodynamics and associated scour around a free-standing structure due to turbulent bores, Journal of Waterway, Port, Coastal, and Ocean Engineering, 148.5; 2022.

94-22   Ramtin Sobhkhiz Foumani, Alireza Mardookhpour, Numerical simulation of geotechnical effects on local scour in inclined pier group with Flow-3D software, Water Resources Engineering Journal, 15.52; 2022. doi.org/10.30495/wej.2021.20404.2114

92-22   Geng Li, Binbin Wang, Caroline M. Elliott, Bruce C.Call, Duane C. Chapman, Robert B. Jacobson, A three-dimensional Lagrangian particle tracking model for predicting transport of eggs of rheophilic-spawning carps in turbulent rivers, Ecological Modelling, 470; 110035, 2022. doi.org/10.1016/j.ecolmodel.2022.110035

91-22   Ebrahim Hamid Hussein Al-Qadami, Zahiraniza Mustaffa, Mohamed Ezzat Al-Atroush, Eduardo Martinez-Gomariz, Fang Yenn Teo, Yasser El-Husseini, A numerical approach to understand the responses of passenger vehicles moving through floodwaters, Journal of Flood Risk Management, 2022. doi.org/10.1111/jfr3.12828

90-22   Jafar Chabokpour, Hazi Md Azamathulla, Numerical simulation of pollution transport and hydrodynamic characteristics through the river confluence using FLOW 3D, Water Supply, 2022. doi.org/10.2166/ws.2022.237

88-22   Michael Rasmussen, Som Dutta, Bethany T. Neilson, Brian Mark Crookston, CFD model of the density-driven bidirectional flows through the West Crack Breach in the Great Salt Lake causeway, Water, 13.17; 2423, 2022. doi.org/10.3390/w13172423

84-22   M. Sobhi Alasta, Ahmed Shakir Ali Ali, Saman Ebrahimi, Muhammad Masood Ashiq, Abubaker Sami Dheyab, Adnan AlMasri, Anass Alqatanani, Mahdis Khorram, Modeling of local scour depth around bridge pier using FLOW 3D, CPRASE: Transactions of Civil and Environmental Engineering, 8.2; 2781, 2022.

83-22   Mostafa Taherian, Seyed Ahmad Reza Saeidi Hosseini, Abdolmajid Mohammadian, Overview of outfall discharge modeling with a focus on turbulence modeling approaches, Advances in Fluid Mechanics: Modelling and Simulations, Eds. Dia Zeidan, Eric Goncalves Da Silva, Jochen Merker, Lucy T. Zhang, 2022.

80-22   Soraya Naderi, Mehdi Daryaee, Seyed Mahmood Kashefipour, Mohammadreza Zayeri, Numerical and experimental study of flow pattern due to a plate installed upstream of orifice in pressurized flushing of dam reservoirs, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2022. doi.org/10.1007/s40996-022-00896-9

79-22   Mahmood Nemati Qalee Maskan, Khosrow Hosseini, Effects of the simultaneous presence of bridge pier and abutment on the change of erodible bed using FLOW-3D, Journal of Iranian Water Engineering Research, 1.1; pp. 57-69, 2022. doi.org/10.22034/IJWER.2022.312074.1012

75-22   Steven Matthew Klawitter, L-shaped spillway crest leg interface geometry impacts, Thesis, University of Colorado at Denver, 2022.

72-22   Md. Mukdiul Islam, Md. Samiun Basir, Badal Mahalder, Local scour analysis around single pier and group of piers in tandem arrangement using FLOW 3D, 6th International Conference on Civil Engineering for Sustainable Development (ICCESD 2022), Khulna, Bangladesh, February 10-12, 2022.

69-22   Kuo-Wei Liao, Zhen-Zhi Wang, Investigation of air-bubble screen on reducing scour in river facility, EGU General Assembly, EGU22-1137, 2022. doi.org/10.5194/egusphere-egu22-1137

68-22   Cüneyt Yavuz, Energy dissipation scale for dam prototypes, ADYU Mühendislik Bilimleri Dergisi (Adıyaman University Journal of Engineering Sciences), 16; pp. 105-116, 2022.

66-22   Ji-jian Lian, Shu-guang Zhang, Jun-ling He, An improved numerical model of ski-jump flood discharge atomization, Journal of Mountain Science, 19; pp. 1263-1273, 2022. doi.org/10.1007/s11629-021-7158-8

62-22   Ali Montazeri, Amirabbas Abedini, Milad Aminzadeh, Numerical investigation of pollution transport around a single non-submerged spur dike, Journal of Contaminant Hydrology, 248; 104018, 2022. doi.org/10.1016/j.jconhyd.2022.104018

61-22   Junhao Zhang, Yining Sun, Zhixian Cao, Ji Li, Flow structure at reservoir-tributary confluence with high sediment load, EGU General Assembly, Vienna, Austria, May 23-27, 2022. doi.org/10.5194/egusphere-egu22-1419

60-22   S. Modalavalasa, V. Chembolu, V. Kulkarni, S. Dutta, Numerical and experimental investigation of effect of green river corridor on main channel hydraulics, Recent Trends in River Corridor Management, Lecture Notes in Civil Engineering 229, pp. 165-176, 2022.

59-22   Philippe April LeQuéré, Scouring around multiple structures in extreme flow conditions, Thesis, University of Ottawa, Ottawa, ON, Canada, 2022.

51-22   Xianzheng Zhang, Chenxiao Tang, Yajie Yu, Chuan Tang, Ning Li, Jiang Xiong, Ming Chen, Some considerations for using numerical methods to simulate possible debris flows: The case of the 2013 and 2020 Wayao debris flows (Sichuan, China), Water, 14.7; 1050, 2022. doi.org/10.3390/w14071050

50-22   Daniel Valero, Daniel B. Bung, Sebastien Erpicum, Yann Peltier, Benjamin Dewals, Unsteady shallow meandering flows in rectangular reservoirs: A modal analysis of URANS modelling, Journal of Hydro-environment Research, 42; pp. 12-20, 2022. doi.org/10.1016/j.jher.2022.03.002

49-22   Behzad Noroozi, Jalal Bazargan, Comparing the behavior of ogee and piano key weirs under unsteady flows, Journal of Irrigation and Water Engineering, 12.3; pp. 97-120. doi.org/10.22125/iwe.2022.146390

47-22   Chen Xiaoting, Huang Bolin, Li Bin, Jiang Xiannian, Risk assessment study on landslide-generated impulse waves: case study from Zhongliang Reservoir in Chongqing, China, Bulletin of Engineering Geology and the Environment, 81; 158, 2022. doi.org/10.1007/s10064-022-02629-8

45-22   Mehmet Cihan Aydin, Havva Seda Aytemur, Ali Emre Ulu, Experimental and numerical investigation on hydraulic performance of slit-check dams in subcritical flow condition, Water Resources Management, 36; pp. 1693-1710, 2022. doi.org/10.1007/s11269-022-03103-6

43-22   Suresh Modalavalasa, Vinay Chembolu, Subashisa Dutta, Vinayak Kulkarni, Combined effect of bridge piers and floodplain vegetation on main channel hydraulics, Experimental Thermal and Fluid Science, 136; 110669, 2022. doi.org/10.1016/j.expthermflusci.2022.110669

40-22   Mohammad Bagherzadeh, Farhad Mousavi, Mohammad Manafpour, Reza Mirzaee, Khosrow Hoseini, Numerical simulation and application of soft computing in estimating vertical drop energy dissipation with horizontal serrated edge, Water Supply, 127, 2022. doi.org/10.2166/ws.2022.127

39-22   Masumeh Rostam Abadi, Saeed Kazemi Mohsenabadi, Numerical study of the weir angle on the flow pattern and scour around the submerged weirs, International Journal of Modern Physics C, 2022. doi.org/10.1142/S0129183122501108

38-22   Vahid Hassanzadeh Vayghan, Mirali Mohammadi, Behzad Shakouri, Experimental and numerical examination of flow resistance in plane bed streams, Arabian Journal of Geosciences, 15; 483, 2022. doi.org/10.1007/s12517-022-09691-2

36-22   Kyong Oh Baek, Byong Jo Min, Investigation for flow characteristics of ice-harbor type fishway installed at mid-sized streams in Korea, Journal of Korea Water Resources Association, 55.1; pp. 33-42, 2022. 

34-22   Kyong Oh Baek, Jeong-Min Lee, Eun-Jin Han, Young-Do Kim, Evaluating attraction and passage efficiencies of pool-weir type fishways based on hydraulic analysis, Applied Sciences, 12.4; 1880, 2022. doi.org/10.3390/app12041880

33-22   Christopher Paschmann, David F. Vetsch, Robert M. Boes, Design of desanding facilities for hydropower schemes based on trapping efficiency, Water, 14.4; 520, 2022. doi.org/10.3390/w14040520

29-22   Mehdi Heyrani, Abdolmajid Mohammadian, Ioan Nistor, Omerul Faruk Dursun, Application of numerical and experimental modeling to improve the efficiency of Parshall flumes: A review of the state-of-the-art, Hydrology, 9.2; 26 2022. doi.org/10.3390/hydrology9020026

28-22   Kiyoumars Roushangar, Samira Akhgar, Saman Shanazi, The effect of triangular prismatic elements on the hydraulic performance of stepped spillways in the skimming flow regime: An experimental study and numerical modeling, Journal of Hydroinformatics, 2022. doi.org/10.2166/hydro.2022.031

26-22   Jorge Augusto Toapaxi Alvarez, Roberto Silva, Cristina Torres, Modelación numérica tridimensional del medidor de caudal Palmer-Bowlus aplicando el programa FLOW-3D (Three-dimensional numerical modeling of the Palmer-Bowlus measuring flume applying the FLOW-3D program), Revista Politécnica, 49.1; 2022. doi.org/10.33333/rp.vol49n1.04 

25-22   Shubing Dai, Sheng Jin, Numerical investigations of unsteady critical flow conditions over an obstacle using three models, Physics of Fluids, 34.2; 2022. doi.org/10.1063/5.0077585

23-22   Negar Ghahramani, H. Joanna Chen, Daley Clohan, Shielan Liu, Marcelo Llano-Serna, Nahyan M. Rana, Scott McDougall, Stephen G. Evans, W. Andy Take, A benchmarking study of four numerical runout models for the simulation of tailings flows, Science of the Total Environment, 827; 154245, 2022. doi.org/10.1016/j.scitotenv.2022.154245

22-22   Bahador Fatehi-Nobarian, Razieh Panahi, Vahid Nourani, Investigation of the Effect of Velocity on Secondary Currents in Semicircular Channels on Hydraulic Jump Parameters, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2022. doi.org/10.1007/s40996-021-00800-x

21-22   G. Viccione, C. Izzo, Three-dimensional CFD modelling of urban flood forces on buildings: A case study, Journal of Physics: Conference Series, 2162; 012020, 2022. doi.org/10.1088/1742-6596/2162/1/012020

20-22   Tohid Jamali Rovesht, Mohammad Manafpour, Mehdi Lotfi, Effects of flow condition and chute geometry on the shockwaves formed on chute spillway, Journal of Water Supply: Research and Technology-Aqua, 71.2; pp. 312-329, 2022. doi.org/10.2166/aqua.2022.139

17-22   Yansong Zhang, Jianping Chen, Fujun Zhou, Yiding Bao, Jianhua Yan, Yiwei Zhang, Yongchao Li, Feifan Gu, Qing Wang, Combined numerical investigation of the Gangda paleolandslide runout and associated dam breach flood propagation in the upper Jinsha River, SE Tibetan Plateau, Landslides, 2022. doi.org/10.1007/s10346-021-01768-5

16-22   I.A. Hernández-Rodríguez, J. López-Ortega, G. González-Blanco, R. Beristain-Cardoso, Performance of the UASB reactor during wastewater treatment and the effect of the biogas bubbles on its hydrodynamics, Environmental Technology, pp. 1-21, 2022. doi.org/10.1080/09593330.2022.2028015

15-22   Xu Deng, Sizhong He, Zhouhong Cao, Numerical investigation of the local scour around a coconut tree root foundation under wave-current joint actions, Ocean Engineering, 245; 110563, 2022. doi.org/10.1016/j.oceaneng.2022.110563

14-22   Rasool Kosaj, Rafid S. Alboresha, Sadeq O. Sulaiman, Comparison between numerical Flow3d software and laboratory data, for sediment incipient motion, IOP Conference Series: Earth and Environmental Science, 961; 012031, 2022. doi.org/10.1088/1755-1315/961/1/012031

13-22   Joseph M. Sinclair, S. Karan Venayagamoorthy, Timothy K. Gates, Some insights on flow over sharp-crested weirs using computational fluid dynamics: Implications for enhanced flow measurement, Journal of Irrigation and Drainage Engineering, 148.6; 2022. doi.org/10.1061/(ASCE)IR.1943-4774.0001652

12-22   Mete Koken, Ismail Aydin, Serhan Ademoglu, An iterative hydraulic design methodology based on numerical modeling for piano key weirs, Journal of Hydro-environment Research, 40; pp. 131-141, 2022. doi.org/10.1016/j.jher.2022.01.002

11-22   Najam us Saqib, Muhammad Akbar, Huali Pan, Guoqiang Ou, Muhammad Mohsin, Assad Ali, Azka Amin, Numerical analysis of pressure profiles and energy dissipation across stepped spillways having curved risers, Applied Sciences, 12.1; 448, 2022. doi.org/10.3390/app12010448

9-22   Amir Bordbar, Soroosh Sharifi, Hassan Hemida, Investigation of scour around two side-by-side piles with different spacing ratios in live-bed, Lecture Notes in Civil Engineering, 208; pp. 302-309, 2022. doi.org/10.1007/978-981-16-7735-9_33

8-22    Jian-cheng Li, Wei Wang, Yan-ming Zheng, Xiao-hao Wen, Jing Feng, Li Sheng, Chen Wang, Ming-kun Qiu, Using computational fluid dynamic simulation with Flow-3D to reveal the origin of the mushroom stone in the Xiqiao Mountain of Guangdong, China, Journal of Mountain Science, 19; pp. 1-15, 2022. doi.org/10.1007/s11629-021-7019-5

4-22   Ankur Kapoor, Aniruddha D. Ghare, Avinash M. Badar, CFD simulations of conical central baffle flumes, Journal of Irrigation and Drainage Engineering, 148.2, 2022. doi.org/10.1061/(ASCE)IR.1943-4774.0001653

2-22   Ramtin Sabeti, Mohammad Heidarzadeh, Numerical simulations of tsunami wave generation by submarine landslides: Validation and sensitivity analysis to landslide parameters, Journal of Waterway, Port, Coastal, and Ocean Engineering, 148.2; 05021016, 2022. doi.org/10.1061/(ASCE)WW.1943-5460.0000694

1-22   Juan Francisco Fuentes-Pérez, Ana L. Quaresma, Antonio Pinheiro, Francisco Javier Sanz-Ronda, OpenFOAM vs FLOW-3D: A comparative study of vertical slot fishway modelling, Ecological Engineering, 174, 2022.

145-21   Ebrahim Hamid Hussein Al-Qadami, Zahiraniza Mustaffa, Eduardo Martínez-Gomariz, Khamaruzaman Wan Yusof, Abdurrasheed S. Abdurrasheed, Syed Muzzamil Hussain Shah, Numerical simulation to assess floating instability of small passenger vehicle under sub-critical flow, Lecture Notes in Civil Engineering, 132; pp. 258-265, 2021. doi.org/10.1007/978-981-33-6311-3_30

140-21   J. Zulfan, B.M.Ginting, Investigation of spillway rating curve via theoretical formula, laboratory experiment, and 3D numerical modeling: A case study of the Riam Kiwa Dam, Indonesia, IOP Conference Series: Earth and Environmental Science, 930; 012030, 2021. doi.org/10.1088/1755-1315/930/1/012030

130-21   A.S.N. Amirah, F.Y. Boon, K.A. Nihla, Z.M. Salwa, A.W. Mahyun, N. Yaacof, Numerical simulation of flow within a storage area of HDPE modular pavement, IOP Conference Series: Earth and Environmental Science, 920; 012044, 2021. doi.org/10.1088/1755-1315/920/1/012044

129-21   Z.M. Yusof, Z.A.L. Shirling, A.K.A. Wahab, Z. Ismail, S. Amerudin, A hydrodynamic model of an embankment breaching due to overtopping flow using FLOW-3D, IOP Conference Series: Earth and Environmental Science, 920; 012036, 2021. doi.org/10.1088/1755-1315/920/1/012036

125-21   Ketaki H. Kulkarni, Ganesh A. Hinge, Comparative study of experimental and CFD analysis for predicting discharge coefficient of compound broad crested weir, Water Supply, 2021. doi.org/10.2166/ws.2021.403

119-21   Yan Liang, Yiqun Hou, Wangbin Hu, David Johnson, Junxing Wang, Flow velocity preference of Schizothorax oconnori Lloyd swimming upstream, Global Ecology and Conservation, 32; e01902, 2021. doi.org/10.1016/j.gecco.2021.e01902

116-21   Atabak Feizi, Aysan Ezati, Shadi Alizadeh Marallo, Investigation of hydrodynamic characteristics of flow caused by dam break around a downstream obstacle considering different reservoir shapes, Numerical Methods in Civil Engineering, 6.2; pp. 36-48, 2021.

114-21   Jackson Tellez-Alvarez, Manuel Gómez, Beniamino Russo, Marko Amezaga-Kutija, Numerical and experimental approaches toestimate discharge coefficients and energy loss coefficients in pressurized grated inlets, Hydrology, 8.4; 162, 2021. doi.org/10.3390/hydrology8040162

113-21   Alireza Khoshkonesh, Blaise Nsom, Fariba Ahmadi Dehrashid, Payam Heidarian, Khuram Riaz, Comparison of the SWE and 3D models in simulation of the dam-break flow over the mobile bed, 5th Scientific Conference of Applied Research in Science and Technology of Iran, 2021.

103-21   Farshid Mosaddeghi, Numerical modeling of dam breach in concrete gravity dams, Thesis, Middle East Technical University, Ankara, Turkey, 2021.

102-21   Xu Deng, Sizhong He, Zhouhong Cao, Tao Wu, Numerical investigation of the hydrodynamic response of an impermeable sea-wall subjected to artificial submarine landslide-induced tsunamis, Landslides, 2021. doi.org/10.1007/s10346-021-01773-8

100-21   Jinmeng Yang, Zhenzhong Shen, Jing Zhang, Xiaomin Teng, Wenbing Zhang, Jie Dai, Experimental and numerical investigation of flow over a spillway bend with different combinations of permeable spur dikes, Water Supply, ws2021335, 2021. doi.org/10.2166/ws.2021.335

99-21   Nigel A. Temple, Josh Adams, Evan Blythe, Zidane Twersky, Steve Blair, Rick Harter, Investigating the performance of novel oyster reef materials in Apalachicola Bay, Florida, ASBPA National Coastal Conference, New Orleans, LA, USA, September 28-October 1, 2021.

94-21   Xiaoyang Shen, Mario Oertel, Comparitive study of nonsymmetrical trapezoidal and rectangular piano key weirs with varying key width ratios, Journal of Hydraulic Engineering, 147.11, 2021. doi.org/10.1061/(ASCE)HY.1943-7900.0001942

93-21   Aysar Tuama Al-Awadi, Mahmoud Saleh Al-Khafaji, CFD-based model for estimating the river bed morphological characteristics near cylindrical bridge piers due to debris accumulation, Water Resources, 48; pp. 763-773, 2021. doi.org/10.1134/S0097807821050031

92-21   Juan Francisco Macián-Pérez, Francisco José Vallés-Morán, Rafael García-Bartual, Assessment of the performance of a modified USBR Type II stilling basin by a validated CFD model, Journal of Irrigation and Drainage Engineering , 147.11, 2021. doi.org/10.1061/(ASCE)IR.1943-4774.0001623

91-21   Ali Yıldız, Ali İhsan Martı, Mustafa Göğüş, Numerical and experimental modelling of flow at Tyrolean weirs, Flow Measurement and Instrumentation, 81; 102040, 2021. doi.org/10.1016/j.flowmeasinst.2021.102040

90-21   Yasamin Aghaei, Fouad Kilanehei, Shervin Faghihirad, Mohammad Nazari-Sharabian, Dynamic pressure at flip buckets of chute spillways: A numerical study, International Journal of Civil Engineering, 2021. doi.org/10.1007/s40999-021-00670-4

88-21   Shang-tuo Qian, Yan Zhang, Hui Xu, Xiao-sheng Wang, Jian-gang Feng, Zhi-xiang Li, Effects of surface roughness on overflow discharge of embankment weirs, Journal of Hydrodynamics, 33; pp. 773-781, 2021. doi.org/10.1007/s42241-021-0068-y

86-21   Alkistis Stergiopoulou, Vassilios Stergiopoulos, CFD simulations of tubular Archimedean screw turbines harnessing the small hydropotential of Greek watercourses, International Journal of Energy and Environment, 12.1; pp. 19-30, 2021.

85-21   Jun-tao Ren, Xue-fei Wu, Ting Zhang, A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation, Journal of Hydrodynamics, 33; pp. 833-843, 2021. doi.org/10.1007/s42241-021-0063-3

84-21   Rasoul Daneshfaraz, Amir Ghaderi, Maryam Sattariyan, Babak Alinejad, Mahdi Majedi Asl, Silvia Di Francesco, Investigation of local scouring around hydrodynamic and circular pile groups under the influence of river material harvesting pits, Water, 13.6; 2192, 2021. doi.org/10.3390/w13162192

83-21   Mahdi Feizbahr, Navid Tonekaboni, Guang-Jun Jiang, Hong-Xia Chen, Optimized vegetation density to dissipate energy of flood flow in open canals, Mathematical Problems in Engineering, 2021; 9048808, 2021. doi.org/10.1155/2021/9048808

80-21   Wenjun Liu, Bo Wang, Yakun Guo, Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale, Journal of Hydrology, 602; 126752, 2021. doi.org/10.1016/j.jhydrol.2021.126752

79-21   Zhen-Dong Shen, Yang Zhang, The three-dimensional simulation of granular mixtures weir, IOP Conference Series: Earth and Environmental Science, 820; 012024, 2021. doi.org/10.1088/1755-1315/820/1/012024

75-21   Mehrdad Ghorbani Mooselu, Mohammad Reza Nikoo, Parnian Hashempour Bakhtiari, Nooshin Bakhtiari Rayani, Azizallah Izady, Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques, Applied Soft Computing, 110; 107721, 2021. doi.org/10.1016/j.asoc.2021.107721

73-21   Romain Van Mol, Plunge pool rehabilitation with prismatic concrete elements – Case study and physical model of Ilarion dam in Greece, Infoscience (EPFL Scientific Publications), 2021.

70-21   Khosro Morovati, Christopher Homer, Fuqiang Tian, Hongchang Hu, Opening configuration design effects on pooled stepped chutes, Journal of Hydraulic Engineering, 147.9, 2021. doi.org/10.1061%2F(ASCE)HY.1943-7900.0001897

68-21   R. Daneshfaraz, E. Aminvash, S. Di Francesco, A. Najibi, J. Abraham, Three-dimensional study of the effect of block roughness geometry on inclined drop, Numerical Methods in Civil Engineering, 6.1; pp. 1-9, 2021. 

66-21   Benjamin Hohermuth, Lukas Schmoker, Robert M. Boes, David Vetsch, Numerical simulation of air entrainment in uniform chute flow, Journal of Hydraulic Research, 59.3; pp. 378-391, 2021. doi.org/10.1080/00221686.2020.1780492

65-21   Junjun Tan, Honglin Tan, Elsa Goerig, Senfan Ke, Haizhen Huang, Zhixiong Liu, Xiaotao Shi, Optimization of fishway attraction flow based on endemic fish swimming performance and hydraulics, Ecological Engineering, 170; 106332, 2021. doi.org/10.1016/j.ecoleng.2021.106332

63-21   Erdinc Ikinciogullari, Muhammet Emin Emiroglu, Mehmet Cihan Aydin, Comparison of scour properties of classical and trapezoidal labyrinth weirs, Arabian Journal for Science and Engineering, 2021. doi.org/10.1007/s13369-021-05832-z

59-21   Elias Wehrmeister, José J. Ota, Separation in overflow spillways: A computational analysis, Journal of Hydraulic Research, 59, 2021. doi.org/10.1080/00221686.2021.1908438

53-21   Zongxian Liang, John Ditter, Riadh Atta, Brian Fox, Karthik Ramaswamy, Numerical modeling of tailings dam break using a Herschel-Bulkley rheological model, USSD Annual Conference, online, May 11-21, 2021. 

51-21   Yansong Zhang, Jianping Chen, Chun Tan, Yiding Bao, Xudong Han, Jianhua Yan, Qaiser Mehmood, A novel approach to simulating debris flow runout via a three-dimensional CFD code: A case study of Xiaojia Gully, Bulletin of Engineering Geology and the Environment, 80.5, 2021. doi.org/10.1007/s10064-021-02270-x

49-21   Ramtin Sabeti, Mohammad Heidarzadeh, Preliminary results of numerical simulation of submarine landslide-generated waves, EGU General Assembly 2021, online, April 19-30, 2021. doi.org/10.5194/egusphere-egu21-284

48-21   Anh Tuan Le, Ken Hiramatsu, Tatsuro Nishiyama, Hydraulic comparison between piano key weir and rectangular labyrinth weir, International Journal of GEOMATE, 20.82; pp. 153-160, 2021. doi.org/10.21660/2021.82.j2106

46-21   Maoyi Luo, Faxing Zhang, Zhaoming Song, Liyuan Zhang, Characteristics of flow movement in complex canal system and its influence on sudden pollution accidents, Mathematical Problems in Engineering, 6617385, 2021. doi.org/10.1155/2021/6617385

42-21   Jakub Major, Martin Orfánus, Zbyněk Zachoval, Flow over broad-crested weir with inflow by approach shaft – Numerical model, Civil Engineering Journal, 30.1; 19, 2021. doi.org/10.14311/CEJ.2021.01.0019 

41-21   Amir Ghaderi, Saeed Abbasi, Experimental and numerical study of the effects of geometric appendance elements on energy dissipation over stepped spillway, Water, 13.7; 957, 2021. doi.org/10.3390/w13070957

38-21   Ana L. Quaresma, António N. Pinheiro, Modelling of pool-type fishways flows: Efficiency and scale effects assessment, Water, 13.6; 851, 2021. doi.org/10.3390/w13060851

37-21   Alireza Khoshkonesh, Blaise Nsom, Farhad Bahmanpouri, Fariba Ahmadi Dehrashid, Atefah Adeli, Numerical study of the dynamics and structure of a partial dam-break flow using the VOF Method, Water Resources Management, 35; pp. 1513-1528, 2021. doi.org/10.1007/s11269-021-02799-2

36-21   Amir Ghaderi, Mehdi Dasineh, Francesco Aristodemo, Constanza Aricò, Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses, Water, 13.5; 674, 2021. doi.org/10.3390/w13050674

35-21   Hongliang Qi, Junxing Zheng, Chenguang Zhang, Modeling excess shear stress around tandem piers of the longitudinal bridge by computational fluid dynamics, Journal of Applied Water Engineering and Research, 2021. doi.org/10.1080/23249676.2021.1884614

31-21   Seth Siefken, Robert Ettema, Ari Posner, Drew Baird, Optimal configuration of rock vanes and bendway weirs for river bends: Numerical-model insights, Journal of Hydraulic Engineering, 147.5, 2021. doi.org/10.1061/(ASCE)HY.1943-7900.0001871

29-21   Débora Magalhães Chácara, Waldyr Lopes Oliveira Filho, Rheology of mine tailings deposits for dam break analyses, REM – International Engineering Journal, 74.2; pp. 235-243, 2021. doi.org/10.1590/0370-44672020740098

27-21   Ling Peng, Ting Zhang, Youtong Rong, Chunqi Hu, Ping Feng, Numerical investigation of the impact of a dam-break induced flood on a structure, Ocean Engineering, 223; 108669, 2021. doi.org/10.1016/j.oceaneng.2021.108669

26-21   Qi-dong Hou, Hai-bo Li, Yu-Xiang Hu, Shun-chao Qi, Jian-wen Zhou, Overtopping process and structural safety analyses of the earth-rock fill dam with a concrete core wall by using numerical simulations, Arabian Journal of Geosciences, 14; 234, 2021. doi.org/10.1007/s12517-021-06639-w

25-21   Filipe Romão, Ana L. Quaresma, José M. Santos, Susana D. Amaral, Paulo Branco, António N. Pinheiro, Performance and fish transit time over vertical slots, Water, 13.3; 275, 2021. doi.org/10.3390/w13030275

23-21   Jiahou Hu, Chengwei Na, Yi Wang, Study on discharge velocity of tailings mortar in dam break based on FLOW-3D, IOP Conference Series: Earth and Environmental Science, 6th International Conference on Hydraulic and Civil Engineering, Xi’an, China, December 11-13, 2020, 643; 012052, 2021. doi.org/10.1088/1755-1315/643/1/012052

21-21   Asad H. Aldefae, Rusul A. Alkhafaji, Experimental and numerical modeling to investigate the riverbank’s stability, SN Applied Sciences, 3; 164, 2021. doi.org/10.1007/s42452-021-04168-5

20-21   Yangliang Lu, Jinbu Yin, Zhou Yang, Kebang Wei, Zhiming Liu, Numerical study of fluctuating pressure on stilling basin slabwith sudden lateral enlargement and bottom drop, Water, 13.2; 238, 2021. doi.org/10.3390/w13020238

18-21   Prashant Prakash Huddar, Vishwanath Govind Bhave, Hydraulic structure design with 3D CFD model, Proceedings, 25th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2020), Odisha, India, March 26-28, 2021.

17-21   Morteza Sadat Helbar, Atefah Parvaresh Rizi, Javad Farhoudi, Amir Mohammadi, 3D flow simulation to improve the design and operation of the dam bottom outlets, Arabian Journal of Geosciences, 14; 90, 2021. doi.org/10.1007/s12517-020-06378-4

15-21   Charles R. Ortloff, Roman hydraulic engineering: The Pont du Gard Aqueduct and Nemausus (Nîmes) Castellum, Water, 13.1; 54, 2021. doi.org/10.3390/w13010054

12-21   Mehdi Karami Moghadam, Ata Amini, Ehsan Karami Moghadam, Numerical study of energy dissipation and block barriers in stepped spillways, Journal of Hydroinformatics, 23.2; pp. 284-297, 2021. doi.org/10.2166/hydro.2020.245

08-21   Prajakta P. Gadge, M. R. Bhajantri, V. V. Bhosekar, Numerical simulations of air entraining characteristics over high head chute spillway aerator, Proceedings, ICOLD Symposium on Sustainable Development of Dams and River Basins, New Dehli, India, February 24 – 27, 2021.

07-21   Pankaj Lawande, Computational fluid dynamics simulation methodologies for stilling basins, Proceedings, ICOLD Symposium on Sustainable Development of Dams and River Basins, New Dehli, India, February 24 – 27, 2021.

Below is a collection of technical papers in our Water & Environmental Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate applications for the Water & Environmental Industry.

02-21   Aytaç Güven, Ahmed Hussein Mahmood, Numerical investigation of flow characteristics over stepped spillways, Water Supply, in press, 2021. doi.org/10.2166/ws.2020.283

01-21   Le Thi Thu Hien, Nguyen Van Chien, Investigate impact force of dam-break flow against structures by both 2D and 3D numerical simulations, Water, 13.3; 344, 2021. doi.org/10.3390/w13030344

125-20   Farhad Bahmanpouri, Mohammad Daliri, Alireza Khoshkonesh, Masoud Montazeri Namin, Mariano Buccino, Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling, Journal of Hydrology, in press, 2020. doi.org/10.1016/j.jhydrol.2020.125645

209-23   Cong Trieu Tran, Cong Ty Trinh, Prediction of the vortex evolution and influence analysis of rough bed in a hydraulic jump with the Omega-Liutex method, Tehnički Vjesnik, 30.6; 2023. doi.org/10.17559/TV-20230206000327

203-23   Muhammad Waqas Zaffar, Ishtiaq Hassan, Zulfiqar Ali, Kaleem Sarwar, Muhammad Hassan, Muhammad Taimoor Mustafa, Faizan Ahmed Waris, Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater, AQUA – Water Infrastructure, Ecosystems and Society, 72.11; 2081, 2023. doi.org/10.2166/aqua.2023.261

201-23   E.F.R. Bollaert, Digital cloud-based platform to predict rock scour at high-head dams, Role of Dams and Reservoirs in a Successful Energy Transition, Eds. Robert Boes, Patrice Droz, Raphael Leroy, 2023. doi.org/10.1201/9781003440420

200-23   Iacopo Vona, Oysters’ integration on submerged breakwaters as nature-based solution for coastal protection within estuarine environments, Thesis, University of Maryland, 2023.

198-23   Hao Chen, Xianbin Teng, Zhibin Zhang, Faxin Zhu, Jie Wang, Zhaohao Zhang, Numerical analysis of the influence of the impinging distance on the scouring efficiency of submerged jets, Fluid Dynamics & Materials Processing, 20.2; pp. 429-445, 2023. doi.org/10.32604/fdmp.2023.030585

193-23   Chen Peng, Liuweikai Gu, Qiming Zhong, Numerical simulation of dam failure process based on FLOW-3D, Advances in Frontier Research on Engineering Structures, pp. 545-550, 2023. doi.org/10.3233/ATDE230245

189-23   Rebecca G. Englert, Age J. Vellinga, Matthieu J.B. Cartigny, Michael A. Clare, Joris T. Eggenhuisen, Stephen M. Hubbard, Controls on upstream-migrating bed forms in sandy submarine channels, Geology, 51.12; PP. 1137-1142, 2023. doi.org/10.1130/G51385.1

187-23   J.W. Kim, S.B. Woo, A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant, Renewable Energy, 219.1; 119408, 2023. doi.org/10.1016/j.renene.2023.119408

186-23   Chan Jin Jeong, Hyung Jun Park, Hyung Suk Kim, Seung Oh Lee, Study on fish-friendly flow characteristic in stepped fishway, Proceedings of the Korean Water Resources Association Conference, 2023. (In Korean)

185-23   Jaehwan Yoo, Sedong Jang, Byunghyun Kim, Analysis of coastal city flooding in 2D and 3D considering extreme conditions and climate change, Proceedings of the Korean Water Resources Association Conference, 2023. (In Korean)

180-23   Prathyush Nallamothu, Jonathan Gregory, Jordan Leh, Daniel P. Zielinski, Jesse L. Eickholt, Semi-automated inquiry of fish launch angle and speed for hazard analysis, Fishes, 8.10; 476, 2023. doi.org/10.3390/fishes8100476

179-23   Reza Norouzi, Parisa Ebadzadeh, Veli Sume, Rasoul Daneshfaraz, Upstream vortices of a sluice gate: an experimental and numerical study, AQUA – Water Infrastructure, Ecosystems and Society, 72.10; 1906, 2023. doi.org/10.2166/aqua.2023.269

178-23   Bai Hao Li, How Tion Puay, Muhammad Azfar Bin Hamidi, Influence of spur dike’s angle on sand bar formation in a rectangular channel, IOP Conference Series: Earth and Environmental Science, 1238; 012027, 2023. doi.org/10.1088/1755-1315/1238/1/012027

177-23   Hao Zhe Khor, How Tion Puay, Influence of gate lip angle on downpull forces for vertical lift gates, IOP Conference Series: Earth and Environmental Science, 1238; 012019, 2023. doi.org/10.1088/1755-1315/1238/1/012019

175-23   Juan Francisco Macián-Pérez, Rafael García-Bartual, P. Amparo López-Jiménez, Francisco José Vallés-Morán, Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins, Applied Water Science, 13.203; 2023. doi.org/10.1007/s13201-023-01985-4

174-23   Ahintha Kandamby, Dusty Myers, Narrows bypass chute CFD analysis, Dam Safety, 2023.

173-23   H. Jalili, R.C. Mahon, M.F. Martinez, J.W. Nicklow, Sediment sluicing from the reservoirs with high efficiency, SEDHYD, 2023.

170-23   Ramith Fernando, Gangfu Zhang, Beyond 2D: Unravelling bridge hydraulics with CFD modelling, 24th Queensland Water Symposium, 2023.

169-23   K. Licht, G. Lončar, H. Posavčić, I. Halkijević, Short-time numerical simulation of ultrasonically assisted electrochemical removal of strontium from water, 18th International Conference on Environmental Science and Technology (CEST), 2023.

166-23   Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Wawan Septiawan Damanik, Zahiraniza Mustaffa, Eduardo Martinez-Gomariz, Fang Yenn Teo, Anwar Ameen Hezam Saeed, Understanding the stability of passenger vehicles exposed to water flows through 3D CFD modelling, Sustainability, 15.17; 13262, 2023. doi.org/10.3390/su151713262

165-23   Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Wawan Septiawan Damanik, Zahiraniza Mustaffa, Eduardo Martinez-Gomariz, Fang Yenn Teo, Anwar Ameen Hezam Saeed, 3-dimensional numerical study on the critical orientation of the flooded passenger vehicles, Engineering Letters, 31.3; 2023.

124-20   John Petrie, Yan Qi, Mark Cornwell, Md Al Adib Sarker, Pranesh Biswas, Sen Du, Xianming Shi, Design of living barriers to reduce the impacts of snowdrifts on Illinois freeways, Illinois Center for Transportation Series No. 20-019, Research Report No. FHWA-ICT-20-012, 2020. doi.org/10.36501/0197-9191/20-019

123-20   Mohammad Reza Namaee, Jueyi Sui, Yongsheng Wu, Natalie Linklater, Three-dimensional numerical simulation of local scour in the vicinity of circular side-by-side bridge piers with ice cover, Canadian Journal of Civil Engineering, 2020. doi.org/10.1139/cjce-2019-0360

119-20   Tuğçe Yıldırım, Experimental and numerical investigation of vortex formation at multiple horizontal intakes, Thesis, Middle East Technical University, Ankara, Turkey, , 2020.

118-20   Amir Ghaderi, Mehdi Dasineh, Francesco Aristodemo, Ali Ghahramanzadeh, Characteristics of free and submerged hydraulic jumps over different macroroughnesses, Journal of Hydroinformatics, 22.6; pp. 1554-1572, 2020. doi.org/10.2166/hydro.2020.298

117-20   Rasoul Daneshfaraz, Amir Ghaderi, Aliakbar Akhtari, Silvia Di Francesco, On the effect of block roughness in ogee spillways with flip buckets, Fluids, 5.4; 182, 2020. doi.org/10.3390/fluids5040182

115-20   Chi Yao, Ligong Wu, Jianhua Yang, Influences of tailings particle size on overtopping tailings dam failures, Mine Water and the Environment, 2020. doi.org/10.1007/s10230-020-00725-3

114-20  Rizgar Ahmed Karim, Jowhar Rasheed Mohammed, A comparison study between CFD analysis and PIV technique for velocity distribution over the Standard Ogee crested spillways, Heliyon, 6.10; e05165, 2020. doi.org/10.1016/j.heliyon.2020.e05165

113-20   Théo St. Pierre Ostrander, Analyzing hydraulics of broad crested lateral weirs, Thesis, University of Innsbruck, Innsbruck, Austria, 2020.

111-20   Mahla Tajari, Amir Ahmad Dehghani, Mehdi Meftah Halaghi, Hazi Azamathulla, Use of bottom slots and submerged vanes for controlling sediment upstream of duckbill weirs, Water Supply, 20.8; pp. 3393-3403, 2020. doi.org/10.2166/ws.2020.238

110-20   Jian Zhou, Subhas K. Venayagamoorthy, How does three-dimensional canopy geometry affect the front propagation of a gravity current?, Physics of Fluids, 32.9; 096605, 2020. doi.org/10.1063/5.0019760

106-20   Juan Francisco Macián-Pérez, Arnau Bayón, Rafael García-Bartual, P. Amparo López-Jiménez, Characterization of structural properties in high reynolds hydraulic jump based on CFD and physical modeling approaches, Journal of Hydraulic Engineering, 146.12, 2020. doi.org/10.1061/(ASCE)HY.1943-7900.0001820

105-20   Bin Deng, He Tao, Changbo Jian, Ke Qu, Numerical investigation on hydrodynamic characteristics of landslide-induced impulse waves in narrow river-valley reservoirs, IEEE Access, 8; pp. 165285-165297, 2020. doi.org/10.1109/ACCESS.2020.3022651

102-20   Mojtaba Mehraein, Mohammadamin Torabi, Yousef Sangsefidi, Bruce MacVicar, Numerical simulation of free flow through side orifice in a circular open-channel using response surface method, Flow Measurement and Instrumentation, 76; 101825, 2020. doi.org/10.1016/j.flowmeasinst.2020.101825

101-20   Juan Francisco Macián Pérez, Numerical and physical modelling approaches to the study of the hydraulic jump and its application in large-dam stilling basins, Thesis, Universitat Politècnica de València, Valencia, Spain, 2020.

99-20   Chen-Shan Kung, Pin-Tzu Su, Chin-Pin Ko, Pei-Yu Lee, Application of multiple intake heads in engineering field, Proceedings, 30th International Ocean and Polar Engineering Conference (ISOPE), Online, October 11-17,  ISOPE-I-20-3116, 2020.

Below is a collection of technical papers in our Water & Environmental Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate applications for the Water & Environmental Industry.

91-20      Selahattin Kocaman, Stefania Evangelista, Giacomo Viccione, Hasan Güzel, Experimental and numerical analysis of 3D dam-break waves in an enclosed domain with a single oriented obstacle, Environmental Science Proceedings, 2; 35, 2020. doi.org/10.3390/environsciproc2020002035

89-20      Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, Bernhard Gems, The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D, Natural Hazards and Earth Systems Sciences, 20; pp. 2255–2279, 2020. doi.org/10.5194/nhess-20-2255-2020

88-20      Cesar Simon, Eddy J. Langendoen, Jorge D. Abad, Alejandro Mendoza, On the governing equations for horizontal and vertical coupling of one- and two-dimensional open channel flow models, Journal of Hydraulic Research, 58.5; pp. 709-724, 2020. doi.org/10.1080/00221686.2019.1671507

87-20       Mohammad Nazari-Sharabian, Moses Karakouzian, Donald Hayes, Flow topology in the confluence of an open channel with lateral drainage pipe, Hydrology, 7.3; 57, 2020. doi.org/10.3390/hydrology7030057

84-20       Naohiro Takeichi, Takeshi Katagiri, Harumi Yoneda, Shusaku Inoue, Yusuke Shintani, Virtual Reality approaches for evacuation simulation of various disasters, Collective Dynamics (originally presented in Proceedings from the 9th International Conference on Pedestrian and Evacuation Dynamics (PED2018), Lund, Sweden, August 21-23, 2018), 5, 2020. doi.org/10.17815/CD.2020.93

83-20       Eric Lemont, Jonathan Hill, Ryan Edison, A problematic installation: CFD modelling of waste stabilisation pond mixing alternatives, Ozwater’20, Australian Water Association, Online, June 2, 2020, 2020.

77-20       Peng Yu, Ruigeng Hu, Jinmu Yang, Hongjun Liu, Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves, Ocean Engineering, 213; 107696, 2020. doi.org/10.1016/j.oceaneng.2020.107696

76-20       Alireza Mojtahedi, Nasim Soori, Majid Mohammadian, Energy dissipation evaluation for stepped spillway using a fuzzy inference system, SN Applied Sciences, 2; 1466, 2020. doi.org/10.1007/s42452-020-03258-0

74-20       Jackson D., Tellez Alvarez E., Manuel Gómez, Beniamino Russo, Modelling of surcharge flow through grated inlet, Advances in Hydroinformatics: SimHydro 2019 – Models for Extreme Situations and Crisis Management, Nice, France, June 12-14, 2019, pp. 839-847, 2020. doi.org/10.1007/978-981-15-5436-0_65

73-20       Saurav Dulal, Bhola NS Ghimire, Santosh Bhattarai, Ram Krishna Regmi, Numerical simulation of flow through settling basin: A case study of Budhi-Ganga Hydropower Project (BHP), International Journal of Engineering Research & Technology (IJERT), 9.7; pp. 992-998, 2020.

70-20       B. Nandi, S. Das, A. Mazumdar, Experimental analysis and numerical simulation of hydraulic jump, IOP Conference Series: Earth and Environmental Science, 2020 6th International Conference on Environment and Renewable Energy, Hanoi, Vietnam, February 24-26, 505; 012024, 2020. doi.org/10.1088/1755-1315/505/1/012024

69-20       Amir Ghaderi, Rasoul Daneshfaraz, Mehdi Dasineh, Silvia Di Francesco, Energy dissipation and hydraulics of flow over trapezoidal–triangular labyrinth weirs, Water (Special Issue: Combined Numerical and Experimental Methodology for Fluid–Structure Interactions in Free Surface Flows), 12.7; 1992, 2020. doi.org/10.3390/w12071992

68-20       Jia Ni, Linwei Wang, Xixian Chen, Luan Luan Xue, Isam Shahrour, Effect of the fish-bone dam angle on the flow mechanisms of a fish-bone type dividing dyke, Marine Technology Society Journal, 54.3; pp. 58-67, 2020. doi.org/10.4031/MTSJ.54.3.9

67-20       Yu Zhuang, Yueping Yin, Aiguo Xing, Kaiping Jin, Combined numerical investigation of the Yigong rock slide-debris avalanche and subsequent dam-break flood propagation in Tibet, China, Landslides, 17; pp. 2217-2229, 2020. doi.org/10.1007/s10346-020-01449-9

66-20       A. Ghaderi, R. Daneshfaraz, S. Abbasi, J. Abraham, Numerical analysis of the hydraulic characteristics of modified labyrinth weirs, International Journal of Energy and Water Resources, 4.2, 2020. doi.org/10.1007/s42108-020-00082-5

65-20      D.P. Zielinski, S. Miehls, G. Burns, C. Coutant, Adult sea lamprey espond to induced turbulence in a low current system, Journal of Ecohydraulics, 5, 2020. doi.org/10.1080/24705357.2020.1775504

63-20       Raffaella Pellegrino, Miguel Ángel Toledo, Víctor Aragoncillo, Discharge flow rate for the initiation of jet flow in sky-jump spillways, Water, Special Issue: Planning and Management of Hydraulic Infrastructure, 12.6; 1814, 2020. doi.org/10.3390/w12061814

59-20       Nesreen Taha, Maged M. El-Feky, Atef A. El-Saiad, Ismail Fathy, Numerical investigation of scour characteristics downstream of blocked culverts, Alexandria Engineering Journal, 59.5; pp. 3503-3513, 2020. doi.org/10.1016/j.aej.2020.05.032

57-20       Charles Ortloff, The Hydraulic State: Science and Society in the Ancient World, Routledge, London, UK, eBook ISBN: 9781003015192, 2020. doi.org/10.4324/9781003015192

54-20       Navid Aghajani, Hojat Karami, Hamed Sarkardeh, Sayed‐Farhad Mousavi, Experimental and numerical investigation on effect of trash rack on flow properties at power intakes, Journal of Applied Mathematics and Mechanics (ZAMM), online pre-issue, 2020. doi.org/10.1002/zamm.202000017

53-20     Tian Zhou, Theodore Endreny, The straightening of a river meander leads to extensive losses in flow complexity and ecosystem services, Water (Special Issue: A Systems Approach of River and River Basin Restoration), 12.6; 1680, 2020. doi.org/10.3390/w12061680

50-20       C.C. Battiston, F.A. Bombardelli, E.B.C. Schettini, M.G. Marques, Mean flow and turbulence statistics through a sluice gate in a navigation lock system: A numerical study, European Journal of Mechanics – B/Fluids, 84; pp.155-163, 2020. doi.org/10.1016/j.euromechflu.2020.06.003

47-20       Mohammad Nazari-Sharabian, Aliasghar Nazari-Sharabian, Moses Karakouzian, Mehrdad Karami, Sacrificial piles as scour countermeasures in river bridges: A numerical study using FLOW-3D, Civil Engineering Journal, 6.6; pp. 1091-1103, 2020. doi.org/10.28991/cej-2020-03091531

44-20    Leena Jaydeep Shevade, L. James Lo, Franco A. Montalto, Numerical 3D model development and validation of curb-cut inlet for efficiency prediction, Water, 12; 1791, 2020. doi.org/10.3390/w12061791

43-20       Vitor Hugo Pereira de Morais, Tiago Zenker Gireli, Paulo Vatavuk, Numerical and experimental models applied to an ogee crest spillway and roller bucket stilling basin, Brazilian Journal of Water Resources, 2020. doi.org/10.1590/2318-0331.252020190005

42-20       Chen Xie, Qin Chen, Gang Fan, Chen Chen, Numerical simulation of the natural erosion and breaching process of the “10.11” Baige Landslide Dam on the Jinsha River, Dam Breach Modelling and Risk Disposal, pp. 376-377, International Conference on Embankment Dams (ICED), Beijing, China, June 5 – 7, 2020. doi.org/10.1007/978-3-030-46351-9_40

41-20       Niloofar Aghili Mahabadi, Hamed Reza Zarif Sanayei, Performance evaluation of bilateral side slopes in piano key weirs by numerical simulation, Modeling Earth Systems and Environment, 6; pp. 1477-1486, 2020. doi.org/10.1007/s40808-020-00764-3

40-20       P. April Le Quéré, I. Nistor, A. Mohammadian, Numerical modeling of tsunami-induced scouring around a square column: Performance assessment of FLOW-3D and Delft3D, Journal of Coastal Research (preprint), 2020. doi.org/10.2112/JCOASTRES-D-19-00181

39-20       Jian Zhou, Subhas K. Venayagamoorthy, Impact of ambient stable stratification on gravity currents propagating over a submerged canopy, Journal of Fluid Mechanics, 898; A15, 2020. doi.org/10.1017/jfm.2020.418

37-20     Aliasghar Azma, Yongxiang Zhang, The effect of variations of flow from tributary channel on the flow behavior in a T-shape confluence, Processes, 8; 614, 2020. doi.org/10.3390/pr8050614

35-20     Selahattin Kocaman, Hasan Güzel, Stefania Evangelista, Hatice Ozmen-Cagatay, Giacomo Viccione, Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel, Water, 12; 1124, 2020. doi.org/10.3390/w12041124

32-20       Adriano Henrique Tognato, Modelagem CFD da interação entre hidrodinâmica costeira e quebra-mar submerso: estudo de caso da Ponta da Praia em Santos, SP (CFD modeling of interaction between sea waves and submerged breakwater at Ponta de Praia – Santos, SP: a case study, Thesis, Universidad Estadual de Campinas, Campinas, Brazil, 2020.

31-20   Hamidreza Samma, Amir Khosrojerdi, Masoumeh Rostam-Abadi, Mojtaba Mehraein and Yovanni Cataño-Lopera, Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet, Journal of Hydroinformatics, 22.2, pp. 385-401, 2020. doi.org/10.2166/hydro.2020.091

28-20   Halah Kais Jalal and Waqed H. Hassan, Three-dimensional numerical simulation of local scour around circular bridge pier using FLOW-3D software, IOP Conference Series: Materials Science and Engineering, art. no. 012150, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019745. doi.org/10.1088/1757-899X/745/1/012150

25-20   Faizal Yusuf and Zoran Micovic, Prototype-scale investigation of spillway cavitation damage and numerical modeling of mitigation options, Journal of Hydraulic Engineering, 146.2, 2020. doi.org/10.1061/(ASCE)HY.1943-7900.0001671

24-20   Huan Zhang, Zegao Yin, Yipei Miao, Minghui Xia and Yingnan Feng, Hydrodynamic performance investigation on an upper and lower water exchange device, Aquacultural Engineering, 90, art. no. 102072, 2020. doi.org/10.1016/j.aquaeng.2020.102072

22-20   Yu-xiang Hu, Zhi-you Yu and Jian-wen Zhou, Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha River, Landslides, 2020. doi.org/10.1007/s10346-020-01382-x

19-20   Amir Ghaderi, Mehdi Dasineh, Saeed Abbasi and John Abraham, Investigation of trapezoidal sharp-crested side weir discharge coefficients under subcritical flow regimes using CFD, Applied Water Science, 10, art. no. 31, 2020. doi.org/10.1007/s13201-019-1112-8

18-20   Amir Ghaderi, Saeed Abbasi, John Abraham and Hazi Mohammad Azamathulla, Efficiency of trapezoidal labyrinth shaped stepped spillways, Flow Measurement and Instrumentation, 72, art. no. 101711, 2020. doi.org/10.1016/j.flowmeasinst.2020.101711

16-20   Majid Omidi Arjenaki and Hamed Reza Zarif Sanayei, Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach, Modeling Earth Systems and Environment, 2020. doi.org/10.1007/s40808-020-00714-z

15-20   Bo Wang, Wenjun Liu, Wei Wang, Jianmin Zhang, Yunliang Chen, Yong Peng, Xin Liu and Sha Yang, Experimental and numerical investigations of similarity for dam-break flows on wet bed, Journal of Hydrology, 583, art. no. 124598, 2020. doi.org/10.1016/j.jhydrol.2020.124598

14-20   Halah Kais Jalal and Waqed H. Hassan, Effect of bridge pier shape on depth of scour, IOP Conference Series: Materials Science and Engineering, art. no. 012001, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019671. doi.org/10.1088/1757-899X/671/1/012001

13-20   Shahad R. Mohammed, Basim K. Nile and Waqed H. Hassan, Modelling stilling basins for sewage networks, IOP Conference Series: Materials Science and Engineering, art. no. 012111, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019671. doi.org/10.1088/1757-899X/671/1/012111

11-20   Xin Li, Liping Jin, Bernie A. Engel, Zeng Wang, Wene Wang, Wuquan He and Yubao Wang, Influence of the structure of cylindrical mobile flumes on hydraulic performance characteristics in U-shaped channels, Flow Measurement and Instrumentation, 72, art. no. 101708, 2020. doi.org/10.1016/j.flowmeasinst.2020.101708

10-20   Nima Aein, Mohsen Najarchi, Seyyed Mohammad Mirhosseini Hezaveh, Mohammad Mehdi Najafizadeh and Ehsanollah Zeigham, Simulation and prediction of discharge coefficient of combined weir–gate structure, Proceedings of the Institution of Civil Engineers – Water Management (ahead of print), 2020. doi.org/10.1680/jwama.19.00047

03-20   Agostino Lauria, Francesco Calomino, Giancarlo Alfonsi, and Antonino D’Ippolito, Discharge coefficients for sluice gates set in weirs at different upstream wall inclinations, Water, 12, art. no. 245, 2020. doi.org/10.3390/w12010245

113-19   Ruidong An, Jia Li, Typical biological behavior of migration and flow pattern creating for fish schooling, E-Proceedings, 38th IAHR World Congress, Panama City, Panama, September 1-6, 2019.

112-19   Wenjun Liu, Bo Wang, Hang Wang, Jianmin Zhang, Yunliang Chen, Yong Peng, Xin Liu, Sha Yang, Experimental and numerical modeling of dam-break flows in wet downstream conditions, E-Proceedings, 38th IAHR World Congress, Panama City, Panama, September 1-6, 2019.

111-19   Zhang Chendi, Liu Yingjun, Xu Mengzhen, Wang Zhaoyin, The 3D numerical study on flow properties of individual step-pool, Proceedings: 14th International Symposium on River Sedimentation, Chengdu, China, September 16-19, 2019.

110-19   Mason Garfield, The effects of scour on the flow field at a bendway weir, Thesis: Colorado State University, Fort Collins, Colorado, Colorado State University, Fort Collins, Colorado.

109-19   Seth Siefken, Computational fluid dynamics models of Rio Grande bends fitted with rock vanes or bendway weirs, Thesis: Colorado State University, Fort Collins, Colorado, Colorado State University, Fort Collins, Colorado.

108-19   Benjamin Israel Devadason and Paul Schweiger, Decoding the drowning machines: Using CFD modeling to predict and design solutions to remediate the dangerous hydraulic roller at low head dams, The Journal of Dam Safety, 17.1, pp. 20-31, 2019.

106-19   Amir Ghaderi and Saeed Abbasi, CFD simulations of local scouring around airfoil-shaped bridge piers with and without collar, Sādhanā, art. no. 216, 2019. doi.org/10.1007/s12046-019-1196-8

105-19   Jacob van Alwon, Numerical and physical modelling of aerated skimming flows over stepped spillways, Thesis, University of Leeds, Leeds, United Kingdom, 2019.

100-19   E.H. Hussein Al-Qadami, A.S. Abdurrasheed, Z. Mustaffa, K.W. Yusof, M.A. Malek and A. Ab Ghani, Numerical modelling of flow characteristics over sharp crested triangular hump, Results in Engineering, 4, art. no. 100052, 2019. doi.org/10.1016/j.rineng.2019.100052

99-19   Agostino Lauria, Francesco Calomino, Giancarlo Alfonsi, and Antonino D’Ippolito, Discharge coefficients for sluice gates set in weirs at different upstream wall inclinations, Water, 12.1, art. no. 245, 2019. doi.org/10.3390/w12010245

98-19   Redvan Ghasemlounia and M. Sedat Kabdasli, Surface suspended sediment distribution pattern for an unexpected flood event at Lake Koycegiz, Turkey, Proceedings, 14th National Conference on Watershed Management Sciences and Engineering, Urmia, Iran, July 16-17, 2019.

97-19   Brian Fox, Best practices for simulating hydraulic structures with CFD, Proceedings, Dam Safety 2019, Orlando, Florida, USA, September 8-12, 2019.

96-19   John Wendelbo, Verification of CFD predictions of self-aeration onset on stepped chute spillways, Proceedings, Dam Safety 2019, Orlando, Florida, USA, September 8-12, 2019.

95-19   Pankaj Lawande, Anurag Chandorkar and Adhirath Mane, Predicting discharge rating curves for tainter gate controlled spillway using CFD simulations, Proceedings, 24th HYDRO 2019, International Conference, Hyderabad, India, December 18-20, 2019.

91-19   Gyeong-Bo Kim, Wei Cheng, Richards C. Sunny, Juan J. Horrillo, Brian C. McFall, Fahad Mohammed, Hermann M. Fritz, James Beget, and Zygmunt Kowalik , Three Dimensional Landslide Generated Tsunamis: Numerical and Physical Model Comparisons, Landslides, 2019. doi.org/10.1007/s10346-019-01308-2

85-19   Susana D. Amaral, Ana L. Quaresma, Paulo Branco, Filipe Romão, Christos Katopodis, Maria T. Ferreira, António N. Pinheiro, and José M. Santos, Assessment of retrofitted ramped weirs to improve passage of potamodromous fish, Water, 11, art. no. 2441, 2019. doi.org/10.3390/w11122441

82-19   Shubing Dai, Yong He, Jijian Yang, Yulei ma, Sheng Jin, and Chao Liang, Numerical study of cascading dam-break characteristics using SWEs and RANS, Water Supply, 2019. doi.org/10.2166/ws.2019.168

81-19   Kyong Oh Baek, Evaluation technique for efficiency of fishway based on hydraulic analysis, Journal of Korea Water Resources Association, 52.spc2, pp. 855-863, 2019. doi.org/10.3741/JKWRA.2019.52.S-2.855

80-19   Yongye Li, Yuan Gao, Xiaomeng Jia, Xihuan Sun, and Xuelan Zhang, Numerical simulations of hydraulic characteristics of a flow discharge measurement process with a plate flowmeter in a U-channel, Water, art. no. 2392, 2019. doi.org/10.3390/w11112382

76-19   Youtong Rong, Ting Zhang, Yanchen Zheng, Chunqi Hu, Ling Peng, and Ping Feng, Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry, Journal of Hydrology, in press, 2019. doi.org/10.1016/j.jhydrol.2019.124308

74-19   Youtong Rong, Ting Zhang, Ling Peng, and Ping Feng, Three-dimensional numerical simulation of dam discharge and flood routing in Wudu Reservoir, Water, 11, art. no. 2157, 2019. doi.org/10.3390/w11102157

70-19   Le Thi Thu Hien, Study the flow over chute spillway by both numerical and physical models, Proceedings, pp. 845-851, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019. doi.org/10.1007/978-981-15-0291-0_116

69-19   T. Vinh Cuong, N. Thanh Hung, V. Thanh Te, P. Anh Tuan, Analysis of spur dikes spatial layout to river bed degradation under reversing tidal flow, Proceedings, pp. 737-744, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019. doi.org/10.1007/978-981-15-0291-0_101

67-19   Zongshi Dong, Junxing Wang, David Florian Vetsch, Robert Michael Boes, and Guangming Tan, Numerical simulation of air–water two-phase flow on stepped spillways behind X-shaped flaring gate piers under very high unit discharge, Water, 11, art. no. 1956, 2019. doi.org/10.3390/w11101956

66-19   Tony L. Wahl, Effect of boundary layer conditions on uplift pressures at open offset spillway joints, Sustainable and Safe Dams Around the World: Proceedings, 2019. doi.org/10.1201/9780429319778-182

65-19   John Petrie, Kun Zhang, and Mahmoud Shehata, Numerical simulation of snow deposition around living snow fences, Community Center for Environmentally Sustainable Transportation in Cold Climates (CESTiCC), Project Report, 2019.

64-19   Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Markus Aufleger, Michael Strasser, and Bernhard Gems, Lituya Bay 1958 Tsunami – detailed pre-event bathymetry reconstruction and 3D-numerical modelling utilizing the CFD software FLOW-3D, Natural Hazards and Earth Systems Sciences, under review, 2019. doi.org/10.5194/nhess-2019-285

63-19   J. Patarroyo, D. Damov, D. Shepherd, G. Snyder, M. Tremblay, and M. Villeneuve, Hydraulic design of stepped spillway using CFD supported by physical modelling: Muskrat Falls hydroelectric generating facility, Sustainable and Safe Dams Around the World: Proceedings, , pp. 205-219, 2019. doi.org/10.1201/9780429319778-19

61-19   A.S. Abdurrasheed, K.W. Yusof, E.H. Hussein Alqadami, H. Takaijudin, A.A. Ghani, M.M. Muhammad, A.T. Sholagberu, M.K. Zainalfikry, M. Osman, and M.S. Patel, Modelling of flow parameters through subsurface drainage modules for application in BIOECODS, Water, 11, art. no. 1823, 2019. doi.org/10.3390/w11091823

59-19     Brian Fox and Robert Feurich, CFD analysis of local scour at bridge piers, Proceedings of the Federal Interagency Sedimentation and Hydraulic Modeling Conference (SEDHYD), Reno, Nevada, June 24-28, 2019.

56-19     Pankaj Lawande, Brian Fox, and Anurag Chandorkar, Three dimensional CFD modeling of flow over a tainter gate spillway, International Dam Safety Conference, Bhubaneswar, Odisha, India, February 13-14, 2019.

49-19     Yousef Sangsefidi, Bruce MacVicar, Masoud Ghodsian, Mojtaba Mehraein, Mohammadamin Torabi, and Bruce M. Savage, Evaluation of flow characteristics in labyrinth weirs using response surface methodology, Flow Measurement and Instrumentation, Vol. 69, 2019. doi: 10.1016/j.flowmeasinst.2019.101617

43-19     Gongyun Liao, Zancheng Tang, and Fei Zhu, Self-cleaning performance of double-layer porous asphalt pavements with different granular diameters and layer combinations, 19th COTA International Conference of Transportation, Nanjing, China, July 6-8, 2019.

42-19     Tsung-Chun Ho, Gwo-Jang Hwang, Kao-Shu Hwang, Kuo-Cheng Hsieh, and Lung-Wei Chen, Experimental and numerical study on desilting efficiency of the bypassing tunnel for Nan-Hua reservoir, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

41-19     Chang-Ting Hsieh, Sheng-Yung Hsu, and Chin-Pin Ko, Planning of sluicing tunnel in front of the Wushe dam – retrofit the existing water diversion tunnel as an example, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

40-19     Chi-Lin Yang, Pang-ku Yang, Fu-June Wang, and Kuo-Cheng Hsieh, Study on the transportation of high-concentration sediment flow and the operation of sediment de-silting in Deji Reservoir, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

39-19   Sam Glovik and John Wendelbo, Advanced CFD air entrainment capabilities for baffle drop structure design, NYWEA 91st Annual Meeting, New York, NY, February 3-6, 2019.

36-19     Ahmed M. Helmi, Heba T. Essawy, and Ahmed Wagdy, Three-dimensional numerical study of stacked drop manholes, Journal of Irrigation and Drainage Engineering, Vol. 145, No. 9, 2019. doi: 10.1061/(ASCE)IR.1943-4774.0001414

33-19     M. Cihan Aydin, A. Emre Ulu, and Çimen Karaduman, Investigation of aeration performance of Ilısu Dam outlet using two-phase flow model, Applied Water Science, Vol. 9, No. 111, 2019. doi: 10.1007/s13201-019-0982-0

16-19     Bernard Twaróg, The analysis of the reactive work of the Alden Turbine, Technical Transactions I, Environmental Engineering, 2019. doi: 10.4467/2353737XCT.19.010.10050

14-19     Guodong Li, Xingnan Li, Jian Ning, and Yabing Deng, Numerical simulation and engineering application of a dovetail-shaped bucket, Water, Vol. 11, No. 2, 2019. doi: 10.3390/w11020242

13-19     Ilaria Rendina, Giacomo Viccione, and Leonardo Cascini, Kinematics of flow mass movements on inclined surfaces, Theoretical and Computational Fluid Dynamics, Vol. 33, No. 2, pp. 107-123, 2019. doi: 10.1007/s00162-019-00486-y

10-19     O.K. Saleh, E.A. Elnikhely, and Fathy Ismail, Minimizing the hydraulic side effects of weirs construction by using labyrinth weirs, Flow Measurement and Instrumentation, Vol. 66, pp. 1-11, 2019. doi: 10.1016/j.flowmeasinst.2019.01.016

05-19   Hakan Ersoy, Murat Karahan, Kenan Gelişli, Aykut Akgün, Tuğçe Anılan, M. Oğuz Sünnetci, Bilgehan Kul Yahşi, Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation, Engineering Geology, Vol. 249, pp. 112-128, 2019. doi: 10.1016/j.enggeo.2018.12.025

96-18     Kyung-Seop Sin, Robert Ettema, Christopher I. Thornton, Numerical modeling to assess the influence of bendway weirs on flow distribution in river beds, Task 4 of Study: Native Channel Topography and Rock-Weir Structure Channel-Maintenance Techniques, U.S. Dept. of the Interior. CSU-HYD Report No. 2018-1, 2018.

95-18   Thulfikar Razzak Al-Husseini, Hayder A. Al-Yousify and Munaf A. Al-Ramahee, Experimental and numerical study of the effect of the downstream spillway face’s angle on the stilling basin’s energy dissipation, International Journal of Civil Engineering and Technology, 9.8, pp. 1327-1337, 2018.

94-18   J. Michalski and J. Wendelbo, Utilizing CFD methods as a forensic tool in pipeline systems to assess air/water transient issues, Proceedings, 7, pp. 5519-5527, 91st Water Environment Federation Technical Exhibition & Conference (WEFTEC), New Orleans, LA, United States, September 29 – October 3, 2018. doi.org/10.2175/193864718825138817

79-18 Harold Alvarez and John Wendelbo, Estudio de 3 modelos matemáticos para similar olas producidas por derrumbes en embalses y esfuerzos en compuertas, XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina, September 2018. (In Spanish)

70-18   Michael Pfister, Gaetano Crispino, Thierry Fuchsmann, Jean-Marc Ribi and Corrado Gisonni, Multiple inflow branches at supercritical-type vortex drop shaft, Journal of Hydraulic Engineering, Vol. 144, No. 11, 2018. doi.org/10.1061/(ASCE)HY.1943-7900.0001530

67-18   F. Nunes, J. Matos and I. Meireles, Numerical modelling of skimming flow over small converging spillways, 3rd International Conference on Protection against Overtopping, June 6-8, 2018, Grange-over-Sands, UK, 2018.

66-18   Maria João Costa, Maria Teresa Ferreira, António N. Pinheiro and Isabel Boavida, The potential of lateral refuges for Iberian barbel under simulated hydropeaking conditions, Ecological Engineering, Vol. 124, 2018. doi.org/10.1016/j.ecoleng.2018.07.029

63-18   Michael J. Seluga, Frederick Vincent, Samuel Glovick and Brad Murray, A new approach to hydraulics in baffle drop shafts to address dry and wet weather flow in combined sewer tunnels, North American Tunneling Conference Proceedings, June 24-27, 2018, Washington, D.C. pp. 448-461, 2018. © Society for Mining, Metallurgy & Exploration

62-18   Ana Quaresma, Filipe Romão, Paulo Branco, Maria Teresa Ferreira and António N. Pinheiro, Multi slot versus single slot pool-type fishways: A modelling approach to compare hydrodynamics, Ecological Engineering, Vol. 122, pp. 197-206, 2018. doi.org/10.1016/j.ecoleng.2018.08.006

57-18   Amir Isfahani, CFD modeling of piano key weirs using FLOW-3D, International Dam Safety Conference, January 23-24, 2018, Thiruvananthapuram, Kerala, India; Technical Session 1A, Uncertainties and Risk Management in Dams, 2018.

49-18   Jessica M. Thompson, Jon M. Hathaway and John S. Schwartz, Three-dimensional modeling of the hydraulic function and channel stability of regenerative stormwater conveyances, Journal of Sustainable Water in the Built Environment, vol. 4, no.3, 2018. doi.org/10.1061/JSWBAY.0000861

46-18   A.B. Veksler and S.Z. Safin, Hydraulic regimes and downstream scour at the Kama Hydropower Plant, Power Technology and Engineering, vol. 51, no. 5, pp. 2-13, 2018. doi.org/10.1007/s10749-018-0862-z

45-18   H. Omara and A. Tawfik, Numerical study of local scour around bridge piers, 9th Annual Conference on Environmental Science and Development, Paris, France, Feb. 7-9, 2018; IOP Conference Series: Earth and Environmental Sciences, vol. 151, 2018. doi.org:10.1088/1755-1315/151/1/012013

40-18   Vincent Libaud, Christophe Daux and Yanis Oukid, Practical Capacities and Challenges of 3D CFD Modelling: Feedback Experience in Engineering Projects, Advances in Hydroinformatics, pp. 767-780, 2018. doi.org/10.1007/978-981-10-7218-5_55

39-18   Khosro Morovati and Afshin Eghbalzadeh, Study of inception point, void fraction and pressure over pooled stepped spillways using FLOW-3D, International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28, no. 4, pp.982-998, 2018. doi.org/10.1108/HFF-03-2017-0112

34-18   Tomasz Siuta, The impact of deepening the stilling basin on the characteristics of hydraulic jump, Technical Transactions, vol. 3, pp. 173-186, 2018.

32-18   Azin Movahedi, M.R. Kavianpour, M. R and Omid Aminoroayaie Yamini, Evaluation and modeling scouring and sedimentation around downstream of large dams, Environmental Earth Sciences, vol. 77, no. 8, pp. 320, 2018. doi.org/10.1007/s12665-018-7487-2

31-18   Yang Song, Ling-Lei Zhang, Jia Li, Min Chen and Yao-Wen Zhang, Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs, Science of The Total Environment, vol. 636, pp. 230-239, 2018. doi.org/10.1016/j.scitotenv.2018.04.257

30-18   Shaolin Yang, Wanli Yang, Shunquan Qin, Qiao Li and Bing Yang, Numerical study on characteristics of dam-break wave, Ocean Engineering, vol. 159, pp.358-371, 2018. doi.org/10.1016/j.oceaneng.2018.04.011

27-18   Rachel E. Chisolm and Daene C. McKinney, Dynamics of avalanche-generated impulse waves: three-dimensional hydrodynamic simulations and sensitivity analysis, Natural Hazards and Earth System Sciences, vol. 18, pp. 1373-1393, 2018. doi.org/10.5194/nhess-18-1373-2018.

24-18   Han Hu, Zhongdong Qian, Wei Yang, Dongmei Hou and Lan Du, Numerical study of characteristics and discharge capacity of piano key weirs, Flow Measurement and Instrumentation, vol. 62, pp. 27-32, 2018. doi.org/10.1016/j.flowmeasinst.2018.05.004

23-18   Manoochehr Fathi-Moghaddam, Mohammad Tavakol Sadrabadi and Mostafa Rahmanshahi, Numerical simulation of the hydraulic performance of triangular and trapezoidal gabion weirs in free flow condition, Flow Measurement and Instrumentation, vol. 62, pp. 93-104, 2018. doi.org/10.1016/j.flowmeasinst.2018.05.005

22-18   Anastasios I.Stamou, Georgios Mitsopoulos, Peter Rutschmann and Minh Duc Bui, Verification of a 3D CFD model for vertical slot fish-passes, Environmental Fluid Mechanics, June 2018. doi.org/10.1007/s10652-018-9602-z

17-18   Nikou Jalayeri, John Wendelbo, Joe Groeneveld, Andrew John Bearlin, and John Gulliver, Boundary dam total dissolved gas analysis using a CFD model, Proceedings from the U.S. Society on Dams Annual Conference, April 30 – May 4, 2018, © 2018 U.S. Society on Dams.

12-18   Bernard Twaróg, Interaction between hydraulic conditions and structures – fluid structure interaction problem solving. A case study of a hydraulic structure, Technical Transactions 2/2018, Environmental Engineering, DOI: 10.4467/2353737XCT.18.029.8002

06-18   Oscar Herrera-Granados, Turbulence Flow Modeling of One-Sharp-Groyne Field, © Springer International Publishing AG 2018, M. B. Kalinowska et al. (eds.), Free Surface Flows and Transport Processes, GeoPlanet: Earth and Planetary Sciences, https://doi.org/10.1007/978-3-319-70914-7_12

05-18  Shangtuo Qian, Jianhua Wu, Yu Zhou and Fei Ma, Discussion of “Hydraulic Performance of an Embankment Weir with Rough Crest” by Stefan Felder and Nushan Islam, J. Hydraul. Eng., 2018, 144(4): 07018003, © ASCE.

04-18   Faezeh Tajabadi, Ehsan Jabbari and Hamed Sarkardeh, Effect of the end sill angle on the hydrodynamic parameters of a stilling basin, DOI 10.1140/epjp/i2018-11837-y, Eur. Phys. J. Plus (2018) 133: 10

03-18   Dhemi Harlan, Dantje K. Natakusumah, Mohammad Bagus Adityawan, Hernawan Mahfudz and Fitra Adinata, 3D Numerical Modeling of Flow in Sedimentation Basin, MATEC Web of Conferences 147, 03012 (2018), https://doi.org/10.1051/matecconf/201814703012 SIBE 2017

02-18   ARKAN IBRAHIM, AZHEEN KARIM and Mustafa GÜNAL, Simulation of local scour development downstream of broad-crested weir with inclined apron, European Journal of Science and Technology Special Issue, pp. 57-61, January 2018, Copyright © 2017 EJOSAT.

62-17   Abbas Mansoori, Shadi Erfanian and Farhad Khamchin Moghadam, A study of the conditions of energy dissipation in stepped spillways with A-shaped step using FLOW-3D, Civil Engineering Journal, 3.10, 2017.

57-17   Ben Modra, Brett Miller, Nigel Moon and Andrew Berghuis, Physical model testing of a bespoke articulated concrete block (ACB) fishway, 13th Hydraulics in Water Engineering Conference, Sydney, Nov. 13-18, 2017; Engineers Australia, pp. 301-309, 2017.

53-17   C. Gonzalez, U. Baeumer and C. Russell, Natural disaster relief and recovery arrangements Fitzroy project, bridge scour remediation, 13th Hydraulics in Water Engineering Conference, Sydney. Nov. 13-18, 2017; Engineers Australia, pp. 274-281, 2017.

52-17   Nigel Moon, Russell Merz, Sarah Luu and Daley Clohan, Utilising CFD modelling to conceptualise a novel rock ramp fishway design, 13th Hydraulics in Water Engineering Conference, Sydney, Nov. 13-18, 2017; Engineers Australia, pp. 382-389, 2017.

50-17   B.M. Crookston, R.M. Anderson and B.P. Tullis, Free-flow discharge estimation method for Piano Key weir geometries, Journal of Hydro-environment Research (2017), http://dx.doi.org/10.1016/j.jher.2017.10.003.

48-17   Jian Zhou, Physics of Environmental Flows Interacting with Obstacles, PhD Thesis: Colorado State University, Copyright by Jian Zhou 2017, All Rights Reserved.

46-17   Michael Sturn, Bernhard Gems, Markus Aufleger, Bruno Mazzorana, Maria Papathoma-Köhle and Sven Fuchs, Scale Model Measurements of Impact Forces on Obstacles Induced by Bed-load Transport Processes, Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia.

43-17   Paula Beceiro, Maria do Céu Almeida and Jorge Matos, Numerical modelling of air-water flows in sewer drops, Available Online 28 April 2017, wst2017246; DOI: 10.2166/wst.2017.246

42-17   Arnau Bayon, Juan Pablo Toro,  Fabián A.Bombardelli, Jorge Matose and Petra Amparo López-Jiménez, Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways, Journal of Hydro-environment Research, Available online 26 October 2017

40-17   Sturm M, Gems B, Mazzorana B, Gabl R and Aufleger M, Validation of physical and 3D numerical modelling of hydrodynamic flow impacts on objects (Validierung experimenteller und 3-D-numerischer Untersuchungen zur Einwirkung hydrodynamischer Fließprozesse auf Objekte), Bozen-Bolzano Institutional Archive (BIA), ISSN: 0043-0978, https://bia.unibz.it/handle/10863/3893, 2017

38-17   Tsung-Hsien Huang, Chyan-Deng Jan, and Yu-Chao Hsu, Numerical Simulations of Water Surface Profiles and Vortex Structure in a Vortex Settling Basin by using FLOW-3D, Journal of Marine Science and Technology, Vol. 25, No. 5, pp. 531-542 (2017) 531, DOI: 10.6119/JMST-017-0509-1

36-17   Jacob van Alwon, Duncan Borman and Andrew Sleigh, Numerical Modelling of Aerated Flows Over Stepped Spillways, 37th IAHR World Congress, 2017.

35-17   Abolfazl Nazari Giglou, John Alex Mccorquodale and Luca Solari, Numerical study on the effect of the spur dikes on sedimentation pattern, Ain Shams Engineering Journal, Available online 8 March 2017.

33-17   Giovanni De Cesare, Khalid Essyad, Paloma Furlan, Vu Nam Khuong, Sean Mulligan, Experimental study at prototype scale of a self-priming free surface siphon, Congrès SHF : SIMHYDRO 2017, Nice, 14-16 June

32-17   Kathryn Plymesser and Joel Cahoon, Pressure gradients in a steeppass fishway using a computational fluid dynamics model, Ecological Engineering 108 (2017) 277–283.

31-17   M. Ghasemi, S. Soltani-Gerdefaramarzi, The Scour Bridge Simulation around a Cylindrical Pier Using FLOW-3D, Journal of Hydrosciences and Environment 1(2): 2017 46-54

27-17   John Wendelbo and Brian Fox, CFD modeling of Piano Key weirs: validation and numerical parameter space analysis, 2017 Dam Safety, San Antonio, September 10-14, 2017, Copyright © 2017 Association of State Dam Safety Officials, Inc. All Rights Reserved.

26-17   Brian Fox and John Wendelbo, Numerical modeling of Piano Key Weirs using FLOW-3D, USSD Annual Conference, Anaheim, CA, April 3- 7, 2017

25-17   Rasoul Daneshfaraz, Sina Sadeghfam and Ali Ghahramanzadeh, Three-dimensional Numerical Investigation of Flow through Screens as Energy Dissipators, Canadian Journal of Civil Engineering, https://doi.org/10.1139/cjce-2017-0273

23-17   J.M, Duguay, R.W.J. Lacey and J. Gaucher, A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D, Ecological Engineering, Volume 103, Part A, June 2017, Pages 31-42

22-17   Hanif Pourshahbaz, Saeed Abbasi and Poorya Taghvaei, Numerical scour modeling around parallel spur dikes in FLOW-3D, https://doi.org/10.5194/dwes-2017-21, Drinking Water Engineering and Science, © Author(s) 2017

21-17   Hamid Mirzaei, Zohreh Heydari and Majid Fazli, The effect of meshing and comparing different models of turbulence in topographic prediction of bed and amplitude of flow around the groin in 90-degree arc with movable bed, Modeling Earth Systems and Environment, pp 1–16, July 2017

13-17   Lan Qi, Hui Chen, Xiao Wang, Wencai Fei and Donghai Liu, Establishment and application of three-dimensional realistic river terrain in the numerical modeling of flow over spillways, Water Science & Technology: Water Supply | in press | 2017.

11-17   Allison, M.A., Yuill, B.T., Meselhe, E.A., Marsh, J.K., Kolker, A.S., Ameen, A.D., Observational and numerical particle tracking to examine sediment dynamics in a Mississippi River delta diversion, Estuarine, Coastal and Shelf Science (2017), doi: 10.1016/j.ecss.2017.06.004.

09-17   Hamid Mirzaei, Zohreh Heydari and Majid Fazli, The effect of meshing and comparing different turbulence models in predicting the topography of bed and flow field in the 90 degree bend with moving bed, M. Model. Earth Syst. Environ. (2017). doi:10.1007/s40808-017-0336-6

03-17   Luis G. Castillo and José M. Carrillo, Comparison of methods to estimate the scour downstream of a ski jump, Civil Engineering Department, Universidad Politécnica de Cartagena, UPCT Paseo Alfonso XIII, 52 – 30203 Cartagena, Spain, International Journal of Multiphase Flow 92 (2017) 171–180.

103-16 Daniel Valero and Rafael Garcia-Bartual, Calibration of an Air Entrainment Model for CFD Spillway Applications, Advances in Hydroinformatics, P. Gourbesville et al. (eds), pp. 571-582, 2016. doi.org/10.1007/978-981-287-615-7_38

97-16   M. Taghavi and H. Ghodousi, A Comparison on Discharge Coefficients of Side and Normal Weirs with Suspended Flow Load using FLOW-3D, Indian Journal of Science and Technology, Vol 9(3), doi.org/10.17485/ijst/2016/v9i3/78537, January 2016.

96-16   Luis G. Castillo and José M. Carrillo, Scour, Velocities and Pressures Evaluations Produced by Spillway and Outlets of DamWater 2016, 8(3), 68; doi.org/10.3390/w8030068.

95-16   Majid Heydari and Alireza KhoshKonesh, The Comparison of the Performance of Prandtl Mixing Length, Turbulence Kinetic Energy, K-e, RNG and LES Turbulence Models in Simulation of the Positive Wave Motion Caused by Dam Break on the Erodible Bed, Indian Journal of Science and Technology, Vol 9(7), 2016. doi.org/10.17485/ijst/2016/v9i7/87856

93-16   Saleh I. Khassaf, Ali N. Attiyah and Hayder A. Al-Yousify, Experimental investigation of compound side weir with modeling using computational fluid dynamic, International Journal of Energy and Environment, Volume 7, Issue 2, 2016 pp.169-178

92-16   Jason Duguay and Jay Lacey, Modeling: OpenFOAM CFD Modeling Case Study of a Pool and Weir Fishway with Implications for Free-Surface Flows, International Conference on Engineering and Ecohydrology for Fish Passage 2016

90-16   Giacomo Viccione, Vittorio Bovolin and Eugenio Pugliese Carratelli, A numerical investigation of liquid impact on planar surfaces, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Greece, June 2016.

89-16   Giacomo Viccione, A numerical investigation of flow dynamics over a trapezoidal smooth open channel, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Greece, June 2016.

87-16  Jian Zhou and Subhas K. Venayagamoorthy, Numerical simulations of intrusive gravity currents interacting with a bottom-mounted obstacle in a continuously stratified ambient, Environmental Fluid Mechanics, 17; 191–209, 2016. doi: 10.1007/s10652-016-9454-3

86-16   Charles R. Ortloff, Similitude in Archaeology: Examining Agricultural System Science in PreColumbian Civilizations of Ancient Peru and Bolivia, Hydrol Current Res 7:259. doi: 10.4172/2157-7587.1000259, October 2016.

85-16   Charles R. Ortloff, New Discoveries and Perspectives on Water Management at 300 Bc – Ad 1100 Tiwanaku’s Urban Center (Bolivia), MOJ Civil Eng 1(3): 00014. DOI: 10.15406/mojce.2016.01.00014.

82-16   S. Paudel and N. Saenger, Grid refinement study for three dimensional CFD model involving incompressible free surface flow and rotating object, Computers & Fluids, Volume 143, http://dx.doi.org/10.1016/j.compfluid.2016.10.025, 17 January 2017, Pages 134–140

77-16   José A. Vásquez, Daniel M. Robb, MODELACIÓN CFD DE ROTURA DE PRESAS EN PRESENCIA DE OBSTÁCULOS, XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, LIMA, PERÚ, 28 AL 30 DE SETIEMBRE DE 2016.

76-16   José A. Vásquez and Guilherme de Lima, MODELACIÓN CFD DE ONDAS TSUNAMI EN RESERVORIOS, LAGOS Y MINAS CAUSADAS POR DESLIZAMIENTOS DE LADERAS, XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, LIMA, PERÚ, 28 AL 30 DE SETIEMBRE DE 2016.

75-16   Bernhard Gems, Bruno Mazzorana, Thomas Hofer, Michael Sturm, Roman Gabl and Markus Aufleger, 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes, Nat. Hazards Earth Syst. Sci., 16, 1351-1368, 2016, http://www.nat-hazards-earth-syst-sci.net/16/1351/2016/, doi:10.5194/nhess-16-1351-2016 © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.

74-16   Roman Gabl, Jakob Seibl, Manfred Pfeifer, Bernhard Gems and Markus Aufleger, 3D-numerische Modellansätze für die Berechnung von Lawineneinstößen in Speicher (Concepts to simulate avalanche impacts into a reservoir based on 3D-numerics), Österr Wasser- und Abfallw (2016). doi:10.1007/s00506-016-0346-z.

73-16   Sebastian Krzyzagorski, Roman Gabl, Jakob Seibl, Heidi Böttcher and Markus Aufleger, Implementierung eines schräg angeströmten Rechens in die 3D-numerische Berechnung mit FLOW-3D (Implementation of an angled trash rack in the 3D-numerical simulation with FLOW-3D), Österr Wasser- und Abfallw (2016) 68: 146. doi:10.1007/s00506-016-0299-2.

71-16   Khosro Morovati, Afshin Eghbalzadeh and Saba Soori, Numerical Study of Energy Dissipation of Pooled Stepped Spillways, Civil Engineering Journal Vol. 2, No. 5, May, 2016.

66-16   Sooyoung Kim, Seo-hye Choi and Seung Oh Lee, Analysis of Influence for Breach Flow According to Asymmetry of Breach Cross-section, Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 5 pp. 557-565, 2016, http://dx.doi.org/10.5762/KAIS.2016.17.5.557, ISSN 1975-4701 / eISSN 2288-4688.

65-16   Dae-Geun Kim, Analysis of Overflow Characteristics around a Circular-Crested Weir by Using Numerical Model, Journal of Korean Society of Water and Wastewater Vol. 30, No. 2, April 2016.

63-16   Farzad Ferdos and Bijan Dargahi, A study of turbulent flow in largescale porous media at high Reynolds numbers. Part II: flow physics, Journal of Hydraulic Research, 2016, DOI: 10.1080/00221686.2016.1211185.

62-16   Farzad Ferdos and Bijan Dargahi, A study of turbulent flow in largescale porous media at high Reynolds numbers. Part I: numerical validation, Journal of Hydraulic Research, 2016, DOI: 10.1080/00221686.2016.1211184.

60-16   Chia-Lin Chiu, Chia-Ming Fan and Shun-Chung Tsung, Numerical modeling for  periodic oscillation of free overfall in a vertical drop pool, DOI: 10.1061/(ASCE)HY.1943-7900.0001236. © 2016 American Society of Civil Engineers.

54-16   Serife Yurdagul Kumcu, Investigation of Flow Over Spillway Modeling and Comparison between Experimental Data and CFD Analysis, KSCE Journal of Civil Engineering, (0000) 00(0):1-10, Copyright 2016 Korean Society of Civil Engineers, DOI 10.1007/s12205-016-1257-z.

52-16   Gharehbaghi, A., Kaya, B. and Saadatnejadgharahassanlou, Two-Dimensional Bed Variation Models Under Non-equilibrium Conditions in Turbulent Streams, H. Arab J Sci Eng (2016). doi:10.1007/s13369-016-2258-4

48-16   M. Mohsin Munir, Taimoor Ahmed, Javed Munir and Usman Rasheed, Application of Computational Flow Dynamics Analysis for Surge Inception and Propagation for Low Head Hydropower Projects, Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences, A. Physical and Computational Sciences 53 (2): 177–185 (2016), Copyright © Pakistan Academy of Sciences

46-16   Manuel Gómez, Joan Recasens, Beniamino Russo and Eduardo Martínez-Gomariz, Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison, wst2016326; DOI: 10.2166/wst.2016.326, August 2016

45-16   Chia-Ying Chang, Frederick N.-F. Chou, Yang-Yih Chen, Yi-Chern Hsieh, Chia-Tzu Chang, Analytical and experimental investigation of hydrodynamic performance and chamber optimization of oscillating water column system, Energy 113 (2016) 597-614

42-16   Bung, D. and Valero, D., Application of the Optical Flow Method to Velocity Determination, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T3150628160853 (ISBN 978-1-884575-75-4).

41-16   Valero, D., Bung, D., Crookston, B. and Matos, J., Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T340628160853 (ISBN 978-1-884575-75-4).

40-16   Bruce M. Savage, Brian M. Crookston and Greg S. Paxson, Physical and Numerical Modeling of Large Headwater Ratios for a 15° Labyrinth Spillway, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0001186, 04016046.

36-16   Kai-Wen Hsiao, Yu-Chao Hsu, Chyan-Deng Jan, and Yu-Wen Su, Characteristics of Hydraulic Shock Waves in an Inclined Chute Contraction by Using Three Dimensional Numerical Model, Geophysical Research Abstracts, Vol. 18, EGU 2016-11505, 2016, EGU General Assembly 2016, © Author(s) 2016. CC Attribution 3.0 License.

34-16   Dunlop, S., Willig, I., Paul, G., Cabinet Gorge Dam Spillway Modifications for TDG Abatement – Design Evolution and Field Performance, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3650628160853 (ISBN 978-1-884575-75-4).

33-16   Crispino, G., Dorthe, D., Fuchsmann, T., Gisonni, C., Pfister, M., Junction chamber at vortex drop shaft: case study of Cossonay, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T350628160853 (ISBN 978-1-884575-75-4).

32-16  Brown, K., Crookston, B., Investigating Supercritical Flows in Curved Open Channels with Three Dimensional Numerical Modeling, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3580628160853 (ISBN 978-1-884575-75-4).

31-16  Cicero, G, Influence of some geometrical parameters on Piano Key Weir discharge efficiency,In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3320628160853 (ISBN 978-1-884575-75-4).

28-16   Anthoula Gkesouli, Maria Nitsa, Anastasios I. Stamou, Peter Rutschmann and Minh Duc Bui, Modeling the effect of wind in rectangular settling tanks for water supply, DOI: 10.1080/19443994.2016.1195290, Desalination and Water Treatment, June 22, 2016.

27-16   Eugenio Pugliese Carratelli, Giacomo Viccione and Vittorio Bovolin, Free surface flow impact on a vertical wall: a numerical assessment, Theor. Comput. Fluid Dyn., DOI 10.1007/s00162-016-0386-9, February 2016.

25-16   Daniel Valero and Daniel B. Bung, Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow, Environmental Modelling & Software 82 (2016) 218e228.

24-16   Il Won Seo, Young Do Kim, Yong Sung Park and Chang Geun Song, Spillway discharges by modification of weir shapes and overflow surroundings, Environmental Earth Sciences, March 2016, 75:496, 14 March 2016

23-16   Du Han Lee, Myounghwan Kim and Dong Sop Rhee, Evacuation Safety Evaluation of Inundated Stairs Using 3D Numerical Simulation, International Journal of Smart Home Vol. 10, No. 3, (2016), pp.149-158 http://dx.doi.org/10.14257/ijsh.2016.10.3.15

22-16   Arnau Bayon, Daniel Valero, Rafael García-Bartual, Francisco Jose Valles-Moran and Amparo Lopez-Jimenez, Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump, Environmental Modelling & Software 80 (2016) 322e335.

21-16   Shima Bahadori and Mehdi Behdarvandi Askar, Investigating the Effect of Relative Width on Momentum Transfer between Main Channel and Floodplain in Rough Rectangular Compound Channel Sunder Varius Relative Depth Condition, Open Journal of Geology, 2016, 6, 225-231, Published Online April 2016 in SciRes.

18-16   Ali Ahrari,  Hong Lei, Montassar Aidi Sharif, Kalyanmoy Deb and  Xiaobo Tan, Optimum Design of Artificial Lateral Line Systems for Object Tracking under Uncertain Conditions, COIN Report Number: 2016006

16-16   Elena Battisacco, Giovanni De Cesare and Anton J. Schleiss, Re-establishment of a uniform discharge on the Olympic fountain in Lausanne, Journal of Applied Water Engineering and Research, (2016) DOI: 10.1080/23249676.2016.1163648.

14-16   Shima Bahadori, Mehdi and Behdarvandi Askar, Investigating the Simultaneous Effect of Relative Width and Relative Roughness on Apparent Shear Stress in Symmetric Compound Rectangular Channels, JOURNAL OF CURRENT RESEARCH IN SCIENCE, ISSN 2322-5009 CODEN (USA): JCRSDJ, S (1), 2016: 654-660

12-16   Charles R. Ortloff, Hydraulic Engineering Innovations at 100 BC- AD 300 Nabataean Petra (Jordan), In conference proceedings: De Aquaeductu atque Aqua Urbium Lyciae Pamphyliae Pisidiae. The Legacy of Sextus Julius Frontinus, Antalya, Turkey, G. Wiplinger, ed.  ISBN: 978-90-429-3361-3, 2016 Peeters Publisher, Leuven, Belgium.

11-16 G. Robblee, S. Kees and B.M. Crookston, Schnabel Engineering; and K. Keel, Town of Hillsborough, Ensuring Water Supply Reliability with Innovative PK Weir Spillway Design, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

10-16 Tina Stanard and Victor Vasquez, Freese and Nichols, Inc.; Ruth Haberman, Upper Brushy Creek Water Control and Improvement District; Blake Tullis, Utah State University; and Bruce Savage, Idaho State University, Importance of Site Considerations for Labyrinth Spillway Hydraulic Design — Upper Brushy Creek Dam 7 Modernization, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

09-16 James R. Crowder, Brian M. Crookston, Bradley T. Boyer and J. Tyler Coats, Schnabel Engineering, Cultivating Ingenuity and Safety in Alabama: The Taming of Lake Ogletree Reservoir, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

08-16 Frank Lan, Robert Waddell and Michael Zusi, AECOM; and Brian Grant, Montana DNRC, Replacing Ruby Dam Outlet Uses Computational Fluid Dynamics to Model Energy Dissipation, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

07-16 Elise N. Dombeck, Federal Energy Regulatory Commission, Applications of FLOW-3D for Stability Analyses of Concrete Spillways at FERC Projects, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

06-16   Farhad Ghazizadeh and M. Azhdary Moghaddam, An Experimental and Numerical Comparison of Flow Hydraulic Parameters in Circular Crested Weir Using FLOW-3D, Civil Engineering Journal Vol. 2, No. 1, January, 2016

05-16   Sadegh Dehdar-behbahani and Abbas Parsaie, Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran, doi:10.1016/j.aej.2016.01.006, February 2016.

04-16   Oscar Herrera-Granados and Stanisław W. Kostecki, Numerical and physical modeling of water flow over the ogee weir of the new Niedów barrage, DOI: 10.1515/johh-2016-0013, J. Hydrol. Hydromech., 64, 2016, 1, 67–74

03-16   B. Gems, B. Mazzorana, T. Hofer, M. Sturm, R. Gabl, M. Aufleger, 3D-hydrodynamic modelling of flood impacts on a building and indoor flooding processes, Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2015-326, 2016, Manuscript under review for journal Nat. Hazards Earth Syst. Sci., Published: 19 January 2016 © Author(s) 2016. CC-BY 3.0 License.

124-15 Yousef Sangsefidi, Mojtaba Mehraein, and Masoud Ghodsian, Numerical simulation of flow over labyrinth spillways, Scientia Iranica, Transaction A, 22(5), 1779–1787, 2015.

120-15   Du Han Lee, Myounghwan Kim and Dong Sop Rhee, Analysis of Critical Evacuation Condition on Inundated Stairs Using Numerical Simulation, Advanced Science and Technology Letters Vol.120 (GST 2015), pp.522-525 http://dx.doi.org/10.14257/astl.2015.120.104

119-15  Shiqiang Ye and Paul Toth, Bank Erosion Control at Frederickhouse Dam, Ontario, CDA 2015 Annual Conference, Congrès annuel 2015 de l’ACB, Mississauga, ON, Canada, 2015 Oct 5-8

118-15  D.M. Robb and J.A. Vasquez, Numerical simulation of dam-break flows using depth-averaged hydrodynamic and three-dimensional CFD models, 22nd Canadian Hydrotechnical Conference, Montreal, Quebec, April 29 – May 2, 2015

117-15 Ashkan. Reisi, Parastoo. Salah, and Mohamad Reza. Kavianpour, Impact of Chute Walls Convergence Angle on Flow Characteristics of Spillways using Numerical Modeling, International Journal of Chemical, Environmental & Biological Sciences (IJCEBS), Volume 3, Issue 3 (2015) ISSN 2320–4087 (Online)

115-15  Ivana Vouk, Field and Numerical Investigation of Mixing and Transport of Ammonia in the Ottawa River, Master’s Thesis: Department of Civil Engineering, University of Ottawa, August 2015, © Ivana Vouk, Canada 2016.

113-15   J. Amblard, C. Pams Capoccioni, D. Nivon, L. Mellal, G. De Cesare, T. Ghilardi, M. Jafarnejad and E. Battisacco, Analysis of Ballast Transport in the Event of Overflowing of the Drainage System on High Speed Lines, International Journal of Railway Technology, Volume 4, 2015. doi:10.4203/ijr, t.4.xx.xx , ©Saxe-Coburg Publications, 2015

111-15   Y. Oukid, V. Libaud and C. Daux, 3D CFD modelling of spillways -Practical feedback on capabilities and challenges, Hydropower & Dams Issue Six, 2015

110-15  Zhiyong Zhang and Yuanping Yang, Numerical Study on Onset Condition of Scour Below Offshore Pipeline Under Reversing Tidal Flow, © EJGE, Vol. 20 [2015], Bund. 25

109-15  He Baohua, Numerical Simulation Analysis of Karst Tunnel Water Bursting Movement, © EJGE, Vol. 20 [2015], Bund. 25

105-15   Ali Yıldız and A. İhsan Martı, Comparison of Experimental Study and CFD Analysis of the Flow Under a Sluice Gate, Proceedings of International Conference on Structural Architectural and Civil Engineering Held on 21-22, Nov, 2015, in Dubai, ISBN:9788193137321

104-15  Yehui Zhu and Liquan Xie, Numerical Analysis of Flow Effects on Water Interface over a Submarine Pipeline, Resources, Environment and Engineering II: Proceedings of the 2nd Technical Congress on Resources, Environment and Engineering (CREE 2015, Hong Kong, 25-26 September 2015), Edited by Liquan Xie, CRC Press 2015, Pages 99–104, DOI: 10.1201/b19136-16.

100-15  Yizhou Xiao, Wene Wang, Xiaotao Hu, and Yan Zhou, Experimental and numerical research on portable short-throat flume in the field, Flow Measurement and Instrumentation, doi:10.1016/j.flowmeasinst.2015.11.003, Available online December 8, 2015

99-15   Mehdi Taghavi and Hesam Ghodousi, Simulation of Flow Suspended Load in Weirs by Using FLOW-3D Model, Civil Engineering Journal Vol. 1, No. 1, November 2015

98-15   Azin Movahedi, Ali Delavari and Massoud Farahi, Designing Manhole in Water Transmission Lines Using FLOW-3D Numerical Model, Civil Engineering Journal Vol. 1, No. 1, November 2015

97-15   R. Gabl, J. Seibl, B. Gems, and M. Aufleger, 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir, Nat. Hazards Earth Syst. Sci., 15, 2617-2630, doi:10.5194/nhess-15-2617-2015, 2015.

94-15   Jason Matthew Duguay and Jay Lacey, Numerical Study of an Innovative Fish Ladder Design for Perched Culverts, Canadian Journal of Civil Engineering, 10.1139/cjce-2014-0436, November 2015

92-15   H. A. Hussein, R. Abdulla and  M. A. Md Said, Computational Investigation of Inlet Baffle Height on the Flow in a Rectangular Oil/Water Separator Tanks, Applied Mechanics and Materials, Vol. 802, pp. 587-592, Oct. 2015

91-15   Mahmoud Mohammad Rezapour Tabari and Shiva Tavakoli, Effects of Stepped Spillway Geometry on Flow Pattern and Energy DissipationArabian Journal for Science and Engineering, October 2015

87-15   Erin R. Ryan, Effects of Hydraulic Structures on Fish Passage – An Evaluation of 2D vs 3D Hydraulic Analysis Methods, Master’s Thesis: Civil and Environmental Engineering, Colorado State University, Summer 2015, Copyright by Erin Rose Ryan 2015

79-15   Ana L. Quaresma, Is CFD an efficient tool to develop pool type fishways? International Conference on Engineering and Ecohydrology for Fish Passage. Paper 20, June 24, 2015

78-15   Amir Alavi, Don Murray, Claude Chartrand and Derek McCoy, CFD Modeling Provides Value Engineering, Hydro Review, October 2015

75-15   Rebekka Czerny, Classification of flow patterns in a nature-oriented fishway based on 3D hydraulic simulation results, International Conference on Engineering and Ecohydrology for Fish Passage. Paper 39, June 22, 2015

73-15   Frank Seidel, Hybrid model approach for designing fish ways – example fish lift system at Baldeney/Ruhr and fishway at Geesthacht /Elbet, International Conference on Engineering and Ecohydrology for Fish Passage 2015

72-15   G. Guyot, B. Huber, and A. Pittion-Rossillon, Assessment of a numerical method to forecast vortices with a scaled model, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

71-15   Abbas Parsaie, Amir Hamzeh Haghiabi and Amir Moradinejad, CFD modeling of flow pattern in spillway’s approach channel, Sustainable Water Resources Management, September 2015, Volume 1, Issue 3, pp 245-251

70-15   T. Liepert, A. Kuhlmann, G. Haimer, M.D. Bui and P. Rutschmann, Optimization of Fish Pass Entrance Location at a Hydropower Plant Considering Site-Specific Constraints, Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3-5 September 2015

67-15   Alkistis Stergiopoulou and Efrossini Kalkani, Towards a first CFD study of modern horizontal axis Archimedean water current turbines, Volume: 02 Issue: 04, ISO 9001:2008 Certified Journal © 2015, IRJET, July 2015

66-15   Won Choi, Jeongbae Jeon, Jinseon Park, Jeong Jae Lee and Seongsoo Yoon, System reliability analysis of downstream spillways based on collapse of upstream spillways, Int J Agric & Biol Eng, 2015; 8(4): 140-150.

64-15   Szu-Hsien Peng and Chuan Tang, Development and Application of Two-Dimensional Numerical Model on Shallow Water Flows Using Finite Volume Method, Journal of Applied Mathematics and Physics, 2015, 3, 989-996, Published Online August 2015 in SciRes. http://www.scirp.org/journal/jamp, http://dx.doi.org/10.4236/jamp.2015.38121

62-15   Cuneyt Yavuz, Ali Ersin Dincer, Kutay Yilmaz and Samet Dursun, Head Loss Estimation of Water Jets from Flip Bucket of Cakmak-1 Diversion Weir and HEPP, RESEARCH GATE, August 2015 DOI: 10.13140/RG.2.1.3650.5440

54-15   Guo-bin Xu, Li-na Zhao, and Chih Ted Yang, Derivation and verification of minimum energy dissipation rate principle of fluid based on minimum entropy production rate principle, International Journal of Sediment Research, August 2015

50-15   Vafa Khoolosi, Sedat Kabdaşli, and Sevda Farrokhpour, Modeling and Comparison of Water Waves Caused by Landslides into Reservoirs, Watershed Management 2015 © ASCE 2015.

48-15   Mohammad Rostami and Maaroof Siosemarde, Human Life Saving by Simulation of Dam Break using FLOW-3D (A Case Study: Upper Gotvand Dam), www.sciencejournal.in, Volume- 4 Issue- 3 (2015) ISSN: 2319–4731 (p); 2319–5037 (e) © 2015 DAMA International. All rights reserved.

47-15   E. Kolden, B. D. Fox, B. P. Bledsoe and M. C. Kondratieff, Modelling Whitewater Park Hydraulics and Fish Habitat in Colorado, River Res. Applic., doi: 10.1002/rra.2931, 2015

43-15   Firouz Ghasemzadeh, Behzad Parsa, and Mojtaba Noury, Numerical Study of Overflow Capacity of Spillways, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

42-15   Mario Oertel, Numerical Modeling of Free-Surface Flows in Practical Applications, Chapter 8 in Rivers – Physical, Fluvial and Environmental Processes (GeoPlanet: Earth and Planetary Sciences), by Pawel Rowiński and Artur Radecki-Pawlik, July 2, 2015

39-15   R. Gabl, J. Seibl, B. Gems, and M. Aufleger, 3-D-numerical approach to simulate an avalanche impact into a reservoir, Nat. Hazards Earth Syst. Sci. Discuss., 3, 4121–4157, 2015, www.nat-hazards-earth-syst-sci-discuss.net/3/4121/2015/, doi:10.5194/nhessd-3-4121-2015, © Author(s) 2015. CC Attribution 3.0 License.

37-15   Mario Oertel, Discharge Coefficients of Piano Key Weirs from Experimental and Numerical Models, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

36-15   Jessica Klein and Mario Oertel, Comparison between Crossbar Block Ramp and Vertical Slot Fish Pass via Numerical 3D CFD Simulation, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

35-15   Mario Oertel, Jan P. Balmes and Daniel B. Bung, Numerical Simulation of Erosion Processes on Crossbar Block Ramps, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

33-15   Daniel Valero and Daniel B. Bung, Hybrid Investigation of Air Transport Processes in Moderately Sloped Stepped Spillway Flows, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

32-15   Deniz Velioglu, Nuray Denli Tokyay, and Ali Ersin Dincer, A Numerical and Experimental Study on the Characteristics of Hydraulic Jumps on Rough Beds, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

31-15   J.C.C. Amorim, R.C.R. Amante, and V.D. Barbosa, Experimental and Numerical Modeling of Flow in a Stilling Basin, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

30-15   Luna B.J. César, Salas V. Christian, Gracia S. Jesús, and Ortiz M. Victor, Comparative Analysis of the Modification of Turbulence and Its Effects on a Trapezoidal Section Stilling Basin, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

27-15   L. Castillo, J. Carrillo, and M. Álvarez, Complementary Methods for Determining the Sedimentation and Flushing in a Reservoir, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0001050 , 05015004, 2015.

22-15   Mohammad Vaghefi, Mohammad Shakerdargah and Maryam Akbari, Numerical investigation of the effect of Froude number on flow pattern around a submerged T-shaped spur dike in a 90º bend, © Turkish Journal of Engineering & Environmental Sciences, 03.04.2015, doi:10.3906/muh-1405-2

18-15   S. Michael Scurlock, Amanda L. Cox, Drew C. Baird, Christopher I. Thornton and Steven R. Abt, Hybrid Modeling of River Training Structures in Sinuous Channels, SEDHYD 2015, Joint 10th Federal Interagency Sedimentation Conference, 5th Federal Interagency Hydrologic Modeling Conference, April 19-23, 2015, Reno, Nevada

13-15   Selahattin Kocaman and Hatice Ozmen-Cagatay, Investigation of dam-break induced shock waves impact on a vertical wall, Journal of Hydrology (2015), doi: http://dx.doi.org/10.1016/j.jhydrol.2015.03.040.

12-15   Nguyen Cong Thanh and Wang Ling-Ling, Physical and Numerical Model of Flow through the Spillways with a Breast Wall, KSCE Journal of Civil Engineering (0000) 00(0):1-8, Copyright 2015 Korean Society of Civil Engineers, DOI 10.1007/s12205-015-0742-0, April 10, 2015.

10-15   Yueping Yin, Bolin Huang, Guangning Liu and Shichang Wang, Potential risk analysis on a Jianchuandong dangerous rockmass-generated impulse wave in the Three Gorges Reservoir, China, Environ Earth Sci, DOI 10.1007/s12665-015-4278-x, © Springer-Verlag Berlin Heidelberg 2015

08-15   Yue-ping Yin, Bolin Huang, Xiaoting Chen, Guangning Liu and Shichang Wang, Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China, 10.1007/s10346-015-0564-7, © Springer-Verlag Berlin Heidelberg 2015

07-15   M. Vaghefi, A. Ahmadi and B. Faraji, The Effect of Support Structure on Flow Patterns Around T-Shape Spur Dike in 90° Bend Channel, Arabian Journal for Science and Engineering, February 2015,

06-15   Sajjad Mohammadpour Zalaki, Hosein Fathian, Ebrahim Zalaghi and Farhad Kalantar Hormozi, Investigation of hydraulic parameters and cavitation in Kheir Abad flood release structure, Canadian Journal of Civil Engineering, February 2015

04-15  Der-Chang Lo, Jin-Shuen Liou, and Shyy Woei Chang, Hydrodynamic Performances of Air-Water Flows in Gullies with and without Swirl Generation Vanes for Drainage Systems of Buildings, Water 2015, 7(2), 679-696; doi:10.3390/w7020679

01-15   William Daley Clohan, Three-Dimensional Numerical Simulations of Subaerial Landslide Generated Waves, Master’s Thesis: Civil Engineering, The University of British Columbia (Vancouver), January 2015 © William Daley Clohan, 2015. Available upon request.

136-14   Charles R. Ortloff, Hydraulic Engineering in 300 BCE- CE 300 Petra (Jordan), Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

135-14   Charles R. Ortloff, Land, Labor, Water and Technology in Precolumbian South America, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

134-14   Charles R. Ortloff, Hydrologic Engineering of the 300 BCE- CE 1100 Precolumbian Tiwanaku State (Bolivia), Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

133-14   Charles R. Ortloff, Water engineering at Petra (Jordan): Recreating the decision process underlying hydraulic engineering of the Wadi Mataha pipeline system, Journal of Archaeological Science, April 2014. 44. 91–97. 10.1016/j.jas.2014.01.015.

132-14   Charles R. Ortloff, Hydraulic Engineering in Ancient Peru and Bolivia, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

131-14    Charles R. Ortloff, Water Management in Ancient Peru, Living Reference Work Entry, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

130-14  Kordula Schwarzwälder and Peter Rutschmann, Sampling bacteria with a laser, Geophysical Research Abstracts Vol. 16, EGU2014-15144, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

129-14   Kordula Schwarzwälder, Eve Walters and Peter Rutschmann, Bacteria fate and transport in a river, Geophysical Research Abstracts Vol. 16, EGU2014-14022, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

127-14   Charles R. Ortloff, Hydraulic Engineering in Petra, Living Reference Work Entry, Encyclopedia of the History of Science, Technology, and Medicine in Non-Western Cultures, pp 1-13, 03 July 2014

124-14  G. Wei. M. Grünzner and F. Semler, Combination of 2D shallow water and full 3D numerical modeling for sediment transport in reservoirs and basins, Reservoir Sedimentation – Schleiss et al. (Eds) © 2014 Taylor & Francis Group, London, ISBN 978-1-138-02675-9.

121-14    A. Bayón-Barrachina, D. Valero, F. Vallès-Morán, and P.A. López-Jiménez, Comparison of CFD Models for Multiphase Flow Evolution in Bridge Scour Processes, 5th International Junior Researcher and Engineer Workshop on Hydraulic Structures, Spa, Belgium, 28-30 August 2014

120-14  D. Valero, R. García-Bartual and J. Marco, Optimisation of Stilling Basin Chute Blocks Using a Calibrated Multiphase RANS Model, 5th International Junior Researcher and Engineer Workshop on Hydraulic Structures, Spa, Belgium, 28-30 August 2014

119-14   R. Gabl, B. Gems, M. Plörer, R. Klar, T. Gschnitzer, S. Achleitner, and M. Aufleger, Numerical Simulations in Hydraulic Engineering, Computational Engineering, 2014, pp 195-224, April 2014

118-14  Kerilyn Ambrosini, Analysis of Flap Gate Design and Implementations for Water Delivery Systems in California and Nevada, BioResource and Agricultural Engineering, BioResource and Agricultural Engineering Department, California Polytechnic State University, San Luis Obispo, 2014

117-14  Amir Moradinejad, Abas Parssai, Mohamad Noriemamzade, Numerical Modeling of Flow Pattern In Kamal Saleh Dam Spillway Approach Channel, App. Sci. Report.10 (2), 2014: 82-89, © PSCI Publications

116-14  Luis G. Castillo and José M. Carrillo, Characterization of the Dynamic Actions and Scour Estimation Downstream of a Dam, 1st International Seminar on Dam Protection against Overtopping and Accidental Leakage, M.Á. Toledo, R. Morán, E. Oñate (Eds), Madrid, 24-25 November 2014

115-14  Luis G. Castillo, José M. Carrillo, Juan T. García, Antonio Vigueras-Rodríguez, Numerical Simulations and Laboratory Measurements in Hydraulic Jumps, 11th International Conference on Hydroinformatics, HIC 2014, New York City, USA

114-14  Du Han Lee, Young Joo Kim, and Samhee Lee, Numerical modeling of bed form induced hyporheic exchangePaddy and Water Environment, August 2014, Volume 12, Issue 1 Supplement, pp 89-97

112-14  Ed Zapel, Hank Nelson, Brian Hughes, Steve Fry, Options for Reducing Total Dissolved Gas at the Long Lake Hydroelectric Facility, Hydrovision International, July 22-24, 2014, Nashville, TN

111-14  Jason Duguay, Jay Lace, Dave Penny and Ken Hannaford, Evolution of an Innovative Fish Ladder Design to Address Issues of Perched Culverts, 2014 Conference of the Transportation Association of Canada, Montreal, Quebec

106-14   Manuel Gomez and Eduardo Martinez, 1D, 2D and 3D Modeling of a PAC-UPC Laboratory Canal Bend, SimHydro 2014: Modelling of rapid transitory flows, 11-13 June 2014, Sophia Antipolis

105-14 Jason Duguay and Jay Lacey, Numerical Validation of an Innovative Fish Baffle Design in Response to Fish Passage Issues at Perched Culverts, CSPI Technical Bulletin, January 14, 2014

104-14  Di Ning, Di,  A Computational Study on Hydraulic Jumps, including Air Entrainment, Master’s Thesis: Civil and Environmental Engineering, University of California, Davis, 2014, 1569799, Copyright ProQuest, UMI Dissertations Publishing 2014

103-14  S. M. Sayah, S. Bonanni, Ph. Heller, and M. Volpato, Physical and Numerical Modelling of Cerro del Águila Dam -Hydraulic and Sedimentation, DOI: 10.13140/2.1.5042.1122 Conference: Hydro 2014

102-14   Khosrow Hosseini, Shahab Rikhtegar, Hojat Karami, Keivan Bina, Application of Numerical Modeling to Assess Geometry Effect of Racks on Performance of Bottom Intakes, Arabian Journal for Science and Engineering, December 2014

98-14  Aysel Duru, Numerical Modelling of Contracted Sharp Crested Weirs, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, November 2014

97-14  M Angulo, S Liscia, A Lopez and C Lucino, Experimental validation of a low-head turbine intake designed by CFD following Fisher and Franke guidelines, 27th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2014), IOP Publishing, IOP Conf. Series: Earth and Environmental Science 22 (2013) 042014 doi:10.1088/1755-1315/22/4/042014

94-14   Hamidreza Babaali, Abolfazl Shamsai, and Hamidreza Vosoughifar, Computational Modeling of the Hydraulic Jump in the Stilling Basin with ConvergenceWalls Using CFD Codes, Arab J Sci Eng, DOI 10.1007/s13369-014-1466-z, October 2014

93-14   A.J. Vellinga, M.J.B. Cartigny, J.T. Eggenhuisen, E.W.M. Hansen, and R. Rouzairol, Morphodynamics of supercritical-flow bedforms using depth-resolved computational fluid dynamics model, International Association of Sedimentologists, Geneva, 2014.

88-14   Marcelo A. Somos-Valenzuela, Rachel E. Chisolm, Daene C. McKinney, and Denny Rivas, Inundation Modeling of a Potential Glacial Lake Outburst Flood in Huaraz, Peru, CRWR Online Report 14-01, March 2014

84-14   Hossein Shahheydari, Ehsan Jafari Nodoshan, Reza Barati, and Mehdi Azhdary Moghadam, Discharge coefficient and energy dissipation over stepped spillway under skimming flow regimeKSCE Journal of Civil Engineering, 10.1007/s12205-013-0749-3, November 2014

81-14   Gaël Epely-Chauvin, Giovanni De Cesare and Sebastian Schwindt, Numerical Modelling of Plunge Pool Scour Evolution in Non-Cohesive Sediments, Engineering Applications of Computational Fluid Mechanics Vol. 8, No. 4, pp. 477–487 (2014).

79-14   Liquan Xie, Yanhui Xu, and Wenrui Huang, Numerical Study on Hydrodynamic Mechanism of Sediment Trapping by Geotextile Mattress with Sloping Curtain (GMSC), Proceedings of the Eleventh (2014) Pacific/Asia Offshore Mechanics Symposium Shanghai, China, October 12-16, 2014 Copyright © 2014 by The International Society of Offshore and Polar Engineers, ISBN 978–1 880653 90-6: ISSN 1946-004X.

78-14  D. N. Powell and A. A. Khan, Flow Field Upstream of an Orifice under Fixed Bed and Equilibrium Scour ConditionsJ. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0000960, 04014076, 2014.

76-14   Berk Sezenöz, Numerical Modelling of Continuous Transverse Grates for Hydraulic Efficiency, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, October 2014

75-14   Francesco Calomino and Agostino Lauria, 3-D Underflow of a Sluice Gate at a Channel Inlet; Experimental Results and CFD Simulations, Journal of Civil Engineering and Urbanism, Volume 4, Issue 5: 501-508 (2014)

73-14   Som Dutta, Talia E. Tokyay, Yovanni A. Cataño-Lopera, Sergio Serafinod and Marcelo H. Garcia, Application of computational fluid dynamic modeling to improve flow and grit transport in Terence J. O’Brien Water Reclamation Plant, Chicago, Illinois, Journal of Hydraulic Research, DOI: 10.1080/00221686.2014.949883, October 2014

72-14   Ali Heidari, Poria Ghassemi, Evaluation of step’s slope on energy dissipation in stepped spillway, International Journal of Engineering & Technology, 3 (4) (2014) 501-505, ©Science Publishing Corporation, www.sciencepubco.com/index.php/IJET, doi: 10.14419/ijet.v3i4.3561

70-14   M. Tabatabai, M. Heidarnejad, A. Bordbar, Numerical Study of Flow Patterns in Stilling Basin with Sinusoidal Bed using FLOW-3D Model, Advances in Environmental Biology, 8(13) August 2014, Pages: 787-792

66-14   John S. Schwartz, Keil J. Neff, Frank E. Dworak, Robert R. Woockman, Restoring riffle-pool structure in an incised, straightened urban stream channel using an ecohydraulic modeling approach, Ecol. Eng. (2014), doi.org/10.1016/j.ecoleng.2014.06.002

65-14  Laura Rozumalski and Michael Fullarton, CFD Modeling to Design a Fish Lift Entrance, Hydro Review, July 2014

64-14   Pam Waterman, Scaled for Success: Computational Fluid Dynamics Analysis Prompts Swift Stormwater System Improvements in Indianapolis, WaterWorld, August 2014.

63-14   Markus Grünzner and Peter Rutschmann, Large Eddy Simulation  – Ein Beitrag zur Auflösung turbulenter Strömungsstrukturen in technischen Fischaufstiegshilfen; (LES – resolving turbulent flow in technical fish bypasses), Tagungsband Internationales Symposium in Zurich, Wasser- und Flussbau im Alpenraum, Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, ETH Zurich. In German.

62-14   Jason Duguay, Jay Lace, Dave Penny, and Ken Hannaford, Evolution of an Innovative Fish Ladder Design to Address Issues of Perched Culverts, 2014 Conference of the Transportation Association of Canada, Montreal, Quebec

60-14   Kordula Schwarzwälder, Minh Duc Bui, and Peter Rutschmann, Simulation of bacteria transport processes in a river with FLOW-3D, Geophysical Research Abstracts, Vol. 16, EGU2014-12993, 2014, EGU General Assembly 2014, © Author(s) 2014. CC Attribution 3.0 License.

58-14   Eray Usta, Numercial Investigation of Hydraulic Characteristics of Laleili Dam Spillway and Comparison with Physical Model Study, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, May 2014

57-14   Selahattin Kocaman, Prediction of Backwater Profiles due to Bridges in a Compound Channel Using CFD, Hindawi Publishing Corporation, Advances in Mechanical Engineering, Volume 2014, Article ID 905217, 9 pages, http://dx.doi.org/10.1155/2014/905217

54-14   Ines C. Meireles, Fabian A. Bombardelli, and Jorge Matos, Air entrainment onset in skimming flows on steep stepped spillways: an analysis, (2014) Journal of Hydraulic Research, 52:3, 375-385, DOI: 10.1080/00221686.2013.878401

53-14   Charles R Ortloff, Groundwater Management in the 300 bce-1100ce Pre-Columbian City of Tiwanaku (Bolivia), Hydrol Current Res 5: 168. doi:10.4172/2157-7587.1000168, 2014

50-14   Mohanad A. Kholdier, Weir-Baffled Culvert Hydrodynamics Evaluation for Fish Passage using Particle Image Velocimetry and Computational Fluid Dynamic Techniques, Ph.D. Thesis: Utah State University (2014). All Graduate Theses and Dissertations. Paper 3078. http://digitalcommons.usu.edu/etd/3078

48-14   Yu-Heng Lin, Study on raceway pond for microalgae culturing system, Master Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University, August 2014. In Chinese

38-14   David Ingram, Robin Wallacey, Adam Robinsonz and Ian Bryden, The design and commissioning of the first, circular, combined current and wave test basin, Proceedings of Oceans 2014 MTS/IEEE, Taipei, Taiwan, IEEE, April 2014

36-14   Charles R. Ortloff, Hydraulic Engineering in Precolumbian Peru and Bolivia, The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

35-14   Charles R. Ortloff, Hydraulic Engineering in BC 100- AD 300 Petra (Jordan), The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

34-14   Charles R. Ortloff, Hydraulic Engineering in Precolumbian Peru and Bolivia, The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

33-14   Roman Gabl, Bernhard Gems, Giovanni De Cesare, and Markus Aufleger, Contribution to Quality Standards for 3D-Numerical Simulations with FLOW-3D, Wasserwirtschaft (ISSN: 0043-0978), vol. 104, num. 3, p. 15-20, Wiesbaden: Springer Vieweg-Springer Fachmedien Wiesbaden Gmbh, 2014. Available for download at the University of Innsbruck. In German.

31-14   E. Fadaei-Kermani and G.A. Barani, Numerical simulation of flow over spillway based on the CFD method, Scientia Iranica A, 21(1), 91-97, 2014

30-14   Luis G. Castillo  and José M. Carrillo, Scour Analysis Downstream of Paute-Cardenillo Dam, © 3rd IAHR Europe Congress, Book of Proceedings, 2014, Porto, Portugal.

29-14    L. G. Castillo, M. A. Álvarez, and J. M. Carrillo, Numerical modeling of sedimentation and flushing at the Paute-Cardenillo Reservoir, ASCE-EWRI. International Perspective on Water Resources and Environment Quito, January 8-10, 2014

28-14   L. G. Castillo and J. M. CarrilloScour estimation of the Paute-Cardenillo Dam, ASCE-EWRI. International Perspective on Water Resources and Environment Quito, January 8-10, 2014.

27-14   Luis G. Castillo, Manual A. Álvarez and José M. Carrillo, Analysis of Sedimentation and Flushing into the Reservoir Paute-Cardenillo© 3rd IAHR Europe Congress, Book of Proceedings, 2014, Porto, Portugal.

24-14   Carter R. Newell and John Richardson, The Effects of Ambient and Aquaculture Structure Hydrodynamics on the Food Supply and Demand of Mussel Rafts, Journal of Shellfish Research, 33(1):257-272, DOI: http://dx.doi.org/10.2983/035.033.0125, 0125, 2014.

16-14   Han Hu, Jiesheng Huang, Zhongdong Qian, Wenxin Huai, and Genjian Yu, Hydraulic Analysis of Parabolic Flume for Flow Measurement, Flow Measurement and Instrumentation, http://dx.doi.org/10.1016/j.flowmeasinst.2014.03.002, 2014.

14-14   Seung Oh Lee, Sooyoung Kim, Moonil Kim, Kyoung Jae Lim and Younghun Jung, The Effect of Hydraulic Characteristics on Algal Bloom in an Artificial Seawater Canal: A Case Study in Songdo City, South Korea, Water 2014, 6, 399-413; doi:10.3390/w6020399, ISSN 2073-4441, www.mdpi.com/journal/water

13-14   Kathryn Elizabeth Plymesser, Modeling Fish Passage and Energy Expenditure for American Shad in a Steeppass Fishway using Computational Fluid Dynamics, Ph.D. Thesis: Montana State University, January 2014, © Kathryn Elizabeth Plymesser, 2014, All Rights Reserved.

12-14   Sangdo An and Pierre Y. Julien, Three-Dimensional Modeling of Turbid Density Currents in Imha Reservoir, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0000851, 05014004, 2014.

09-14   B. Gems, M. Wörndl, R. Gabl, C. Weber, and M. Aufleger, Experimental and numerical study on the design of a deposition basin outlet structure at a mountain debris cone, Nat. Hazards Earth Syst. Sci., 14, 175–187, 2014, www.nat-hazards-earth-syst-sci.net/14/175/2014/, doi:10.5194/nhess-14-175-2014, © Author(s) 2014. CC Attribution 3.0 License.

07-14   Charles R. Ortloff, Water Engineering at Petra (Jordan): Recreating the Decision Process underlying Hydraulic Engineering of the Wadi Mataha Pipeline System, Journal of Archaeological Science, Available online January 2014.

06-14   Hatice Ozmen-Cagatay, Selahattin Kocaman, Hasan Guzel, Investigation of dam-break flood waves in a dry channel with a hump, Journal of Hydro-environment Research, Available online January 2014.

05-14   Shawn P. Clark, Jonathan Scott Toews, and Rob Tkach, Beyond average velocity: Modeling velocity distributions in partially-filled culverts to support fish passage guidelines, International Journal of River Basin Management, DOI10.1080/15715124.2013.879591, January 2014.

04-14   Giovanni De Cesare, Martin Bieri, Stéphane Terrier, Sylvain Candolfi, Martin Wickenhäuser and Gaël Micoulet, Optimization of a Shared Tailrace Channel of Two Pumped-Storage Plants by Physical and Numerical Modeling, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 291-305.

03-14   Grégory Guyot, Hela Maaloul and Antoine Archer, A Vortex Modeling with 3D CFD, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 433-444.

02-14   Géraldine Milési and Stéphane Causse, 3D Numerical Modeling of a Side-Channel Spillway, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 487-498.

01-14   Mohammad R. Namaee, Mohammad Rostami, S. Jalaledini and Mahdi Habibi, A 3-Dimensional Numerical Simulation of Flow Over a Broad-Crested Side Weir, Advances in Hydroinformatics, Springer Hydrogeology 2014, pp 511-523.

104-13   Alireza Nowroozpour, H. Musavi Jahromi and A. Dastgheib, Studying different cases of wedge shape deflectors on energy dissipation in flip bucket using CFD model, Proceedings, 6th International Perspective on Water Resources & the Environment Conference (IPWE), Izmir, Turkey, January 7-9, 2013.

102-13   Shari Dunlop, Isaac Willig and Roger L. Kay, Emergency Response to Erosion at Fort Peck Spillway: Hydraulic Analysis and Design, ICOLD 2013 International Symposium, Seattle, WA.

101-13   Taeho Kang and Heebeom Shin, Dam Emergency Action Plans in Korea, ICOLD 2013 International Symposium, Seattle, WA.

100-13   John Hess, Jeffrey Wisniewski, David Neff and Mike Forrest, A New Auxiliary Spillway for Folsom Dam, ICOLD 2013 International Symposium, Seattle, WA.

98-13   Neda Sharif and Amin Rostami Ravori, Experimental and Numerical Study of the Effect of Flow Separation on Dissipating Energy in Compound Bucket, 2013 5th International Conference on Chemical, Biological and Environmental Engineering (ICBEE 2013); 2013 2nd International Conference on Civil Engineering (ICCEN 2013)

97-13  A. Stergiopoulou, V. Stergiopoulos, and E. Kalkani, Contributions to the Study of Hydrodynamic Behaviour of Innovative Archimedean Screw Turbines Recovering the Hydropotential of Watercourses and of Coastal Currents, Proceedings of the 13th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013

96-13   Shokry Abdelaziz, Minh Duc Bui, Namihira Atsushi, and Peter Rutschmann, Numerical Simulation of Flow and Upstream Fish Movement inside a Pool-and-Weir Fishway, Proceedings of 2013 IAHR World Congress, Chengdu, China

95-13  Guodong Li, Lan Lang, and Jian Ning, 3D Numerical Simulation of Flow and Local Scour around a Spur Dike, Proceedings of 2013 IAHR World Congress, Chengdu, China

93-13   Matthew C. Kondratieff and Eric E. Richer, Stream Habitat Investigations and Assistance, Federal Aid Project F-161-R19, Federal Aid in Fish and Wildlife Restoration, Job Progress Report, Colorado Parks & Wildlife, Aquatic Wildlife Research Section, Fort Collins, Colorado, August 2013. Available upon request

92-13   Matteo Tirindelli, Scott Fenical and Vladimir Shepsis, State-of-the-Art Methods for Extreme Wave Loading on Bridges and Coastal Highways, Seventh National Seismic Conference on Bridges and Highways (7NSC), May 20-22, 2013, Oakland, CA

91-13   Cecia Millán Barrera, Víctor Manuel Arroyo Correa, Jorge Armando Laurel Castillo, Modeling contaminant transport with aerobic biodegradation in a shallow water body, Proceedings of 2013 IAHR Congress © 2013 Tsinghua University Press, Beijing

80-13  Brian Fox, Matthew Kondratieff, Brian Bledsoe, Christopher Myrick, Eco-Hydraulic Evaluation of Whitewater Parks as Fish Passage Barriers, International Conference on Engineering and Ecohydrology for Fish Passage, June 25-27, 2013, Oregon State University. Presentation available for download on the Scholarworks site.

79-13  Changsung Kim, Jongtae Kim, Joongu Kang, Analysis of the Cause for the Collapse of a Temporary Bridge Using Numerical Simulation, Engineering, 2013, 5, 997-1005, (http://www.scirp.org/journal/eng), Copyright © 2013 Changsung Kim et al. Published Online December 2013

76-13   Riley J. Olsen, Michael C. Johnson, and Steven L. Barfuss, Low-Head Dam Reverse Roller Remediation Options, Journal of Hydraulic Engineering, November 2013; doi:10.1061/(ASCE)HY.1943-7900.0000848.

72-13  M. Pfister, E. Battisacco, G. De Cesare, and A.J. Schleiss, Scale effects related to the rating curve of cylindrically crested Piano Key weirs, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

71-13  F. Laugier, J. Vermeulen, and V. Lefebvre, Overview of Piano KeyWeirs experience developed at EDF during the past few years, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

70-13   G.M. Cicero, J.R. Delisle, V. Lefebvre, and J. Vermeulen, Experimental and numerical study of the hydraulic performance of a trapezoidal Piano Key weir, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds, © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

69-13   V. Lefebvre, J. Vermeulen, and B. Blancher, Influence of geometrical parameters on PK-Weirs discharge with 3D numerical analysis, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

65-13 Alkistis Stergiopoulou and Efrossini Kalkani, Towards a First CFD Study of Innovative Archimedean Inclined Axis Hydropower Turbines, International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 2 Issue 9, September 2013.

58-13  Timothy Sassaman, Andrew Johansson, Ryan Jones, and Marianne Walter, Hydraulic Analysis of a Pumped Storage Pond Using Complementary Methods, Hydrovision 2013 Conference Proceedings, Denver, CO, July 2013.

57-13  Jose Vasquez, Kara Hurtig, and Brian Hughes, Computational Fluid Dynamics (CFD) Modeling of Run-of-River Intakes, Hydrovision 2013 Conference Proceedings, Denver, CO July 2013.

56-13  David Souders, Jayesh Kariya, and Jeff Burnham, Validation of a Hybrid 3-Dimensional and 2-Dimensional Flow Modeling Technique for an Instanenous Dam-Break, Hydrovision 2013 Conference Proceedings, Denver, CO July 2013.

55-13  Keith Moen, Dan Kirschbaum, Joe Groeneveld, Steve Smith and Kimberly Pate, Sluiceway Deflector Design as part of the Boundary TDG Abatement Program, Hydrovision 2013 Conference Proceedings, Denver, CO, July 2013.

54-13  S. Temeepattanapongsa, G. P. Merkley, S. L. Barfuss and B. Smith, Generic unified rating for Cutthroat flumes, Irrig Sci, DOI 10.1007/s00271-013-0411-3, Springer-Verlag Berlin Heidelberg 2013, August 2013.

53-13 Hossein Afshar and Seyed Hooman Hoseini, Experimental and 3-D Numerical Simulation of Flow over a Rectangular Broad-Crested Weir, International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249-8958, Volume 2, Issue 6, August 2013

52-13  Abdulmajid Matinfard (Kabi), Mohammad Heidarnejad, Javad Ahadian, Effect of Changes in the Hydraulic Conditions on the Velocity Distribution around a L-Shaped Spur Dike at the River Bend, Technical Journal of Engineering and Applied Sciences Available online at www.tjeas.com ©2013 TJEAS Journal-2013-3-16/1862-1868 ISSN 2051-0853 ©2013 TJEAS

51-13  Elham Radaei, Sahar Nikbin, and Mahdi Shahrokhi, Numerical Investigation of Angled Baffle on the Flow Pattern in a Rectangular Primary Sedimentation Tank, RCEE, Research in Civil and Environmental Engineering 1 (2013) 79-91.

48-13   Mohammad Kayser, Mohammed A. Gabr, Assessment of Scour on Bridge Foundations by Means of In Situ Erosion Evaluation Probe, Transportation Research Record: Journal of the Transportation Research Board, 0361-1981 (Print), Volume 2335 / 2013, pp 72-78. 10.3141/2335-08, August 2013.

47-13  Wei Ping Yin et al., 2013, Three-Dimensional Water Temperature and Hydrodynamic Simulation of Xiangxi River Estuary, Advanced Materials Research, 726-731, 3212, August, 2013.

41-13   N. Nekoue, R. Mahajan, J. Hamrick, and H. Rodriguez, Selective Withdrawal Hydraulic Study Using Computational Fluid Dynamics Modeling, World Environmental and Water Resources Congress 2013: pp. 1808-1813. doi: 10.1061/9780784412947.177.

40-13  Eleanor Kolden, Modeling in a three-dimensional world: whitewater park hydraulics and their impact on aquatic habitat in Colorado, Thesis: Master of Science, Civil and Environmental Engineering, Colorado State University. Full thesis available online at Colorado State University.

38-13  Prashant Huddar P.E. and Yashodhan Dhopavkar, CFD Use in Water – Insight, Foresight, and Efficiency, CFD Application in Water Engineering, Bangalore, India, June 2013.

37-13 B. Gems, M. Wörndl, R. Gabl, C. Weber, and M. Aufleger, Experimental and numerical study on the design of a deposition basin outlet structure at a mountain debris cone, Nat. Hazards Earth Syst. Sci. Discuss., 1, 3169–3200, 2013, www.nat-hazards-earth-syst-sci-discuss.net/1/3169/2013/, doi:10.5194/nhessd-1-3169-2013, © Author(s) 2013. Full paper online at: Natural Hazards and Earth System Sciences.

33-13   Tian Zhou and Theodore A. Endreny, Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments, Water Resources Research, DOI: 10.1002/wrcr.20384, ©2013. American Geophysical Union. All Rights Reserved.

31-13  Francesco Calomino and Agostino Lauria, MOTO ALL’IMBOCCO DI UN CANALE RETTANGOLARE CONTROLLATO DA PARATOIA PIANA. Analisi sperimentale e modellazione numerica 3DFLOW AT THE INTAKE OF THE RECTANGULAR CHANNEL ;CONTROLLED BY A FLAT SLUICE GATE. Experimental and Numerical 3D ModelL’acqua, pp. 29-36, © Idrotecnica Italiana, 2013. In Italian and English.

30-13  Vinod V. Nair and S.K. Bhattacharyya, Numerical Study of Water Impact of Rigid Sphere under the Action of Gravity CFD Application in Water Engineering, Bangalore, India, June 2013. Abstract only.

29-13   Amar Pal Singh, Faisal Bhat, Ekta Gupta, 3-D Spillway Simulations of Ratle HEP (J&K) for the Assessment of Design Alternatives to be Tested in Model Studies, CFD Application in Water Engineering, Bangalore, India, June 2013.

28-13  Shun-Chung Tsung, Jihn-Sung Lai, and Der-Liang Young, Velocity distribution and discharge calculation at a sharp-crested weir, Paddy Water Environ, DOI 10.1007/s10333-013-0378-y, © Springer Japan 2013, May 2013.

27-13  Karen Riddette and David Ho, Assessment of Spillway Modeling Using Computational Fluid DynamicsANCOLD Proceedings of Technical Groups, 2013.

21-13  Tsung-Hsien Huang and Chyan-Deng Jan, Simulation of Velocity Distribution for Water Flow in a Vortex-Chamber-Type Sediment Extractor, EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-7061. Online at: http://adsabs.harvard.edu/abs/2013EGUGA..15.7061H

19-13  Riley J. Olsen, Hazard Classification and Hydraulic Remediation Options for Flat-Topped and Ogee-Crested Low- Head Dams, Thesis: Master of Science in Civil and Environmental Engineering, Utah State University, All Graduate Theses and Dissertations. Paper 1538. http://digitalcommons.usu.edu/etd/1538, 2013.

17-13  Mohammad-Hossein Erfanain-Azmoudeh and Amir Abbas Kamanbedast, Determine the Appropriate Location of Aerator System on Gotvandolia Dam’s Spillway Using FLOW-3D, American-Eurasian J. Agric. & Environ. Sci., 13 (3): 378-383, 2013, ISSN 1818-6769, © IDOSI Publications, 2013.

13-13   Chia-Cheng Tsai, Yueh-Ting Lin, and Tai-Wen Hsu, On the weak viscous effect of the reflection and transmission over an arbitrary topography, Phys. Fluids 25, 043103 (2013); http://dx.doi.org/10.1063/1.4799099 (21 pages).

07-13  M. Kayser and M. A. Gabr, Scour Assessment of Bridge Foundations Using an In Situ Erosion Evaluation Probe (ISEEP), 92nd Transportation Research Board Annual Meeting, January 13-17, 2013, Washington, D.C.

06-13   Yovanni A. Cataño-Lopera, Blake J. Landry, Jorge D. Abad, and Marcelo H. García, Experimental and Numerical Study of the Flow Structure around Two Partially Buried Objects on a Deformed Bed, Journal of Hydraulic Engineering © ASCE /March 2013, 269-283.

04-13  Safinaz El-Solh, SPH Modeling of Solitary Waves and Resulting Hydrodynamic Forces on Vertical and Sloping Walls, Thesis: Master of Applied Science in Civil Engineering, Department of Civil Engineering, University of Ottawa, October 2012, © Safinaz El-Solh, Ottawa, Canada, 2013. Full paper available online at uOttawa.

108-12  Hatice Ozmen-Cagatay and Selahattin Kocaman, Investigation of Dam-Break Flow Over Abruptly Contracting Channel With Trapezoidal-Shaped Lateral Obstacles, Journal of Fluids Engineering © 2012 by ASME August 2012, Vol. 134 / 081204-1

102-12 B.M. Crookston, G.S. Paxson, and B.M. Savage, Hydraulic Performance of Labryinth Weirs for High Headwater Ratios, 4th IAHR International Symposium on Hydraulic Structures, 9-11 February 2012, Porto, Portugal, ISBN: 978-989-8509-01-7.

101-12 Jungseok Ho and Wonil Kim, Discrete Phase Modeling Study for Particle Motion in Storm Water Retention, KSCE Journal of Civil Engineering (2012) 16(6):1071-1078, DOI 10.1007/s12205-012-1304-3.

99-12  Charles R. Ortloff and Michael E. Mosely, Environmental change at a Late Archaic period site in north central coast Perú, Ñawpa Pacha, Journal of Andean Archaeology, Volume 32, Number 2 / December 2012, ISSN: 0077-6297 (Print); 2051-6207 (Online), Left Coast Press, Inc.

98-12  Tao Wang and Vincent H. Chu, Manning Friction in Steep Open-channel Flow, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012.

96-12  Zhi Yong Dong, Qi Qi Chen, Yong Gang, and Bin Shi, Experimental and Numerical Study of Hydrodynamic Cavitation of Orifice Plates with Multiple Triangular Holes, Applied Mechanics and Materials, Volumes 256-259, Advances in Civil Engineering, December 2012.

95-12  Arjmandi H., Ghomeshi M.,  Ahadiayn J., and Goleij G., Prediction of Plunge Point in the Density Current using RNG Turbulence Modeling, Water and Soil Science (Agricultural Science) Spring 2012; 22(1):171-185. Abstract available online at the Scientific Online Database.

84-12  Li Ping Zhao, Jian Qiu Zhang, Lei Chen, Xuan Xie, Jun Qiang Cheng, Study of Hydrodynamic Characteristics of the Sloping Breakwater of Circular Protective Facing, Advanced Materials Research (Volumes 588 – 589), Advances in Mechanics Engineering, 1781-1785, 10.4028/www.scientific.net/AMR.588-589.1781.

83-12 Parviz Ghadimi, Abbas Dashtimanesh, and Seyed Reza Djeddi, Study of water entry of circular cylinder by using analytical and numerical solutions, J. Braz. Soc. Mech. Sci. & Eng. 2012, vol.34, n.3, pp. 225-232 . ISSN 1678-5878. http://dx.doi.org/10.1590/S1678-58782012000300001.

81-12  R. Gabl, S. Achleitner, A. Sendlhofer, T. Höckner, M. Schmitter and M. Aufleger, Side-channel spillway – Hybrid modeling, Hydraulic Measurements and Experimental Methods 2012, EWRI/ASCE, August 12-15, 2012, Snowbird, Utah.

80-12  Akin Aybar, Computational Modelling of Free Surface Flow in Intake Structures using FLOW-3D Software, Thesis: MS in Civil Engineering, The Graduate School of Natural and Applied Sciences of Middle East Technical University, June 2012.

74-12  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Saeed Reza Sabbagh Yazdi, and Syafalni Syafalni, Computational investigations of baffle configuration effects on the performance of primary sedimentation tanks, Water and Environment Journal, 22 October 2012, © 2012 CIWEM.

68-12  Jalal Attari and Mohammad Sarfaraz, Transitional Steps Zone in Steeply Stepped Spillways, 9th International Congress on Civil Engineering, May 8-10, 2012, Isfahan University of Technology (IUT), Isfahan, Iran

67-12  Mohammad Sarfaraz, Jalal Attari and Michael Pfister, Numerical Computation of Inception Point Location for Steeply Sloping Stepped Spillways, 9th International Congress on Civil Engineering, May 8-10, 2012, Isfahan University of Technology (IUT), Isfahan, Iran

64-12  Anders Wedel Nielsen, Xiaofeng Liu, B. Mutlu Sumer, Jørgen Fredsøe, Flow and bed shear stresses in scour protections around a pile in a current, Coastal Engineering, Volume 72, February 2013, Pages 20–38.

62-12  Ehab A. Meselhe, Ioannis Georgiou, Mead A. Allison, John A McCorquodale, Numerical Modeling of Hydrodynamics and Sediment Transport in Lower Mississippi at a Proposed Delta Building Diversion, Journal of Hydrology, October 2012.

60-12  Markus Grünzner and Gerhard Haimerl, Numerical Simulation Downstream Attraction Flow at Danube Weir Donauwörth, 9th ISE 2012, Vienna, Austria.

59-12 M. Grünzner, A 3 Dimensional Numerical (LES) and Physical ‘Golf Ball’ Model in Comparison to 1 Dimensional Approach, Hydraulic Measurements and Experimental Methods 2012, EWRI/ASCE, August 12-15, 2012, Snowbird, Utah

58-12  Shawn P. Clark, Jonathan S. Toews, Martin Hunt and Rob Tkach, Physical and Numerical Modeling in Support of Fish Passage Regulations, 9th ISE 2012, Vienna, Austria.

57-12  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Syafalni, Numerical Modeling of Baffle Location Effects on the Flow Pattern of Primary Sedimentation Tanks, Applied Mathematical Modelling, Available online October 2012, http://dx.doi.org/10.1016/j.apm.2012.09.060.

50-12  Gricelda Ramirez, A Virtual Flow Meter to Develop Velocity-Index Ratings and Evaluate the Effect of Flow Disturbances on these Ratings, Master’s Thesis: Department of Civil Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2012.

43-12  A. A. Girgidov, A. D. Girgidov and M. P. Fedorov, Use of dispersing springboards to reduce near-bottom velocity in a toe basin, Power Technology and Engineering (formerly Hydrotechnical Construction), Volume 46, Number 2 (2012), 113-115, DOI: 10.1007/s10749-012-0316-y.

40-12  Jong Pil Park, Kyung Sik Choi, Ji Hwan Jeong, Gyung Min Choi, Ju Yeop Park, and Man Woong Kim, Experimental and numerical evaluation of debris transport augmentation by turbulence during the recirculation-cooling phase, Nuclear Engineering and Design 250 (2012) 520-537

39-12  Hossein Basser, Abdollah Ardeshir, Hojat Karami, Numerical simulation of flow pattern around spur dikes series in rigid bed, 9th International Congress on Civil Engineering, May 8-10, 2012 Isfahan University of Technology (IUT), Isfahan, Iran

38-12  Sathaporn Temeepattanapongsa, Unified Equations for Cutthroat Flumes Derived from a Three-Dimensional Hydraulic Model, (2012). Thesis: Utah State University, All Graduate Theses and Dissertations. Paper 1308. Available online at: http://digitalcommons.usu.edu/etd/1308

36-12 Robert Feurich, Jacques Boubée, Nils Reidar B. Olsen, Improvement of fish passage in culverts using CFD, Ecological Engineering, Volume 47, October 2012, Pages 1–8.

35-12 Yovanni A. Cataño-Lopera and Jorge D. Abad, Flow Structure around a Partially Buried Object in a Simulated River Bed, World Environmental And Water Resources Congress 2012, Albuquerque, New Mexico, United States, May 20-24, 2012.

33-12  Fatemeh Rostami, Saeed Reza Sabbagh Yazdi, Md Azlin Md Said and Mahdi Shahrokhi, Numerical simulation of undular jumps on graveled bed using volume of fluid method, Water Science & Technology Vol 66 No 5 pp 909–917 © IWA Publishing 2012 doi:10.2166/wst.2012.213.

30-12  Saman Abbasi and Amir Abbas Kamanbedast, Investigation of Effect of Changes in Dimension and Hydraulic of Stepped Spillways for Maximization Energy Dissipation, World Applied Sciences Journal 18 (2): 261-267, 2012, ISSN 1818-4952, © IDOSI Publications, 2012, DOI: 10.5829/idosi.wasj.2012.18.02.492

24-12  Mario Oertel, Jan Mönkemöller and Andreas Schlenkhoff, Artificial stationary breaking surf waves in a physical and numerical model, Journal of Hydraulic Research, 50:3, 338-343, 2012.

23-12  Mario Oertel, Cross-bar block ramps:Flow regimes – flow resistance – energy dissipation – stability, thesis, Bericht Nr. 20, 2012, © 2011/12 Dr. Mario Oertel, Hydraulic Engineering Section, Bergische University of Wuppertal. Duplication only with author’s permission.

20-12  M. Oertel and A. Schlenkhoff, Crossbar Block Ramps: Flow Regimes, Energy Dissipation, Friction Factors, and Drag Forces, Journal of Hydraulic Engineering © ASCE, May 2012, pp. 440-448.

19-12  Mohsen Maghrebi, Saeed Alizadeh, and Rahim Lotfi, Numerical Simulation of Flow Over Rectangular Broad Crested Weir, 1st International and 3rd National Conference on Dams and Hydropower in Iran, Tehran, Iran, February 8 – February 9, 2012

18-12  Alireza Daneshkhah and Hamidreza Vosoughifar, Solution of Flow Field Equations to Investigate the Best Turbulent Model of Flow over a Standard Ogee Spillway, 1st International and 3rd National Conference on Dams and Hydropower in Iran, Tehran, Iran, February 8 – February 9, 2012

03-12  Hamed Taghizadeh, Seyed Ali Akbar Salehi Neyshabour and Firouz Ghasemzadeh, Dynamic Pressure Fluctuations in Stepped Three-Side Spillway, Iranica Journal of Energy & Environment 3 (1): 95-104, 2012, ISSN 2079-2115

02-12   Kim, Seojun, Yu, Kwonkyu, Yoon, Byungman, and Lim, Yoonsung, A numerical study on hydraulic characteristics in the ice Harbor-type fishway, KSCE Journal of Civil Engineering, 2012-02-01, Issn: 1226-7988, pp 265- 272, Volume: 16, Issue: 2, Doi: 10.1007/s12205-012-0010-5.

105-11 Hatice Ozmen Cagatay and Selahattin Kocaman, Dam-break Flow in the Presence of Obstacle: Experiment and CFD Simulation, Engineering Applications of Computational Fluid Mechancis, Vol. 5, No. 4, pp. 541-552, 2011

102-11 Sang Do An, Interflow Dynamics and Three-Dimensional Modeling of Turbid Density Currents in IMHA Reservoir, South Korea, thesis: Doctor of Philosophy, Department of Civil and Environmental Engineering at Colorado State University, 2011.

101-11 Tsunami – A Growing Disaster, edited by Mohammad Mokhtari, ISBN 978-953-307-431-3, 232 pages, Publisher: InTech, Chapters published December 16, 2011 under CC BY 3.0 license, DOI: 10.5772/922. Available for download at Intech.

98-11  Selahattin Kocaman and Hasan Guzel, Numerical and Experimental Investigation of Dam-Break Wave on a Single Building Situated Downstream, Epoka Conference Systems, 1st International Balkans Conference on Challenges of Civil Engineering, 19-21 May 2011, EPOKA University, Tirana, Albania.

97-11   T. Endreny, L. Lautz, and D. I. Siegel, Hyporheic flow path response to hydraulic jumps at river steps: Flume and hydrodynamic models, WATER RESOURCES RESEARCH, VOL. 47, W02517, doi:10.1029/2009WR008631, 2011.

96-11   Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said and Syafalni, Numerical Simulation of Influence of Inlet Configuration on Flow Pattern in Primary Rectangular Sedimentation Tanks, World Applied Sciences Journal 15 (7): 1024-1031, 2011, ISSN 1818-4952, © IDOSI Publications, 2011. Full article available online at IODSI.

94-11  Kathleen H. Frizell, Summary of Hydraulic Studies for Ladder and Flume Fishway Design- Nimbus Hatchery Fish Passage Project, Hydraulic Laboratory Report HL-2010-04, U.S. Department of the Interior Bureau of Reclamation Technical Service Center Hydraulic Investigations and Laboratory Services Group, December 2011

88-11   Abdelaziz, S, Bui, MD, Rutschmann, P, Numerical Investigation of Flow and Sediment Transport around a Circular Bridge Pier, Proceedings of the 34th World Congress of the International Association for Hydro- Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, ACT: Engineers Australia, 2011: 2624-2630.

86-11  M. Heidarnejad, D. Halvai and M. Bina, The Proper Option for Discharge the Turbidity Current and Hydraulic Analysis of Dez Dam Reservoir, World Applied Sciences Journal 13 (9): 2052-2056, 2011, ISSN 1818-4952 © IDOSI Publications, 2011

84-11  Martina Reichstetter and Hubert Chanson, Physical and Numerical Modelling of Negative Surges in Open Channels, School of Civil Engineering at the University of Queensland, Report CH84/11, ISBN No. 9781742720388, © Reichstetter and Chanson, 2011.

83-11  Reda M. Abd El-Hady Rady, 2D-3D Modeling of Flow Over Sharp-Crested Weirs, Journal of Applied Sciences Research, 7(12): 2495-2505, ISSN 1819-544X, 2011.

78-11  S. Abbasi, A. Kamanbedast and J. Ahadian, Numerical Investigation of Angle and Geometric of L-Shape Groin on the Flow and Erosion Regime at River Bends, World Applied Sciences Journal 15 (2): 279-284, 2011, ISSN 1818-4952 © IDOSI Publications, 2011.

75-11  Mario Oertel and Daniel B. Bung, Initial stage of two-dimensional dam-break waves: laboratory versus VOF, Journal of Hydraulic Research, DOI: 10.1080/00221686.2011.639981, Available online: 08 Dec 2011.

73-11  T.N. Aziz and A.A. Khan, Simulation of Vertical Plane Turbulent Jet in Shallow Water, Advances in Civil Engineering, vol. 2011, Article ID 292904, 10 pages, 2011. doi:10.1155/2011/292904.

67-11   Chung R. Song, ASCE, Jinwon Kim, Ge Wang, and Alexander H.-D. Cheng, Reducing Erosion of Earthen Levees Using Engineered Flood Wall SurfaceJournal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 10, October 2011, pp. 874-881, http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000500.

64-11  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Syafalni, The Effect of Number of Baffles on the Improvement Efficiency of Primary Sedimentation Tanks, Available online 11 November 2011, ISSN 0307-904X, 10.1016/j.apm.2011.11.001.

62-11  Jana Hadler, Klaus Broekel, Low head hydropower – its design and economic potential, World Renewable Energy Congress 2011, Sweden, May 8-13, 2011.

60-11 Md. Imtiaj Hassan and Nahidul Khan, Performance of a Quarter-Pitch Twisted Savonius Turbine, The International Conference and Utility Exhibition 2011, Pattaya City, Thailand, 28-30 September 2011.

59-11   Erin K. Gleason, Ashraful Islam, Liaqat Khan, Darrne Brinker and Mike Miller, Spillway Analysis Techniques Using Traditional and 3-D Computational Fluid Dynamics Modeling, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

58-11  William Rahmeyer, Steve Barfuss, and Bruce Savage, Composite Modeling of Hydraulic Structures, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

57-11  B. Dasgupta, K. Das, D. Basu, and R. Green, Computational Methodology to Predict Rock Block Erosion in Plunge Pools, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

56-11  Jeff Burnham, Modeling Dams with Computational Fluid Dynamics- Past Success and New Directions, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

52-11  Madhi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, and Syafalni, The Computational Modeling of Baffle Configuration in the Primary Sedimentation Tanks, 2011 2nd International Conference on Environmental Science and Technology IPCBEE vol 6. (2011) IACSIT Press, Singapore.

47-11  Stefan Haun, Nils Reidar B. Olsen and Robert Feurich, Numerical Modeling of Flow over Trapezoidal Broad-Crested Weir, Engineering Applications of Computational Fluid Mechanics Vol 5., No. 3, pp. 397-405, 2011.

42-11  Anu Acharya, Experimental Study and Numerical Simulation of Flow and Sediment Transport around a Series of Spur Dikes, thesis: The University of Arizona Graduate College, Copyright © Anu Acharya 2011, July 2011.

38-11  Mehdi Shahosseini, Amirabbas Kamanbedast and Roozbeh Aghamajidi, Investigation of Hydraulic Conditions around Bridge Piers and Determination of Shear Stress using Numerical Methods, World Environmental and Water Resources Congress 2011, © ASCE 2011.

35-11  L. Toombes and H. Chanson, Numerical Limitations of Hydraulic Models, 34th IAHR World Congress, 33rd Hydrology & Water Resources Symposium, 10th Hydraulics Conference, Brisbane, Australia, 26 June – 1 July 2011.

34-11  Mohammad Sarfaraz, and Jalal Attari, Numerical Simulation of Uniform Flow Region over a Steeply Sloping Stepped Spillway, 6th National Congress on Civil Engineering, Semnan University, Semnan, Iran, April 26-27, 2011.

30-11  John Richardson and Pamela Waterman, Stemming the Flood, Mechanical Engineering, Vol. 133/No.7 July 2011

29-11  G. Möller & R. Boes, D. Theiner & A. Fankhauser, G. De Cesare & A. Schleiss, Hybrid modeling of sediment management during drawdown of Räterichsboden reservoir, Dams and Reservoirs under Changing Challenges – Schleiss & Boes (Eds), © 2011 Taylor & Francis Group, London, ISBN 978-0-415-68267-1.

24-11  Liaqat A. Khan, Computational Fluid Dynamics Modeling of Emergency Overflows through an Energy Dissipation Structure of a Water Treatment Plant, ASCE Conf. Proc. doi:10.1061/41173(414)155, World Environmental and Water Resources Congress 2011.

23-11  Anu Acharya and Jennifer G. Duan, Three Dimensional Simulation of Flow Field around Series of Spur Dikes, ASCE Conf. Proc. doi:10.1061/41173(414)218, World Environmental and Water Resources Congress 2011.

22-11  Mehdi Shahosseini, Amirabbas Kamanbedast, and Roozbeh Aghamajidi, Investigation of Hydraulic Conditions around Bridge Piers and Determination of Shear Stress Using Numerical Method, ASCE Conf. Proc. doi:10.1061/41173(414)435, World Environmental and Water Resources Congress 2011.

20-11  Jong Pil Park, Ji Hwan Jeong, Won Tae Kim, Man Woong Kim and Ju Yeop Park, Debris transport evaluation during the blow-down phase of a LOCA using computational fluid dynamics, Nuclear Engineering and Design, June 2011, ISSN 0029-5493, DOI: 10.1016/j.nucengdes.2011.05.017.

13-11 Ehab A. Meselhe, Myrtle Grove Delta Building Diversion Project, The Geological Society of America, South-Central Section – 45th Annual Meeting, New Orleans, Louisiana, March 2011.

12-11  Bryan Heiner and Steven L. Barfuss, Parshall Flume and Discharge Corrections Wall Staff Gauge and Centerline Measurements, Journal of Irrigation and Drainage Engineering, posted ahead of print February 1, 2011, DOI:10.1061/(ASCE)IR.1943-4774.0000355, © 2011 by the American Society of Civil Engineers.

06-11  T. Endreny, L. Lautz, and D. Siegel, Hyporheic flow path response to hydraulic jumps at river steps- Hydrostatic model simulations, Water Resources Research, Vol. 47, W02518, doi: 10.1029/2010WR010014, 2011, © 2011 by the American Geophysical Union, 0043-1397/11/2010WR010014

03-11  Jinwon Kim, Chung R. Song, Ge Wang and Alexander H.-D. Cheng Reducing Erosion of Earthen Levees Using Engineered Flood Wall Surface, Journal of Geotechnical and Geoenvironmental Engineering, © ASCE, January 2011.

02-11  F. Montagna, G. Bellotti and M. Di Risio, 3D numerical modeling of landslide-generated tsunamis around a conical island, Springer Link, Earth and Environmental Science, Natural Hazards, DOI: 10.1007/s11069-010-9689-0, Online First™, 7 January 2011.

83-10   S. Abdelaziz, M.D. Bui and P. Rutschmann, Numerical simulation of scour development due to submerged horizontal jet, River Flow 2010, eds. Dittrich, Koll, Aberle & Geisenhainer, © 2010 Bundesanstalt für Wasserbau, ISBN 978-3-939230-00-7.

79-10  Daniel J. Howes, Charles M. Burt, and Brett F. Sanders, Subcritical Contraction for Improved Open-Channel Flow Measurement Accuracy with an Upward-Looking ADVM, J. Irrig. Drain Eng. 2010.136:617-626.

78-10  M. Kaheh, S. M. Kashefipour, and A. Dehghani, Comparison of k-ε and RNG k-ε Turbulent Models for Estimation of Velocity Profiles along the Hydraulic Jump, presented at the 6th International Symposium on Environmental Hydraulics, Athens, Greece, June 2010.

75-10  Shahrokh Amiraslani, Jafar Fahimi, Hossein Mehdinezhad, The Numerical Investigation of Free Falling Jet’s Effect on the Scour of Plunge Pool, XVIII International Conference on Water Resources CMWR 2010 J. Carrera (Ed) CIMNE, Barcelona 2010

74-10  M. Ho Ta Khanh, Truong Chi Hien, and Dinh Sy Quat, Study and construction of PK Weirs in Vietnam (2004 to 2011), 78th Annual Meeting of the International Commission on Large Dams,  VNCOLD, Hanoi, Vietnam, May 23-26, 2010.

72-10  DKH Ho and KM Riddette, Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia, © Institution of Engineers Australia, 2010, Australian Journal of Civil Engineering, Vol 6 No 1, 2010.

71-10  Cecilia Lucino, Sergio Liscia y Gonzalo Duro, Vortex Detection in Pump Sumps by Means of CFD, XXIV Latin American Congress on Hydraulics, Punta Del Este, Uruguay, November 2010; Deteccion de Vortices en Darsenas de Bombeo Mediante Modelacion MatematicaAvailable in English and Spanish.

64-10 Jose (Pepe) Vasquez, Assessing Sediment Movement by CFD Particle Tracking, 2nd Joint Federal Interagency Conference, Las Vegas, Nevada, June 27-July 1, 2010.

63-10 Sung-Min Cho, Foundation Design of the Incheon Bridge, Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol 41 No.4, ISSN0046-5828, December 2010.

61-10  I. Meireles, F.A. Bombardelli and J. Matos, Experimental and Numerical Investigation of the Non-Aerated Skimming Flow on Stepped Spillways Over Embankment Dams, Presented at the 2010 IAHR European Congress, Edinburgh, UK, May 4-6, 2010.

60-10  Mario Oertel, G. Heinz and A. Schlenkhoff, Physical and Numerical Modelling of Rough Ramps and Slides, Presented at the 2010 IAHR European Congress, Edinburgh, UK, May 4-6, 2010.

59-10  Fatemeh Rostami, Mahdi Shahrokhi, Md Azlin Md Said, Rozi Abdullah and Syafalni, Numerical modeling on inlet aperture effects on flow pattern in primary settling tanks, Applied Mathematical Modelling, Copyright © 2010 Elsevier Inc., DOI: 10.1016/j.apm.2010.12.007, December 2010.

56-10  G. B. Sahoo, F Bombardelli, D. Behrens and J.L. Largier, Estimation of Stratification and Mixing of a Closed River System Using FLOW-3D, American Geophysical Union, Fall Meeting 2010, abstract #H31G-1091

50-10  Sung-Duk Kim, Ho-Jin Lee and Sang-Do An, Improvement of hydraulic stability for spillway using CFD model, International Journal of the Physical Sciences Vol. 5(6), pp. 774-780, June 2010. Available online at http://www.academicjournals.org/IJPS, ISSN 1992

49-10  Md. Imtiaj Hassan, Tariq Iqbal, Nahidul Khan, Michael Hinchey, Vlastimil Masek, CFD Analysis of a Twisted Savonius Turbine, PKP Open Conference Systems, IEEE Newfoundland and Labrador Section, October 2010

46-10  Hatice Ozmen-Cagatay and Selahattin Kocaman, Dam-break flows during initial stage using SWE and RANS approaches, Journal of Hydraulic Research, Vol 48, No. 5 (2010), pp. 603-611, doi: 10.108/00221686.2010.507342, © 2010 International Association for Hydro-Environment Engineering and Research.

44-10  Marie-Hélène Briand, Catherine Tremblay, Yannick Bossé, Julian Gacek, Carola Alfaro, and Richard Blanchet, Ashlu Creek hydroelectric project- Design and optimization of hydraulic structures under construction, CDA 2010 Annual Conference, Congrès annuel 2010 de l’A CB, Niagra Falls, ON, Canada, 2010 Oct 2-7.

43-10 Gordon McPhail, Justin Lacelle, Bert Smith, and Dave MacMillan, Upgrading of Boundary Dam Spillway, CDA 2010 Annual Conference, Congrès annuel 2010 de l’A CB, Niagra Falls, ON, Canada, 2010 Oct 2-7.

40-10 Selahattin Kocamana; Galip Seckinb; Kutsi S. Erduran, 3D model for prediction of flow profiles around bridges, DOI: 10.1080/00221686.2010.507340, Journal of Hydraulic Research, Volume 48, Issue 4 August 2010, pages 521 – 525. Available online at: informaworld

38-10  Kevin M. Sydor and Pamela J. Waterman, Engineering and Design: The Value of CFD Modeling in Designing a Hydro Plant, Hydro Review, Volume 29, Issue 6, September 2010 Available online at HydroWorld.com

33-10  Fabián A. Bombardelli, Inês Meireles and Jorge Matos, Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence, SpringerLink, Environmental Fluid Mechanics, Online First™, 26 August 2010

30-10 Bijan Dargahi, Flow characteristics of bottom outlets with moving gates, IAHR, Journal of Hydraulic Research, Vol. 48, No. 4 (2010), pp. 476-482, doi: 10.1080/00221686.20101.507001, © 2010 International Association for Hydro-Environment Engineering and Research

24-10 Shuang Ming Wang and Kevin Sydor, Power Intake Velocity Modeling Using FLOW-3D at Kelsey Generating Station, Canadian Dam Association Bulletin, Vol. 21. No. 2, Spring 2010, pp: 16-21

20-10 Jungseok Ho, Todd Marti and Julie Coonrod, Flood debris filtering structure for urban storm water treatment, DOI: 10.1080/00221686.2010.481834, Journal of Hydraulic Research, Volume 48, Issue 3, pages 320 – 328, June 2010.

16-10 J. Jacobsen and N. R. B. Olsen, Three-dimensional numerical modeling of the capacity for a complex spillway, Proceedings of the ICE – Water Management, Volume 163, Issue 6, pages 283 –288, ISSN: 1741-7589, E-ISSN: 1751-7729.

13-10 J. Ho, J. Coonrod, L. J. Hanna, B. W. Mefford, Hydrodynamic modelling study of a fish exclusion system for a river diversion, River Research and Applications Volume 9999, mIssue 9999, Copyright © 2005 John Wiley & Sons, Ltd.

12-10 Nils Rüther, Jens Jacobsen, Nils Reidar B. Olsen and Geir Vatne, Prediction of the three-dimensional flow field and bed shear stresses in a regulated river in mid-Norway, Hydrology Research Vol 41 No 2 pp 145–152 © IWA Publishing 2010, doi:10.2166/nh.2010.064.

11-10 Xing Fang, Shoudong Jiang, and Shoeb R. Alam, Numerical Simulations of Efficiency of Curb-Opening Inlets, J. Hydr. Engrg. Volume 136, Issue 1, pp. 62-66 (January 2010).

54-09    K.W. Frizell, J.P. Kubitschek, and R.F. Einhellig, Folsom Dam Joint Federal Project Existing Spillway Modeling – Discharge Capacity Studies, American River Division Central Valley Project Mid-Pacific Region, Hydraulic Laboratory Report HL-2009-02, US Department of the Interior, Bureau of Reclamation, Denver, Colorado, September 2009

50-09  Mark Fabian, Variation in Hyporheic Exchange with Discharge and Slope in a Tropical Mountain Stream, thesis: State University of New York, College of Environmental Science & Forestry, 2009. Available online: http://gradworks.umi.com/14/82/1482174.html.

48-09 Junwoo Choi, Kwang Oh Ko, and Sung Bum Yoon, 3D Numerical Simulation for Equivalent Resistance Coefficient for Flooded Built-Up Areas, Asian and Pacific Coasts 2009 (pp 245-251), Proceedings of the 5th International Conference on APAC 2009, Singapore, 13 – 16 October 2009

47-09 Young-Il Kim, Chang-Jin Ahn, Chae-Young Lee, Byung-Uk Bae, Computational Fluid Dynamics for Optimal Design of Horizontal-Flow Baffled-Channel Powdered Activated Carbon Contactors, Mary Ann Liebert, Inc. publishers, Volume: 26 Issue 1: January 15, 2009.

43-09 Charles R. Ortloff, Water Engineering in the Ancient World: Archaeological and Climate Perspectives on Societies of Ancient South America, Meso-America, the Middle East and South East Asia, Oxford University Press, ISBN13: 978-0-19-923909-2ISBN10: 0-19-923909-6, December 2009 Available at Oxford University Press (clicking on this link will take you to OUP’s website).

40-09 Ge Wang, Chung R. Song, Jinwon Kim and Alexander, H.-D Cheng, Numerical Study of Erosion-proof of Loose Sand in an Overtopped Plunging Scour Process — FLOW-3D, The 2009 Joint ASCE-ASME-SES Conference on Mechanics and Materials, Blacksburg, Virginia, June 24-27, 2009

39-09 Charles R. Ortloff, Water Engineering in the Ancient World: Archaeological and Climate Perspectives on Societies of Ancient South America, the Middle East, and South-East Asia(Hardcover), Oxford University Press, USA (October 15, 2009), ISBN-10: 0199239096; ISBN-13: 978-0199239092 Buy Water Engineering in the Ancient World on Amazon.com.

38-09 David S. Brown, Don MacDonell, Kevin Sydor, and Nicolas Barnes, An Integrated Computational Fluid Dynamics and Fish Habitat Suitability Model for the Pointe Du Bois Generating Station, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 53-66

37-09 Warren Gendzelevich, Andrew Baryla, Joe Groenveld, and Doug McNeil, Red River Floodway Expansion Project-Design and Construction of the Outlet Structure, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 13-26

36-09 Jose A. Vasquez and Jose J. Roncal, Testing River2D and FLOW-3D for Sudden Dam-Break Flow Simulations, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 44-55

33-09 Pamela J. Waterman, Modeling Commercial Aquaculture Systems Employing FLOW-3D, (clicking on this link will take you to Desktop Engineering’s website) Desktop Engineering, November 2009

29-09 Bruce M. Savage, Michael C. Johnson, Brett Towler, Hydrodynamic Forces on a Spillway- Can we calculate them?, Dam Safety 2009, Hollywood, FL, USA, October 2009

27-09 Charles “Chick” Sweeney, Keith Moen, and Daniel Kirschbaum, Hydraulic Design of Total Dissolved Gas Mitigation Measures for Boundary Dam, Waterpower XVI, © PennWell Corporation, Spokane, WA, USA, July 2009

23-09 J.A. Vasquez and B.W. Walsh, CFD simulation of local scour in complex piers under tidal flow, 33rd IAHR Congress: Water Engineering for a Sustainable Environment, © 2009 by International Association of Hydraulic Engineering & Research (IAHR), ISBN: 978-94-90365-01-1

15-09 Kaushik Das, Steve Green, Debashis Basu, Ron Janetzke, and John Stamatakos, Effect of Slide Deformation and Geometry on Waves Generated by Submarine Landslides- A Numerical Investigation, Copyright 2009, Offshore Technology Conference, Houston, Texas, USA, May 4-7, 2009

5-09 Remi Robbe, Douglas Sparks, Calculation of the Rating Curves for the Matawin Dam’s Bottom Sluice Gates using FLOW-3D, Conference of the Société Hydrotechnique de France (SHF), 20-21 January 2009, Paris, France. (in French)

4-09 Frederic Laugier, Gregory Guyot, Eric Valette, Benoit Blancher, Arnaud Oguic, Lily Lincker, Engineering Use of Hydrodynamic 3D Simulation to Assess Spillway Discharge Capacity, Conference of the Société Hydrotechnique de France (SHF), 20-21 January 2009, Paris, France. (in French)

50-08   H. Avila and R.Pitt, The Calibration and use of CFD Models to Examine Scour from Stormwater Treatment Devices – Hydrodynamic Analysis, 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 2008

47-08    Greg Paxson, Brian Crookston, Bruce Savage, Blake Tullis, and Frederick Lux III, The Hydraulic Design Toolbox- Theory and Modeling for the Lake Townsend Spillway Replacement Project, Assoc. of State Dam Safety Officials (ASDSO), Indian Wells, CA, September 2008.

46-08  Sh. Amirslani, M. Pirestani and A.A.S. Neyshabouri, The 3D numerical simulation of scour by free falling jet and compare geometric parameters of scour hole with DOT, River flow 2008-Altinakar, Kokipar, Gogus, Tayfur, Kumcu & Yildirim (eds) © 2008 Kubaba Congress Department and Travel Services ISBN 978-605-601360201

44-08  Paul Guy Chanel, An Evaluation of Computational Fluid Dynamics for Spillway Modeling, thesis: Department of Civil Engineering, University of Manitoba, Copyright © 2008 by Paul Guy Chanel

41-08 Jinwei Qiu, Gravel transport estimation and flow simulation over low-water stream crossings, thesis: Lamar University – Beaumont, 2008, 255 pages; AAT 3415945

37-08 Dae-Geun Kim, Numerical analysis of free flow past a sluice gate, KSCE Journal of Civil Engineering, Volume 11, Number 2 / March, 2007, 127-132.

36-08 Shuang Ming Wang and Kevin Sydor, Power Intake Velocity Modeling using FLOW-3D at Kelsey Generating Station, CDA 2008 Annual Conference, Congres annuel 2008 de l’ACB, Winnipeg, MB, Canada, September 27-October 2, 2008, du 27 septembre au 2 octobre 2008

33-08 Daniel B. Bung, Arndt Hildebrandt, Mario Oertel, Andreas Schlenkhoff and Torsten Schlurmann, Bore Propagation Over a Submerged Horizontal Plate by Physical and Numerical Simulation, ICCE 2008, Hamburg, Germany

32-08 Paul G. Chanel and John C. Doering, Assessment of Spillway Modeling Using Computational Fluid Dynamics, Canadian Journal of Civil Engineering, 35: 1481-1485 (2008), doi: 10.1139/L08-094 © NRC Canada

31-08 M. Oertel & A. Schlenkhoff, Flood wave propagation and flooding of underground facilities, River Flow 2008, © 2008, International Conference on Fluvial Hydraulics, Izmir, Turkey, September, 2008

18-08 Efrem Teklemariam, Bernie Shumilak, Don Murray, and Graham K. Holder, Combining Computational and Physical Modeling to Design the Keeyask Station, Hydro Review, © HCI Publications, July 2008

15-08 Jorge D. Abad; Bruce L. Rhoads; İnci Güneralp; and Marcelo H. García, Flow Structure at Different Stages in a Meander-Bend with Bendway Weirs, Journal of Hydraulic Engineering © ASCE, August 2008

11-08 Sreenivasa C. Chopakatla, Thomas C. Lippmann and John E. Richardson, Field Verification of a Computational Fluid Dynamics Model for Wave Transformation and Breaking in the Surf Zone, J. Wtrwy., Port, Coast., and Oc. Engrg., Volume 134, Issue 2, pp. 71-80 (March/April 2008) Abstract Only

51-07   Richmond MC, TJ Carlson, JA Serkowski, CB Cook, JP Duncan, and WA Perkins, Characterizing the Fish Passage Environment at The Dalles Dam Spillway: 2001-2004, PNNL-16521, Pacific Northwest National Laboratory, Richland, WA, 2007. Available upon request

46-07 Uplift and Crack Flow Resulting from High Velocity Discharges Over Open Offset Joints, Reclamation, Managing Water in the West, U.S. Department of the Interior, Bureau of Reclamation, Report DSO-07-07, December 2007

45-07 Selahattin Kocaman, thesis: Department of Civil Engineering, Institute of Natural and Applied Sciences, University of Çukurova, Experimental and Theoretical Investigation of Dam Break Problem, 2007. In Turkish. Available on request.

44-07   Saeed-reza Sabbagh-yazdi, Fatemeh Rostami, Habib Rezaei-manizani, and Nikos E. Mastorakis, Comparison of the Results of 2D and 3D Numerical Modeling of Flow over Spillway chutes with Vertical Curvatures, International Journal of Computers, Issue 4, Volume 1, 2007.

43-07    Staša Vošnjak and Jure Mlacnik, Verification of a FLOW-3D mathematical model by a physical hydraulic model of a turbine intake structure, International Conference and exhibition Hydro 2007, 15- 17 October 2007, Granada, Spain. New approaches for a new era: proceedings. [S.l.]: Aqua-Media International Ltd., 2007, 7 str. [COBISS.SI-ID 4991329]

42-07   Merlynn D. Bender, Joseph P. Kubitschek, Tracy B. Vermeyen, Temperature Modeling of Folsom Lake, Lake Natoma, and the Lower American River, Special Report, Sacramento County, California, April 2007

37-07 Heather D. Smith, Flow and Sediment Dynamics Around Three-Dimensional Structures in Coastal Environments, thesis: The Ohio State Unviersity, 2007 (available upon request)

34-07   P.G. Chanel and J.C. Doering, An Evaluation of Computational Fluid Dynamics for Spillway Modeling, 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, December 2007

29-07   J. Groeneveld, C. Sweeney, C. Mannheim, C. Simonsen, S. Fry, K. Moen, Comparison of Intake Pressures in Physical and Numerical Models of the Cabinet Gorge Dam Tunnel, Waterpower XV, Copyright HCI Publications, July 2007

25-07   Jungseok Ho, Hong Koo Yeo, Julie Coonrod, Won-Sik Ahn, Numerical Modeling Study for Flow Pattern Changes Induced by Single Groyne, IAHR Conference Proc., Harmonizing the Demands of Art and Nature in Hydraulics, IAHR, July 2007, Venice, Italy.

24-07   Jungseok Ho, Julie Coonrod, Todd Marti, Storm Water Best Management Practice- Development of Debris Filtering Structure for Supercritical Flow, EWRI Conference Proc. of World Water and Environmental Resources Congress, ASCE, May 2007, Tampa, Florida.

21-07 David S. Mueller, and Chad R. Wagner, Correcting Acoustic Doppler Current Profiler Discharge Measurements Biased by Sediment Transport, Journal of Hydraulic Engineering, Volume 133, Issue 12, pp. 1329-1336 (December 2007), Copyright © 2007, ASCE. All rights reserved.

19-07   A. Richard Griffith, James H. Rutherford, A. Alavi, David D. Moore, J. Groeneveld, Stability Review of the Wanapum Spillway Using CFD Analysis, Canadian Dam Association Bulletin, Fall 2007

06-07   John E. Richardson, CFD Saves the Alewife- Computer simulation helps the Alewife return to its Mt. Desert Island spawning grounds, Desktop Engineering, July 2007; Hatchery International, July/August 2007

39-06    Dae Geun Kim and Hong Yeun Cho, Modeling the buoyant flow of heated water discharged from surface and submerged side outfalls in shallow and deep water with a cross flow, Environ Fluid Mech (2006) 6: 501. https://doi.org/10.1007/s10652-006-9006-3

38-06   Cook, C., B. Dibrani, M. Richmond, M. Bleich, P. Titzler, T. Fu, Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report, Project No. 200202700, 176 electronic pages, (BPA Report DOE/BP-00000652-29)

37-06  Cook CB, MC Richmond, and JA Serkowski, The Dalles Dam, Columbia River: Spillway Improvement CFD Study, PNNL-14768, Pacific Northwest National Laboratory, Richland, WA, 2006. Available upon request

31-06 John P. Raiford and Abdul A. Khan, Numerical Modeling of Internal Flow Structure in Submerged Hydraulic Jumps, ASCE Conf. Proc. 200, 49 (2006), DOI:10.1061/40856(200)49

29-06    Michael C. Johnson and Bruce Savage, Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater, Journal of Hydraulic Engineering © ASCE, December 2006

28-06   Greg Paxson and Bruce Savage, Labyrinth Spillways- Comparison of Two Popular U.S.A. Design Methods and Consideration of Non-standard Approach Conditions and Geometries, International Junior Researcher and Engineer Workshop on Hydraulic Structures, Report CH61/06, Div. of Civil Eng., The University of Queensland, Brisbane, Australia-ISBN 1864998687

22-06   Brent Mefford and Jim Higgs, Link River Falls Passage Investigation – Flow Velocity Simulation, Water Resources Research Laboratory, February 2006

27-06  Jungseok Ho, Leslie Hanna, Brent Mefford, and Julie Coonrod, Numerical Modeling Study for Fish Screen at River Intake Channel, EWRI Conference Proc. of World Water and Environmental Resources Congress, ASCE, May 2006, Omaha, Nebraska.

17-06  Woolgar, Robert and Eddy, Wilmore, Using Computational Fluid Dynamics to Address Fish Passage Concerns at the Grand Falls-Windsor Hydroelectric Development, Canadian Dam Association meeting, Quebec City, Canada October 2006

14-06  Fuamba, M., Role and behavior of surge chamber in hydropower- Case of the Robert Bourassa hydroelectric power plant in Quebec, Canada, Dams and Reservoirs, Societies and Environment in the 21st Century- Berga et al (eds) @ 2006 Taylor & Francis Group, London, ISBN 0 415 40423 1

13-06  D.K.H. Ho, B.W. Cooper, K.M. Riddette, S.M. Donohoo, Application of numerical modelling to spillways in Australia, Dams and Reservoirs, Societies and Environment in the 21st Century—Berga et al (eds) © 2006 Taylor & Francis Group, London, ISBN 0 415 40423 1

4-06 James Dexter, William Faisst, Mike Duer and Jerry Flanagan, Computer Simulation Helps Prevent Nitrification of Storage Reservoir, Waterworld, March 2006, pp 18-24

36-05   P. Coussot, N. Rousell, Jarny and H. Chanson, (2005), Continuous or Catastrophic Solid-Liquid Transition in Jammed Systems, Physics of Fluids, Vol. 17, No. 1, Article 011703, 4 pages (ISSN 0031-9171).

35-05    Dae Geun Kim and Jae Hyun Park, Analysis of Flow Structure over Ogee-Spillway in Consideration of Scale and Roughness Effects by Using CFD Model,  KSCE Journal of Civil Engineering. Volume 9, Number 2, March 2005, pp 161 – 169.

31-05 Frank James Dworak, Characterizing Turbulence Structure along Woody Vegetated Banks in Incised Channels: Implications for Stream Restoration, thesis: The University of Tennessee, Knoxville, December 2005 (available upon request)

29-05 Gessler, Dan and Rasmussen, Bernie, Before the Flood, Desktop Engineering, October 2005

25-05   Jorge D. Abad and Marcelo H. Garcia, Hydrodynamics in Kinoshita-generated meandering bends- Importance for river-planform evolution, 4th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, October 4-7, 2005, Urbana, Illinois

23-05 Kristiansen T., Baarholm R., Stansberg C.T., Rørtveit G.J. and Hansen E.W., Steep Wave Kinematics and Interaction with a Vertical Column, Presented at The Fifth International Symposium on Ocean Wave Measurement and Analysis (Waves 2005), Spain, July, 2005

16-05 Dan Gessler, CFD Modeling of Spillway Performance, Proceedings of the 2005 World Water and Environmental Resources Congress (sponsored by Environmental and Water Resources Institute of the American Society of Civil Engineers), May 15-19, 2005, Anchorage, Alaska

12-05 Charles Ortloff, The Water Supply and Distribution System of the Nabataean City of Petra (Jordan), 300 BC- AD 300, Cambridge Archaeological Journal 15:1, 93-109

33-04    Jose Carlos C. Amorim, Cavalcanti Renata Rodrigues, and Marcelo G. Marques, A Numerical and Experimental Study of Hydraulic Jump Stilling Basin, Advances in Hydro-Science and Engineering, Volume VI, Presented at the International Conference on Hydro-Science and Engineering, 2004

23-04   Jose F. Rodriguez, Fabian A. Bombardelli, Marcelo H. Garcia, Kelly Frothingham, Bruce L. Rhoads and Jorge D. Abad, High-Resolution Numerical Simulation of Flow Through a Highly Sinuous River Reach, Water Resources Management, 18:177-199, 2004.

18-04   John Richardson and Douglas Dixon, Modeling the Hydraulics Zone of Influence of Connecticut Yankee Nuclear Plants Cooling Water Intake Structure, a chapter in The Connecticut River Ecological Study (1965-1973) Revisited: Ecology of the Lower Connecticut River 1973-2003, Paul M. Jacobson, Douglas A. Dixon, William C. Leggett, Barton C. Marcy, Jr., and Ronald R. Massengill, editors; Published by American Fisheries Society, Publication date: November 2004, ISBN 1-888569-66-2

10-04   Bruce Savage, Kathleen Frizell, and Jimmy Crowder, Brains versus Brawn- The Changing World of Hydraulic Model Studies

7-04   C. B. Cook and M. C. Richmond, Monitoring and Simulating 3-D Density Currents and the Confluence of the Snake and Clearwater Rivers, Proceedings of EWRI World

24-03  David Ho, Karen Boyes, Shane Donohoo, and Brian Cooper, Numerical Flow Analysis for Spillways, 43rd ANCOLD Conference, Hobart, Tasmania, 24-29 October 2003

15-03   Ho, Dr K H, Boyes, S M, Donohoo, S M, Investigation of Spillway Behaviour Under Increased Maximum Flood by Computational Fluid Dynamics Technique, Proc Conf 14th Australian Fluid Mechanics, Adelaide, Australia, December 2001, 577-580

14-03   Ho, Dr K H, Donohoo, S M, Boyes, K M, Lock, C C, Numerical Analysis and the Real World- It Looks Pretty, but is It Right?, Proceedings of the NAFEMS World Congress, May 2003, Orlando, FL

13-03 Brethour, J. M., Sediment Scour, Flow Science Technical Note (FSI-03-TN62)

26-02   Sungyul Yoo, Kiwon Hong and Manha Hwang, A 3-dimensional numerical study of flow patterns around a multipurpose dam, 2002 Hydroinformatics Conference, Cardiff, Wales

23-02   Christopher B. Cook, Marshall C. Richmond, John A. Serkowski, and Laurie L. Ebner, Free-Surface Computational Fluid Dynamics Modeling of a Spillway and Tailrace- Case Study of The Dalles Project, Hydrovision 2002, 29 July -†2 Aug, 2002 Portland, OR

13-02   Efrem Teklemariam, Brian W. Korbaylo, Joe L. Groeneveld & David M. Fuchs, Computational Fluid Dynamics- Diverse Applications In Hydropower Project’s Design and Analysis, June 11-14, 2002, CWRA 55th Annual Conference, Winnipeg, Manitoba, CA

12-02   Snorre Heimsund, Ernst Hansen, W Nemec, Computational 3-D Fluid Dynamics Model for Sediment Transport, Erosion, and Deposition by Turbidity Currents, 16th International Sedimentological Congress Abstract Volume (2002) XX-XX

9-02   D. T. Souders & C. W. Hirt, Modeling Roughness Effects in Open Channel Flows, Flow Science Technical Note (FSI-02-TN60), May 2002

47-01    Fabián A. Bombardelli and Marcelo H. García, Three-dimensional Hydrodynamic Modeling of Density Currents in the Chicago River, Illinois, CIVIL ENGINEERING SERIES, UILU-ENG-01-2001 Hydraulic Engineering Series No. # 68, ISSN: 0442-1744, 2001

44-01   Christopher B. Cook and Marshall C. Richmond, Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models, Report Number: PNNL-13467, May 2001

40-01 Joe L. Groeneveld, Kevin M. Sydor and David M. Fuchs (Acres Manitoba Ltd., Winnipeg, Manitoba, Canada) and Efrem Teklemariam and Brian W. Korbaylo (Manitoba Hydro, Winnipeg, Manitoba, Canada), Optimization of Hydraulic Design Using Computational Fluid Dynamics, Waterpower XII, July 9-11, 2001, Salt Lake City, Utah

39-01   Savage, B.M and Johnson, M.C., Flow over Ogee Spillway- Physical and Numerical Model Case Study, Journal of Hydraulic Engineering, ASCE, August 2001, pp. 640-649

38-01   Newell, Carter, Sustainable Mussel Culture- A Millenial Perspective, Bulletin of the Aquaculture Association of Canada, August 2001, pp 15-21

36-01   Diane L. Foster, Ohio State University, Numerical Simulations of Sediment Transport and Scour Around Mines, paper presented to the Office of Naval Research, Mine Burial Prediction Program, 2001

35-01 Heather D. Smith, Diane L. Foster, Ohio State University, The Modeling of Flow Around a Cylinder and Scour Hole, Poster prepared for the Office of Naval Research, Mine Burial Prediction Program, 2002

28-01   Brethour, J.M., Transient 3D Model for Lifting, Transporting, and Depositing Solid Material, Proc. 3rd Intrn. Environmental Hydraulics, Dec. 5-8, 2001, Tempe, AZ

25-01  Yuichi Kitamura, Takahiro Kato, & Petek Kitamura, Mathematical Modeling for Fish Adaptive Behavior in a Current, Proceedings of the 2001International Symposium of Environmental Hydraulics, Chigaski R&D Center

22-01 C. R. Ortloff, D. P. Crouch, The Urban Water Supply and Distribution System of the Ionian City of Ephesos in the Roman Imperial Period, CTC/United Defense Journal of Archeological Science (2001), pp 843-860

13-01 I. Lavedrine, and Darren Woolf, ARUP Research and Development, Application of CFD Modelling to Hydraulic Structures, CCWI 2001, Leicaster United Kingdom, 3-5 September 2001, De Montfort University

4-01 Rodriguez, Garcia, Bombardelli, Guzman, Rhoads, and Herricks, Naturalization of Urban Streams Using In-Channel Structures, Joint Conference on Water Resources Engineering and Water Resources Planning and Management, ASCE, July 30-August 2, 2000, Minneapolis, Minnesota

27-00    Tony L. Wahl, John A. Replogle, Brain T. Wahlin, and James A. Higgs, New Developments in Design and Application of Long-Throated Flumes, 2000 Joint Conference on Water Resources Engineering and Water Resources Planning & Management, Minneapolis, Minnesota, July 30-August 2, 2000.

5-00   John E. Richardson and Karel Pryl, Computer Simulation Helps Prague Modernize and Expand Sewer System, Water Engineering and Management, June, 2000, pp. 10-13; and in Municipal World, June, 2000, pp. 19-20,30

3-00 Efrem Teklemariam and John L. Groeneveld, Solving Problems in Design and Dam Safety with Computational Fluid Dynamics, Hydro Review, May, 2000, pp.48-52

1-00 Scott F. Bradford, Numerical Simulation of Surf Zone Dynamics, Journal of Waterway, Port, Coastal and Ocean Engineering, January/February, 2000, pp.1-13

9-99 John E. Richardson and Karel Pryl, Computational Fluid Dynamics, CE News, October, 1999, pp. 74-76

4-99 J. Groeneveld, Computer Simulation Leads to Faster, Cheaper Options, Water Engineering & Management magazine, pp.14-17, June 1999

16-98 C. R. Ortloff, Hydraulic Analysis of a Self-Cleaning Drainage Outlet at the Hellenistic City of Priene, Journal Archaeological Science, 25, 1211-1220, Article No. as980292, 1998

13-98 J. F. Echols, M.A. Pratt, K. A. Williams, Using CFD to Model Flow in Large Circulating Water Systems, Proc. PowerGen International, Orlando, FL, Dec. 9-11, 1998.

12-98 K. A. Williams, I. A. Diaz-Tous, P. Ulovg, Reduction in Pumping Power Requirements of the Circulation Water (CW) System at TU Electric’s Martin Lake Plant Using Computation Fluid Dynamics (CFD), ASME Mechanical Engineering Magazine, Jan. 1999

8-98 D. Hrabak, K. Pryl, J. Richardson, Calibration of Flowmeters using FLOW-3D Software, Hydroinform, a.s., Prague, CTU Prague, Flow Science Inc, USA, proceedings from the 3rd International Novatech Conference, Lyon, France, May 4-6, 1998

16-96 E. J. Kent and J.E. Richardson, Three-Dimensional Hydraulic Analysis for Calculation of Scour at Bridge Piers with Fender Systems, Earth Tech, Concord, NK and Flow Science Inc, Los Alamos, NM report, December 1996

12-96 J. E. Richardson, Control of Hydraulic Jump by Abrupt Drop, XXVII IAHR Congress, Water for a Changing Global Community, San Francisco, August 10, 1997

6-96 Y. Miyamoto, A Three-Dimensional Analysis around the Open Area of a Tsunami Breakwater, technical report, SEA Corporation, Tokyo, Japan, to be presented at the HYDROINFORMATICS 96 Conference, Zurich, Switzerland, Sept. 11-13, 1996

4-95 J. E. Richardson, V. G. Panchang and E. Kent, Three-Dimensional Numerical Simulation of Flow Around Bridge Sub-structures, presented at the Hydraulics ’95 ASCE Conference, San Antonio, TX, Aug. 1995

3-95 Y. Miyamoto and K. Ishino, Three Dimensional Flow Analysis in Open Channel, presented at the IAHR Conference, HYDRA 2000, Vol. 1, Thomas Telford, London, Sept. 1995

16-94 M. S. Gosselin and D. M. Sheppard, Time Rate of Local Scour, proceedings of ASCE Conf. on Water Resources Engineering, San Antonio, TX, August 1994

8-94 C. W. Hirt, Weir Discharges and Counter Currents, Flow Science report, FSI-94-00-3, to be presented at the Hydroinformatics Conference, IHE Delft, The Netherlands, Sept. 1994

7-94 C. W. Hirt and K. A.Williams, FLOW-3D Predictions for Free Discharge and Submerged Parshall Flumes, Flow Science Technical Note #40, August 1994 (FSI-94-TN40)

11-93 K. Ishino, H. Otani, R. Okada and Y. Nakagawa, The Flow Structure Around a Cylindrical Pier for the Flow of Transcritical Reynolds Number, Taisei Corp., Honshu Shikoku Bridge Authority, Akashi Kaikyo Ohashi Substructure Construction, Proc. XXV, Congress Intern. Assoc. Hydraulic Res., V, 417-424 (1993) Tokyo, Japan

6-87 J.M. Sicilian, FLOW-3D Model for Flow in a Water Turbine Passage, Flow Science report, July 1987 (FSI-87-36-1)

수처리 분야

Municipal

FLOW-3D는아래 시설물과 같은 도시의 수처리 시설물 설계와 분석에 매우 활발하게 사용되고 있습니다:

  • Mixing, settling, and contact tanks
  • Control structures like weirs, gates, ramps, and orifices
  • Combined sewer (CSO) and stormwater sewer (SSO) overflow facilities
  • Pump and lift stations
  • Treatment plant headworks
  • Filtration systems and passive earth and stone filters
  • Baffle and wall placement
  • Hydraulic efficiency and short-circuiting

Vortex simulation municipal application with FLOW-3D

Vortex formation simulated with FLOW-3D

FLOW-3D는 자유표면, 가압(pressurized), 미임계(sub-critical)와 초임계(super-critical) 흐름조건 등을 전환하는 자유표면과 제한된 흐름패턴 모두와 균일한 모델 상태에 최적화되어 있습니다. 추가 물리 패키지를 포함하여 대부분의 복잡한 상황을 모델링 FLOW-3D에 포함되어 있습니다 :

  • Flow bulking due to air entrainment
  • Air bubble escape and air pocket pressurization
  • Drifting and settling particulate matter and the effect on the flow pattern of sediment accumulation
  • Chemical reactions
  • Moving gates and paddles
  • Fast-spinning bladed objects, pumps, and impellers
  • Dissolving and eroding solids
  • Granular flow (slurries)

적용사례

정수장 : DAF SYSTEMS

  • 용존공기부상법 (DAF Systems: Dissolved Air Floation )
    • 가압상태에서 과포화된 물을 감압시키면, 미세기포가 발생되어 상승하면서 수중의콜로이드물질과 충돌/부착되는 원리를 이용하여 수중의 부유물질을 제거하는 수처리 방법
  • Two Phase(Water+Air)/Drift Flux을 이용 기포에 의한 지내의 유동양상을 파악
  • 해석을 통한 기존 구조물의 문제점 파악하여 개선
  • 정수장_DAF_시스템

정수장 : 펌프장 해석

정수장_펌프장_모델해석결과

정수장_펌프장_모델

정수장 : 분말활성탄접촉조

  • v분말활성탄 접촉조 : 유입구의 구조, 수로의 장폭비, 도류벽구조에 의한 변화 -> 최적형상 도출
  • v해석을 통해 각종 Index(Morill Index, Modal Index 등) 분석

분말활성탄접촉초

정수장 : 응집제의 확산

  • G, 혼화지 구조에 따른 turn over time, 지내 속도 분포, 체류시간(t), 등 분석
  • 완속 혼화기, 급속혼화기에서 응집제의 혼화 및 분산 효과 파악

고속분사기_응집제확산

정수장 : 분배수로 유량분배

  • 분배수로의 기능 : 응집지 및 침전비 별로 균일하게 물을 분배함
  • 분배수로의 구조에 따른 응집지 유입수의 유량분배 해석
  • 구조별 유량분배 문제점 파악 및 개선방안 제시
  • 구조별 유량분배를 정량화하여 정수장 효율 향상에 기여함.

분배수로_유량분배

정수장 : 응집지 속도구배(du/dy) 검증

  • 응집기내부의 유동양상 및 속도구배(G)를 규명하여 최적의 운영조건 도출

응집지속도구배

정수장 : 여과지 역세척

  • Strainer를 통한 역세척수 유입 시 유동양상 해석 실시
  • 역세척 시 압력분포의 균일성, 사수부, 침전수의 월류여부 파악
  • 여과 및 역세척의 문제점 파악하여 효율향상 극대화

여과지_역세척

정수장 : 정수지 실험해석 비교

  • 정수지의 기능 : 염소를 균일하게 혼화
  • 정수지 유동양상 및 염소 농도, 체류시간 해석으로 CT 값 예측 및 문제점 개선
  • 실험과의 비교를 통하여 정확성 확보
  • 기존 정수지의 효율향상 및 최적 정수지 형태 제안
  • 정수지는 분말활성탄접촉조와 기능과 형상 유사

정수장_정수지해석

정수장 : 침전지대기온도, 일사량 등 외부조건 고려

  • 대기온도, 일사량 등 외부조건을 고려한 침전지 유동해석 실시
  • 침전지 내부의 밀도류 발생 원인 분석 및 Floc의 운동양상, 제거효율을 해석
  • 실험과의 비교를 통하여 정확성 확보

정수장_침전지_외부조건고려해석

정수장 : 취수탑 선택취수

  • v취수탑 : 상수도·관개·수력발전용 물을 저수지나 하천으로부터 끌어들이기 위한 구조물
  • v취수탑의 선택취수 문제 해석 사례
  • v취수탑 개도 조건에 따른 유출수온도, 조류 유입, 수심별 유입량 등을 예측

취수탑해석

 

하수처리장 : 침전지

  • 침전지 : 하수와 슬러지의 분리 및 배출 기능
    • 해석목적
    • 2차 침전지에서 유량 분배 문제점 파악
    • 2차 침전지에서 유입부 개선안 도출
    • 2차 침전지내의 슬러지 배출 개선안 도출

하수처리장_침전지_모델 하수처리장_침전지_모델_해석결과

 

하수처리장 : 침전지 유량분배 및 유속

  • 구조물의 형상, 유량에 따른 침전지 유동해석
  • 각 지별 유량 분배 균등 여부 파악
  • 슬러지의 재부상(scouring) 여부 예측 및 방지 방안 검토
  • 월류형식, 유입부의 위치 및 규격, 등 설계 요소를 조절하여 균등 분배 유도
    • 하수처리장_침전지_유량분배_해석결과

하수처리장 : 침전지 월류부 해석

  • 침전지 월류부 유동양상 파악
  • 침전지 형상, 월류부 형상에 따른 유속분포 비교
  • 사수부 파악 및 단락류 최소화를 위한 월류부 형상 결정
  • 슬러지의 월류부 개선을 통한 효율 향상

하수처리장_침전지_월류부해석

하수처리장 : 침전지 침전효율

  • 구조물의 형상별, 처리 유량별 침전효율, 사수부 평가
  • 균일한 유속분포에 의한 침전효율 향상
  • 침전지 형상, 유입부 위치, 등을 변경하여 효율 비교
  • 체류시간 검토를 통한 효율 비교
  • 슬러지 침전형태의 비교

하수처리장_침전지_침전효율

하수처리장 : 무산소조

  • 하수처리장 : 무산소조
  • 하수 및 반송슬러지의 혼합, 임펠러의 회전에 의한 혼합양상 해석 실시
  • 유입수 및 내부반송수의 유속분포, 혼합농도 평가
  • 단락류 발생정도 파악 및 완전교반 유도에 유리한 설계방안 검토
  • 내부반송량, 반송슬러지 유입관의 위치 개선으로 효율 향상

하수처리장_무산소조

하수처리장 : 담체의 부상

  • 설계 요소에 따른 담체의 분포 및 흐름 양상 예측
  • 해석 설계 요소 : 조의 형상, 펌프의 용량 및 위치, 내부 배플의 형상

하수처리장_담체의부상

하수처리장 : 호기조 (Aerator)

  • 호기조내 체류시간 분석
  • 기포의 분포, 조내 위치별 D.O 예측
  • 단락류 발생 정도 및 사수부 파악
  • 폭기량 및 폭기 방식에 따른 내부 유동양상을 통한 효율예측

하수처리장_호기조

하수처리장 : 호기조 (D.O 예측)

  • 용존산소량 (Dissolved Oxygen) : 물 속에 녹아 있는 산소량 è 수온이 높아지거나 오염되면 DO감소
  • 조내 산기관에 의해 오염수를 전체적으로 용존산소량 증가 목적 è 조내 사수부, 체류시간 분석
  • 산기관에 의한 공기 방울의 분포 및 D.O 분포를 수류의 흐름을 고려하여 예측
  • 호기조의 구조 및 산기관의 배치에 따른 효율 분석

하수처리장_호기조_용존산소량

하수처리장 : 막분리조

  • 막분리조내의 수류순환 유동해석 실시
  • Air 유입과 Membrane내의 수류순환 유동 검토
  • 사수부 최소화를 위한 구조 변경 (유입부 방식, 위치 및 산기관 위치, 등)
  • 처리 유량에 따른 내부 효율 변화 검토 – 운영조건 제시

하수처리장_막분리조

 

하수처리장 : SBR/PSBR 호기공정

  • 송풍기 작동시 원수와 슬러지의 혼합양상 분석
  • 수중포기기와 송풍기의 작동에 의해 조 내의 슬러지 혼합 활성화 여부 판단 : 수중포기기와 송풍기의 적절한 위치 및 회전수 조절에 의해 개선안 제시 가능

하수처리장_SBR_호기공정

하수처리장 : SBR/PSBR 배출공정

  • 조 내의 유출게이트 OPEN하여 조 내의 상등수 배출양상 분석
  • 바닥의 슬러지 유출없이 배출가능 여부 해석을 통하여 파악 슬러지가 배출되지 않도록 내의 형상 및 문제점 개서안 제시

하수처리장_SBR_배출공정

제품 소개 요청

FLOW-3D 소개 요청

    회사/기관명* :

    제목* :

    성명* :

    이메일 주소* :

    연락 전화번호* :

    내용 :

    산업 분야별 해석 사례

    FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
    경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

    주조분야
    • Gravity Pour 중력 주조
    • High Pressure Die Casting 고압 다이캐스팅
    • Tilt Casting 경동 주조
    • Centrifugal Casting 원심 주조
    • Investment Casting 정밀 주조
    • Vacuum Casting 진공 주조
    • Continuous Casting 연속 주조
    • Lost Foam Casting 소실 모형 주조
    • Fill and Defects Tracking 용탕 주입 및 결함 추적
    • Solidification and Shrinkage 응고 및 수축 해석
    • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
    물 및 환경 응용 분야
    • Wastewater Treatment and Recovery 폐수 처리 및 복구
    • Pump Stations 펌프장
    • Dams, Weirs, Spillways 댐, 위어, 여수로
    • River Hydraulics 강 유역
    • Inundation & Flooding 침수 및 범람
    • Open Channel Flow 개수로 흐름
    • Sediment and Scour 퇴적 및 세굴(쇄굴)
    • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
    • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

    에너지 분야
    • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
    • Offshore platform wave effects 근해 플랫폼 파 영향
    • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
    • Wave energy converters 파동 에너지 변환기
    미세유체
    • Continuous-Flow 연속 흐름
    • Droplet, Digital 물방울, 디지털
    • Molecular Biology 분자 생물학
    • Opto-Microfluidics 광 마이크로 유체
    • Cell Behavior 세포 행동
    • Fuel Cells 연료 전지들
    용접 제조
    • Laser Welding 레이저 용접
    • Laser Metal Deposition 레이저 금속 증착
    • Additive Manufacturing 첨가제 제조
    • Multi-Layer Build 다중 레이어 빌드
    • Polymer 3D Printing 폴리머 3D 프린팅
    코팅 분야
    • Curtain Coating 커튼 코팅
    • Dip Coating 딥 코팅
    • Gravure Printing 그라비아 코팅
    • Roll Coating 롤 코팅
    • Slide Coating 슬라이드 코팅
    • Slot Coating 슬롯 코팅
    • Contact Insights 접촉면 분석
    연안 / 해양분야
    • Breakwater Structures 방파제 구조물
    • Offshore Structures 항만 연안 구조물
    • Ship Hydrodynamics 선박 유체 역학
    • Sloshing & Slamming 슬로싱 & 슬래 밍
    • Tsunamis 쓰나미 해석
    생명공학 분야
    • Active Mixing 액티브 믹싱
    • Chemical Reactions 화학 반응
    • Dissolution 용해
    • Drug Delivery 약물 전달
    • Drug Particles 마약 입자
    • Microdispensers 마이크로 디스펜서
    • Passive Mixing 패시브 믹싱
    • Piezo Driven Pumps 피에조 구동 펌프
    자동차 분야
    • Fuel Tanks 연료 탱크
    • Early Fuel Shut-Off 초기 연료 차단
    • Gear Interaction 기어 상호 작용
    • Filters 필터
    • Degas Bottles 병의 가스제거

    Fuel Tank Simulation
    Fuel Tank Simulation
    우주 항공 분야
    • Sloshing Dynamics 슬로싱 동역학
    • Electric Charge Distribution 전기 충전 배분
    • PMDs PMD

    aerospace-sloshing-simulation
    aerospace-sloshing-simulation