Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc

School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. China
a yqwang@mail.xjtu.edu.cn,, bwjy2006@stu.xjtu.edu.cn,, c hlchen@mail.xjtu.edu.cn,

Abstract:

This paper presents the fabrication of a novel micro-machined cytometric device, and the experimental investigations for its 3D hydrodynamic focusing performance. The proposed device is simple in structure, with the uniqueness that the depth of its microchannels is non-uniform. Using the SU-8 soft lithography containing two exposures, as well as micro-molding techniques, the PDMS device is successfully fabricated. Two kinds of experiments, i.e., the red ink fluidity observation experiments and the fluorescent optical experiments, are then performed for the device prototypes with different step heights, or channel depth differences, to explore the influence laws of the feature parameter on the devices hydrodynamic focusing behaviors. The experimental results show that the introducing of the steps can efficiently enhance the vertical focusing performance of the device. At appropriate geometry and operating conditions, good 3D hydrodynamic focusing can be obtained.

Korea Abstract

이 논문은 새로운 마이크로 머신 세포 측정 장치의 제조와 3D 유체 역학적 초점 성능에 대한 실험적 조사를 제시합니다. 제안 된 장치는 구조가 단순하며, 마이크로 채널의 깊이가 균일하지 않다는 독특함이 있습니다. 두 가지 노출이 포함 된 SU-8 소프트 리소그래피와 마이크로 몰딩 기술을 사용하여 PDMS 장치가 성공적으로 제작되었습니다. 그런 다음 두 종류의 실험, 즉 적색 잉크 유동성 관찰 실험과 형광 광학 실험을 단계 높이 또는 채널 깊이 차이가 다른 장치 프로토 타입에 대해 수행하여 장치 유체 역학적 초점에 대한 기능 매개 변수의 영향 법칙을 탐색합니다. 행동. 실험 결과는 단계의 도입이 장치의 수직 초점 성능을 효율적으로 향상시킬 수 있음을 보여줍니다. 적절한 형상과 작동 조건에서 우수한 3D 유체 역학적 초점을 얻을 수 있습니다.

Keywords

Flow cytometer, Hydrodynamic focusing, Three-dimensional (3D), Micro-machined

Fig.1 Schematic diagram of the novel cytometric device
Fig.1 Schematic diagram of the novel cytometric device
Fig.2 Overview of the cytometric device fabrication process
Fig.2 Overview of the cytometric device fabrication process
Fig.3 The fabricated micro cytometric device Fig.4 Experiment setup for focusing performance
Fig.3 The fabricated micro cytometric device Fig. 4 Experiment setup for focusing performance
Fig.5 Horizontal focusing images of two devices with and without steps
Fig.5 Horizontal focusing images of two devices with and without steps
Fig.6 Channel cross-section fluorescence images for different step heights
Fig.6 Channel cross-section fluorescence images for different step heights

References 

Fig.7 Effect of the step height on the 3D focusing at different velocity ratios
Fig.7 Effect of the step height on the 3D focusing at different velocity ratios

Conclusions

In this paper, we presented a novel micro-machined cytometric device and its fabrication process,
emphasizing on the experimental investigations for its 3D hydrodynamic focusing performance. The
proposed device is simple in structure, low cost, and easy to be batch produced. Besides this, as a
device based on standard micro-fabrication methodology, it can be conveniently integrated with other
micro-fluidic and/or micro-optical units to form a complete detection and analysis system.
The experimental tests for the prototype devices not only verified the design conception, but also
gave us a comprehensive understanding of the device hydro-focusing performance. The experimental
results show that, as the uniqueness of this design, the introducing of the feature steps can
significantly enhance the vertical focusing performance of the devices, which is crucial for the
achievement of 3D focusing. In summary, for the proposed novel device, good 3D hydrodynamic
focusing can be attained at appropriate geometry and operating conditions.
In addition, an improved design can be obtained by replacing the flat cover with an identical
device unit, in other words, the same two device units are bonded together (The channels are inward
and aligned) to form a new device. Then the sample stream can focused to the center of the assembly
outlet channel due to the hydrodynamic forces equally in both horizontal and vertical directions, and
thus avoiding the adsorption or friction issues of cells/particles to the top channel wall.

References

[1] Mandy FF, Bergeron M, Minkus T, Principles of flow cytometry. Transfusion Science Transfusion Science, 16 (1995) 303.

DOI: 10.1016/0955-3886(95)00041-0

[2] Rieseberg M, Kasper C, Reardon KF, and Scheper T, Flow cytometry in biotechnology, Appl. Microbiol. Biotechnol. 56 (2001) 350.

[3] Chung TD, Kim HC, Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis, Electrophoresis. 28(2007) 4511.

DOI: 10.1002/elps.200700620

[4] Xuan X, Zhu J, Church C, Particle focusing in microfluidic devices, Microfluid Nanofluid. 9(2010) 1-16.

DOI: 10.1007/s10404-010-0602-7

[5] Stone H A, Stroock A D and Ajdari A, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech. 36 (2004) 381-411.

[6] Fu LM, Yang RJ, Lin CH, Pan YJ, and Lee GB, Electrokinetically-driven microflow cytometers with integrated fiber optics for on-line cell/particle collection, Analytica Chimica Acta. 507(2004) 163-169.

DOI: 10.1016/j.aca.2003.10.028

[7] Applegate Jr RW, Schafer DN, Amir W, Squier J, Vestad T, Oakey J and Marr DWM, Optically integrated microfluidic systems for cellular characterization and manipulation, J. Opt. A: Pure Appl. Opt. 9(2007) 122-128.

DOI: 10.1088/1464-4258/9/8/s03

[8] Chang CM, Hsiung SK, Lee GB, Micro flow cytometer chip integrated with micro-pumps/micro-valves for multi-wavelength cell counting and sorting, Jpn. J. Appl. Phys. 46 (2007): 3126-3134.

DOI: 10.1143/jjap.46.3126

[9] Lee GB, Hung CI, Ke BJ, Huang GR, Hwei BH, and Lai Hui-Fang, Hydrodynamic focusing for a micromachined flow cytometer, J Fluids Engineering 123(2001) 672-679.

DOI: 10.1115/1.1385514

[10] Weigl BH, Bardell R, Schulte T, Battrell F and Hayenga J, Design and rapid prototyping of thin-film laminate-based microfluidic devices, Biomed Microdevices. 3(2001) 267-274.

DOI: 10.1023/a:1012448412811

[11] Yang AS, Hsieh WH, Hydrodynamic focusing investigation in a micro-flow cytometer, Biomed Microdevices, 9(2007) 113-122.

DOI: 10.1007/s10544-006-9003-9

[12] Ateya DA, Erickson JS, Howell PB Jr, Hilliard LR, Golden JP, Ligler FS, The good, the bad, and the tiny: a review of microflow cytometry, Anal Bioanal Chem. 391(2008) 1485-1498.

DOI: 10.1007/s00216-007-1827-5

[13] Goranovic G, Perch-Nielsen I, Larsen UD, Wolff A, Kutter J and Telleman P, Three-Dimensional Single Step Flow Sheathing in Micro Cell Sorters, Proceedings of MSM Conference. (2001) pp.242-245.

[14] Lin CH, Lee GB, Fu LM, and Hwey BH, Vertical focusing device utilizing dielectrophoretic force and its application on mocroflow cytometer, J. Microelectromech. Syst. 13 (2004) 923-932.

DOI: 10.1109/jmems.2004.838352

[15] Yang R, Feeback DL, Wang W, Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications, Sens. Actuat. A. 118(2005) 259-267.

DOI: 10.1016/j.sna.2004.09.001

[16] Hairer G, Pärr GS, Svasek P, Jachimowicz A, and Vellekoop MJ, Investigations of micrometer sample stream profiles in a three-dimensional hydrodynamic focusing device, Sens. Actuat. B. 132 (2008) 518-524.

DOI: 10.1016/j.snb.2007.11.018

[17] Mao X, Lin SC, Dong C, and Huang TJ, Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing, Lab Chip. 9 (2009) 1583-1589.

DOI: 10.1039/b820138b

[18] Wang Y, Wang J, Chen H, Zhu Z, and Wang B, Prototype of a novel micro-machined cytometer and its 3D hydrodynamic focusing properties, Microsyst. Technol. 18(2012) 1991-(1997).

DOI: 10.1007/s00542-012-1525-x

Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

1Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
2William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, USA
*Author to whom correspondence should be addressed.
Sensors 202020(11), 3030; https://doi.org/10.3390/s20113030
Received: 16 April 2020 / Revised: 21 May 2020 / Accepted: 25 May 2020 / Published: 27 May 2020
(This article belongs to the Special Issue Lab-on-a-Chip and Microfluidic Sensors)

Abstract

The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.

Keywords: particle magnetophoresisCFDcross sectionchip fabrication

Korea Abstract

생체 유체에서 여러 화학 물질과 생체 분자의 검출 또는 분리를위한 기능화 된 자성 입자의 사용은 계속해서 상당한 관심을 받고 있습니다. 표적 물질과 함께 배양 한 후 비드를 자기 적으로 회수하여 분석 또는 진단 테스트를 수행 할 수 있습니다. 연속 흐름 마이크로 장치에서 영구 자석을 사용한 입자 회수는 마이크로 유체의 여러 장점으로 인해 지난 10 년 동안 큰 관심을 모았습니다. 

따라서 완전한 입자 포획을 달성하기 위한 자기 및 유체 조건을 결정하기 위해 많은 노력을 기울였습니다. 그러나 높은 입자 회수율과 유속을 동시에 제공하는 시스템을 설계하는 데있어 핵심이기는 하지만 시스템 성능에 대한 채널 형상의 영향에 대해서는 덜주의를 기울였습니다. 

여기에서 우리는 자기 비드가 혈액에서 분리되고 외부 자기장을 적용하여 버퍼 스트림으로 수집되는 YY 모양의 마이크로 채널의 최적화를 다룹니다. 비드 회수 및 시스템 처리량에 대한 여러 기하학적 특징 (즉, 단면 형상, 두께, 길이 및 부피)의 영향을 연구합니다. 

이를 위해 분리 중에 비드에 작용하는 지배적인 힘을 고려하는 실험적으로 검증 된 CFD (Computational Fluid Dynamics) 수치 모델을 사용합니다. 우리의 결과는 직사각형의 긴 장치가 높은 입자 회수율과 높은 처리량을 제공하기 때문에 최고의 성능을 보여줍니다. 

따라서 이 방법론은 자기 구동 정제, 농축 또는 분리를 위한 랩온어 칩 장치의 합리적인 설계에 적용될 수 있습니다.

Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and U-shaped (right) cross section channels, and (b) particle location in these cross sections.
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and U-shaped (right) cross section channels, and (b) particle location in these cross sections.
Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
Figure 7. Dependence of bead capture on the (a) functional channel volume and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.
Figure 7. Dependence of bead capture on the (a) functional channel volume and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.

References

  1. Gómez-Pastora, J.; Xue, X.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 2017172, 16–31. [Google Scholar] [CrossRef]
  2. Wise, N.; Grob, T.; Morten, K.; Thompson, I.; Sheard, S. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J. Magn. Magn. Mater. 2015384, 328–334. [Google Scholar] [CrossRef]
  3. Khashan, S.A.; Elnajjar, E.; Haik, Y. CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 2011323, 2960–2967. [Google Scholar] [CrossRef]
  4. Khashan, S.A.; Furlani, E.P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 2014125, 311–318. [Google Scholar] [CrossRef]
  5. Furlani, E.P. Magnetic biotransport: Analysis and applications. Materials 20103, 2412–2446. [Google Scholar] [CrossRef]
  6. Gómez-Pastora, J.; Bringas, E.; Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 201647, 241–246. [Google Scholar]
  7. Gómez-Pastora, J.; Bringas, E.; Lázaro-Díez, M.; Ramos-Vivas, J.; Ortiz, I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs). In Drug Delivery Systems; Stroeve, P., Mahmoudi, M., Eds.; World Scientific: Hackensack, NJ, USA, 2017; pp. 207–244. ISBN 9789813201057. [Google Scholar]
  8. Ruffert, C. Magnetic bead-magic bullet. Micromachines 20167, 21. [Google Scholar] [CrossRef]
  9. Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors 201616, 1585. [Google Scholar] [CrossRef]
  10. Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Guenther, A.; Tschöpe, A.; Schotter, J. Homogeneous biosensing based on magnetic particle labels. Sensors 201616, 828. [Google Scholar] [CrossRef]
  11. He, J.; Huang, M.; Wang, D.; Zhang, Z.; Li, G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014101, 84–101. [Google Scholar] [CrossRef]
  12. Ha, Y.; Ko, S.; Kim, I.; Huang, Y.; Mohanty, K.; Huh, C.; Maynard, J.A. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater. 20181, 512–521. [Google Scholar] [CrossRef]
  13. Gómez-Pastora, J.; González-Fernández, C.; Fallanza, M.; Bringas, E.; Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 2018344, 487–497. [Google Scholar] [CrossRef]
  14. Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 20183, 60. [Google Scholar] [CrossRef]
  15. Nanobiotechnology; Concepts, Applications and Perspectives; Niemeyer, C.M.; Mirkin, C.A. (Eds.) Wiley-VCH: Weinheim, Germany, 2004; ISBN 3527305068. [Google Scholar]
  16. Khashan, S.A.; Dagher, S.; Alazzam, A.; Mathew, B.; Hilal-Alnaqbi, A. Microdevice for continuous flow magnetic separation for bioengineering applications. J. Micromech. Microeng. 201727, 055016. [Google Scholar] [CrossRef]
  17. Basauri, A.; Gomez-Pastora, J.; Fallanza, M.; Bringas, E.; Ortiz, I. Predictive model for the design of reactive micro-separations. Sep. Purif. Technol. 2019209, 900–907. [Google Scholar] [CrossRef]
  18. Abdollahi, P.; Karimi-Sabet, J.; Moosavian, M.A.; Amini, Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol. 2020231, 115875. [Google Scholar] [CrossRef]
  19. Khashan, S.A.; Alazzam, A.; Furlani, E. A novel design for a microfluidic magnetophoresis system: Computational study. In Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization (FLUCOME2013), Nara, Japan, 18–23 November 2013. [Google Scholar]
  20. Pamme, N. Magnetism and microfluidics. Lab Chip 20066, 24–38. [Google Scholar] [CrossRef]
  21. Gómez-Pastora, J.; Amiri Roodan, V.; Karampelas, I.H.; Alorabi, A.Q.; Tarn, M.D.; Iles, A.; Bringas, E.; Paunov, V.N.; Pamme, N.; Furlani, E.P.; et al. Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. J. Phys. Chem. C 2019123, 10065–10080. [Google Scholar] [CrossRef]
  22. Gómez-Pastora, J.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions. Sci. Rep. 20199, 7265. [Google Scholar] [CrossRef]
  23. Tarn, M.D.; Pamme, N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In Microchip Diagnostics Methods and Protocols; Taly, V., Viovy, J.L., Descroix, S., Eds.; Humana Press: New York, NY, USA, 2017; pp. 69–83. [Google Scholar]
  24. Phurimsak, C.; Tarn, M.D.; Peyman, S.A.; Greenman, J.; Pamme, N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem. 201486, 10552–10559. [Google Scholar] [CrossRef]
  25. Wu, X.; Wu, H.; Hu, Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid. 201111, 11–24. [Google Scholar] [CrossRef]
  26. Vojtíšek, M.; Tarn, M.D.; Hirota, N.; Pamme, N. Microfluidic devices in superconducting magnets: On-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 201213, 625–635. [Google Scholar] [CrossRef]
  27. Gómez-Pastora, J.; González-Fernández, C.; Real, E.; Iles, A.; Bringas, E.; Furlani, E.P.; Ortiz, I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip 201818, 1593–1606. [Google Scholar] [CrossRef] [PubMed]
  28. Forbes, T.P.; Forry, S.P. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip 201212, 1471–1479. [Google Scholar] [CrossRef]
  29. Nandy, K.; Chaudhuri, S.; Ganguly, R.; Puri, I.K. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J. Magn. Magn. Mater. 2008320, 1398–1405. [Google Scholar] [CrossRef]
  30. Plouffe, B.D.; Lewis, L.H.; Murthy, S.K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics 20115, 013413. [Google Scholar] [CrossRef] [PubMed]
  31. Hale, C.; Darabi, J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics 20148, 044118. [Google Scholar] [CrossRef] [PubMed]
  32. Becker, H.; Gärtner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 200021, 12–26. [Google Scholar] [CrossRef]
  33. Pekas, N.; Zhang, Q.; Nannini, M.; Juncker, D. Wet-etching of structures with straight facets and adjustable taper into glass substrates. Lab Chip 201010, 494–498. [Google Scholar] [CrossRef]
  34. Wang, T.; Chen, J.; Zhou, T.; Song, L. Fabricating microstructures on glass for microfluidic chips by glass molding process. Micromachines 20189, 269. [Google Scholar] [CrossRef]
  35. Castaño-Álvarez, M.; Pozo Ayuso, D.F.; García Granda, M.; Fernández-Abedul, M.T.; Rodríguez García, J.; Costa-García, A. Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem. 2008130, 436–448. [Google Scholar] [CrossRef]
  36. Prakash, S.; Kumar, S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015229, 1273–1288. [Google Scholar] [CrossRef]
  37. Leester-Schädel, M.; Lorenz, T.; Jürgens, F.; Ritcher, C. Fabrication of Microfluidic Devices. In Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells; Dietzel, A., Ed.; Springer: Basel, Switzerland, 2016; pp. 23–57. ISBN 9783319269207. [Google Scholar]
  38. Bartlett, N.W.; Wood, R.J. Comparative analysis of fabrication methods for achieving rounded microchannels in PDMS. J. Micromech. Microeng. 201626, 115013. [Google Scholar] [CrossRef]
  39. Ng, P.F.; Lee, K.I.; Yang, M.; Fei, B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers 201911, 64. [Google Scholar] [CrossRef] [PubMed]
  40. Furlani, E.P.; Sahoo, Y.; Ng, K.C.; Wortman, J.C.; Monk, T.E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices 20079, 451–463. [Google Scholar] [CrossRef]
  41. Tarn, M.D.; Peyman, S.A.; Robert, D.; Iles, A.; Wilhelm, C.; Pamme, N. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 2009321, 4115–4122. [Google Scholar] [CrossRef]
  42. Furlani, E.P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications; Academic Press: Waltham, MA, USA, 2001. [Google Scholar]
  43. White, F.M. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
  44. Mathew, B.; Alazzam, A.; El-Khasawneh, B.; Maalouf, M.; Destgeer, G.; Sung, H.J. Model for tracing the path of microparticles in continuous flow microfluidic devices for 2D focusing via standing acoustic waves. Sep. Purif. Technol. 2015153, 99–107. [Google Scholar] [CrossRef]
  45. Furlani, E.J.; Furlani, E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007312, 187–193. [Google Scholar] [CrossRef]
  46. Furlani, E.P.; Ng, K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 200673, 061919. [Google Scholar] [CrossRef]
  47. Eibl, R.; Eibl, D.; Pörtner, R.; Catapano, G.; Czermak, P. Cell and Tissue Reaction Engineering; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
  48. Pamme, N.; Eijkel, J.C.T.; Manz, A. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater. 2006307, 237–244. [Google Scholar] [CrossRef]
  49. Alorabi, A.Q.; Tarn, M.D.; Gómez-Pastora, J.; Bringas, E.; Ortiz, I.; Paunov, V.N.; Pamme, N. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules. Lab Chip 201717, 3785–3795. [Google Scholar] [CrossRef]
  50. Zhang, H.; Guo, H.; Chen, Z.; Zhang, G.; Li, Z. Application of PECVD SiC in glass micromachining. J. Micromech. Microeng. 200717, 775–780. [Google Scholar] [CrossRef]
  51. Mourzina, Y.; Steffen, A.; Offenhäusser, A. The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst. Technol. 200511, 135–140. [Google Scholar] [CrossRef]
  52. Mata, A.; Fleischman, A.J.; Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 200616, 276–284. [Google Scholar] [CrossRef]
  53. Su, N. 8 2000 Negative Tone Photoresist Formulations 2002–2025; MicroChem Corporation: Newton, MA, USA, 2002. [Google Scholar]
  54. Su, N. 8 2000 Negative Tone Photoresist Formulations 2035–2100; MicroChem Corporation: Newton, MA, USA, 2002. [Google Scholar]
  55. Fu, C.; Hung, C.; Huang, H. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. J. Phys. Conf. Ser. 200634, 330–335. [Google Scholar] [CrossRef]
  56. Kazoe, Y.; Yamashiro, I.; Mawatari, K.; Kitamori, T. High-pressure acceleration of nanoliter droplets in the gas phase in a microchannel. Micromachines 20167, 142. [Google Scholar] [CrossRef]
  57. Sharp, K.V.; Adrian, R.J.; Santiago, J.G.; Molho, J.I. Liquid flows in microchannels. In MEMS: Introduction and Fundamentals; Gad-el-Hak, M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 10-1–10-46. ISBN 9781420036572. [Google Scholar]
  58. Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 201212, 515–545. [Google Scholar] [CrossRef]
  59. Bruus, H. Theoretical Microfluidics; Oxford University Press: New York, NY, USA, 2008; ISBN 9788578110796. [Google Scholar]
  60. Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 20024, 261–286. [Google Scholar] [CrossRef] [PubMed]
  61. Yalikun, Y.; Tanaka, Y. Large-scale integration of all-glass valves on a microfluidic device. Micromachines 20167, 83. [Google Scholar] [CrossRef] [PubMed]
  62. Van Heeren, H.; Verhoeven, D.; Atkins, T.; Tzannis, A.; Becker, H.; Beusink, W.; Chen, P. Design Guideline for Microfluidic Device and Component Interfaces (Part 2), Version 3; Available online: http://www.makefluidics.com/en/design-guideline?id=7 (accessed on 9 March 2020).
  63. Scheuble, N.; Iles, A.; Wootton, R.C.R.; Windhab, E.J.; Fischer, P.; Elvira, K.S. Microfluidic technique for the simultaneous quantification of emulsion instabilities and lipid digestion kinetics. Anal. Chem. 201789, 9116–9123. [Google Scholar] [CrossRef] [PubMed]
  64. Lynch, E.C. Red blood cell damage by shear stress. Biophys. J. 197212, 257–273. [Google Scholar]
  65. Paul, R.; Apel, J.; Klaus, S.; Schügner, F.; Schwindke, P.; Reul, H. Shear stress related blood damage in laminar Couette flow. Artif. Organs 200327, 517–529. [Google Scholar] [CrossRef] [PubMed]
  66. Gómez-Pastora, J.; Karampelas, I.H.; Xue, X.; Bringas, E.; Furlani, E.P.; Ortiz, I. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 2017121, 7466–7477. [Google Scholar] [CrossRef]
  67. Lim, J.; Yeap, S.P.; Leow, C.H.; Toh, P.Y.; Low, S.C. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J. Colloid Interface Sci. 2014421, 170–177. [Google Scholar] [CrossRef] [PubMed]
  68. Culbertson, C.T.; Sibbitts, J.; Sellens, K.; Jia, S. Fabrication of Glass Microfluidic Devices. In Microfluidic Electrophoresis: Methods and Protocols; Dutta, D., Ed.; Humana Press: New York, NY, USA, 2019; pp. 1–12. ISBN 978-1-4939-8963-8. [Google Scholar]
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Scientific Reports volume 9, Article number: 7265 (2019) Cite this article

Abstract

이 연구에서는 비드 운동과 유체 흐름에 미치는 영향에 대한 자세한 분석을 제공하기 위해 연속 흐름 마이크로 채널 내부의 비드 자기 영동에 대한 수치 흐름 중심 연구를 보고합니다.

수치 모델은 Lagrangian 접근 방식을 포함하며 영구 자석에 의해 생성 된 자기장의 적용에 의해 혈액에서 비드 분리 및 유동 버퍼로의 수집을 예측합니다.

다음 시나리오가 모델링됩니다. (i) 운동량이 유체에서 점 입자로 처리되는 비드로 전달되는 단방향 커플 링, (ii) 비드가 점 입자로 처리되고 운동량이 다음으로부터 전달되는 양방향 결합 비드를 유체로 또는 그 반대로, (iii) 유체 변위에서 비드 체적의 영향을 고려한 양방향 커플 링.

결과는 세 가지 시나리오에서 비드 궤적에 약간의 차이가 있지만 특히 높은 자기력이 비드에 적용될 때 유동장에 상당한 변화가 있음을 나타냅니다.

따라서 높은 자기력을 사용할 때 비드 운동과 유동장의 체적 효과를 고려한 정확한 전체 유동 중심 모델을 해결해야 합니다. 그럼에도 불구하고 비드가 중간 또는 낮은 자기력을 받을 때 계산적으로 저렴한 모델을 안전하게 사용하여 자기 영동을 모델링 할 수 있습니다.

Sketch of the magnetophoresis process in the continuous-flow microdevice.
Sketch of the magnetophoresis process in the continuous-flow microdevice.
Schematic view of the microdevice showing the working conditions set in the simulations.
Schematic view of the microdevice showing the working conditions set in the simulations.
Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
(a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
(a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.
Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.

References

  1. 1.Keshipour, S. & Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organometal. Chem. 30, 653–656 (2016).CAS Article Google Scholar 
  2. 2.Neamtu, M. et al. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep. 8(1), 6278 (2018).ADS MathSciNet Article Google Scholar 
  3. 3.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 256, 187–204 (2014).Article Google Scholar 
  4. 4.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 47, 241–246 (2016).Google Scholar 
  5. 5.Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A. & Solanki, P. R. Lead and chromium adsorption from water using L-Cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep. 7(1), 7672 (2017).ADS Article Google Scholar 
  6. 6.Gómez-Pastora, J. et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407–427 (2017).Article Google Scholar 
  7. 7.Lee, H. Y. et al. A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew. Chem. Int. Ed. 48, 1239–1243 (2009).CAS Article Google Scholar 
  8. 8.Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).Article Google Scholar 
  9. 9.Roux, S. et al. Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int. J. Nanotechnol. 7, 781–801 (2010).ADS CAS Article Google Scholar 
  10. 10.Gómez-Pastora, J., Bringas, E., Lázaro-Díez, M., Ramos-Vivas, J. & Ortiz, I. In Drug Delivery Systems (Stroeve, P. & Mahmoudi, M. ed) 207–244 (World Scientific, 2017).
  11. 11.Selmi, M., Gazzah, M. H. & Belmabrouk, H. Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Sci. Rep. 7(1), 5721 (2017).ADS Article Google Scholar 
  12. 12.Gómez-Pastora, J., González-Fernández, C., Fallanza, M., Bringas, E. & Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 344, 487–497 (2018).Article Google Scholar 
  13. 13.Pamme, N. Magnetism and microfluidics. Lab Chip 6, 24–38 (2006).CAS Article Google Scholar 
  14. 14.Alorabi, A. Q. et al. On-chip polyelectrolyte coating onto magnetic droplets – towards continuous flow assembly of drug delivery capsules. Lab Chip 17, 3785–3795 (2017).CAS Article Google Scholar 
  15. 15.Gómez-Pastora, J. et al. Analysis of separators for magnetic beads recovery: from large systems to multifunctional microdevices. Sep. Purif. Technol. 172, 16–31 (2017).Article Google Scholar 
  16. 16.Tarn, M. D. & Pamme, N. On-chip magnetic particle-based immunoassays using multilaminar flow for clinical diagnosis. Methods Mol. Biol. 1547, 69–83 (2017).CAS Article Google Scholar 
  17. 17.Lv, C. et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Sci. Rep. 6, 19801 (2016).ADS CAS Article Google Scholar 
  18. 18.Gómez-Pastora, J. et al. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 121, 7466–7477 (2017).Article Google Scholar 
  19. 19.Furlani, E. P. Magnetic biotransport: analysis and applications. Materials 3, 2412–2446 (2010).ADS CAS Article Google Scholar 
  20. 20.Khashan, S. A. & Furlani, E. P. Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluid. 12, 565–580 (2012).Article Google Scholar 
  21. 21.Modak, N., Datta, A. & Ganguly, R. Cell separation in a microfluidic channel using magnetic microspheres. Microfluid. Nanofluid. 6, 647–660 (2009).CAS Article Google Scholar 
  22. 22.Furlani, E. P., Sahoo, Y., Ng, K. C., Wortman, J. C. & Monk, T. E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices 9, 451–463 (2007).CAS Article Google Scholar 
  23. 23.Furlani, E. P. & Sahoo, Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D: Appl. Phys. 39, 1724–1732 (2006).ADS CAS Article Google Scholar 
  24. 24.Tarn, M. D. et al. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 321, 4115–4122 (2009).ADS CAS Article Google Scholar 
  25. 25.Fonnum, G., Johansson, C., Molteberg, A., Morup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).ADS CAS Article Google Scholar 
  26. 26.Xue, W., Moore, L. R., Nakano, N., Chalmers, J. J. & Zborowski, M. Single cell magnetometry by magnetophoresis vs. bulk cell suspension magnetometry by SQUID-MPMS – A comparison. J. Magn. Magn. Mater. 474, 152–160 (2019).ADS CAS Article Google Scholar 
  27. 27.Moore, L. R. et al. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study. Biotechnol. Bioeng. 115, 1521–1530 (2018).CAS Article Google Scholar 
  28. 28.Furlani, E. P. & Xue, X. Field, force and transport analysis for magnetic particle-based gene delivery. Microfluid Nanofluid. 13, 589–602 (2012).CAS Article Google Scholar 
  29. 29.Furlani, E. P. & Xue, X. A model for predicting field-directed particle transport in the magnetofection process. Pharm. Res. 29, 1366–1379 (2012).CAS Article Google Scholar 
  30. 30.Furlani, E. P. Permanent Magnet and Electromechanical Devices; MaterialsAnalysis and Applications, (Academic Press, 2001).
  31. 31.Balachandar, S. & Eaton, J. K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010).ADS Article Google Scholar 
  32. 32.Wakaba, L. & Balachandar, S. On the added mass force at finite Reynolds and acceleration number. Theor. Comput. Fluid. Dyn. 21, 147–153 (2007).Article Google Scholar 
  33. 33.White, F. M. Viscous Fluid Flow, (McGraw-Hill, 1974).
  34. 34.Rietema, K. & Van Den Akker, H. E. A. On the momentum equations in dispersed two-phase systems. Int. J. Multiphase Flow 9, 21–36 (1983).Article Google Scholar 
  35. 35.Furlani, E. P. & Ng, K. C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 73, 1–10 (2006).Article Google Scholar 
  36. 36.Eibl, R., Eibl, D., Pörtner, R., Catapano, G. & Czermak, P. Cell and Tissue Reaction Engineering, (Springer, 2009).
  37. 37.Gómez-Pastora, J. et al. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip 18, 1593–1606 (2018).Article Google Scholar 
  38. 38.Khashan, S. A. & Furlani, E. P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 125, 311–318 (2014).CAS Article Google Scholar 
  39. 39.Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. ProcFourth International ConfShip Hydro., National Academic of Science, Washington, DC., (1985).
  40. 40.Crank, J. Free and Moving Boundary Problems, (Oxford University Press, 1984).
  41. 41.Bruus, H. Theoretical Microfluidics, (Oxford University Press, 2008).
  42. 42.Liang, L. & Xuan, X. Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid. Nanofluid. 13, 637–643 (2012).

Author information

  1. Edward P. Furlani is deceased.

Affiliations

  1. Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, SpainJenifer Gómez-Pastora, Eugenio Bringas & Inmaculada Ortiz
  2. Flow Science, Inc, Santa Fe, New Mexico, 87505, USAIoannis H. Karampelas
  3. Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
  4. Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

Abstract

This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD software) is an effective tool for studying droplet dynamics and mixing in microfluidic devices. The first example studied is a T-junction where flow patterns for both droplet generation and passive mixing are analyzed. The second example studied is a co-flowing device where the formation and breakup of bubbles is simulated. The effect of viscosity on bubble formation is also analyzed. For a T-junction the bubble size is corroborated with experimental data. Both the bubble size and frequency are studied and corroborated with experimental data for a co-flowing device. The third example studied is the electrowetting phenomenon observed in a small water droplet resting on a dielectric material. The steady-state contact angle is plotted against the voltage applied. The results are compared with both the Young-Lippmann curve and experimental results. 

이 논문은 FLOW-3D (범용 CFD 소프트웨어)의 유체 부피 (TruVOF) 방법이 미세 유체 장치에서 액적 역학 및 혼합을 연구하는데 효과적인 도구임을 보여줍니다.

연구된 첫 번째 예는 액적 생성 및 수동 혼합에 대한 흐름 패턴이 분석되는 T- 접합입니다. 연구된 두 번째 예는 기포의 형성 및 분해가 시뮬레이션 되는 동시 유동 장치입니다.

기포 형성에 대한 점도의 영향도 분석됩니다. T 접합의 경우 기포 크기는 실험 데이터로 확증됩니다. 기포 크기와 빈도 모두 공동 유동 장치에 대한 실험 데이터로 연구되고 확증됩니다.

연구된 세 번째 예는 유전 물질 위에 놓인 작은 물방울에서 관찰 된 전기 습윤 현상입니다. 정상 상태 접촉각은 적용된 전압에 대해 플롯됩니다. 결과는 Young-Lippmann 곡선 및 실험 결과와 비교됩니다.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 1
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2
Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method Fig 2

References

Formation of bubbles in a simple co-flowing micro-channel

SaveAlertResearch FeedFormation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.

SaveAlertResearch FeedCreating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,

SaveAlertResearch FeedFLOW DEVELOPMENT OF CO-FLOWING STREAMS IN RECTANGULAR MICRO-CHANNELS

SaveAlertResearch FeedA microfluidic system for controlling reaction networks in time.

SaveAlertResearch FeedElectrowetting: from basics to applications

SaveAlertResearch FeedVolume of fluid (VOF) method for the dynamics of free boundaries

Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링

Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, point-of-care (POC) and home care systems. The design of such systems usually involves fluid being transported by capillary forces. Capillarity can enhance fluid transport for small volumes of fluid and can provide a reliable alternative to micro-scale pumping mechanisms. Advantages of capillary systems include:

  • Low cost due to easy and fast fabrication
  • User friendliness due to the simplicity of their design
  • Increased portability ensured by the capillary actuation of fluids
  • Enhanced accessibility caused by the open-surface nature of their design
  • Complete elimination of air bubbles guaranteed by the uniformly moving fluid front

For these reasons, open capillary systems are the preferred design option for various POC systems.

개방형 표면 미세 유체 시스템은 생물학, 생명 공학, 의학, POC (Point-of-Care) 및 홈 케어 시스템 분야에서 점점 인기를 얻고 있습니다. 이러한 시스템의 설계에는 일반적으로 모세관 힘에 의해 유체가 운반됩니다. 모세관은 소량의 유체에 대한 유체 수송을 향상시킬 수 있으며 마이크로 규모 펌핑 메커니즘에 대한 신뢰할 수있는 대안을 제공 할 수 있습니다. 모세관 시스템의 장점은 다음과 같습니다.

  • 쉽고 빠른 제작으로 인한 저렴한 비용
  • 디자인의 단순성으로 인한 사용자 편의성
  • 유체의 모세관 작동으로 인한 휴대 성 향상
  • 디자인의 개방형 특성으로 인한 접근성 향상
  • 균일하게 움직이는 유체 전면으로 보장되는 기포의 완전한 제거

이러한 이유로 개방형 모세관 시스템은 다양한 POC 시스템에서 선호되는 설계 옵션입니다.

모세관 흐름의 시작 조건

V 홈 치수
그림 1. V 홈 채널의 단면 치수 : W = 150 μm, h1 = 300 μm, h2 = 1200 μm, α = 14.5ο.

University at Buffalo와 University of Grenoble의 연구원들의 최근 논문에서 마이크로 그루브가 잠재적으로 모세관 효과를 향상시킬 수있는 방법을 보여주었습니다 [1]. 이 논문의 결과를 바탕으로, FLOW-3D를 사용하여 평행 한 플레이트로 대체 된 좁은 V- 홈 마이크로 채널 내부 유체의 자발적 모세관 흐름 (SCF)에 대한 사례 연구를 논의 할 것  입니다. 모세관 흐름의 시작에 대한 특정 조건이 충족되면 혈류를 모니터링하기위한 POC 시스템의 설계를 위해 전혈과 같은 점성 유체를 사용해도 큰 유체 속도를 얻을 수 있습니다.

모세관 흐름의 조건은 Gibbs 자유 에너지의 최소화를 기반으로 한 정적 접근 방식을 사용하여 이론적으로 설정할 수 있습니다. 보다 구체적으로, 입구 압력이 0 일 때 모세관 흐름이 시작되는 조건은 다음과 같습니다.

(수식 1)           pF/pW < cos⁡ θ

여기서  θ  는 영 접촉각이고  F  및  W  는 각각 유동의 임의 단면에서 자유 및 습식 둘레입니다. 그림 1에 표시된 것과 같은 반각 α 를 갖는 V- 홈 마이크로 채널의  경우 몇 가지 수학적 조작 후 eq. 1은 다음과 같이 다시 작성할 수 있습니다.

(수식 2)         sin α = cos⁡ θ

우리의 경우  α  ≈ 14.5 ο 가 있으므로 모세관 흐름의 조건은  θ  <75.5 o 입니다.

FLOW-3D 에서 시뮬레이션

정적 접근 방식이 SCF의 시작에 관한 중요한 정보를 제공하지만 수치 접근 방식은 현장 진료 장치에서 유동 역학을 연구하는 데 더 적합합니다. 접촉각이 37 °  이고 전혈의 유체 특성 을 갖는 V- 홈 마이크로 채널에 대해 CFD 분석을 수행했습니다 . 혈액의 점도는 거의 일정하기 때문에 흐름 체제는 뉴턴으로 간주됩니다 [1]. 유체 운동이 모세관 효과에 의해서만 발생하도록 모든 경계와 계산 영역 전체에 균일 한 주변 압력이 적용되었습니다. 시뮬레이션은 처음 4mm의 유체 이동을 포함하는 초기 시뮬레이션과 4mm에서 8mm의 유체 이동을 예측하는 재시작 시뮬레이션의 두 부분으로 나뉩니다.

결과 및 검증

처음 8mm 이동에 대한 유동 역학은 그림 2에 나와 있습니다.이 그림은 세 가지 다른 시간에 슬롯에서 전진 인터페이스의 모양을 보여줍니다. 필라멘트 (Concus-Finn 필라멘트)의 점진적인 확장은 주 흐름보다 앞서 볼 수 있습니다.

모세관 흐름 시뮬레이션
그림 2. 세 가지 다른 시간에서 FLOW-3D를 사용하여 진행하는 모세관 흐름의 동적 계산 : (a) 0.04, (b) 0.07 및 (c) 0.11 초와 삽입물 (i1), (i2) 및 (i3) Concus-Finn 필라멘트의 진화 [1].

분석, 수치 및 실험 결과 간의 비교는 그림 3에 나와 있습니다. 수치 예측과 실험 간에는 탁월한 일치가 있습니다. 분석 솔루션도 플롯되었지만 채널 하단에있는 Concus – Finn 필라멘트의 효과가 고려되지 않았기 때문에 수치 및 실험 결과에 대한 유효한 비교를 나타내지 않을 수 있습니다.

모세관 흐름 검증
그림 3. (A) 시간의 함수로서 채널의 속도. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도. (B) 시간의 함수로서 액체 전면의 원점으로부터의 거리. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도 [1].

전혈 이외에도 식용 색소로 착색 한 물과 점성이 높은 알기 네이트 용액을 포함하여 장치가 고점도 유체를 이동시킬 수있는 가능성을 테스트하는 등 다양한 유체를 연구했습니다. 혈액과 같은 고점도 액체는 1 초 이내에 이동할 수 있습니다 (아래 애니메이션 참조).https://www.youtube.com/embed/v4OYoHStJ1w?controls=1&rel=0&playsinline=0&modestbranding=0&autoplay=0&enablejsapi=1&origin=https%3A%2F%2Fwww.flow3d.com&widgetid=1

사례 연구는 상대적으로 큰 점도 (물의 4 배)를 갖는 전혈의 경우 최대 7.5cm / s의 속도를 달성했음을 보여줍니다. 실험 결과 및  FLOW-3D  예측에 따라 전체 채널은 0.2 초 이내에 혈액으로 채워졌습니다. FLOW-3D  시뮬레이션 결과는 실험 관찰 결과와 매우 일치하며, V-groove 내부의 거리에 따라 속도가 감소하지만 장치의 전체 길이에 걸쳐 중요 함을 나타냅니다.

참고 문헌

  1. Berthier, J., K. Brakke, E. P. Furlani, I. H. Karampelas, and G. Delapierre. “Open-surface microfluidics.” In Proceedings of the Nanotech International Conference, pp. 15-19. 2014.
  2. Hirt, Cyril W., and Billy D. Nichols. “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of computational physics 39, no. 1 (1981): 201-225.
  3. Rajaratnam, N., and M. R. Chamani. “Energy loss at drops.” Journal of Hydraulic Research 33, no. 3 (1995): 373-384.
A new dynamic masking technique for time resolved PIV analysis

A new dynamic masking technique for time resolved PIV analysis

시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술

물체 가시성을 허용하기 위해 형광 코팅과 결합 된 새로운 프리웨어 레이 캐스팅 도구

Journal of Visualization ( 2021 ) 이 기사 인용

Abstract

Time resolved PIV encompassing moving and/or deformable objects interfering with the light source requires the employment of dynamic masking (DM). A few DM techniques have been recently developed, mainly in microfluidics and multiphase flows fields. Most of them require ad-hoc design of the experimental setup, and may spoil the accuracy of the resulting PIV analysis. A new DM technique is here presented which envisages, along with a dedicated masking algorithm, the employment of fluorescent coating to allow for accurate tracking of the object. We show results from measurements obtained through a validated PIV setup demonstrating the need to include a DM step even for objects featuring limited displacements. We compare the proposed algorithm with both a no-masking and a static masking solution. In the framework of developing low cost, flexible and accurate PIV setups, the proposed algorithm is made available through a freeware application able to generate masks to be used by an existing, freeware PIV analysis package.

광원을 방해하는 이동 또는 변형 가능한 물체를 포함하는 시간 해결 PIV는 동적 마스킹 (DM)을 사용해야 합니다. 주로 미세 유체 및 다상 흐름 분야에서 몇 가지 DM 기술이 최근 개발되었습니다. 대부분은 실험 설정의 임시 설계가 필요하며 결과 PIV 분석의 정확도를 떨어 뜨릴 수 있습니다. 여기에는 전용 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수있는 새로운 DM 기술이 제시되어 있습니다. 제한된 변위를 특징으로 하는 물체에 대해서도 DM 단계를 포함해야 하는 필요성을 보여주는 검증 된 PIV 설정을 통해 얻은 측정 결과를 보여줍니다. 제안 된 알고리즘을 no-masking 및 static masking 솔루션과 비교합니다. 저비용, 유연하고 정확한 PIV 설정 개발 프레임 워크에서 제안 된 알고리즘은 기존 프리웨어 PIV 분석 패키지에서 사용할 마스크를 생성 할 수 있는 프리웨어 애플리케이션을 통해 사용할 수 있습니다.

Keywords

  • Time resolved PIV, Dynamics masking, Image processing, Vibration inducers, Fluorescent coating

그래픽 개요

소개

PIV (입자 영상 속도계)의 사용은 70 년대 후반 (Archbold 및 Ennos 1972 )이 반점 계측의 확장 (Barker and Fourney 1977 ) 으로 도입된 이래 실험 유체 역학에서 중심적인 역할을 했습니다 . PIV 기술의 기본 아이디어는 유체에 주입된 입자의 속도를 측정하여 유동장을 재구성하는 것입니다. 입자의 크기와 밀도는 확실하게 선택되고 유동을 만족스럽게 따르게 됩니다.

흐름은 레이저 / LED 소스를 통해 조명되고 입자에 의해 산란 된 빛은 추적을 허용합니다. 독자는 리뷰 작품 Grant ( 1997 ), Westerweel et al. ( 2013 년)에 대한 자세한 설명을 참조하십시오. 기본 2D 기술은 고유한 설정으로 발전했으며, 가장 진보 된 것은 단일 / 다중 평면 입체 PIV (Prasad 2000 ) 및 체적 / 단층 PIV (Scarano 2013 )입니다. 광범위한 유동장의 비 침습적 측정이 필요한 산업 및 연구 응용 분야에서 광범위하게 사용되었습니다.

조사된 유동장이 단단한 서있는 경계의 영향을 받는 경우 정적 마스킹 (SM) 접근 방식을 사용하여 PIV 분석을 수행하는 영역에서 솔리드 객체와 그림자가 차지하는 영역을 빼기 위해 주의를 기울여야 합니다. 실제로 이러한 영역에서는 파종 입자를 식별 할 수 없으므로 유속 재구성을 수행 할 수 없습니다. 제대로 처리되지 않으면 이 마스킹 단계는 잘못된 예측으로 이어질 수 있으며, 불행히도 그림자 영역 경계의 근접성에 국한되지 않습니다.

PIV 기술은 획득 프레임 속도를 관심있는 시간 척도로 조정하여 정상 상태 또는 시간 변화 흐름에 적용 할 수 있습니다. 시간의 가변성이 고체 물체의 위치 / 모양과 관련된 경우 이미지를 동적으로 마스킹하기 위해 추가 노력이 필요합니다. 고체 물체뿐만 아니라 다른 유체 단계도 가려야한다는 점에 유의해야합니다 (Foeth et al. 2006). 

이 프로세스는 고체 물체의 움직임이 선험적으로 알려진 경우 비교적 쉬우므로 SM 알고리즘에 대한 최소한의 수정이 목적에 부합 할 수 있습니다. 그러나 고체 물체의 위치 및 / 또는 모양이 알려지지 않은 방식으로 시간에 따라 변할 경우 물체를 동적으로 추적 할 수 있는 마스킹 기술이 필요합니다. PIV 분석을위한 동적 마스킹 (DM) 접근 방식은 현재 상당한 주목을 받고 있습니다 (Sanchis and Jensen 2011 , Masullo 및 Theunissen 2017 , Anders et al. 2019 ) . 시간 분해 PIV 시스템의 확산 덕분에 고속 카메라의 가용성이 높아집니다. 

DM 기술의 주요 발전은 마이크로 PIV 분야에서 비롯됩니다 (Lindken et al. 2009) 마이크로 및 나노 스위 머 (Ergin et al. 2015 ) 및 다상 흐름 (Brücker 2000 , Khalitov 및 Longmire 2002 ) 주변의 유동장을 조사 하려면 정확하고 유연한 알고리즘이 필요합니다. DM 기술은 상용 PIV 분석 소프트웨어 패키지 (TSI Instruments 2014 , DantecDynamics 2018 )에 포함되어 있습니다. 최근 개발 (Vennemann 및 Rösgen 2020 )은 신경망 자동 마스킹 기술의 적용을 예상하지만, 네트워크를 훈련하려면 합성 데이터 세트를 생성해야합니다.

많은 알고리즘은 이미지 처리 기술을 사용하여 개체를 추적하며, 대부분 사용자는 획득 한 이미지에서 추적 할 개체를 강조 표시 할 수있는 임시 실험 설정을 개발해야합니다. 따라서 실험 설정의 설계는 알고리즘의 최종 정확도에 영향을줍니다.

몇 가지 해결책을 구상 할 수 있습니다. 다음에서는 간단한 2D PIV 설정을 참조하지만 대부분의 고려 사항은 더 복잡한 설정으로 확장 할 수 있습니다. PIV 설정에서 객체를 쉽고 정확하게 추적 할 수 있도록 렌더링하는 가장 간단한 방법은 일반적으로 PIV 레이저 시트에 대략 수직 인 카메라를 향한 반사를 최대화하는 방향을 가리키는 추가 광원을 사용하여 조명하는 것입니다. 이 순진한 솔루션과 관련된 주요 문제는 PIV의 ROI (관심 영역)를 비추 지 않고는 광원을 움직이는 물체에만 겨냥하는 것이 사실상 불가능하여 시딩에 의해 산란 된 레이저 광 사이의 명암비를 감소 시킨다는 것입니다. 입자와 어두운 배경.

카메라의 프레임 속도가 높을수록 센서에 닿는 빛의 양이 적다는 사실로 인해 상황이 가혹 해집니다. 고체 물체의 움직임과 유동 입자가 모두 사용 된 설정의 획득 속도에 비해 충분히 느리다면, 가능한 해결책은 레이저 펄스 쌍 사이에 단일 확산 광 샷을 삽입하는 것입니다 (반드시 대칭 삽입은 아님). 그리고 카메라 샷을 둘 모두에 동기화합니다. 각 레이저 커플에서 물체의 위치는 확산 광에 의해 생성 된 이전 샷과 다음 샷의 두 위치를 보간하여 결정될 수 있습니다. 이 접근 방식에는 레이저, 카메라 및 빛을 제어 할 수있는 동기화 장치가 필요합니다.

이 문제에 대한 해결책이 제안되었으며 유체 인터페이스 (Foeth et al. 2006 ; Dussol et al. 2016 ) 의 밝은 반사를 활용 하여 이미지에서 많은 양의 산란 레이저 광을 획득 할 수 있습니다. 고체 표면에는 효과를 높이기 위해 반사 코팅이 제공 될 수 있습니다. 그런 다음 물체는 비정상적으로 큰 입자로 식별되고 경계를 쉽게 추적 할 수 있습니다. 이 솔루션의 단점은 물체 표면에서 산란 된 빛이 레이저 시트에 있지 않은 많은 시딩 입자를 비추어 PIV 분석의 정확도를 점진적으로 저하 시킨다는 것입니다.

위의 접근 방식의 개선은 다른 파장 의 두 번째 동일 평면 레이저 시트 (Driscoll et al. 2003 )를 사용합니다. 첫 번째 레이저 파장을 중심으로 한 좁은 반사 대역. 전체 설정은 매우 비쌀 수 있습니다. 파장 방출의 차이를 이용하여 설정을 저렴하게 만들 수 있습니다. 서로 다른 필터가 장착 된 두 대의 카메라를 적용하면 인터페이스로부터의 반사와 독립적으로 형광 시드 입자를 식별 할 수 있습니다 (Pedocchi et al. 2008 ).

객체의 변위가 작을 때 기본 솔루션은 실제 시간에 따라 변하는 음영 영역에 가장 근접한 하나의 정적 마스크를 추출하는 것입니다. 일반적인 경험 법칙은 예상되는 음영 영역보다 약간 더 크게 마스크를 그려 분석에 포함 된 조명 영역의 양을 단순화하고 최소화하는 것 사이의 최상의 균형을 찾는 것입니다.

본 논문에서는 PIV 분석을위한 DM 문제에 대한 새로운 실험적 접근법을 제안합니다. 우리의 방법은 형광 페인팅을 사용하여 물체를 쉽게 추적 할 수 있도록 하는 기술과 시변 마스크를 생성 할 수있는 특정 오픈 소스 알고리즘을 포함합니다. 이 접근법은 레이저 광에 불투명 한 물체의 큰 변위를 허용함으로써 효과적인 것으로 입증되었습니다. 

우리의 방법인 NM (no-masking)과 SM (static masking) 접근 방식을 비교합니다. 우리의 접근 방식의 타당성을 입증하는 것 외에도 이 백서는 마스킹 단계가 정확한 결과를 얻기 위해 가장 중요하다는 것을 확인합니다. 실제로 물체의 변위가 무시할 수 없는 경우 DM에 대한 리조트는 필수이며 SM 접근 방식은 음영 처리 된 영역의 주변 환경에 국한되지 않는 부정확성을 유발합니다. 

논문의 구조는 다음과 같습니다. 먼저 형광 코팅 기술과 마스킹 소프트웨어를 설명하는 제안된 접근법의 근거를 소개합니다. 그런 다음 PIV 설정에 대한 설명 후 두 벤치 마크 사례를 통해 전체 PIV 체인 분석의 신뢰성을 평가합니다. 그런 다음 제안 된 DM 방법의 결과를 NM 및 SM 솔루션과 비교합니다. 마지막으로 몇 가지 결론이 도출됩니다.

행동 양식

제안 된 DM 기술은 PIV 분석을 위해 캡처 한 동일한 이미지에서 쉽고 정확한 추적 성을 허용하기 위해 움직이는 물체 표면의 형광 코팅을 구상합니다. 물체가 가시화되면 특정 알고리즘이 물체 추적을 수행하고 레이저 위치가 알려지면 (그림 1 참조  ) 음영 영역의 마스킹을 수행합니다.

형광 코팅

코팅은 구조적 매트릭스 에 시판되는 형광 분말 (fluorescein (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018 )) 의 분산액으로 구성됩니다 . 단단한 물체의 경우 매트릭스는 폴리 에스터 / 에폭시 (대상 재료와의 화학적 호환성에 따라) 투명 수지 일 수 있습니다. 변형 가능한 물체의 경우 매트릭스는 투명한 실리콘 고무로 만들 수 있습니다. 형광 코팅 된 물체는 실행 중에 지속적으로 빛을 방출하기 위해 실험 전에 충분히 오랫동안 조명을 비춰 야합니다. 우리는 4W LED 소스 (그림 2 에서 볼 수 있음)에 20 초 긴 노출이  실험 실행 (몇 초)의 짧은 기간 동안 일관된 형광 방출을 제공하기에 충분하다는 것을 발견했습니다.

우리 실험에서 물체와 입자 크기 사이의 상당한 차이를 감안할 때 전자를 식별하는 것은 간단합니다. 그림  3 은 씨 뿌리기 입자와 물체 모양이 서로 다른 세 번에 겹쳐진 모습을 보여줍니다 (색상은 다른 순간을 나타냄).

대신, 이러한 크기 기반 분류가 가능하지 않은 경우 입자와 물체의 파장을 분리해야합니다. 이러한 분리는 시드 입자에 의해 산란 된 빛과 현저하게 다른 파장에서 방출되는 형광 코팅을 선택하여 달성 할 수 있습니다. 또는 레이저에서 멀리 떨어진 대역에서 방출되는 형광 입자를 이용하는 것 (Pedocchi et al. 2008 ). 두 경우 모두 컬러 이미지 획득의 채널 분리 또는 멀티 카메라 설정의 애드혹 필터링은 물체 식별을 크게 촉진 할 수 있습니다. 우리의 경우에는 그러한 파장 분리를 달성 할 필요가 없습니다. 실제로 형광 코팅의 방출 스펙트럼의 피크는 540nm입니다 (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018), 사용 된 레이저의 532 nm에 매우 가깝습니다.

마스킹 소프트웨어

DM 용으로 개발 된 알고리즘 은 무료 PIV 분석 패키지 PIVlab (Thielicke 2020 , Thielicke 및 Stamhuis 2014 ) 과 함께 작동하도록 고안된 오픈 소스 프리웨어 GUI 기반 도구 (Prestininzi 및 Lombardi 2021 )입니다. 이것은 세 단계의 순차적 실행으로 구성됩니다 (그림 1 에서 a–b–c라고 함 ). 첫 번째 단계 (a)는 장면에서 레이저 위치를 찾는 데 사용됩니다 (즉, 소스의 좌표를 계산합니다. 장애물에 부딪히는 빛); 두 번째 항목 (b)은 개체 위치를 추적하고 각 프레임의 음영 영역을 계산합니다. 세 번째 항목 (c)은 추적 된 개체 영역과 음영 처리 된 개체 영역을 PIV 알고리즘을위한 단일 마스크로 병합합니다.

각 단계에 대한 자세한 내용은 다음과 같습니다.

  1. (ㅏ)레이저 위치는 프레임 (즉, 획득 한 프레임의 시야 (FOV)) 내에서 가시적 일 수도 있고 아닐 수도 있습니다. 전자의 경우 사용자는 GUI에서 레이저 소스를 클릭하여 찾기 만하면됩니다. 후자의 경우, 사용자는 음영 영역의 경계에 속하는 두 개의 세그먼트 (두 쌍의 점)를 그리도록 요청받습니다. 그러면 FOV 외부에있는 레이저 위치가 두 선의 교차점으로 계산됩니다. 세그먼트로 구성됩니다. 개체 그림자는 ROI 프레임 상자에 도달하는 것으로 간주됩니다.
  2. (비)레이저 위치가 알려지면 물체 추적은 다음과 같이 수행됩니다. 각 프레임의 하나의 채널 (이 경우 RGB 색상 공간이 사용되기 때문에 녹색 채널이지만 GUI는 선호하는 채널을 지정할 수 있음)은 다음과 같습니다. 로컬 적응 임계 값을 사용하여 이진화 됨 (Bradley and Roth 2007), 후자는 이웃 주변의 로컬 평균 강도를 사용하여 각 픽셀에 대해 계산됩니다. 그런 다음 입자와 물체로 구성된 이진 이미지가 영역으로 변환됩니다. 우리 실험에 존재하는 유일한 장애물은 모든 입자에 비해 더 큰 크기를 기준으로 식별됩니다. 다른 전략은 이전에 논의되었습니다. 그런 다음 장애물 영역의 경계 다각형은 사용자 정의 포인트 밀도로 결정됩니다. 여기에서는 그림자 결정을 위해 광선 투사 (RC) 접근 방식을 채택했습니다. RC는 컴퓨터 그래픽을 기반으로하는 “경 운송 모델링”의 틀에 속합니다. 수치 적으로 정확한 그림자를 제공하기 때문에 여기에서 선택됩니다. 정확도는 떨어지지 만 주로 RC의 계산 부하를 줄이는 것을 목표로하는 몇 가지 다른 방법이 개발되었습니다.2015 ), 여기서 간략히 회상합니다. 각 프레임 (명확성을 위해 여기에 색인화되지 않음)에 대해 광선아르 자형나는 j아르 자형나는제이레이저 위치 L 에서 i 번째 정점 으로 캐스트됩니다.피나는 j피나는제이의 J 오브젝트의 경계 다각형 일; 목표는피나는 j피나는제이 하위 집합에 속 ㅏ제이ㅏ제이 레이저에 의해 직접 조명되는 경계 정점의 피나는 j피나는제이 에 추가됩니다 ㅏ제이ㅏ제이 만약 아르 자형나는 j아르 자형나는제이 적어도 한쪽을 교차 에스k j에스케이제이( j 번째 개체 경계 다각형 의 모든면에 걸쳐있는 k )피나는 j피나는제이 (그것이 교차로 큐나는 j k큐나는제이케이 레이저 위치와 정점 사이에 있지 않습니다. 피나는 j피나는제이). 두 개의 광선, 즉ρ1ρ1 과 ρ2ρ2추가면을 가로 지르지 않는는 저장됩니다.
  3. (씨)일단 정점 세트, 즉 ㅏ제이ㅏ제이 레이저에 의해 직접 비춰지고 식별되었으며 ROI 프레임 상자의 음영 부분은 후자와 교차하여 결정됩니다. ρ1ρ1 과 ρ2ρ2. 두 교차점은 다음에 추가됩니다.ㅏ제이ㅏ제이. 점으로 둘러싸인 영역ㅏ제이ㅏ제이 마침내 마스크로 변환됩니다.

레이저 소스가 여러 개인 경우 각각에 RC 알고리즘을 적용해야하며 음영 영역의 결합이 수행됩니다. 레이 캐스팅 절차의 의사 코드는 Alg에보고됩니다. 1.

그림
그림 1
그림 1

DM 검증

이 섹션에서는 제안 된 DM으로 수행 된 PIV 측정과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM) 간의 비교를 제시합니다.

그림 2
그림 2
그림 3
그림 3

실험 설정

진동 유도기 (VI)의 성능을 분석하기 위해 PIV 설정을 설계하고 현재 DM 기술을 개발했습니다 (Curatolo et al. 2019 , 2020 ). 후자는 비 맥동 ​​유체 흐름에서 역류에 배치 된 캔틸레버의 규칙적이고 넓은 진동을 유도 할 수있는 윙렛입니다. 이러한 VI는 캔틸레버의 끝에 장착되며 (그림 2 참조   ) 진동 운동의 어느 지점에서든 캔틸레버의 중립 구성을 향해 양력을 생성 할 수있는 두 개의 오목한 날개가 있습니다.

VI는 캔틸레버 표면에 장착 된 압전 패치를 사용하여 고정 유체 흐름에서 기계적 에너지 추출을 향상시킬 수 있습니다. 그림 2 에서 강조된 날개의 전체 측면 가장자리는  Sect에 설명 된 사양에 따라 형광 페인트로 코팅되어 있습니다. 2.1 . 실험은 Roma Tre University 공학부 수력 학 실험실의 자유 표면 채널에서 수행됩니다. 10.8cm 길이의 캔틸레버는 채널의 중심선에 배치되고 상류로 향하며 수직-세로 평면에서 진동합니다. 세라믹 페 로브 스카이 트 (PZT) 압전 패치 (7××캔틸레버의 윗면에는 Physik Instrumente (PI)에서 만든 3cm)가 부착되어 있습니다. 흐름 유도 진동 하에서 변형으로 인해 AC 전압 차이를 제공합니다. VI 왼쪽 날개의 수직 중앙면에있는 2D 속도 필드는 수제 수중 PIV 장비를 통해 얻었습니다.각주1 연속파, 저비용, 저전력 (150mW), 녹색 (532nm) 레이저 빔이 2mm 두께의 부채꼴 시트에 퍼집니다.120∘120∘그림 2 와 같이 VI의 한쪽 날개를 절반으로 교차 합니다. 물은 평균 직경이 100 인 폴리 아미드 입자로 시드됩니다.μμm 및 1016 Kg / m의 밀도삼삼. 레이저 소스는 VI의 15cm 위쪽 (자유 표면 아래 약 4cm)과 VI의 하류 5cm에 경사지게 배치됩니다.5∘5∘상류. 위의 설정은 주로 날개의 후류를 조사하기 위해 고안되었습니다. 날개의 상류면과 하류 부분의 일부는 레이저 시트에 직접 맞지 않습니다. 레이저 시트에 수직으로 촬영하는 고속 상용 카메라 (Sony RX100 M5)를 사용하여 동영상을 촬영합니다. 후자는 1920의 프레임 크기로 500fps의 높은 프레임 속도 모드로 기록됩니다.×× 1080px, 나중에 더 작은 655로 잘림 ××이미지 분석 중에 분석 할 850px ROI. 시간 해결, 프리웨어, 오픈 소스, MatLab 용 PIV 분석 도구가 사용됩니다 (Thielicke and Stamhuis 2014 ). 이 도구는 질의 영역 (IA) 변형 (우리의 경우 64×× 64, 32 ×× 32 및 26 ××26). 각 패스에서 각 IA의 경계와 모서리에서 추가 변위 정보를 얻기 위해 인접한 IA 사이에 50 %의 중첩이 허용됩니다. 첫 번째 통과 후, 입자 변위 정보가 보간되어 IA의 모든 픽셀의 변위를 도출하고 그에 따라 변형됩니다.

시딩 입자 수 밀도는 첫 번째 패스에서 IA 당 약 5입니다. Keane과 Adrian ( 1992 )에 따르면 이러한 밀도 값은 95 % 유효한 탐지 확률을 보장합니다. IA는 프레임 커플 내에서 입자의 충분한 영구성을 보장하기 위해 크기가 조정됩니다. 분석 된 유동 역학은 0.4 ~ 0.7m / s 범위의 유동 속도를 특징으로합니다. 따라서 입자는 권장 최소값 인 2 프레임 (Keane and Adrian 1992 ) 보다 큰 약 3-4 프레임의 세 번째 패스 IA에 나타납니다 .

PIV 체인 분석 평가

사용 된 PIV 알고리즘의 정확성은 이전에 문헌에서 광범위하게 평가되었습니다 (예 : Guérin et al. ( 2020 ), Vennemann and Rösgen ( 2020 ), Mohammadshahi et al. ( 2020 ), Narayan et al. ( 2020 )). 그러나 PIV 측정의 물리적 일관성을 보장하기 위해 두 가지 벤치 마크 사례가 여기에 나와 있습니다.

첫 번째는 Sect에 설명 된 동일한 PIV 설정을 통해 측정 된 세로 유속의 수직 프로파일을 비교합니다. 3.1 분석 기준 용액이있는 실험 채널에서. 후자는 플로팅 트레이서로 수행되는 PTV (입자 추적 속도계) 측정을 통해 보정되었습니다. 분석 속도 프로파일은 Eq. 1 (Keulegan 1938 ).u ( z) =유∗[5.75 로그(지δ) +8.5];유(지)=유∗[5.75로그⁡(지δ)+8.5];(1)

여기서 u 는 수평 유속 성분, z 는 수직 좌표,δδ 침대 거칠기 및 V∗V∗ 균일 한 흐름 공식에 의해 주어진 것으로 가정되는 마찰 속도, 즉 유∗= U/ C유∗=유/씨; U 는 깊이 평균 유속이고 C 는 다음 과 같이 주어진 마찰 계수입니다.씨= 5.75로그( 13.3에프R / δ)씨=5.75로그⁡(13.3에프아르 자형/δ), R = 0.2아르 자형=0.2 m은 유압 반경이고 에프= 0.92에프=0.92유한 폭 채널의 형상 계수. 그림  4 는 4 초의 시간 창에 걸쳐 순간 값을 평균화하여 얻은 분석 프로필과 PIV 측정 간의 비교를 보여줍니다. 국부적 인 변동은 대략 0.5 초의 시간 척도에서 진화하는 것으로 밝혀졌습니다. PTV 결과에 가장 적합하면 다음과 같은 값이 산출됩니다.δ= 1δ=1cm, 베드 거칠기의 경우 Eq. 1 , 실험 채널 침대 표면의 실제 조건과 호환됩니다. VI의 휴지 구성 위치에서 유속의 분석 값은 그림에서 검은 색 십자가로 표시됩니다. 비교는 놀라운 일치를 보여 주므로 실험 설정과 PIV 알고리즘의 조합이 분석 된 설정에 대해 신뢰할 수있는 것으로 간주 될 수 있음을 증명합니다.

두 번째 벤치 마크는 VI 뒷면에 재 부착 된 흐름의 양을 비교합니다. 실제로 이러한 장치의 높은 캠버를 고려할 때 흐름은 하류 표면에서 분리되어 결국 다시 연결됩니다. 첨부 흐름을 나타내는 표면의 양 (Curatolo 외. 발견 2020 ) 흥미로운 압전 패치 (즉, 효율이 큰 경우에 더 빠르게 진동이 유발되는 것이다)에서 VI의 효율과 상관된다. 여기에서는 PIV 분석을 통해 측정 된 진동의 상사 점에서 재 부착 된 흐름의 길이를 CFD (전산 유체 역학) 상용 코드 FLOW-3D® (Flow Science 2019 )로 예측 한 길이와 비교하여 RANS를 해결합니다. 결합 식 (비어 스톡스 레이놀즈 평균) 케이 -ϵϵ구조화 된 그리드의 난류 폐쇄 (시뮬레이션을 위해 1mm 간격이 선택됨). 다운 스트림 측면의 흐름은 이러한 높은 캠버 VI를 위해 여러 위치에서 분리 및 재 부착됩니다. 이 벤치 마크에서 비교 된 양은 VI의 앞쪽 가장자리와 가장 가까운 흐름 재 부착 위치 사이의 호 길이입니다. 그림 5를 참조  하면 CFD 모델에 의해 예측 된 호의 길이는 측정 된 호의 길이보다 10 % 더 큽니다. 이 작업에 제시된 DM 기술을 사용하는 PIV 분석은 물리적으로 건전한 측정을 제공하는 것으로 입증됩니다. 후류의 유체 역학에 대한 자세한 분석과 VI의 전반적인 효율성과의 상관 관계는 현재 진행 중이며 향후 작업의 대상이 될 것입니다.

그림 4
그림 4
그림 5
그림 5

결과

그림 6을 참조하여  순간 유속 장의 관점에서 세 가지 접근법의 결과를 비교합니다. 선택한 순간은 진동의 상사 점에 해당합니다.

제안 된 DM (그림 6 의 패널 a  )은 부드러운 유동장을 생성하여 후류에서 일관된 소용돌이 구조를 나타냅니다.

NM 접근법 (그림 6 의 패널 b1  )도 후류의 와류 구조를 정확하게 예측하지만 음영 영역에서 대부분 부정확 한 값을 산출합니다. 또한 비교에서 합리적인 기준을 추론 할 수 없기 때문에 획득 한 유동장 의 사후 필터링이 실현 가능하지 않다는 것이 분명합니다 . 실제로 유속은 그림 6 의 패널 c1에서 볼 수 있듯이 가장 큰 오류가 생성되는 위치에서도 “합리적인”크기를 갖습니다. , DM 및 NM 접근 방식으로 얻은 속도 필드 간의 차이가 표시됩니다. 더욱이 후류에서 발생하는 매우 불안정한 소용돌이 운동이 이러한 위치에 가깝게 이동하기 때문에 그럴듯한 흐름 방향을 가정하더라도 필터링 기준을 공식화 할 수 없습니다. 모델러가 그러한 부정확성을 알고 있었다하더라도 NM 접근법은 “합리적”이지만 여전히 날개의 내부 현과 그 바로 아래에있는 유동장의 대부분은 부정확합니다. 이러한 행동은 매우 오해의 소지가 있습니다.

그림 6 의 패널 b2는  SM 접근법으로 얻은 유속 장을 보여주고 패널 c2는 SM과 DM 접근법으로 얻은 결과 간의 차이를 보여줍니다. SM 접근법은 NM 대응 물에 비해 전반적으로 더 나은 정확도를 명확하게 보여 주지만, 이는 레이저 소스의 위치가 진동 중에 음영 영역이 많이 움직이지 않기 때문입니다 (그림 3 참조). 한 번의 진동 동안 VI가 경험 한 최대 변위를 육안으로 검사합니다. 즉, 분석 된 사례의 경우 정적 마스크를 그리기위한 중립 구성을 선택하면 NM 접근 방식보다 낮은 오류를 얻을 수 있습니다. 더 큰 물체 변위를 포함하는 실험 설정은 NM이 일관되게 더 정확해질 수 있기 때문에 NM보다 SM의 우월성은 일반화 될 수 없음을 강조하고 싶습니다.

그림  6 은 분석 된 접근법에 의해 생성 된 차이를 철저히 보여 주지만 결과에 대한보다 정량적 인 평가를 제공하기 위해 오류의 빈도 분포를 계산했습니다. 그림 7 에서 이러한 분포를  살펴보면 SM 접근법이 NM보다 전체적인 예측이 더 우수하고 SM 분포가 더 정점에 있음을 확인합니다. 그럼에도 불구하고 SM은 여전히 ​​비정상적인 강도의 스파이크를 생성합니다. 분포의 꼬리로 표시되는 이러한 값은 정적 마스크 범위의 과대 평가 (왼쪽 꼬리) 및 과소 평가 (오른쪽 꼬리)에 연결됩니다. 그러나 주파수의 크기는 고려되는 경우에 SM과 NM의 적용 가능성을 배제하여 DM에 대한 리조트를 의무적으로 만듭니다.

그림 6
그림 6
그림 7
그림 7

결론

이 작업에서는 PIV 분석 도구에 DM (Dynamic Masking) 모듈을 제공하기위한 새로운 실험 기법을 제시합니다. 동적 마스킹은 유체 흐름에 잠긴 불투명 이동 / 변형 가능한 물체를 포함하는 시간 해결 PIV 설정에서 필요한 단계입니다. 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수 있습니다. 우리는 제안 된 DM과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM)을 비교하여 자체적으로 설계된 저비용 PIV 설정을 통해 수행 된 측정을 제시합니다. 분석 된 유동 역학은 고체 물체의 제한된 변위를 포함하지만 정량적 비교는 DM 기술을 채택해야하는 필수 필요성을 보여줍니다. 여기에서 정확성이 입증 된 현재의 실험적 접근 방식은

메모

  1. 1.실험 데이터 세트는 PIV 분석의 복제를 허용하기 위해 요청시 제공됩니다.

참고 문헌

  1. Anders S, Noto D, Seilmayer M, Eckert S (2019) 스펙트럼 랜덤 마스킹 : 다상 흐름에서 piv를위한 새로운 동적 마스킹 기술. Experim 유체 60 (4) : 1–6 Google 학술 검색 
  2. Archbold E, Ennos A (1972) 이중 노출 레이저 사진에서 변위 측정. Optica Acta Int J Opt 19 (4) : 253–271 Google 학술 검색 
  3. Barker D, Fourney M (1977) 얼룩 패턴으로 유체 속도 측정. Opt Lett 1 (4) : 135–137 Google 학술 검색 
  4. Bradley D, Roth G (2007) 적분 이미지를 사용한 적응 형 임계 값. J 그래프 도구 12 (2) : 13–21 Google 학술 검색 
  5. Brücker C (2000) Piv의 다상 흐름. 입자 이미지 유속계 및 관련 기술, 강의 시리즈, p 1
  6. Case N (2015) 시력 및 조명. GitHub 저장소. https://github.com/ncase/sight-and-light
  7. Curatolo M, La Rosa M, Prestininzi P (2019) 바이 모르 프 압전 캔틸레버의 굽힘에서 평면 상태 가정의 타당성. J Intell Mater Syst Struct 30 (10) : 1508–1517 Google 학술 검색 
  8. Curatolo M, Lombardi V, Prestininzi P (2020) 얇은 압전 캔틸레버의 유동 유도 진동 향상 : 실험 분석. In : River Flow 2020— 유체 유압에 관한 국제 회의 절차
  9. DantecDynamics : DynamicStudio 6.4 (2018) https://www.dantecdynamics.com/dynamicstudio-6-4-release-with-new-dynamic-masking-add-on/
  10. Driscoll K, Sick V, Gray C (2003) 고밀도 연료 ​​스프레이에서 동시 공기 / 연료 위상 piv 측정. Experim 유체 35 (1) : 112–115 Google 학술 검색 
  11. Dussol D, Druault P, Mallat B, Delacroix S, Germain G (2016) 불안정한 인터페이스, 거품 및 움직이는 구조를 포함하는 piv 이미지에 대한 자동 동적 마스크 추출. Comptes Rendus Mécanique 344 (7) : 464–478 Google 학술 검색 
  12. Ergin F, Watz B, Wadhwa N (2015) 장거리 micropiv를 사용하여 작은 평영 수영 선수 주변의 픽셀 정확도 동적 마스킹 및 흐름 측정. 에서 : 입자 이미지 유속계 -PIV15에 관한 제 11 회 국제 심포지엄. 캘리포니아 주 산타 바바라, 9 월, 14 ~ 16 쪽
  13. Flow Science I (2019) FLOW-3D, 버전 12.0. 산타페, NM https://www.flow3d.com/
  14. Foeth EJ, Van Doorne C, Van Terwisga T, Wieneke B (2006) 시간은 3d 시트 캐비테이션의 piv 및 유동 시각화를 해결했습니다. Experim 유체 40 (4) : 503–513 Google 학술 검색 
  15. Grant I (1997) 입자 이미지 속도 측정 : 리뷰. Proc Inst Mech Eng CJ Mech Eng Sci 211 (1) : 55–76 Google 학술 검색 
  16. Guérin A, Derr J, Du Pont SC, Berhanu M (2020) 흐르는 물막에 의해 생성 된 Streamwise 용해 패턴. Phys Rev Lett 125 (19) : 194502 Google 학술 검색 
  17. Keane RD, Adrian RJ (1992) piv 이미지의 상호 상관 분석 이론. Appl Sci Res 49 (3) : 191–215 Google 학술 검색 
  18. Keulegan GH (1938) 열린 수로에서 난류의 법칙, vol. 21. 미국 표준 국 (National Bureau of Standards)
  19. Khalitov D, Longmire EK (2002) 2 개 매개 변수 위상 차별에 의한 동시 2 상 piv. Experim 유체 32 (2) : 252–268 Google 학술 검색 
  20. Lindken R, Rossi M, Große S, Westerweel J (2009) 미세 입자 영상 속도계 (piv) : 최근 개발, 응용 및 지침. 랩 칩 9 (17) : 2551–2567 Google 학술 검색 
  21. Masullo A, Theunissen R (2017) 픽셀 강도 통계를 기반으로 한 piv 이미지 분석을위한 자동화 된 마스크 생성. Experim 유체 58 (6) : 70 Google 학술 검색 
  22. Mohammadshahi S, Samsam-Khayani H, Cai T, Kim KC (2020) 수로에서 진동하는 제트의 흐름 특성과 열 전달에 대한 실험 및 수치 연구. Int J 열 유체 흐름 86 : 108701 Google 학술 검색 
  23. Narayan S, Moravec DB, Dallas AJ, Dutcher CS (2020) 4 채널 미세 유체 유체 역학 트랩에서 물방울 모양 이완. Phys Rev Fluids 5 (11) : 113603 Google 학술 검색 
  24. Pedocchi F, Martin JE, García MH (2008) 입자 이미지 속도계를 사용하는 대규모 실험을위한 저렴한 형광 입자. Experim 유체 45 (1) : 183–186 Google 학술 검색 
  25. Prasad AK (2000) 입체 입자 영상 유속계. Experim 유체 29 (2) : 103–116 Google 학술 검색 
  26. Prestininzi P, Lombardi V (2021) DM @ PIV. https://it.mathworks.com/matlabcentral/fileexchange/75398-dm-piv . MATLAB Central 파일 교환. 2021 년 5 월 6 일 확인
  27. Sanchis A, Jensen A (2011) 자유 표면 흐름에서 라돈 변환을 사용한 piv 이미지의 동적 마스킹. Experim 유체 51 (4) : 871–880 Google 학술 검색 
  28. Scarano F (2013) Tomographic piv : 원리와 실행. Meas Sci Technol 24 (1)
  29. Taniguchi M, Lindsey JS (2018) photochemcad에 사용하기위한> 300 개의 일반적인 화합물의 흡수 및 형광 스펙트럼 데이터베이스. Photochem Photobiol 94 (2) : 290–327 Google 학술 검색 
  30. Taniguchi M, Du H, Lindsey JS (2018) Photochemcad 3 : 다중 스펙트럼 데이터베이스를 사용한 광 물리 계산을위한 다양한 모듈. Photochem Photobiol 94 (2) : 277–289 Google 학술 검색 
  31. Thielicke W (2020) PIVlab (2020). https://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool . MATLAB Central 파일 교환. 5 월 8 일 확인
  32. Thielicke W, Stamhuis E (2014) PIVlab-matlab의 사용자 친화적이고 저렴하며 정확한 디지털 입자 이미지 속도계를 지향합니다. J Open Res Softw 2 (1)
  33. TSI Instruments (2014) PIV 이미지에 대한 동적 마스킹. TSI Incorporated 애플리케이션 노트 PIV-018
  34. Vennemann B, Rösgen T (2020) 컨볼 루션 오토 인코더를 사용하는 입자 이미지 속도 측정을위한 동적 마스킹 기술. Experim 유체 61 (7) : 1–11 Google 학술 검색 
  35. Westerweel J, Elsinga GE, Adrian RJ (2013) 복잡하고 난류 흐름에 대한 입자 이미지 유속계. Ann Rev Fluid Mech 45 (1) : 409–436. https://doi.org/10.1146/annurev-fluid-120710-101204MathSciNet  수학 Google 학술 검색 

참조 다운로드

자금

CRUI-CARE 계약에 따라 Università degli Studi Roma Tre가 제공하는 오픈 액세스 자금.

작가 정보

제휴

  1. 이탈리아 Roma, Università Roma Tre 공학과Valentina Lombardi, Michele La Rocca, Pietro Prestininzi

교신 저자

Valentina Lombardi에 대한 서신 .

추가 정보

발행인의 메모

Springer Nature는 출판 된지도 및 기관 소속의 관할권 주장과 관련하여 중립을 유지합니다.

오픈 액세스이 기사는 크리에이티브 커먼즈 저작자 표시 4.0 국제 라이선스에 따라 사용이 허가되었습니다.이 라이선스는 귀하가 원저자와 출처에 대해 적절한 크레딧을 제공하는 한 모든 매체 또는 형식으로 사용, 공유, 개작, 배포 및 복제를 허용합니다. 크리에이티브 커먼즈 라이센스에 대한 링크를 제공하고 변경 사항이 있는지 표시합니다. 이 기사의 이미지 또는 기타 제 3 자 자료는 자료에 대한 크레딧 라인에 달리 명시되지 않는 한 기사의 크리에이티브 커먼즈 라이선스에 포함됩니다. 자료가 기사의 크리에이티브 커먼즈 라이센스에 포함되어 있지 않고 의도 된 사용이 법적 규정에 의해 허용되지 않거나 허용 된 사용을 초과하는 경우 저작권 보유자로부터 직접 허가를 받아야합니다. 이 라이센스의 사본을 보려면 다음을 방문하십시오.http://creativecommons.org/licenses/by/4.0/ .

재판 및 허가

이 기사에 대해

CrossMark를 통해 통화 및 진위 확인

이 기사 인용

Lombardi, V., Rocca, ML & Prestininzi, P. 시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술. J Vis (2021). https://doi.org/10.1007/s12650-021-00756-0

인용 다운로드

이 기사 공유

다음 링크를 공유하는 사람은 누구나이 콘텐츠를 읽을 수 있습니다.공유 가능한 링크 받기

Springer Nature SharedIt 콘텐츠 공유 이니셔티브 제공

키워드

  • 시간 해결 PIV
  • 역학 마스킹
  • 이미지 처리
  • 진동 유도제
  • 형광 코팅
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-chip fabrication and in-flow 3D-printing of cellladen microgel constructs: From chip to scaffold materials in one integral process

cellladen 마이크로 겔 구조의 온칩 제작 및 인플 로우 3D 프린팅 : 하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지

Benjamin Reineke 1,2, Ilona Paulus 3, Jonas Hazur 6, Madita Vollmer 4, Gültekin Tamgüney 4,5, Stephan Hauschild1
, Aldo R. Boccacini 6, Jürgen Groll 3, Stephan Förster *1,2
1 Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
2 Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
3 Department of Functional Materials in Medicine and Dentistry (FMZ) and Bavarian Polymer Institute (BPI),
University of Würzburg, 97070 Würzburg, Germany
4 Forschungszentrum Jülich GmbH, Institute of Biological Information Processing – Structural Biochemistry (IBI7), Jülich, Germany
5 Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Düsseldorf, Germany
6 Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany

Summary

Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication.

Bioprinting은 세포가있는 스캐 폴드 제작을 위한 번성하는 기술로 진화했습니다. 바이오 잉크는 바이오 프린팅에 가장 중요한 구성 요소입니다. 최근 마이크로 젤은 세포 보호 및 세포 미세 환경 제어를 가능하게 하는 매우 유망한 바이오 잉크로 도입되었습니다.

그러나 이들의 미세 유체 제작은 본질적으로 한계로 보였습니다. 여기에서 우리는 안정적인 스캐 폴드에 직접 유입 바이오 프린팅을 사용하여 세포가 실린 마이크로 겔의 미세 유체 생산을 위한 미세 유체 및 3D 프린팅의 직접 결합을 소개합니다.

이 방법론은 세포를 단 분산 미세 방울로 연속 온칩 캡슐화하고 후속 유입 교차 연결을 통해 세포가 가득한 마이크로 겔을 생성 할 수 있으며, 이는 마이크로 튜브를 종료 한 후 얇은 연속 마이크로 겔 필라멘트에 자동으로 걸린다. 3D 프린트 헤드에 통합되어 필라멘트를 독립형 3 차원 스캐 폴드로 직접 유입 인쇄 할 수 있습니다.

이 방법은 다양한 가교 방법 및 세포주에 대해 설명됩니다. 이러한 발전으로 미세 유체 학은 더 이상 바이오 패브리 케이션의 병목 현상이 아닙니다.

Bioprinting은 신체 조직을 모방하거나 대체하기위한 3 차원 세포 실장 구조를 제작하는 새로운 기술입니다.

(1) 조직 공학 및 약물 전달뿐만 아니라 질병 연구 및 치료 개발에 중요한 역할을합니다. 바이오 프린팅에서 세포와 물질은 바이오 잉크 (2,3)로 공식화되어 계층 적으로 구조화 된 3D 스캐 폴드로 직접 인쇄됩니다. 바이오 프린팅의 궁극적 인 목표는 3 차원 적으로 제작 된 구조적 배열이 생물학적 성숙을 촉진하고 가속화한다는 근거를 바탕으로 표적 조직 또는 기관의 전체 또는 부분 기능을 나타내는 세포가있는 스캐 폴드를 생산하는 것입니다.

(4) 따라서 바이오 잉크는 바이오 프린팅 기술의 중요한 구성 요소입니다. 그들은 주로 세포와 생물 활성 분자를 캡슐화 할 수있는 물질, 즉 하이드로 겔에 의존하며 압출 인쇄와 같은 적합한 인쇄 기술에 사용하여 원하는 3 차원 스캐 폴드 또는 구조물을 제작할 수 있습니다. 바이오 잉크의 설계는 유동성 및 탄성 특성을 미세 조정하여 압출 중에 충분히 전단 얇게 만들고,이어서 응고 후 원하는 기계적 안정성과 탄성을 빠르게 개발하여 안정적인 스캐 폴드를 형성해야하기 때문에 까다롭습니다.

또한, 바이오 잉크는 생체 적합성이어야하며 세포 생존력과 적절한 제조 후 행동을 촉진 할 수있을만큼 충분히 생체 기능적이어야하며 충분한 영양분과 산소를 ​​공급할 수 있어야합니다. 바이오 잉크로 가장 두드러진 하이드로 겔 전구체 용액이 사용되며, 때로는 약간 사전 가교된 형태로 사용되며, 프린팅 후 가교되어 구조를 안정화합니다.

종종 발생하는 문제는 세포 침강, 불균일 혼합 및 생체 적합성 제형과 인쇄 사이의 상충 관계이며, 세포가 유동 제형에서 전단력을 직접 경험하기 때문에 결과적인 모양 충실도입니다. 이러한 한계를 극복하기 위해 Highley et al.

(5) 최근 microgel bioinks의 사용을 제안했습니다. 콜로이드 특성으로 인해 마이크로 겔 바이오 잉크는 전단 얇아지고 정지 상태에서 빠르게 응고되는 반면 부드러운 콜로이드에로드 된 세포는 전단 보호됩니다. 인쇄 된 마이크로 겔 스캐 폴드는 계면 중합체 얽힘이 충분하지 않은 경우 2 차 가교에 의해 추가로 안정화 될 수 있습니다.

Microgels는 세포 미세 환경을 조정하는 이점을 더 제공합니다. 따라서, 세포가 가득 찬 마이크로 겔을 제조하는 방법은 이미 개발되었으며, 특히 매우 균일 한 크기의 마이크로 겔을 연속 공정으로 제작할 수있는 마이크로 유체 학 분야에서 이미 개발되었습니다. (6-8) 마이크로 겔은 EDTA- 복합체 (11,12) 또는 열 유도에 의해 조절 될 수있는 알기 네이트 / Ca2 + 이온 복합체 형성 (9,10)과 같은 물리적 가교에 의해 형성 될 수 있음이 입증되었습니다. 젤라틴 용액을 20 ° C 이하로 냉각하는 것과 같은 겔화. (9,13) 화학적 가교 반응은 마이크로 겔의 더 큰 안정성과 더 나은 기계적 특성을 제공합니다.

예를 들면 기능화 된 젤라틴, 히알루 노 레이트, 폴리에틸렌 글리콜 또는 폴리 글리세롤 (12, 14-16)에 대한 마이클 유형 반응, 폴리 글리세롤 (17) 및 광 가교 (18)에 대한 아 지드-알킨 클릭 반응은 다음과 같은 광개시제 및 가교기를 필요로 합니다. 폴리에틸렌 글리콜에 대해 나타났습니다.

캡슐화된 세포에는 줄기 세포 (9,12,14,15), 크립트 및 페 이어 세포 (10), 간 세포 (HepG2) 및 내피 세포 (HUVEC) (18), NIH 3T3 섬유 아세포 (6)가 포함됩니다. 지금까지 Fan et al.에 의해 세포가 실린 마이크로 겔을 기반으로하는 기능성 스캐 폴드의 제작이 보여졌습니다.

(19) 겔 -MA 마이크로 겔의 에멀젼 기반 제조 및 Compaan et al. (20) 젤라틴 마이크로 겔 충전제 입자. 미세 유체 생성 마이크로 겔의 경우 이것은 최근 Highley et al.에 의해 처음으로 입증되었습니다. (5). 마이크로 겔 기반 바이오 잉크 및 스캐 폴드에 대한 바이오 프린팅에 대한 지금까지 제한된 수의 연구에 대한 이유는 소량의 마이크로 겔을 생성하는 마이크로 유체의 필수 조합과 교차 결합, 준비를 포함하는 여러 포스트 칩 배치 공정 단계가 뒤 따르기 때문입니다. bioink의, 그리고 원하는 스캐 폴드에 후속 bioprinting.

이것은 현재 microgel biofabrication을 시간 소모적이고 생산성이 낮은 다단계 공정으로 만듭니다. 따라서 원하는 스캐 폴드의 제조를위한 마이크로 겔 및 바이오 프린팅을위한 미세 유체가 하나의 연속적이고 자동화 가능한 프로세스에 통합 될 수 있다면 매우 바람직 할 것입니다.

여기에서 우리는 미세 유체 칩이 세포를 방울로 온칩 캡슐화하도록 설계 될 수 있음을 보여줍니다. 이는 마이크로 겔을 생성하기 위해 흐름에서 광 가교 결합 된 다음 다운 스트림 마이크로 튜브에서 자동으로 잼되어 얇은 마이크로 겔 필라멘트를 지속적으로 형성합니다. 마이크로 튜브는 3D 프린터의 프린트 헤드에 통합되어 필라멘트를 독립형 3 차원으로 직접 유입 인쇄합니다.

Results and discussion

Microfluidic device and controlled droplet production

우리의 목표는 (i) 낮은 전단 응력 세포 캡슐화, (ii) 물리적 또는 화학적 가교에 대한 가변성, (iii) 미세 액적 직경의 큰 변화, (iv)이를 결합 할 수 있는 기능을 위한 미세 유체 칩을 3D 프린터로 설계하는 것이었습니다.

따라서 디자인은 높은 세포 생존력을 위해 좁은 채널 섹션 내의 세포에 대한 전단력을 최소화해야 합니다. 다양한 물리적 및 화학적 가교 반응을 수행 할 수 있도록 입구 채널 설계는 세포, 폴리머, 가교 및 추가 제제를 포함하는 용액의 순차적 혼합을 허용해야 합니다. 단일 세포 캡슐화가 필요한 경우 미세 방울은 300 µm에서 50 µm까지 제어 가능한 직경을 가져야 106 / ml의 세포 밀도에 도달 할 수 있습니다.

Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.
Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.

따라서 우리는 두 개의 후속 혼합 교차로 3 차원 흐름 초점을 허용 한 다음 제어 된 액적 형성을위한 하류 좁은 오리피스가 뒤 따르는 채널 설계를 사용했습니다. 디자인은 그림 1에 개략적으로 표시되어 있습니다. 여기에는 세포와 전구체 폴리머를 포함하는 중앙 스트림 용액을위한 입구 채널과 완충 용액, 배양 배지, 생리 활성 물질 또는 가교제를 포함 할 수있는 두 개의 측면 채널이 있습니다. 측면 채널 흐름은 입구 채널 흐름을 세포에 대한 전단력이 최소 인 채널의 중앙에 3 차원 적으로 집중시킵니다. 그 후, 수성 스트림은 액적 형성을 제어하는 ​​좁은 오리피스 섹션으로 들어가기 위해 오일 상으로 3 차원 적으로 집중됩니다. 좁은 섹션은 다양한 유체 역학 체제에 액세스하여 다양한 범위에 걸쳐 액적 크기를 변경할 수 있습니다. 다운 스트림 채널은 방울이 채널 중심 유선에서 안정적인 방울 트레인을 형성하도록 충분히 좁게 유지됩니다. 3D 이중 초점 칩은 다층 기술을 사용하는 소프트 리소그래피로 제작되었으며 지원 정보 (그림 S2-S4, S7)에 설명 된대로 흐름이 시뮬레이션되었습니다. 액적 분해는 외부 유체에 의해 가해지는 점성 전단력 𝐹𝑠ℎ𝑒ar 표면 장력에서 발생하는 고정 계면 력 𝐹𝐹𝛾𝛾을 초과 할 때 발생합니다. 두 힘은 직접 연속 유상 η 평균 유입 흐름 속도 (V)의 점도 환산 수 무차 모세관 수가 CA = 𝐹𝑠ℎ𝑒ar/𝐹γ, 그리고 CA = 𝐹𝑠ℎ𝑒ar/𝐹γ = 같은 표면 장력 γ가 관련 𝜂𝜂 𝛾. 캐 필러 리 수에 따라 액적 생성을위한 다양한 유체 역학 체제를 구별 할 수 있습니다. c) 분사 체제 (Ca> 1). (21-25) 그림 1에서 볼 수 있듯이 가변 3D 수축 설계를 사용하면 액적 생산을위한 세 가지 유체 역학 체제에 모두 액세스 할 수 있으며 모세관 수는 액적 생산을위한 주요 제어 매개 변수입니다. 체적 유량, 오일 점도 및 계면 장력을 조정하여 50 ~ 300 µm 범위의 목표 범위에서 액적 직경을 정밀하게 제어 할 수 있습니다. 각 점도 및 계면 장력은 지원 정보의 표 SI에 요약되어 있습니다.

Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.
Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.
Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.
Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c) confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a microgel construct.
Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c) confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a microgel construct.
Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides whole construct permeation via flows cin and cout, as well as independent flow through the perfusion channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.
Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides whole construct permeation via flows cin and cout, as well as independent flow through the perfusion channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.
Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability of the alginate capsules.
Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability of the alginate capsules.

  1. A. Atala, Chem. Rev. 2020, 120, 10545-10546.
  2. J. Groll, J. A. Burdick, D. W. Cho, B. Derby, M. Gelinsky, S. C. Heilshorn, T. Jüngst, J. Malda, V. A
    Mironov, K. Nakayama, A. Ovisanikov, W. Sun, S. Takeuchi, J. J. Yoo, T. B. F. Woodfield,
    Biofabrication 2019, 11, 013001.
  3. W. Sun, B. Starly, A. C. Daly, J. A. Burdick, J. Groll, G. Skeldon, W. Shu, Y. Sakai, M. Shinohara,
    M. Nishikawa, J. Jang, D.-W. Cho, M. Nie, S. Takeuchi, S. Ostrovidov, A. Khademhosseini, R. D. Kamm,
    V. Mironov, L. Moroni, I. T. Ozbolat, Biofabrication 2020, 12, 022002.
  4. R. Levato, T. Juengst, R. G. Scheuring, T. Blunk, J. Groll, J. Malda, Adv. Mater. 2020, 32, 1906423.
  5. C. B. Highley, K. H. Song, A. C. Daly, J. A. Burdick, Adv. Sci. 2019, 6, 1801076.
  6. D. Velasco, E. Tumarkin, E. Kumacheva, Small 2012, 8, 1633-1642.
  7. W. Jiang, M. Li, Z. Chen, K. W. Leong, Lab Chip 2016, 16, 4482-4506.
  8. A. C. Daly, L. Riley, T. Segura, J. A. Burdick, Nat. Rev. 2020, 5, 20-43.
  9. A. S. Mao, B. Özkale, N. J. Shah, K. H. Vining, T. Descombes, L. Zhang, C. M. Tringides, S.-W.
    Wong, J.-W. Shin, D. T. Scadden, D. A. Weitz, D. J. Mooney, Proc. Natl. Acad. Sci. 2019, 116, 15392-
    15397.
  10. S. R. Pajoumshariati, M. Azizi, D. Wesner, P. G. Miller, M. L. Shuler, A. Abbaspourrad, ACS Appl.
    Mater. Interfaces 2018, 10, 9235-9246.
  11. A. S. Mao, J.-W. Shin, S. Utech, H. Wang, O. Uzun, W. Li, M. Cooper, Y. Hu, L. Zhang, D. A.
    Weitz, D. J. Mooney, Nat. Mater. 2017, 16, 236-243.
  12. P. S. Lienemann, T. Rossow, A. S. Mao, Q. Vallmajo-Martin, M. Ehrbar, D. J. Mooney, Lab Chip,
    2017, 17, 727.
  13. F. Chen, J. Xue, J. Zhang, M. Bai, X. Yu, X.; C. Fan, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 2889-
    2896.
  14. Q. Feng, Q. Li, H. Wen, J. Chen, M. Liang, H. Huang, D. Lan, H. Dong, X. Cao, Adv. Funct. Mater.,
    2019, 29, 1096690.
  15. L. P. B. Guerzoni, T. Yoshinari, D. B. Gehlen, D. Rommel, T. Haraszti, M. Akashi, L. De Laporte,
    Biomacromolecules 2019, 20, 3746-3754
  16. T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, S. Seiffert, J. Am.
    Chem. Soc. 2012, 134, 4983-4989.
  17. E. Kapourani, F. Neumann, K. Achazi, J. Dernedde, R. Haag, Macromol. Bioscience 2018, 18,
    1800116
  18. H. Wang, H. Liu, H. Liu, W. Su, W. Chen, J. Qin, Adv. Mater. Technol. 2019, 4, 1800632.
  19. C. Fan, S.-H. Zhan, Z.-X. Dong, W. Yang, W.-S. Deng, X. Liu, P. Suna, D.-A. Wang, Mater. Sci.
    Eng. C 2019, 108, 110399.
  20. A. M. Compaan, K. Song, W. Chai, Y. Huang, ACS Appl. Mater. Interfaces 2020, 12, 7855-7868.
  21. S. L. Anna, H. C. Mayer, Phys. Fluids 2006, 18, 121512.
  22. T. Ward, M. Faivre, M. Abkarian, H. A. Stone, Electrophoresis 2005, 26, 3716-3724.
  23. F. Lapierre, N. Wu, Y. Zhu, Proc. SPIE 2011, 8204, 82040H-1.
  24. C. A. Stan, S. K. Y. Tang, G. M. Whitesides, Anal. Chem. 2009, 81, 2399-2402.
  25. J. Tan, J. H. Xu, S. W. Li, G. S. Luo, Chem. Eng. J. 2008, 136, 306-311.
  26. R.-C. Luo, C.-H. Chen, Soft 2012, 1, 1-23.
  27. C. H. Choi, J. H. Jung, T. S. Hwang, C. S. Lee, Macromol. Res. 2009, 17, 163-167.
  28. A. J. D. Krüger, O. Bakirman, P. B. Guerzoni, A. Jans, D. B. Gehlen, D. Rommel, T. Haraszti, A. J.
    C. Kuehne, L. De Laporte, Adv. Mater. 2019, 31, 1903668.
  29. D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, J. A. Lewis, Proc. Natl. Acad. Sci. 2016, 113,
    3179-3184
  30. A. K. Miri, I. Mirzaee, S. Hassan, S. M. Oskui, D. Nieto, A. Khademhosseini, Y. S. Zhang, Lab Chip
    2019, 19, 2019.
  31. F. A. Plamper, W. Richtering Acc. Chem. Res. 2017, 50, 131-140.
  32. S. Sun, M. Li, A. Liu, Int. J. Adhesion Adhesives 2013, 41, 98-106.
Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

통합 관성 펌프를 사용하여 마이크로 채널에서 비접촉식 기포-기포 상호 작용 모델링

Physics of Fluids 33, 042002 (2021); https://doi.org/10.1063/5.0041924 B. Hayesa) G. L. Whitingb), and  R. MacCurdyc)

ABSTRACT

In this study, the nonlinear effect of contactless bubble–bubble interactions in inertial micropumps is characterized via reduced parameter one-dimensional and three-dimensional computational fluid dynamics (3D CFD) modeling. A one-dimensional pump model is developed to account for contactless bubble-bubble interactions, and the accuracy of the developed one-dimensional model is assessed via the commercial volume of fluid CFD software, FLOW-3D. The FLOW-3D CFD model is validated against experimental bubble dynamics images as well as experimental pump data. Precollapse and postcollapse bubble and flow dynamics for two resistors in a channel have been successfully explained by the modified one-dimensional model. The net pumping effect design space is characterized as a function of resistor placement and firing time delay. The one-dimensional model accurately predicts cumulative flow for simultaneous resistor firing with inner-channel resistor placements (0.2L < x < 0.8L where L is the channel length) as well as delayed resistor firing with inner-channel resistor placements when the time delay is greater than the time required for the vapor bubble to fill the channel cross section. In general, one-dimensional model accuracy suffers at near-reservoir resistor placements and short time delays which we propose is a result of 3D bubble-reservoir interactions and transverse bubble growth interactions, respectively, that are not captured by the one-dimensional model. We find that the one-dimensional model accuracy improves for smaller channel heights. We envision the developed one-dimensional model as a first-order rapid design tool for inertial pump-based microfluidic systems operating in the contactless bubble–bubble interaction nonlinear regime

이 연구에서 관성 마이크로 펌프에서 비접촉 기포-기포 상호 작용의 비선형 효과는 감소 된 매개 변수 1 차원 및 3 차원 전산 유체 역학 (3D CFD) 모델링을 통해 특성화됩니다. 비접촉식 기포-버블 상호 작용을 설명하기 위해 1 차원 펌프 모델이 개발되었으며, 개발 된 1 차원 모델의 정확도는 유체 CFD 소프트웨어 인 FLOW-3D의 상용 볼륨을 통해 평가됩니다.

FLOW-3D CFD 모델은 실험적인 거품 역학 이미지와 실험적인 펌프 데이터에 대해 검증되었습니다. 채널에 있는 두 저항기의 붕괴 전 및 붕괴 후 기포 및 유동 역학은 수정 된 1 차원 모델에 의해 성공적으로 설명되었습니다. 순 펌핑 효과 설계 공간은 저항 배치 및 발사 시간 지연의 기능으로 특징 지어집니다.

1 차원 모델은 내부 채널 저항 배치 (0.2L <x <0.8L, 여기서 L은 채널 길이)로 동시 저항 발생에 대한 누적 흐름과 시간 지연시 내부 채널 저항 배치로 지연된 저항 발생을 정확하게 예측합니다. 증기 방울이 채널 단면을 채우는 데 필요한 시간보다 큽니다.

일반적으로 1 차원 모델 정확도는 저수지 근처의 저항 배치와 1 차원 모델에 의해 포착되지 않는 3D 기포-저수지 상호 작용 및 가로 기포 성장 상호 작용의 결과 인 짧은 시간 지연에서 어려움을 겪습니다. 채널 높이가 작을수록 1 차원 모델 정확도가 향상됩니다. 우리는 개발 된 1 차원 모델을 비접촉 기포-기포 상호 작용 비선형 영역에서 작동하는 관성 펌프 기반 미세 유체 시스템을 위한 1 차 빠른 설계 도구로 생각합니다.

REFERENCES

1.S. Hassan and X. Zhang, “ Design and fabrication of capillary-driven flow device for point-of-care diagnostics,” Biosensors 10, 39 (2020). https://doi.org/10.3390/bios10040039, Google ScholarCrossref
2.Q. Shizhi and H. Bau, “ Magneto-hydrodynamics based microfluidics,” Mech. Res. Commun. 36, 10 (2009). https://doi.org/10.1016/j.mechrescom.2008.06.013, Google ScholarCrossref
3.N. Mishchuk, T. Heldal, T. Volden, J. Auerswald, and H. Knapp, “ Micropump based on electroosmosis of the second kind,” Electrophoresis 30, 3499 (2009). https://doi.org/10.1002/elps.200900271, Google ScholarCrossref
4.J. Snyder, J. Getpreecharsawas, D. Fang, T. Gaborski, C. Striemer, P. Fauchet, D. Borkholder, and J. McGrath, “ High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes,” Proc. Nat. Acad. Sci. U. S. A. 110, 18425–18430 (2013). https://doi.org/10.1073/pnas.1308109110, Google ScholarCrossref
5.K. Vinayakumar, G. Nadiger, V. Shetty, S. Dinesh, M. Nayak, and K. Rajanna, “ Packaged peristaltic micropump for controlled drug delivery application,” Rev. Sci. Instrum. 88, 015102 (2017). https://doi.org/10.1063/1.4973513, Google ScholarScitation, ISI
6.D. Duffy, H. Gillis, J. Lin, N. Sheppard, and G. Kellogg, “ Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays,” Anal. Chem. 71, 4669 (1999). https://doi.org/10.1021/ac990682c, Google ScholarCrossref
7.V. Gnyawali, M. Saremi, M. Kolios, and S. Tsai, “ Stable microfluidic flow focusing using hydrostatics,” Biomicrofluidics 11, 034104 (2017). https://doi.org/10.1063/1.4983147, Google ScholarScitation, ISI
8.J. Lake, K. Heyde, and W. Ruder, “ Low-cost feedback-controlled syringe pressure pumps for microfluidics applications,” PLoS One 12, e0175089 (2017). https://doi.org/10.1371/journal.pone.0175089, Google ScholarCrossref
9.M. I. Mohammed, S. Haswell, and I. Gibson, “ Lab-on-a-chip or chip-in-a-lab: Challenges of commercialization lost in translation,” Procedia Technology 20, 54–59 (2015), proceedings of The 1st International Design Technology Conference, DESTECH2015, Geelong. Google ScholarCrossref
10.E. Torniainen, A. Govyadinov, D. Markel, and P. Kornilovitch, “ Bubble-driven inertial micropump,” Phys. Fluids 24, 122003 (2012). https://doi.org/10.1063/1.4769755, Google ScholarScitation, ISI
11.H. Hoefemann, S. Wadle, N. Bakhtina, V. Kondrashov, N. Wangler, and R. Zengerle, “ Sorting and lysis of single cells by bubblejet technology,” Sens. Actuators, B 168, 442–445 (2012). https://doi.org/10.1016/j.snb.2012.04.005, Google ScholarCrossref
12.B. Hayes, A. Hayes, M. Rolleston, A. Ferreira, and J. Kirsher, “ Pulsatory mixing of laminar flow using bubble-driven micro-pumps,” in Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition (2018), Vol. 7. Google ScholarCrossref
13.E. Ory, H. Yuan, A. Prosperetti, S. Popinet, and S. Zaleski, “ Growth and collapse of a vapor bubble in a narrow tube,” Phys. Fluids 12, 1268 (2000). https://doi.org/10.1063/1.870381, Google ScholarScitation, ISI
14.Z. Yin and A. Prosperetti, “‘ Blinking bubble’ micropump with microfabricated heaters,” J. Micromech. Microeng. 15, 1683 (2005). https://doi.org/10.1088/0960-1317/15/9/010, Google ScholarCrossref
15.M. Einat and M. Grajower, “ Microboiling measurements of thermal-inkjet heaters,” J. Microelectromech. Syst. 19, 391 (2010). https://doi.org/10.1109/JMEMS.2010.2040946, Google ScholarCrossref
16.A. Govyadinov, P. Kornilovitch, D. Markel, and E. Torniainen, “ Single-pulse dynamics and flow rates of inertial micropumps,” Microfluid. Nanofluid. 20, 73 (2016). https://doi.org/10.1007/s10404-016-1738-x, Google ScholarCrossref
17.E. Sourtiji and Y. Peles, “ A micro-synthetic jet in a microchannel using bubble growth and collapse,” Appl. Therm. Eng. 160, 114084 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114084, Google ScholarCrossref
18.B. Hayes, A. Govyadinov, and P. Kornilovitch, “ Microfluidic switchboards with integrated inertial pumps,” Microfluid. Nanofluid. 22, 15 (2018). https://doi.org/10.1007/s10404-017-2032-2, Google ScholarCrossref
19.P. Kornilovitch, A. Govyadinov, D. Markel, and E. Torniainen, “ One-dimensional model of inertial pumping,” Phys. Rev. E 87, 023012 (2013). https://doi.org/10.1103/PhysRevE.87.023012, Google ScholarCrossref
20.H. Yuan and A. Prosperetti, “ The pumping effect of growing and collapsing bubbles in a tube,” J. Micromech. Microeng. 9, 402–413 (1999). https://doi.org/10.1088/0960-1317/9/4/318, Google ScholarCrossref
21.J. Zou, B. Li, and C. Ji, “ Interactions between two oscillating bubbles in a rigid tube,” Exp. Therm. Fluid Sci. 61, 105 (2015). https://doi.org/10.1016/j.expthermflusci.2014.10.021, Google ScholarCrossref
22.C. Hirt and B. Nichols, “ Volume of fluid (vof) method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5, Google ScholarCrossref
23.C. Borgnakke and R. E. Sonntag, Fundamentals of Thermodynamics, 8th ed. ( Wiley, 1999). Google Scholar
24.O. E. Ruiz, “ CFD model of the thermal inkjet droplet ejection process,” in Proceeding of Heat Transfer Summer Conference (2007), Vol. 3. Google ScholarCrossref
25.T. Theofanous, L. Biasi, H. Isbin, and H. Fauske, “ A theoretical study on bubble growth in constant and time-dependent pressure fields,” Chem. Eng. Sci. 24, 885–897 (1969). https://doi.org/10.1016/0009-2509(69)85008-6, Google ScholarCrossref
26.S. Timoshenko and J. Goodier, Theory of Elasticity, 3rd ed. ( McGaw-Hill, Inc., 1970). Google Scholar

Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.

DNA Printing Integrated Multiplexer Driver Microelectronic Mechanical System Head (IDMH) and Microfluidic Flow Estimation

DNA 프린팅 통합 멀티플렉서 드라이버 Microelectronic Mechanical System Head (IDMH) 및 Microfluidic Flow Estimation

by Jian-Chiun Liou 1,*,Chih-Wei Peng 1,Philippe Basset 2 andZhen-Xi Chen 11School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan2ESYCOM, Université Gustave Eiffel, CNRS, CNAM, ESIEE Paris, F-77454 Marne-la-Vallée, France*Author to whom correspondence should be addressed.

Abstract

The system designed in this study involves a three-dimensional (3D) microelectronic mechanical system chip structure using DNA printing technology. We employed diverse diameters and cavity thickness for the heater. DNA beads were placed in this rapid array, and the spray flow rate was assessed. Because DNA cannot be obtained easily, rapidly deploying DNA while estimating the total amount of DNA being sprayed is imperative. DNA printings were collected in a multiplexer driver microelectronic mechanical system head, and microflow estimation was conducted. Flow-3D was used to simulate the internal flow field and flow distribution of the 3D spray room. The simulation was used to calculate the time and pressure required to generate heat bubbles as well as the corresponding mean outlet speed of the fluid. The “outlet speed status” function in Flow-3D was used as a power source for simulating the ejection of fluid by the chip nozzle. The actual chip generation process was measured, and the starting voltage curve was analyzed. Finally, experiments on flow rate were conducted, and the results were discussed. The density of the injection nozzle was 50, the size of the heater was 105 μm × 105 μm, and the size of the injection nozzle hole was 80 μm. The maximum flow rate was limited to approximately 3.5 cc. The maximum flow rate per minute required a power between 3.5 W and 4.5 W. The number of injection nozzles was multiplied by 100. On chips with enlarged injection nozzle density, experiments were conducted under a fixed driving voltage of 25 V. The flow curve obtained from various pulse widths and operating frequencies was observed. The operating frequency was 2 KHz, and the pulse width was 4 μs. At a pulse width of 5 μs and within the power range of 4.3–5.7 W, the monomer was injected at a flow rate of 5.5 cc/min. The results of this study may be applied to estimate the flow rate and the total amount of the ejection liquid of a DNA liquid.

이 연구에서 설계된 시스템은 DNA 프린팅 기술을 사용하는 3 차원 (3D) 마이크로 전자 기계 시스템 칩 구조를 포함합니다. 히터에는 다양한 직경과 캐비티 두께를 사용했습니다. DNA 비드를 빠른 어레이에 배치하고 스프레이 유속을 평가했습니다.

DNA를 쉽게 얻을 수 없기 때문에 DNA를 빠르게 배치하면서 스프레이 되는 총 DNA 양을 추정하는 것이 필수적입니다. DNA 프린팅은 멀티플렉서 드라이버 마이크로 전자 기계 시스템 헤드에 수집되었고 마이크로 플로우 추정이 수행되었습니다.

Flow-3D는 3D 스프레이 룸의 내부 유동장과 유동 분포를 시뮬레이션 하는데 사용되었습니다. 시뮬레이션은 열 거품을 생성하는데 필요한 시간과 압력뿐만 아니라 유체의 해당 평균 출구 속도를 계산하는데 사용되었습니다.

Flow-3D의 “출구 속도 상태”기능은 칩 노즐에 의한 유체 배출 시뮬레이션을 위한 전원으로 사용되었습니다. 실제 칩 생성 프로세스를 측정하고 시작 전압 곡선을 분석했습니다. 마지막으로 유속 실험을 하고 그 결과를 논의했습니다. 분사 노즐의 밀도는 50, 히터의 크기는 105μm × 105μm, 분사 노즐 구멍의 크기는 80μm였다. 최대 유량은 약 3.5cc로 제한되었습니다. 분당 최대 유량은 3.5W에서 4.5W 사이의 전력이 필요했습니다. 분사 노즐의 수에 100을 곱했습니다. 분사 노즐 밀도가 확대 된 칩에 대해 25V의 고정 구동 전압에서 실험을 수행했습니다. 얻은 유동 곡선 다양한 펄스 폭과 작동 주파수에서 관찰되었습니다. 작동 주파수는 2KHz이고 펄스 폭은 4μs입니다. 5μs의 펄스 폭과 4.3–5.7W의 전력 범위 내에서 단량체는 5.5cc / min의 유속으로 주입되었습니다. 이 연구의 결과는 DNA 액체의 토 출액의 유량과 총량을 추정하는 데 적용될 수 있습니다.

Keywords: DNA printingflow estimationMEMS

Introduction

잉크젯 프린트 헤드 기술은 매우 중요하며, 잉크젯 기술의 거대한 발전은 주로 잉크젯 프린트 헤드 기술의 원리 개발에서 시작되었습니다. 잉크젯 인쇄 연구를 위한 대규모 액적 생성기 포함 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]. 연속 식 잉크젯 시스템은 고주파 응답과 고속 인쇄의 장점이 있습니다. 그러나이 방법의 잉크젯 프린트 헤드의 구조는 더 복잡하고 양산이 어려운 가압 장치, 대전 전극, 편향 전계가 필요하다. 주문형 잉크젯 시스템의 잉크젯 프린트 헤드는 구조가 간단하고 잉크젯 헤드의 다중 노즐을 쉽게 구현할 수 있으며 디지털화 및 색상 지정이 쉽고 이미지 품질은 비교적 좋지만 일반적인 잉크 방울 토출 속도는 낮음 [ 9 , 10 , 11 ].

핫 버블 잉크젯 헤드의 총 노즐 수는 수백 또는 수천에 달할 수 있습니다. 노즐은 매우 미세하여 풍부한 조화 색상과 부드러운 메쉬 톤을 생성할 수 있습니다. 잉크 카트리지와 노즐이 일체형 구조를 이루고 있으며, 잉크 카트리지 교체시 잉크젯 헤드가 동시에 업데이트되므로 노즐 막힘에 대한 걱정은 없지만 소모품 낭비가 발생하고 상대적으로 높음 비용. 주문형 잉크젯 기술은 배출해야 하는 그래픽 및 텍스트 부분에만 잉크 방울을 배출하고 빈 영역에는 잉크 방울이 배출되지 않습니다. 이 분사 방법은 잉크 방울을 충전할 필요가 없으며 전극 및 편향 전기장을 충전할 필요도 없습니다. 노즐 구조가 간단하고 노즐의 멀티 노즐 구현이 용이하며, 출력 품질이 더욱 개선되었습니다. 펄스 제어를 통해 디지털화가 쉽습니다. 그러나 잉크 방울의 토출 속도는 일반적으로 낮습니다. 열 거품 잉크젯, 압전 잉크젯 및 정전기 잉크젯의 세 가지 일반적인 유형이 있습니다. 물론 다른 유형이 있습니다.

압전 잉크젯 기술의 실현 원리는 인쇄 헤드의 노즐 근처에 많은 소형 압전 세라믹을 배치하면 압전 크리스탈이 전기장의 작용으로 변형됩니다. 잉크 캐비티에서 돌출되어 노즐에서 분사되는 패턴 데이터 신호는 압전 크리스탈의 변형을 제어한 다음 잉크 분사량을 제어합니다. 압전 MEMS 프린트 헤드를 사용한 주문형 드롭 하이브리드 인쇄 [ 12]. 열 거품 잉크젯 기술의 실현 원리는 가열 펄스 (기록 신호)의 작용으로 노즐의 발열체 온도가 상승하여 근처의 잉크 용매가 증발하여 많은 수의 핵 형성 작은 거품을 생성하는 것입니다. 내부 거품의 부피는 계속 증가합니다. 일정 수준에 도달하면 생성된 압력으로 인해 잉크가 노즐에서 분사되고 최종적으로 기판 표면에 도달하여 패턴 정보가 재생됩니다 [ 13 , 14 , 15 , 16 , 17 , 18 ].

“3D 제품 프린팅”및 “증분 빠른 제조”의 의미는 진화했으며 모든 증분 제품 제조 기술을 나타냅니다. 이는 이전 제작과는 다른 의미를 가지고 있지만, 자동 제어 하에 소재를 쌓아 올리는 3D 작업 제작 과정의 공통적 인 특징을 여전히 반영하고 있습니다 [ 19 , 20 , 21 , 22 , 23 , 24 ].

이 개발 시스템은 열 거품 분사 기술입니다. 이 빠른 어레이에 DNA 비드를 배치하고 스프레이 유속을 평가하기 위해 다른 히터 직경과 캐비티 두께를 설계하는 것입니다. DNA 제트 칩의 부스트 회로 시스템은 큰 흐름을 구동하기위한 신호 소스입니다. 목적은 분사되는 DNA 용액의 양과 출력을 조정하는 것입니다. 입력 전압을 더 높은 출력 전압으로 변환해야 하는 경우 부스트 컨버터가 유일한 선택입니다. 부스트 컨버터는 내부 금속 산화물 반도체 전계 효과 트랜지스터 (MOSFET)를 통해 전압을 충전하여 부스트 출력의 목적을 달성하고, MOSFET이 꺼지면 인덕터는 부하 정류를 통해 방전됩니다.

인덕터의 충전과 방전 사이의 변환 프로세스는 인덕터를 통한 전압의 방향을 반대로 한 다음 점차적으로 입력 작동 전압보다 높은 전압을 증가시킵니다. MOSFET의 스위칭 듀티 사이클은 확실히 부스트 비율을 결정합니다. MOSFET의 정격 전류와 부스트 컨버터의 부스트 비율은 부스트 ​​컨버터의 부하 전류의 상한을 결정합니다. MOSFET의 정격 전압은 출력 전압의 상한을 결정합니다. 일부 부스트 컨버터는 정류기와 MOSFET을 통합하여 동기식 정류를 제공합니다. 통합 MOSFET은 정확한 제로 전류 턴 오프를 달성하여 부스트 변압기를 보다 효율적으로 만듭니다. 최대 전력 점 추적 장치를 통해 입력 전력을 실시간으로 모니터링합니다. 입력 전압이 최대 입력 전력 지점에 도달하면 부스트 컨버터가 작동하기 시작하여 부스트 컨버터가 최대 전력 출력 지점으로 유리 기판에 DNA 인쇄를 하는 데 적합합니다. 일정한 온 타임 생성 회로를 통해 온 타임이 온도 및 칩의 코너 각도에 영향을 받지 않아 시스템의 안정성이 향상됩니다.

잉크젯 프린트 헤드에 사용되는 기술은 매우 중요합니다. 잉크젯 기술의 엄청난 발전은 주로 잉크젯 프린팅에 사용되는 대형 액적 이젝터 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]를 포함하여 잉크젯 프린트 헤드 기술의 이론 개발에서 시작되었습니다 . 연속 잉크젯 시스템은 고주파 응답과 고속 인쇄의 장점을 가지고 있습니다. 잉크젯 헤드의 총 노즐 수는 수백 또는 수천에 달할 수 있으며 이러한 노즐은 매우 복잡합니다. 노즐은 풍부하고 조화로운 색상과 부드러운 메쉬 톤을 생성할 수 있습니다 [ 9 , 10 ,11 ]. 잉크젯은 열 거품 잉크젯, 압전 잉크젯 및 정전 식 잉크젯의 세 가지 주요 유형으로 분류할 수 있습니다. 다른 유형도 사용 중입니다. 압전 잉크젯의 기능은 다음과 같습니다. 많은 소형 압전 세라믹이 잉크젯 헤드 노즐 근처에 배치됩니다. 압전 결정은 전기장 아래에서 변형됩니다. 그 후, 잉크는 잉크 캐비티에서 압착되어 노즐에서 배출됩니다. 패턴의 데이터 신호는 압전 결정의 변형을 제어한 다음 분사되는 잉크의 양을 제어합니다. 압전 마이크로 전자 기계 시스템 (MEMS) 잉크젯 헤드는 하이브리드 인쇄에 사용됩니다. [ 12]. 열 버블 잉크젯 기술은 다음과 같이 작동합니다. 가열 펄스 (즉, 기록 신호) 하에서 노즐의 가열 구성 요소의 온도가 상승하여 근처의 잉크 용매를 증발시켜 많은 양의 작은 핵 기포를 생성합니다. 내부 기포의 부피가 지속적으로 증가합니다. 압력이 일정 수준에 도달하면 노즐에서 잉크가 분출되고 잉크가 기판 표면에 도달하여 패턴과 메시지가 표시됩니다 [ 13 , 14 , 15 , 16 , 17 , 18 ].

3 차원 (3D) 제품 프린팅 및 빠른 프로토 타입 기술의 발전에는 모든 빠른 프로토 타입의 생산 기술이 포함됩니다. 래피드 프로토 타입 기술은 기존 생산 방식과는 다르지만 3D 제품 프린팅 생산 과정의 일부 특성을 공유합니다. 구체적으로 자동 제어 [ 19 , 20 , 21 , 22 , 23 , 24 ] 하에서 자재를 쌓아 올립니다 .

이 연구에서 개발된 시스템은 열 기포 방출 기술을 사용했습니다. 이 빠른 어레이에 DNA 비드를 배치하기 위해 히터에 대해 다른 직경과 다른 공동 두께가 사용되었습니다. 그 후, 스프레이 유속을 평가했다. DNA 제트 칩의 부스트 회로 시스템은 큰 흐름을 구동하기위한 신호 소스입니다. 목표는 분사되는 DNA 액체의 양과 출력을 조정하는 것입니다. 입력 전압을 더 높은 출력 전압으로 수정해야하는 경우 승압 컨버터가 유일한 옵션입니다. 승압 컨버터는 내부 금속 산화물 반도체 전계 효과 트랜지스터 (MOSFET)를 충전하여 출력 전압을 증가시킵니다. MOSFET이 꺼지면 부하 정류를 통해 인덕턴스가 방전됩니다. 충전과 방전 사이에서 인덕터를 변경하는 과정은 인덕터를 통과하는 전압의 방향을 변경합니다. 전압은 입력 작동 전압을 초과하는 지점까지 점차적으로 증가합니다. MOSFET 스위치의 듀티 사이클은 부스트 ​​비율을 결정합니다. MOSFET의 승압 컨버터의 정격 전류와 부스트 비율은 승압 컨버터의 부하 전류의 상한을 결정합니다. MOSFET의 정격 전류는 출력 전압의 상한을 결정합니다. 일부 승압 컨버터는 정류기와 MOSFET을 통합하여 동기식 정류를 제공합니다. 통합 MOSFET은 정밀한 제로 전류 셧다운을 실현할 수 있으므로 셋업 컨버터의 효율성을 높일 수 있습니다. 최대 전력 점 추적 장치는 입력 전력을 실시간으로 모니터링하는 데 사용되었습니다. 입력 전압이 최대 입력 전력 지점에 도달하면 승압 컨버터가 작동을 시작합니다. 스텝 업 컨버터는 DNA 프린팅을 위한 최대 전력 출력 포인트가 있는 유리 기판에 사용됩니다.

MEMS Chip Design for Bubble Jet

이 연구는 히터 크기, 히터 번호 및 루프 저항과 같은 특정 매개 변수를 조작하여 5 가지 유형의 액체 배출 챔버 구조를 설계했습니다. 표 1 은 측정 결과를 나열합니다. 이 시스템은 다양한 히터의 루프 저항을 분석했습니다. 100 개 히터 설계를 완료하기 위해 2 세트의 히터를 사용하여 각 단일 회로 시리즈를 통과하기 때문에 100 개의 히터를 설계할 때 총 루프 저항은 히터 50 개의 총 루프 저항보다 하나 더 커야 합니다. 이 연구에서 MEMS 칩에서 기포를 배출하는 과정에서 저항 층의 면저항은 29 Ω / m 2입니다. 따라서 모델 A의 총 루프 저항이 가장 컸습니다. 일반 사이즈 모델 (모델 B1, C, D, E)의 두 배였습니다. 모델 B1, C, D 및 E의 총 루프 저항은 약 29 Ω / m 2 입니다. 표 1 에 따르면 오류 범위는 허용된 설계 값 이내였습니다. 따라서야 연구에서 설계된 각 유형의 단일 칩은 동일한 생산 절차 결과를 가지며 후속 유량 측정에 사용되었습니다.

Table 1. List of resistance measurement of single circuit resistance.
Table 1. List of resistance measurement of single circuit resistance.

DNA를 뿌린 칩의 파워가 정상으로 확인되면 히터 버블의 성장 특성을 테스트하고 검증했습니다. DNA 스프레이 칩의 필름 두께와 필름 품질은 히터의 작동 조건과 스프레이 품질에 영향을 줍니다. 따라서 기포 성장 현상과 그 성장 특성을 이해하면 본 연구에서 DNA 스프레이 칩의 특성과 작동 조건을 명확히 하는 데 도움이 됩니다.

설계된 시스템은 기포 성장 조건을 관찰하기 위해 개방형 액체 공급 방법을 채택했습니다. 이미지 관찰을 위해 발광 다이오드 (LED, Nichia NSPW500GS-K1, 3.1V 백색 LED 5mm)를 사용하는 동기식 플래시 방식을 사용하여 동기식 지연 광원을 생성했습니다. 이 시스템은 또한 전하 결합 장치 (CCD, Flir Grasshopper3 GigE GS3-PGE-50S5C-C)를 사용하여 이미지를 캡처했습니다. 그림 1핵 형성, 성장, 거품 생성에서 소산에 이르는 거품의 과정을 보여줍니다. 이 시스템은 기포의 성장 및 소산 과정을 확인하여 시작 전압을 관찰하는 데 사용할 수 있습니다. 마이크로 채널의 액체 공급 방법은 LED가 깜빡이는 시간을 가장 큰 기포 발생에 필요한 시간 (15μs)으로 설정했습니다. 이 디자인은 부적합한 깜박임 시간으로 인한 잘못된 판단과 거품 이미지 캡처 불가능을 방지합니다.

Figure 1. The system uses CCD to capture images.
Figure 1. The system uses CCD to capture images.

<내용 중략>…….

Table 2. Open pool test starting voltage results.
Table 2. Open pool test starting voltage results.
Figure 2. Serial input parallel output shift registers forms of connection.
Figure 2. Serial input parallel output shift registers forms of connection.
Figure 3. The geometry of the jet cavity. (a) The actual DNA liquid chamber, (b) the three-dimensional view of the microfluidic single channel. A single-channel jet cavity with 60 μm diameter and 50 μm thickness, with an operating frequency of 5 KHz, in (a) three-dimensional side view (b) X-Z two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs injection conditions.
Figure 3. The geometry of the jet cavity. (a) The actual DNA liquid chamber, (b) the three-dimensional view of the microfluidic single channel. A single-channel jet cavity with 60 μm diameter and 50 μm thickness, with an operating frequency of 5 KHz, in (a) three-dimensional side view (b) X-Z two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs injection conditions.
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.
Figure 5 depicts the calculation results of the 2D X-Z cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. This may be because the size of the single-channel injection cavity was unsuitable for the highest operating frequency of 10 KHz. Thus, subsequent calculation simulations employed 5 KHz as the reference operating frequency. The calculation simulation results were calculated according to the operating frequency of the impact. Figure 6 illustrates the injection cavity height as 60 μm and 30 μm and reveals the 2D X-Y cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. In those stages, the fluid was still filling the chamber, and the flow field was not yet stable.
Figure 5 depicts the calculation results of the 2D X-Z cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. This may be because the size of the single-channel injection cavity was unsuitable for the highest operating frequency of 10 KHz. Thus, subsequent calculation simulations employed 5 KHz as the reference operating frequency. The calculation simulation results were calculated according to the operating frequency of the impact. Figure 6 illustrates the injection cavity height as 60 μm and 30 μm and reveals the 2D X-Y cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. In those stages, the fluid was still filling the chamber, and the flow field was not yet stable.
Figure 6. Calculate and simulate water in a single-channel spray chamber with a spray hole diameter of 60 μm and a thickness of 50 μm, with an operating frequency of 10 KHz, in an XY cross-sectional view, at 10, 20, 30, 40, 100, 110, 120, 130, 140 and 200 μs injection situation.
Figure 6. Calculate and simulate water in a single-channel spray chamber with a spray hole diameter of 60 μm and a thickness of 50 μm, with an operating frequency of 10 KHz, in an XY cross-sectional view, at 10, 20, 30, 40, 100, 110, 120, 130, 140 and 200 μs injection situation.
Figure 7. The DNA printing integrated multiplexer driver MEMS head (IDMH).
Figure 7. The DNA printing integrated multiplexer driver MEMS head (IDMH).
Figure 8. The initial voltage diagrams of chip number A,B,C,D,E type.
Figure 8. The initial voltage diagrams of chip number A,B,C,D,E type.
Figure 9. The initial energy diagrams of chip number A,B,C,D,E type.
Figure 9. The initial energy diagrams of chip number A,B,C,D,E type.
Figure 10. A Type-Sample01 flow test.
Figure 10. A Type-Sample01 flow test.
Figure 11. A Type-Sample01 drop volume.
Figure 11. A Type-Sample01 drop volume.
Figure 12. A Type-Sample01 flow rate.
Figure 12. A Type-Sample01 flow rate.
Figure 13. B1-00 flow test.
Figure 13. B1-00 flow test.
Figure 14. C Type-01 flow test.
Figure 14. C Type-01 flow test.
Figure 15. D Type-02 flow test.
Figure 15. D Type-02 flow test.
Figure 16. E1 type flow test.
Figure 16. E1 type flow test.
Figure 17. E1 type ejection rate relationship.
Figure 17. E1 type ejection rate relationship.

Conclusions

이 연구는 DNA 프린팅 IDMH를 제공하고 미세 유체 흐름 추정을 수행했습니다. 설계된 DNA 스프레이 캐비티와 20V의 구동 전압에서 다양한 펄스 폭의 유동 성능이 펄스 폭에 따라 증가하는 것으로 밝혀졌습니다.

E1 유형 유량 테스트는 해당 유량이 3.1cc / min으로 증가함에 따라 유량이 전력 변화에 영향을 받는 것으로 나타났습니다. 동력이 증가함에 따라 유량은 0.75cc / min에서 3.5cc / min으로 최대 6.5W까지 증가했습니다. 동력이 더 증가하면 유량은 에너지와 함께 증가하지 않습니다. 이것은 이 테이블 디자인이 가장 크다는 것을 보여줍니다. 유속은 3.5cc / 분이었다.
작동 주파수가 2KHz이고 펄스 폭이 4μs 및 5μs 인 특수 설계된 DNA 스프레이 룸 구조에서 다양한 전력 조건 하에서 유량 변화를 관찰했습니다. 4.3–5.87 W의 출력 범위 내에서 주입 된 모노머의 유속은 5.5cc / 분이었습니다. 이것은 힘이 증가해도 변하지 않았습니다. DNA는 귀중하고 쉽게 얻을 수 없습니다. 이 실험을 통해 우리는 DNA가 뿌려진 마이크로 어레이 바이오칩의 수천 개의 지점에 필요한 총 DNA 양을 정확하게 추정 할 수 있습니다.

<내용 중략>…….

References

  1. Pydar, O.; Paredes, C.; Hwang, Y.; Paz, J.; Shah, N.; Candler, R. Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings. Sens. Actuators Phys. 2014205, 199–203. [Google Scholar] [CrossRef]
  2. Ohtani, K.; Tsuchiya, M.; Sugiyama, H.; Katakura, T.; Hayakawa, M.; Kanai, T. Surface treatment of flow channels in microfluidic devices fabricated by stereolitography. J. Oleo Sci. 201463, 93–96. [Google Scholar] [CrossRef]
  3. Castrejn-Pita, J.R.; Martin, G.D.; Hoath, S.D.; Hutchings, I.M. A simple large-scale droplet generator for studies of inkjet printing. Rev. Sci. Instrum. 200879, 075108. [Google Scholar] [CrossRef] [PubMed]
  4. Asai, A. Application of the nucleation theory to the design of bubble jet printers. Jpn. J. Appl. Phys. Regul. Rap. Short Notes 198928, 909–915. [Google Scholar] [CrossRef]
  5. Aoyama, R.; Seki, M.; Hong, J.W.; Fujii, T.; Endo, I. Novel Liquid Injection Method with Wedge-shaped Microchannel on a PDMS Microchip System for Diagnostic Analyses. In Transducers’ 01 Eurosensors XV; Springer: Berlin, Germany, 2001; pp. 1204–1207. [Google Scholar]
  6. Xu, B.; Zhang, Y.; Xia, H.; Dong, W.; Ding, H.; Sun, H. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 201313, 1677–1690. [Google Scholar] [CrossRef] [PubMed]
  7. Nayve, R.; Fujii, M.; Fukugawa, A.; Takeuchi, T.; Murata, M.; Yamada, Y. High-Resolution long-array thermal ink jet printhead fabricated by anisotropic wet etching and deep Si RIE. J. Microelectromech. Syst. 200413, 814–821. [Google Scholar] [CrossRef]
  8. O’Connor, J.; Punch, J.; Jeffers, N.; Stafford, J. A dimensional comparison between embedded 3D: Printed and silicon microchannesl. J. Phys. Conf. Ser. 2014525, 012009. [Google Scholar] [CrossRef]
  9. Fang, Y.J.; Lee, J.I.; Wang, C.H.; Chung, C.K.; Ting, J. Modification of heater and bubble clamping behavior in off-shooting inkjet ejector. In Proceedings of the IEEE Sensors, Irvine, CA, USA, 30 October–3 November 2005; pp. 97–100. [Google Scholar]
  10. Lee, W.; Kwon, D.; Choi, W.; Jung, G.; Jeon, S. 3D-Printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 20155, 7717. [Google Scholar] [CrossRef] [PubMed]
  11. Shin, D.Y.; Smith, P.J. Theoretical investigation of the influence of nozzle diameter variation on the fabrication of thin film transistor liquid crystal display color filters. J. Appl. Phys. 2008103, 114905-1–114905-11. [Google Scholar] [CrossRef]
  12. Kim, Y.; Kim, S.; Hwang, J.; Kim, Y. Drop-on-Demand hybrid printing using piezoelectric MEMS printhead at various waveforms, high voltages and jetting frequencies. J. Micromech. Microeng. 201323, 8. [Google Scholar] [CrossRef]
  13. Shin, S.J.; Kuka, K.; Shin, J.W.; Lee, C.S.; Oha, Y.S.; Park, S.O. Thermal design modifications to improve firing frequency of back shooting inkjet printhead. Sens. Actuators Phys. 2004114, 387–391. [Google Scholar] [CrossRef]
  14. Rose, D. Microfluidic Technologies and Instrumentation for Printing DNA Microarrays. In Microarray Biochip Technology; Eaton Publishing: Norwalk, CT, USA, 2000; p. 35. [Google Scholar]
  15. Wu, D.; Wu, S.; Xu, J.; Niu, L.; Midorikawa, K.; Sugioka, K. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-abottle biochip. Laser Photon. Rev. 20148, 458–467. [Google Scholar] [CrossRef]
  16. McIlroy, C.; Harlen, O.; Morrison, N. Modelling the jetting of dilute polymer solutions in drop-on-demand inkjet printing. J. Non Newton. Fluid Mech. 2013201, 17–28. [Google Scholar] [CrossRef]
  17. Anderson, K.; Lockwood, S.; Martin, R.; Spence, D. A 3D printed fluidic device that enables integrated features. Anal. Chem. 201385, 5622–5626. [Google Scholar] [CrossRef] [PubMed]
  18. Avedisian, C.T.; Osborne, W.S.; McLeod, F.D.; Curley, C.M. Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water. Proc. R. Soc. A Lond. Math. Phys. Sci. 1999455, 3875–3899. [Google Scholar] [CrossRef]
  19. Lim, J.H.; Kuk, K.; Shin, S.J.; Baek, S.S.; Kim, Y.J.; Shin, J.W.; Oh, Y.S. Failure mechanisms in thermal inkjet printhead analyzed by experiments and numerical simulation. Microelectron. Reliab. 200545, 473–478. [Google Scholar] [CrossRef]
  20. Shallan, A.; Semjkal, P.; Corban, M.; Gujit, R.; Breadmore, M. Cost-Effective 3D printing of visibly transparent microchips within minutes. Anal. Chem. 201486, 3124–3130. [Google Scholar] [CrossRef] [PubMed]
  21. Cavicchi, R.E.; Avedisian, C.T. Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobubbles. Phys. Rev. Lett. 200798, 124501. [Google Scholar] [CrossRef] [PubMed]
  22. Kamei, K.; Mashimo, Y.; Koyama, Y.; Fockenberg, C.; Nakashima, M.; Nakajima, M.; Li, J.; Chen, Y. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed. Microdevices 201517, 36. [Google Scholar] [CrossRef] [PubMed]
  23. Shin, S.J.; Kuka, K.; Shin, J.W.; Lee, C.S.; Oha, Y.S.; Park, S.O. Firing frequency improvement of back shooting inkjet printhead by thermal management. In Proceedings of the TRANSDUCERS’03. 12th International Conference on Solid-State Sensors.Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA, 8–12 June 2003; Volume 1, pp. 380–383. [Google Scholar]
  24. Laio, X.; Song, J.; Li, E.; Luo, Y.; Shen, Y.; Chen, D.; Chen, Y.; Xu, Z.; Sugoioka, K.; Midorikawa, K. Rapid prototyping of 3D microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 201212, 746–749. [Google Scholar] [CrossRef] [PubMed]
Figure 1 (A) A schematic of ovarian cancer metastases involving tumor cells or clusters (yellow) shedding from a primary site and disseminating along ascitic currents of peritoneal fluid (green arrows) in the abdominal cavity. Ovarian cancer typically disseminates in four common abdomino-pelvic sites: (1) cul-de-sac (an extension of the peritoneal cavity between the rectum and back wall of the uterus); (2) right infracolic space (the apex formed by the termination of the small intestine of the small bowel mesentery at the ileocecal junction); (3) left infracolic space (superior site of the sigmoid colon); (4) Right paracolic gutter (communication between the upper and lower abdomen defined by the ascending colon and peritoneal wall). (B) The schematic of a perfusion model used to study the impact of sustained fluid flow on treatment resistance and molecular features of 3D ovarian cancer nodules (Top left). A side view of the perfusion model and growth of ovarian cancer nodules to a stromal bed (Top right). The photograph of a perfusion model used in the experiments (Bottom left) and depth-informed confocal imaging of ovarian cancer nodules in channels with and without carboplatin treatment (Bottom right). The perfusion model is 24 × 40 mm, with three channels that are 4 × 30 mm each and a height of 254 μm. The inlet and outlet ports of channels are 2.2 mm in diameter and positioned 5 mm from the edge of the chip. (C) A schematic of a 24-well plate model used to study the treatment resistance and molecular features of 3D ovarian cancer nodules under static conditions (without flow) (Top left). A side view of the static models and growth of ovarian cancer nodules on a stromal bed (Top right). Confocal imaging of 3D ovarian cancer nodules in a 24-well plate without and with carboplatin treatment (Bottom). Scale bars: 1 mm.

Flow-induced Shear Stress Confers Resistance to Carboplatin in an Adherent Three-Dimensional Model for Ovarian Cancer: A Role for EGFR-Targeted Photoimmunotherapy Informed by Physical Stress

난소암에 대한 일관된 3차원 모델에서 카보플라틴에 대한 유동에 의한 전단응력변화에 관한 연구

Abstract

A key reason for the persistently grim statistics associated with metastatic ovarian cancer is resistance to conventional agents, including platinum-based chemotherapies. A major source of treatment failure is the high degree of genetic and molecular heterogeneity, which results from significant underlying genomic instability, as well as stromal and physical cues in the microenvironment. Ovarian cancer commonly disseminates via transcoelomic routes to distant sites, which is associated with the frequent production of malignant ascites, as well as the poorest prognosis. In addition to providing a cell and protein-rich environment for cancer growth and progression, ascitic fluid also confers physical stress on tumors. An understudied area in ovarian cancer research is the impact of fluid shear stress on treatment failure. Here, we investigate the effect of fluid shear stress on response to platinum-based chemotherapy and the modulation of molecular pathways associated with aggressive disease in a perfusion model for adherent 3D ovarian cancer nodules. Resistance to carboplatin is observed under flow with a concomitant increase in the expression and activation of the epidermal growth factor receptor (EGFR) as well as downstream signaling members mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK). The uptake of platinum by the 3D ovarian cancer nodules was significantly higher in flow cultures compared to static cultures. A downregulation of phospho-focal adhesion kinase (p-FAK), vinculin, and phospho-paxillin was observed following carboplatin treatment in both flow and static cultures. Interestingly, low-dose anti-EGFR photoimmunotherapy (PIT), a targeted photochemical modality, was found to be equally effective in ovarian tumors grown under flow and static conditions. These findings highlight the need to further develop PIT-based combinations that target the EGFR, and sensitize ovarian cancers to chemotherapy in the context of flow-induced shear stress.

전이성 난소 암과 관련된 지속적으로 암울한 통계의 주요 이유는 백금 기반 화학 요법을 포함한 기존 약제에 대한 내성 때문입니다. 치료 실패의 주요 원인은 높은 수준의 유전적 및 분자적 이질성이며, 이는 중요한 기본 게놈 불안정성과 미세 환경의 기질 및 물리적 단서로 인해 발생합니다.

난소 암은 흔히 transcoelomic 경로를 통해 먼 부위로 전파되며, 이는 악성 복수의 빈번한 생산과 가장 나쁜 예후와 관련이 있습니다. 암 성장 및 진행을위한 세포 및 단백질이 풍부한 환경을 제공하는 것 외에도 복수 액은 종양에 물리적 스트레스를 부여합니다. 난소 암 연구에서 잘 연구되지 않은 분야는 유체 전단 응력이 치료 실패에 미치는 영향입니다.

여기, 우리는 백금 기반 화학 요법에 대한 반응과 부착 3D 난소 암 결절에 대한 관류 모델에서 공격적인 질병과 관련된 분자 경로의 변조에 대한 유체 전단 응력의 효과를 조사합니다.

카르보플라틴에 대한 내성은 상피 성장 인자 수용체 (EGFR)의 발현 및 활성화의 수반되는 증가 뿐만 아니라 다운 스트림 신호 구성원인 미토겐 활성화 단백질 키나제/세포 외 신호 조절 키나제 (MEK) 및 세포 외 신호 조절과 함께 관찰됩니다. 키나아제 (ERK). 3D 난소 암 결절에 의한 백금 흡수는 정적 배양에 비해 유동 배양에서 상당히 높았습니다.

포스 포-포컬 접착 키나제 (p-FAK), 빈 쿨린 및 포스 포-팍 실린의 하향 조절은 유동 및 정적 배양 모두에서 카보 플 라틴 처리 후 관찰되었습니다. 흥미롭게도, 표적 광 화학적 양식 인 저용량 항 EGFR 광 면역 요법 (PIT)은 유동 및 정적 조건에서 성장한 난소 종양에서 똑같이 효과적인 것으로 밝혀졌습니다.

이러한 발견은 EGFR을 표적으로하는 PIT 기반 조합을 추가로 개발하고 흐름 유도 전단 응력의 맥락에서 화학 요법에 난소 암을 민감하게 할 필요성을 강조합니다.

Keywords: ovarian cancer, epidermal growth factor receptor (EGFR), mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK), extracellular signal-regulated kinase (ERK), chemoresistance, fluid shear stress, ascites, perfusion model, photoimmunotherapy (PIT), photodynamic therapy (PDT), carboplatin

Figure 1 (A) A schematic of ovarian cancer metastases involving tumor cells or clusters (yellow) shedding from a primary site and disseminating along ascitic currents of peritoneal fluid (green arrows) in the abdominal cavity. Ovarian cancer typically disseminates in four common abdomino-pelvic sites: (1) cul-de-sac (an extension of the peritoneal cavity between the rectum and back wall of the uterus); (2) right infracolic space (the apex formed by the termination of the small intestine of the small bowel mesentery at the ileocecal junction); (3) left infracolic space (superior site of the sigmoid colon); (4) Right paracolic gutter (communication between the upper and lower abdomen defined by the ascending colon and peritoneal wall). (B) The schematic of a perfusion model used to study the impact of sustained fluid flow on treatment resistance and molecular features of 3D ovarian cancer nodules (Top left). A side view of the perfusion model and growth of ovarian cancer nodules to a stromal bed (Top right). The photograph of a perfusion model used in the experiments (Bottom left) and depth-informed confocal imaging of ovarian cancer nodules in channels with and without carboplatin treatment (Bottom right). The perfusion model is 24 × 40 mm, with three channels that are 4 × 30 mm each and a height of 254 μm. The inlet and outlet ports of channels are 2.2 mm in diameter and positioned 5 mm from the edge of the chip. (C) A schematic of a 24-well plate model used to study the treatment resistance and molecular features of 3D ovarian cancer nodules under static conditions (without flow) (Top left). A side view of the static models and growth of ovarian cancer nodules on a stromal bed (Top right). Confocal imaging of 3D ovarian cancer nodules in a 24-well plate without and with carboplatin treatment (Bottom). Scale bars: 1 mm.
Figure 1 (A) A schematic of ovarian cancer metastases involving tumor cells or clusters (yellow) shedding from a primary site and disseminating along ascitic currents of peritoneal fluid (green arrows) in the abdominal cavity. Ovarian cancer typically disseminates in four common abdomino-pelvic sites: (1) cul-de-sac (an extension of the peritoneal cavity between the rectum and back wall of the uterus); (2) right infracolic space (the apex formed by the termination of the small intestine of the small bowel mesentery at the ileocecal junction); (3) left infracolic space (superior site of the sigmoid colon); (4) Right paracolic gutter (communication between the upper and lower abdomen defined by the ascending colon and peritoneal wall). (B) The schematic of a perfusion model used to study the impact of sustained fluid flow on treatment resistance and molecular features of 3D ovarian cancer nodules (Top left). A side view of the perfusion model and growth of ovarian cancer nodules to a stromal bed (Top right). The photograph of a perfusion model used in the experiments (Bottom left) and depth-informed confocal imaging of ovarian cancer nodules in channels with and without carboplatin treatment (Bottom right). The perfusion model is 24 × 40 mm, with three channels that are 4 × 30 mm each and a height of 254 μm. The inlet and outlet ports of channels are 2.2 mm in diameter and positioned 5 mm from the edge of the chip. (C) A schematic of a 24-well plate model used to study the treatment resistance and molecular features of 3D ovarian cancer nodules under static conditions (without flow) (Top left). A side view of the static models and growth of ovarian cancer nodules on a stromal bed (Top right). Confocal imaging of 3D ovarian cancer nodules in a 24-well plate without and with carboplatin treatment (Bottom). Scale bars: 1 mm.
Figure 2 (A) Geometry of the micronodule located at the center of the microchannel. The flow velocity is in the X-direction. The nodule is modeled as an ellipse with a semi-minor axis of 40 μm in the Z-direction. The semi-major axis varies from 40-100 μm in the X-direction. The section over which the fluid dynamics are studied is the middle part of the channel with dimensions 4 mm along the Y-axis and 250 μm along the Z-axis. The nodule is located at (0, 20 μm). The black dotted line shows the centerline of the largest nodule. (B) Shear stress distribution over the surface of the solid micro-nodule on the XZ-plane. (C) Shear stress distribution over the surface of the porous micro-nodule on the XZ-plane. (D) Flow flux distribution over the centerline of the porous micro-nodule on the XZ-plane. The flux enters the surface at the left and leaves at the right.
Figure 2 (A) Geometry of the micronodule located at the center of the microchannel. The flow velocity is in the X-direction. The nodule is modeled as an ellipse with a semi-minor axis of 40 μm in the Z-direction. The semi-major axis varies from 40-100 μm in the X-direction. The section over which the fluid dynamics are studied is the middle part of the channel with dimensions 4 mm along the Y-axis and 250 μm along the Z-axis. The nodule is located at (0, 20 μm). The black dotted line shows the centerline of the largest nodule. (B) Shear stress distribution over the surface of the solid micro-nodule on the XZ-plane. (C) Shear stress distribution over the surface of the porous micro-nodule on the XZ-plane. (D) Flow flux distribution over the centerline of the porous micro-nodule on the XZ-plane. The flux enters the surface at the left and leaves at the right.
Figure 3 Cytotoxic response in carboplatin-treated 3D OVCAR-5 cultures under static conditions. (A) Representative confocal images of 3D tumors treated with carboplatin (0-500 μM) for 96 h showing a dose-dependent reduction in viable tumor (calcein signal). (B) Image-based quantification of normalized viable tumor area in 3D OVCAR-5 cultures following treatment with increasing doses of carboplatin. A minimum nodule size cut-off of 2000 µm2 (clusters of ~15–20 cells) was applied to the fluorescence images for quantitative analysis of the normalized viable tumor area. (One-way ANOVA with Dunnett’s post hoc test; n.s., not significant; * p < 0.05; *** p < 0.001; N = 9) (C) Inductively coupled plasma mass spectrometry (ICP-MS)-based quantification of carboplatin uptake in static 3D OVCAR-5 tumors shows a dose-dependent increase in platinum levels, up to 9774 ± 3,052 ng/mg protein at an incubation concentration of 500 μM carboplatin. (One-way ANOVA with Dunn’s multiple comparisons test; n.s., not significant; * p < 0.05; ** p < 0.01; N = 3). Results are expressed as mean ± standard error of mean (SEM). Scale bars: 500 μm.
Figure 3 Cytotoxic response in carboplatin-treated 3D OVCAR-5 cultures under static conditions. (A) Representative confocal images of 3D tumors treated with carboplatin (0-500 μM) for 96 h showing a dose-dependent reduction in viable tumor (calcein signal). (B) Image-based quantification of normalized viable tumor area in 3D OVCAR-5 cultures following treatment with increasing doses of carboplatin. A minimum nodule size cut-off of 2000 µm2 (clusters of ~15–20 cells) was applied to the fluorescence images for quantitative analysis of the normalized viable tumor area. (One-way ANOVA with Dunnett’s post hoc test; n.s., not significant; * p < 0.05; *** p < 0.001; N = 9) (C) Inductively coupled plasma mass spectrometry (ICP-MS)-based quantification of carboplatin uptake in static 3D OVCAR-5 tumors shows a dose-dependent increase in platinum levels, up to 9774 ± 3,052 ng/mg protein at an incubation concentration of 500 μM carboplatin. (One-way ANOVA with Dunn’s multiple comparisons test; n.s., not significant; * p < 0.05; ** p < 0.01; N = 3). Results are expressed as mean ± standard error of mean (SEM). Scale bars: 500 μm.
Figure 4 flow-induced chemo-resistance
Figure 4 flow-induced chemo-resistance
Figure 5 The effects of flow-induced shear stress on 3D ovarian cancer biology. (A) Western blot analysis of OVCAR-5 tumors was performed 7 days after culture under static or flow conditions. A flow-induced increase in EGFR and p-ERK, compared to static cultures, was observed. Conversely, a reduction in p-FAK, p-Paxillin, and Vinculin was observed under flow, relative to static conditions. (B) Western blot analysis of 3D OVCAR-5 tumors was performed 11 days after culture under static or flow conditions, including 4 days of treatment with 500 µM carboplatin, and respective controls. In both static and flow 3D cultures, carboplatin treatment resulted in downregulation of EGFR, FAK, p-Paxillin, Paxillin, and Vinculin. Upregulation of p-ERK was observed after carboplatin treatment in both static and flow 3D cultures. (C) Baseline levels of EGFR activity and expression are maintained by a complex array of factors, including recycling and degradation of the activated receptor complex. Flow-induced shear stress has been shown to cause a posttranslational up-regulation of EGFR expression and activation, likely resulting from increased receptor recycling and decreased EGFR degradation. Activation of EGFR results in ERK phosphorylation to induce gene expression, ultimately leading to cell proliferation, survival, and chemoresistance. FAK and other tyrosine kinases are activated by the engagement of integrins with the ECM. Subsequent phosphorylation of paxillin by FAK not only influences the remodeling of the actin cytoskeleton, but also modulates vinculin activation to regulate mitogen-activated protein kinase (MAPK) cascades, thereby stimulating pro-survival gene expression.
Figure 5 The effects of flow-induced shear stress on 3D ovarian cancer biology. (A) Western blot analysis of OVCAR-5 tumors was performed 7 days after culture under static or flow conditions. A flow-induced increase in EGFR and p-ERK, compared to static cultures, was observed. Conversely, a reduction in p-FAK, p-Paxillin, and Vinculin was observed under flow, relative to static conditions. (B) Western blot analysis of 3D OVCAR-5 tumors was performed 11 days after culture under static or flow conditions, including 4 days of treatment with 500 µM carboplatin, and respective controls. In both static and flow 3D cultures, carboplatin treatment resulted in downregulation of EGFR, FAK, p-Paxillin, Paxillin, and Vinculin. Upregulation of p-ERK was observed after carboplatin treatment in both static and flow 3D cultures. (C) Baseline levels of EGFR activity and expression are maintained by a complex array of factors, including recycling and degradation of the activated receptor complex. Flow-induced shear stress has been shown to cause a posttranslational up-regulation of EGFR expression and activation, likely resulting from increased receptor recycling and decreased EGFR degradation. Activation of EGFR results in ERK phosphorylation to induce gene expression, ultimately leading to cell proliferation, survival, and chemoresistance. FAK and other tyrosine kinases are activated by the engagement of integrins with the ECM. Subsequent phosphorylation of paxillin by FAK not only influences the remodeling of the actin cytoskeleton, but also modulates vinculin activation to regulate mitogen-activated protein kinase (MAPK) cascades, thereby stimulating pro-survival gene expression.
Figure 6 PIT efficacy in 3D tumors. (A) Dose-dependent change in normalized viable tumor area in static 3D cultures treated with PIC (1 μM BPD equivalent) and increasing energy densities (10–50 J/cm2 @ 50 mW/cm2). Significant tumoricidal efficacy is observed in a light-dose-dependent manner, starting at 15 J/cm2. (One-way ANOVA with Dunnett’s post hoc test; n.s., not significant; ** p < 0.01, *** p < 0.001, N = 9) (B) Comparison of cytotoxic response in PIT-treated 3D cultures under static and flow conditions. For quantitative analysis of fluorescence images, a minimum nodule size cut-off of 2000 µm2 (clusters of ~15–20 cells) was used to establish normalized viable tumor area. PIT is equally effective in 3D tumors grown in static cultures (green) and under flow-induced shear stress (blue) (in contrast to flow-induced chemo-resistance shown in Figure 4) (Two-tailed t test; n.s., not significant; N = 9).
Figure 6 PIT efficacy in 3D tumors. (A) Dose-dependent change in normalized viable tumor area in static 3D cultures treated with PIC (1 μM BPD equivalent) and increasing energy densities (10–50 J/cm2 @ 50 mW/cm2). Significant tumoricidal efficacy is observed in a light-dose-dependent manner, starting at 15 J/cm2. (One-way ANOVA with Dunnett’s post hoc test; n.s., not significant; ** p < 0.01, *** p < 0.001, N = 9) (B) Comparison of cytotoxic response in PIT-treated 3D cultures under static and flow conditions. For quantitative analysis of fluorescence images, a minimum nodule size cut-off of 2000 µm2 (clusters of ~15–20 cells) was used to establish normalized viable tumor area. PIT is equally effective in 3D tumors grown in static cultures (green) and under flow-induced shear stress (blue) (in contrast to flow-induced chemo-resistance shown in Figure 4) (Two-tailed t test; n.s., not significant; N = 9).

References

  1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551. [PubMed] [CrossRef] [Google Scholar]
  2. Foley O.W., Rauh-Hain J.A., Del Carmen M.G. Recurrent epithelial ovarian cancer: An update on treatment. Oncology. 2013;27:288–294, 298. [PubMed] [Google Scholar]
  3. Kipps E., Tan D.S., Kaye S.B. Meeting the challenge of ascites in ovarian cancer: New avenues for therapy and research. Nat. Rev. Cancer. 2013;13:273–282. doi: 10.1038/nrc3432. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  4. Tan D.S., Agarwal R., Kaye S.B. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 2006;7:925–934. doi: 10.1016/S1470-2045(06)70939-1. [PubMed] [CrossRef] [Google Scholar]
  5. Ahmed N., Stenvers K.L. Getting to know ovarian cancer ascites: Opportunities for targeted therapy-based translational research. Front. Oncol. 2013;3:256. doi: 10.3389/fonc.2013.00256. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  6. Shield K., Ackland M.L., Ahmed N., Rice G.E. Multicellular spheroids in ovarian cancer metastases: Biology and pathology. Gynecol. Oncol. 2009;113:143–148. doi: 10.1016/j.ygyno.2008.11.032. [PubMed] [CrossRef] [Google Scholar]
  7. Naora H., Montell D.J. Ovarian cancer metastasis: Integrating insights from disparate model organisms. Nat. Rev. Cancer. 2005;5:355–366. doi: 10.1038/nrc1611. [PubMed] [CrossRef] [Google Scholar]
  8. Lengyel E. Ovarian cancer development and metastasis. Am. J. Pathol. 2010;177:1053–1064. doi: 10.2353/ajpath.2010.100105. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  9. Javellana M., Hoppenot C., Lengyel E. The road to long-term survival: Surgical approach and longitudinal treatments of long-term survivors of advanced-stage serous ovarian cancer. Gynecol. Oncol. 2019;152:228–234. doi: 10.1016/j.ygyno.2018.11.007. [PubMed] [CrossRef] [Google Scholar]
  10. Al Habyan S., Kalos C., Szymborski J., McCaffrey L. Multicellular detachment generates metastatic spheroids during intra-abdominal dissemination in epithelial ovarian cancer. Oncogene. 2018;37:5127–5135. doi: 10.1038/s41388-018-0317-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  11. Kim S., Kim B., Song Y.S. Ascites modulates cancer cell behavior, contributing to tumor heterogeneity in ovarian cancer. Cancer Sci. 2016;107:1173–1178. doi: 10.1111/cas.12987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  12. Bowtell D.D., Bohm S., Ahmed A.A., Aspuria P.J., Bast R.C., Beral V., Berek J.S., Birrer M.J., Blagden S., Bookman M.A., et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer. 2015;15:668–679. doi: 10.1038/nrc4019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  13. Hoppenot C., Eckert M.A., Tienda S.M., Lengyel E. Who are the long-term survivors of high grade serous ovarian cancer? Gynecol. Oncol. 2018;148:204–212. doi: 10.1016/j.ygyno.2017.10.032. [PubMed] [CrossRef] [Google Scholar]
  14. Zhao Y., Cao J., Melamed A., Worley M., Gockley A., Jones D., Nia H.T., Zhang Y., Stylianopoulos T., Kumar A.S., et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl. Acad. Sci. USA. 2019;116:2210–2219. doi: 10.1073/pnas.1818357116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  15. Ayantunde A.A., Parsons S.L. Pattern and prognostic factors in patients with malignant ascites: A retrospective study. Ann. Oncol. 2007;18:945–949. doi: 10.1093/annonc/mdl499. [PubMed] [CrossRef] [Google Scholar]
  16. Latifi A., Luwor R.B., Bilandzic M., Nazaretian S., Stenvers K., Pyman J., Zhu H., Thompson E.W., Quinn M.A., Findlay J.K., et al. Isolation and characterization of tumor cells from the ascites of ovarian cancer patients: Molecular phenotype of chemoresistant ovarian tumors. PLoS ONE. 2012;7:e46858. doi: 10.1371/journal.pone.0046858. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  17. Ahmed N., Greening D., Samardzija C., Escalona R.M., Chen M., Findlay J.K., Kannourakis G. Unique proteome signature of post-chemotherapy ovarian cancer ascites-derived tumor cells. Sci. Rep. 2016;6:30061. doi: 10.1038/srep30061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  18. Gjorevski N., Boghaert E., Nelson C.M. Regulation of Epithelial-Mesenchymal Transition by Transmission of Mechanical Stress through Epithelial Tissues. Cancer Microenviron. 2012;5:29–38. doi: 10.1007/s12307-011-0076-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  19. Polacheck W.J., Charest J.L., Kamm R.D. Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc. Natl. Acad. Sci. USA. 2011;108:11115–11120. doi: 10.1073/pnas.1103581108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  20. Polacheck W.J., German A.E., Mammoto A., Ingber D.E., Kamm R.D. Mechanotransduction of fluid stresses governs 3D cell migration. Proc. Natl. Acad. Sci. USA. 2014;111:2447–2452. doi: 10.1073/pnas.1316848111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  21. Polacheck W.J., Zervantonakis I.K., Kamm R.D. Tumor cell migration in complex microenvironments. Cell Mol. Life Sci. 2013;70:1335–1356. doi: 10.1007/s00018-012-1115-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  22. Swartz M.A., Lund A.W. Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nat. Rev. Cancer. 2012;12:210–219. doi: 10.1038/nrc3186. [PubMed] [CrossRef] [Google Scholar]
  23. Pisano M., Triacca V., Barbee K.A., Swartz M.A. An in vitro model of the tumor-lymphatic microenvironment with simultaneous transendothelial and luminal flows reveals mechanisms of flow enhanced invasion. Integr. Biol. 2015;7:525–533. doi: 10.1039/C5IB00085H. [PubMed] [CrossRef] [Google Scholar]
  24. Follain G., Herrmann D., Harlepp S., Hyenne V., Osmani N., Warren S.C., Timpson P., Goetz J.G. Fluids and their mechanics in tumour transit: Shaping metastasis. Nat. Rev. Cancer. 2020;20:107–124. doi: 10.1038/s41568-019-0221-x. [PubMed] [CrossRef] [Google Scholar]
  25. Rizvi I., Gurkan U.A., Tasoglu S., Alagic N., Celli J.P., Mensah L.B., Mai Z., Demirci U., Hasan T. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl. Acad. Sci. USA. 2013;110:E1974–E1983. doi: 10.1073/pnas.1216989110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  26. Novak C., Horst E., Mehta G. Mechanotransduction in ovarian cancer: Shearing into the unknown. APL Bioeng. 2018;2 doi: 10.1063/1.5024386. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  27. Carmignani C.P., Sugarbaker T.A., Bromley C.M., Sugarbaker P.H. Intraperitoneal cancer dissemination: Mechanisms of the patterns of spread. Cancer Metastasis Rev. 2003;22:465–472. doi: 10.1023/A:1023791229361. [PubMed] [CrossRef] [Google Scholar]
  28. Sugarbaker P.H. Observations concerning cancer spread within the peritoneal cavity and concepts supporting an ordered pathophysiology. Cancer Treatment Res. 1996;82:79–100. [PubMed] [Google Scholar]
  29. Feki A., Berardi P., Bellingan G., Major A., Krause K.H., Petignat P., Zehra R., Pervaiz S., Irminger-Finger I. Dissemination of intraperitoneal ovarian cancer: Discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model. Crit. Rev. Oncol./Hematol. 2009;72:1–9. doi: 10.1016/j.critrevonc.2008.12.003. [PubMed] [CrossRef] [Google Scholar]
  30. Holm-Nielsen P. Pathogenesis of ascites in peritoneal carcinomatosis. Acta Pathol. Microbiol. Scand. 1953;33:10–21. doi: 10.1111/j.1699-0463.1953.tb04805.x. [PubMed] [CrossRef] [Google Scholar]
  31. Ahmed N., Riley C., Oliva K., Rice G., Quinn M. Ascites induces modulation of alpha6beta1 integrin and urokinase plasminogen activator receptor expression and associated functions in ovarian carcinoma. Br. J. Cancer. 2005;92:1475–1485. doi: 10.1038/sj.bjc.6602495. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  32. Woodburn J.R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther. 1999;82:241–250. doi: 10.1016/S0163-7258(98)00045-X. [PubMed] [CrossRef] [Google Scholar]
  33. Servidei T., Riccardi A., Mozzetti S., Ferlini C., Riccardi R. Chemoresistant tumor cell lines display altered epidermal growth factor receptor and HER3 signaling and enhanced sensitivity to gefitinib. Int. J. Cancer J. Int. Cancer. 2008;123:2939–2949. doi: 10.1002/ijc.23902. [PubMed] [CrossRef] [Google Scholar]
  34. Chen A.P., Zhang J., Liu H., Zhao S.P., Dai S.Z., Sun X.L. Association of EGFR expression with angiogenesis and chemoresistance in ovarian carcinoma. Zhonghua zhong liu za zhi [Chinese journal of oncology] 2009;31:48–52. [PubMed] [Google Scholar]
  35. Alper O., Bergmann-Leitner E.S., Bennett T.A., Hacker N.F., Stromberg K., Stetler-Stevenson W.G. Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J. Natl. Cancer Inst. 2001;93:1375–1384. doi: 10.1093/jnci/93.18.1375. [PubMed] [CrossRef] [Google Scholar]
  36. Zeineldin R., Muller C.Y., Stack M.S., Hudson L.G. Targeting the EGF receptor for ovarian cancer therapy. J. Oncol. 2010;2010:414676. doi: 10.1155/2010/414676. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  37. Alper O., De Santis M.L., Stromberg K., Hacker N.F., Cho-Chung Y.S., Salomon D.S. Anti-sense suppression of epidermal growth factor receptor expression alters cellular proliferation, cell-adhesion and tumorigenicity in ovarian cancer cells. Int. J. Cancer. 2000;88:566–574. doi: 10.1002/1097-0215(20001115)88:4<566::AID-IJC8>3.0.CO;2-D. [PubMed] [CrossRef] [Google Scholar]
  38. Posadas E.M., Liel M.S., Kwitkowski V., Minasian L., Godwin A.K., Hussain M.M., Espina V., Wood B.J., Steinberg S.M., Kohn E.C. A phase II and pharmacodynamic study of gefitinib in patients with refractory or recurrent epithelial ovarian cancer. Cancer. 2007;109:1323–1330. doi: 10.1002/cncr.22545. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  39. Psyrri A., Kassar M., Yu Z., Bamias A., Weinberger P.M., Markakis S., Kowalski D., Camp R.L., Rimm D.L., Dimopoulos M.A. Effect of epidermal growth factor receptor expression level on survival in patients with epithelial ovarian cancer. Clin. Cancer Res. 2005;11:8637–8643. doi: 10.1158/1078-0432.CCR-05-1436. [PubMed] [CrossRef] [Google Scholar]
  40. Dimou A., Agarwal S., Anagnostou V., Viray H., Christensen S., Gould Rothberg B., Zolota V., Syrigos K., Rimm D. Standardization of epidermal growth factor receptor (EGFR) measurement by quantitative immunofluorescence and impact on antibody-based mutation detection in non-small cell lung cancer. Am. J. Pathol. 2011;179:580–589. doi: 10.1016/j.ajpath.2011.04.031. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  41. Anagnostou V.K., Welsh A.W., Giltnane J.M., Siddiqui S., Liceaga C., Gustavson M., Syrigos K.N., Reiter J.L., Rimm D.L. Analytic variability in immunohistochemistry biomarker studies. Cancer Epidemiol Biomarkers Prev. 2010;19:982–991. doi: 10.1158/1055-9965.EPI-10-0097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  42. Del Carmen M.G., Rizvi I., Chang Y., Moor A.C., Oliva E., Sherwood M., Pogue B., Hasan T. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J. Natl. Cancer Inst. 2005;97:1516–1524. doi: 10.1093/jnci/dji314. [PubMed] [CrossRef] [Google Scholar]
  43. Armstrong D.K., Bundy B., Wenzel L., Huang H.Q., Baergen R., Lele S., Copeland L.J., Walker J.L., Burger R.A., Gynecologic Oncology G. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med. 2006;354:34–43. doi: 10.1056/NEJMoa052985. [PubMed] [CrossRef] [Google Scholar]
  44. Verwaal V.J., Van Ruth S., De Bree E., Van Sloothen G.W., Van Tinteren H., Boot H., Zoetmulder F.A. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J. Clin. Oncol. 2003;21:3737–3743. doi: 10.1200/JCO.2003.04.187. [PubMed] [CrossRef] [Google Scholar]
  45. Van Driel W.J., Koole S.N., Sikorska K., Schagen van Leeuwen J.H., Schreuder H.W.R., Hermans R.H.M., De Hingh I., Van der Velden J., Arts H.J., Massuger L., et al. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. N. Engl. J. Med. 2018;378:230–240. doi: 10.1056/NEJMoa1708618. [PubMed] [CrossRef] [Google Scholar]
  46. Verwaal V.J., Bruin S., Boot H., Van Slooten G., Van Tinteren H. 8-year follow-up of randomized trial: Cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann. Surg. Oncol. 2008;15:2426–2432. doi: 10.1245/s10434-008-9966-2. [PubMed] [CrossRef] [Google Scholar]
  47. DeLaney T.F., Sindelar W.F., Tochner Z., Smith P.D., Friauf W.S., Thomas G., Dachowski L., Cole J.W., Steinberg S.M., Glatstein E. Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Int. J. Radiat. Oncol. Biol. Phys. 1993;25:445–457. doi: 10.1016/0360-3016(93)90066-5. [PubMed] [CrossRef] [Google Scholar]
  48. Celli J.P., Spring B.Q., Rizvi I., Evans C.L., Samkoe K.S., Verma S., Pogue B.W., Hasan T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010;110:2795–2838. doi: 10.1021/cr900300p. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  49. Spring B.Q., Rizvi I., Xu N., Hasan T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem. Photobiol. Sci. 2015;14:1476–1491. doi: 10.1039/C4PP00495G. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  50. Liang B.J., Pigula M., Baglo Y., Najafali D., Hasan T., Huang H.C. Breaking the Selectivity-Uptake Trade-Off of Photoimmunoconjugates with Nanoliposomal Irinotecan for Synergistic Multi-Tier Cancer Targeting. J. Nanobiotechnol. 2020;18:1. doi: 10.1186/s12951-019-0560-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  51. Huang H.C., Rizvi I., Liu J., Anbil S., Kalra A., Lee H., Baglo Y., Paz N., Hayden D., Pereira S., et al. Photodynamic Priming Mitigates Chemotherapeutic Selection Pressures and Improves Drug Delivery. Cancer Res. 2018;78:558–571. doi: 10.1158/0008-5472.CAN-17-1700. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  52. Huang H.C., Mallidi S., Liu J., Chiang C.T., Mai Z., Goldschmidt R., Ebrahim-Zadeh N., Rizvi I., Hasan T. Photodynamic Therapy Synergizes with Irinotecan to Overcome Compensatory Mechanisms and Improve Treatment Outcomes in Pancreatic Cancer. Cancer Res. 2016;76:1066–1077. doi: 10.1158/0008-5472.CAN-15-0391. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  53. Cengel K.A., Glatstein E., Hahn S.M. Intraperitoneal photodynamic therapy. Cancer Treat. Res. 2007;134:493–514. [PubMed] [Google Scholar]
  54. Obaid G., Broekgaarden M., Bulin A.-L., Huang H.-C., Kuriakose J., Liu J., Hasan T. Photonanomedicine: A convergence of photodynamic therapy and nanotechnology. Nanoscale. 2016;8:12471–12503. doi: 10.1039/C5NR08691D. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  55. Ogata F., Nagaya T., Nakamura Y., Sato K., Okuyama S., Maruoka Y., Choyke P.L., Kobayashi H. Near-infrared photoimmunotherapy: A comparison of light dosing schedules. Oncotarget. 2017;8:35069–35075. doi: 10.18632/oncotarget.17047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  56. Mitsunaga M., Ogawa M., Kosaka N., Rosenblum L.T., Choyke P.L., Kobayashi H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011;17:1685–1691. doi: 10.1038/nm.2554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  57. Inglut C.T., Baglo Y., Liang B.J., Cheema Y., Stabile J., Woodworth G.F., Huang H.-C. Systematic Evaluation of Light-Activatable Biohybrids for Anti-Glioma Photodynamic Therapy. J. Clin. Med. 2019;8:1269. doi: 10.3390/jcm8091269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  58. Huang H.C., Pigula M., Fang Y., Hasan T. Immobilization of Photo-Immunoconjugates on Nanoparticles Leads to Enhanced Light-Activated Biological Effects. Small. 2018:e1800236. doi: 10.1002/smll.201800236. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  59. Spring B.Q., Abu-Yousif A.O., Palanisami A., Rizvi I., Zheng X., Mai Z., Anbil S., Sears R.B., Mensah L.B., Goldschmidt R., et al. Selective treatment and monitoring of disseminated cancer micrometastases in vivo using dual-function, activatable immunoconjugates. Proc. Natl. Acad. Sci. USA. 2014;111:E933–E942. doi: 10.1073/pnas.1319493111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  60. Abu-Yousif A.O., Moor A.C., Zheng X., Savellano M.D., Yu W., Selbo P.K., Hasan T. Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett. 2012;321:120–127. doi: 10.1016/j.canlet.2012.01.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  61. Rizvi I., Dinh T.A., Yu W., Chang Y., Sherwood M.E., Hasan T. Photoimmunotherapy and irradiance modulation reduce chemotherapy cycles and toxicity in a murine model for ovarian carcinomatosis: Perspective and results. Israel J. Chem. 2012;52:776–787. doi: 10.1002/ijch.201200016. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  62. Quirk B.J., Brandal G., Donlon S., Vera J.C., Mang T.S., Foy A.B., Lew S.M., Girotti A.W., Jogal S., LaViolette P.S., et al. Photodynamic therapy (PDT) for malignant brain tumors–where do we stand? Photodiagnosis Photodyn. Ther. 2015;12:530–544. doi: 10.1016/j.pdpdt.2015.04.009. [PubMed] [CrossRef] [Google Scholar]
  63. Eljamel M.S., Goodman C., Moseley H. ALA and Photofrin fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: A single centre Phase III randomised controlled trial. Lasers Med. Sci. 2008;23:361–367. doi: 10.1007/s10103-007-0494-2. [PubMed] [CrossRef] [Google Scholar]
  64. Varma A.K., Muller P.J. Cranial neuropathies after intracranial Photofrin-photodynamic therapy for malignant supratentorial gliomas-a report on 3 cases. Surg. Neurol. 2008;70:190–193. doi: 10.1016/j.surneu.2007.01.060. [PubMed] [CrossRef] [Google Scholar]
  65. Akimoto J. Photodynamic Therapy for Malignant Brain Tumors. Neurol. Medico-Chirurgica. 2016;56:151–157. doi: 10.2176/nmc.ra.2015-0296. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  66. Kercher E.M., Nath S., Rizvi I., Spring B.Q. Cancer Cell-targeted and Activatable Photoimmunotherapy Spares T Cells in a 3D Coculture Model. Photochem. Photobiol. 2019 doi: 10.1111/php.13153. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  67. Savellano M.D., Hasan T. Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem. Photobiol. 2003;77:431–439. doi: 10.1562/0031-8655(2003)077<0431:TCTOTE>2.0.CO;2. [PubMed] [CrossRef] [Google Scholar]
  68. Molpus K.L., Hamblin M.R., Rizvi I., Hasan T. Intraperitoneal photoimmunotherapy of ovarian carcinoma xenografts in nude mice using charged photoimmunoconjugates. Gynecol. Oncol. 2000;76:397–404. doi: 10.1006/gyno.1999.5705. [PubMed] [CrossRef] [Google Scholar]
  69. Savellano M.D., Hasan T. Photochemical targeting of epidermal growth factor receptor: A mechanistic study. Clin. Cancer Res. 2005;11:1658–1668. doi: 10.1158/1078-0432.CCR-04-1902. [PubMed] [CrossRef] [Google Scholar]
  70. Nath S., Saad M.A., Pigula M., Swain J.W.R., Hasan T. Photoimmunotherapy of Ovarian Cancer: A Unique Niche in the Management of Advanced Disease. Cancers. 2019;11:1887. doi: 10.3390/cancers11121887. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  71. Calibasi Kocal G., Guven S., Foygel K., Goldman A., Chen P., Sengupta S., Paulmurugan R., Baskin Y., Demirci U. Dynamic Microenvironment Induces Phenotypic Plasticity of Esophageal Cancer Cells Under Flow. Sci. Rep. 2016;6:38221. doi: 10.1038/srep38221. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  72. Tasoglu S., Gurkan U.A., Wang S., Demirci U. Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem. Soc. Rev. 2013;42:5788–5808. doi: 10.1039/c3cs60042d. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  73. Moon S., Gurkan U.A., Blander J., Fawzi W.W., Aboud S., Mugusi F., Kuritzkes D.R., Demirci U. Enumeration of CD4+ T-cells using a portable microchip count platform in Tanzanian HIV-infected patients. PLoS ONE. 2011;6:e21409. doi: 10.1371/journal.pone.0021409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  74. White F.M. Fluid Mechanics. McGraw-Hill; Boston, MA, USA: 2011. [Google Scholar]
  75. Luo Q., Kuang D., Zhang B., Song G. Cell stiffness determined by atomic force microscopy and its correlation with cell motility. Biochim Biophys Acta. 2016;1860:1953–1960. doi: 10.1016/j.bbagen.2016.06.010. [PubMed] [CrossRef] [Google Scholar]
  76. Sarntinoranont M., Rooney F., Ferrari M. Interstitial Stress and Fluid Pressure Within a Growing Tumor. Ann. Biomed. Eng. 2003;31:327–335. doi: 10.1114/1.1554923. [PubMed] [CrossRef] [Google Scholar]
  77. Baxter L.T., Jain R.K. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc. Res. 1989;37:77–104. doi: 10.1016/0026-2862(89)90074-5. [PubMed] [CrossRef] [Google Scholar]
  78. Malik R., Khan A.P., Asangani I.A., Cieślik M., Prensner J.R., Wang X., Iyer M.K., Jiang X., Borkin D., Escara-Wilke J., et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 2015;21:344. doi: 10.1038/nm.3830. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  79. Nath S., Christian L., Tan S.Y., Ki S., Ehrlich L.I., Poenie M. Dynein Separately Partners with NDE1 and Dynactin To Orchestrate T Cell Focused Secretion. J. Immunol. 2016;197:2090–2101. doi: 10.4049/jimmunol.1600180. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  80. Celli J.P., Rizvi I., Evans C.L., Abu-Yousif A.O., Hasan T. Quantitative imaging reveals heterogeneous growth dynamics and treatment-dependent residual tumor distributions in a three-dimensional ovarian cancer model. J. Biomed. Opt. 2010;15:051603. doi: 10.1117/1.3483903. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  81. Rizvi I., Celli J.P., Evans C.L., Abu-Yousif A.O., Muzikansky A., Pogue B.W., Finkelstein D., Hasan T. Synergistic Enhancement of Carboplatin Efficacy with Photodynamic Therapy in a Three-Dimensional Model for Micrometastatic Ovarian Cancer. Cancer Res. 2010;70:9319–9328. doi: 10.1158/0008-5472.CAN-10-1783. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  82. Glidden M.D., Celli J.P., Massodi I., Rizvi I., Pogue B.W., Hasan T. Image-Based Quantification of Benzoporphyrin Derivative Uptake, Localization, and Photobleaching in 3D Tumor Models, for Optimization of PDT Parameters. Theranostics. 2012;2:827–839. doi: 10.7150/thno.4334. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  83. Celli J.P., Rizvi I., Blanden A.R., Massodi I., Glidden M.D., Pogue B.W., Hasan T. An imaging-based platform for high-content, quantitative evaluation of therapeutic response in 3D tumour models. Sci. Rep. 2014;4:3751. doi: 10.1038/srep03751. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  84. Bulin A.L., Broekgaarden M., Hasan T. Comprehensive high-throughput image analysis for therapeutic efficacy of architecturally complex heterotypic organoids. Sci. Rep. 2017;7:16645. doi: 10.1038/s41598-017-16622-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  85. Rahmanzadeh R., Rai P., Celli J.P., Rizvi I., Baron-Luhr B., Gerdes J., Hasan T. Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer. Cancer Res. 2010;70:9234–9242. doi: 10.1158/0008-5472.CAN-10-1190. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  86. Anbil S., Rizvi I., Celli J.P., Alagic N., Pogue B.W., Hasan T. Impact of treatment response metrics on photodynamic therapy planning and outcomes in a three-dimensional model of ovarian cancer. J. Biomed. Opt. 2013;18:098004. doi: 10.1117/1.JBO.18.9.098004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  87. Di Pasqua A.J., Goodisman J., Dabrowiak J.C. Understanding how the platinum anticancer drug carboplatin works: From the bottle to the cell. Inorg. Chim. Acta. 2012;389:29–35. doi: 10.1016/j.ica.2012.01.028. [CrossRef] [Google Scholar]
  88. Rabik C.A., Dolan M.E. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 2007;33:9–23. doi: 10.1016/j.ctrv.2006.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  89. Ozols R.F. Carboplatin and paclitaxel in ovarian cancer. Semin. Oncol. 1995;22:78–83. [PubMed] [Google Scholar]
  90. Neijt J.P., Lund B. Paclitaxel with carboplatin for the treatment of ovarian cancer. Semin. Oncol. 1996;23:2–4. [PubMed] [Google Scholar]
  91. Subauste C.M., Pertz O., Adamson E.D., Turner C.E., Junger S., Hahn K.M. Vinculin modulation of paxillin–FAK interactions regulates ERK to control survival and motility. J. Cell Biol. 2004;165:371–381. doi: 10.1083/jcb.200308011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  92. Eke I., Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin. Cancer Biol. 2015;31:65–75. [PubMed] [Google Scholar]
  93. McCubrey J.A., Steelman L.S., Chappell W.H., Abrams S.L., Wong E.W., Chang F., Lehmann B., Terrian D.M., Milella M., Tafuri A., et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta. 2007;1773:1263–1284. doi: 10.1016/j.bbamcr.2006.10.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  94. Duska L.R., Hamblin M.R., Miller J.L., Hasan T. Combination photoimmunotherapy and cisplatin: Effects on human ovarian cancer ex vivo. J. Natl. Cancer Inst. 1999;91:1557–1563. doi: 10.1093/jnci/91.18.1557. [PubMed] [CrossRef] [Google Scholar]
  95. Spring B., Mai Z., Rai P., Chang S., Hasan T. Theranostic nanocells for simultaneous imaging and photodynamic therapy of pancreatic cancer. Proc. SPIE. 2010;7551:755104. [Google Scholar]
  96. Kessel D., Oleinick N.L. Photodynamic therapy and cell death pathways. Methods Mol. Biol. 2010;635:35–46. doi: 10.1007/978-1-60761-697-9_3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  97. Van Dongen G.A., Visser G.W., Vrouenraets M.B. Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv. Drug Deliv. Rev. 2004;56:31–52. doi: 10.1016/j.addr.2003.09.003. [PubMed] [CrossRef] [Google Scholar]
  98. Ayhan A., Gultekin M., Taskiran C., Dursun P., Firat P., Bozdag G., Celik N.Y., Yuce K. Ascites and epithelial ovarian cancers: A reappraisal with respect to different aspects. Int. J. Gynecol. Cancer. 2007;17:68–75. doi: 10.1111/j.1525-1438.2006.00777.x. [PubMed] [CrossRef] [Google Scholar]
  99. Shen-Gunther J., Mannel R.S. Ascites as a predictor of ovarian malignancy. Gynecol. Oncol. 2002;87:77–83. doi: 10.1006/gyno.2002.6800. [PubMed] [CrossRef] [Google Scholar]
  100. Pourgholami M.H., Ataie-Kachoie P., Badar S., Morris D.L. Minocycline inhibits malignant ascites of ovarian cancer through targeting multiple signaling pathways. Gynecol. Oncol. 2013;129:113–119. doi: 10.1016/j.ygyno.2012.12.031. [PubMed] [CrossRef] [Google Scholar]
  101. Shender V., Arapidi G., Butenko I., Anikanov N., Ivanova O., Govorun V. Peptidome profiling dataset of ovarian cancer and non-cancer proximal fluids: Ascites and blood sera. Data Brief. 2019;22:557–562. doi: 10.1016/j.dib.2018.12.056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  102. Parsons S.L., Watson S.A., Steele R.J.C. Malignant ascites. Br. J. Surg. 1996;83:6–14. doi: 10.1002/bjs.1800830104. [PubMed] [CrossRef] [Google Scholar]
  103. Becker G., Galandi D., Blum H.E. Malignant ascites: Systematic review and guideline for treatment. Eur. J. Cancer. 2006;42:589–597. doi: 10.1016/j.ejca.2005.11.018. [PubMed] [CrossRef] [Google Scholar]
  104. Huang H., Li Y.J., Lan C.Y., Huang Q.D., Feng Y.L., Huang Y.W., Liu J.H. Clinical significance of ascites in epithelial ovarian cancer. Neoplasma. 2013;60:546–552. doi: 10.4149/neo_2013_071. [PubMed] [CrossRef] [Google Scholar]
  105. Blagden S.P. Harnessing Pandemonium: The Clinical Implications of Tumor Heterogeneity in Ovarian Cancer. Front. Oncol. 2015;5:149. doi: 10.3389/fonc.2015.00149. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  106. Ahmed N., Latifi A., Riley C.B., Findlay J.K., Quinn M.A. Neuronal transcription factor Brn-3a(l) is over expressed in high-grade ovarian carcinomas and tumor cells from ascites of patients with advanced-stage ovarian cancer. J. Ovarian Res. 2010;3:17. doi: 10.1186/1757-2215-3-17. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  107. Mahmood N., Mihalcioiu C., Rabbani S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018;8:24. doi: 10.3389/fonc.2018.00024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  108. Jeffrey B., Udaykumar H.S., Schulze K.S. Flow fields generated by peristaltic reflex in isolated guinea pig ileum: Impact of contraction depth and shoulders. Am. J. Physiol. Gastrointest. Liver Physiol. 2003;285:G907–G918. doi: 10.1152/ajpgi.00062.2003. [PubMed] [CrossRef] [Google Scholar]
  109. Nagy J.A., Herzberg K.T., Dvorak J.M., Dvorak H.F. Pathogenesis of malignant ascites formation: Initiating events that lead to fluid accumulation. Cancer Res. 1993;53:2631–2643. [PubMed] [Google Scholar]
  110. Ahmed N., Abubaker K., Findlay J., Quinn M. Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Curr. Cancer Drug Targets. 2010;10:268–278. doi: 10.2174/156800910791190175. [PubMed] [CrossRef] [Google Scholar]
  111. Latifi A., Abubaker K., Castrechini N., Ward A.C., Liongue C., Dobill F., Kumar J., Thompson E.W., Quinn M.A., Findlay J.K., et al. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J. Cell Biochem. 2011;112:2850–2864. doi: 10.1002/jcb.23199. [PubMed] [CrossRef] [Google Scholar]
  112. Chan D.W., Hui W.W., Cai P.C., Liu M.X., Yung M.M., Mak C.S., Leung T.H., Chan K.K., Ngan H.Y. Targeting GRB7/ERK/FOXM1 signaling pathway impairs aggressiveness of ovarian cancer cells. PLoS ONE. 2012;7:e52578. doi: 10.1371/journal.pone.0052578. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  113. Mebratu Y., Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle. 2009;8:1168–1175. doi: 10.4161/cc.8.8.8147. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  114. Zebisch A., Czernilofsky A.P., Keri G., Smigelskaite J., Sill H., Troppmair J. Signaling through RAS-RAF-MEK-ERK: From basics to bedside. Curr. Med. Chem. 2007;14:601–623. doi: 10.2174/092986707780059670. [PubMed] [CrossRef] [Google Scholar]
  115. Jo H., Sipos K., Go Y.M., Law R., Rong J., McDonald J.M. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. Gi2- and Gbeta/gamma-dependent signaling pathways. J. Biol. Chem. 1997;272:1395–1401. doi: 10.1074/jbc.272.2.1395. [PubMed] [CrossRef] [Google Scholar]
  116. Surapisitchat J., Hoefen R.J., Pi X., Yoshizumi M., Yan C., Berk B.C. Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members. Proc. Natl. Acad. Sci. USA. 2001;98:6476–6481. doi: 10.1073/pnas.101134098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  117. Kim C.H., Jeung E.B., Yoo Y.M. Combined Fluid Shear Stress and Melatonin Enhances the ERK/Akt/mTOR Signal in Cilia-Less MC3T3-E1 Preosteoblast Cells. Int. J. Mol. Sci. 2018;19:2929. doi: 10.3390/ijms19102929. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  118. Persons D.L., Yazlovitskaya E.M., Cui W., Pelling J.C. Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: Inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin. Cancer Res. 1999;5:1007–1014. [PubMed] [Google Scholar]
  119. Hayakawa J., Ohmichi M., Kurachi H., Ikegami H., Kimura A., Matsuoka T., Jikihara H., Mercola D., Murata Y. Inhibition of extracellular signal-regulated protein kinase or c-Jun N-terminal protein kinase cascade, differentially activated by cisplatin, sensitizes human ovarian cancer cell line. J. Biol. Chem. 1999;274:31648–31654. doi: 10.1074/jbc.274.44.31648. [PubMed] [CrossRef] [Google Scholar]
  120. Yeh P.Y., Chuang S.E., Yeh K.H., Song Y.C., Ea C.K., Cheng A.L. Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NF kappa B activation. Biochem. Pharmacol. 2002;63:1423–1430. doi: 10.1016/S0006-2952(02)00908-5. [PubMed] [CrossRef] [Google Scholar]
  121. Wang X., Martindale J.L., Holbrook N.J. Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 2000;275:39435–39443. doi: 10.1074/jbc.M004583200. [PubMed] [CrossRef] [Google Scholar]
  122. Qin X., Liu C., Zhou Y., Wang G. Cisplatin induces programmed death-1-ligand 1(PD-L1) over-expression in hepatoma H22 cells via Erk /MAPK signaling pathway. Cell Mol. Biol. 2010;56:OL1366-72. doi: 10.1170/156. [PubMed] [CrossRef] [Google Scholar]
  123. Basu A., Tu H. Activation of ERK during DNA damage-induced apoptosis involves protein kinase Cdelta. Biochem. Biophys. Res. Commun. 2005;334:1068–1073. doi: 10.1016/j.bbrc.2005.06.199. [PubMed] [CrossRef] [Google Scholar]
  124. Nowak G. Protein kinase C-alpha and ERK1/2 mediate mitochondrial dysfunction, decreases in active Na+ transport, and cisplatin-induced apoptosis in renal cells. J. Biol. Chem. 2002;277:43377–43388. doi: 10.1074/jbc.M206373200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  125. Chaudhury A., Tan B.J., Das S., Chiu G.N. Increased ERK activation and cellular drug accumulation in the enhanced cytotoxicity of folate receptor-targeted liposomal carboplatin. Int. J. Oncol. 2012;40:703–710. doi: 10.3892/ijo.2011.1262. [PubMed] [CrossRef] [Google Scholar]
  126. Lok G.T., Chan D.W., Liu V.W., Hui W.W., Leung T.H., Yao K.M., Ngan H.Y. Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells. PLoS ONE. 2011;6:e23790. doi: 10.1371/journal.pone.0023790. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  127. Lafky J.M., Wilken J.A., Baron A.T., Maihle N.J. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim. Biophys. Acta. 2008;1785:232–265. doi: 10.1016/j.bbcan.2008.01.001. [PubMed] [CrossRef] [Google Scholar]
  128. Secord A.A., Blessing J.A., Armstrong D.K., Rodgers W.H., Miner Z., Barnes M.N., Lewandowski G., Mannel R.S., Gynecologic Oncology G. Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: A Gynecologic Oncology Group study. Gynecol. Oncol. 2008;108:493–499. doi: 10.1016/j.ygyno.2007.11.029. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  129. Bae G.-Y., Choi S.-J., Lee J.-S., Jo J., Lee J., Kim J., Cha H.-J. Loss of E-cadherin activates EGFR-MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer. Oncotarget. 2013;4:2512. doi: 10.18632/oncotarget.1463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  130. Pece S., Gutkind J.S. Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J. Biol. Chem. 2000;275:41227–41233. doi: 10.1074/jbc.M006578200. [PubMed] [CrossRef] [Google Scholar]
  131. Lifschitz-Mercer B., Czernobilsky B., Feldberg E., Geiger B. Expression of the adherens junction protein vinculin in human basal and squamous cell tumors: Relationship to invasiveness and metastatic potential. Hum. Pathol. 1997;28:1230–1236. doi: 10.1016/S0046-8177(97)90195-7. [PubMed] [CrossRef] [Google Scholar]
  132. Raz A., Geiger B. Altered organization of cell-substrate contacts and membrane-associated cytoskeleton in tumor cell variants exhibiting different metastatic capabilities. Cancer Res. 1982;42:5183–5190. [PubMed] [Google Scholar]
  133. Fukada T., Sakajiri H., Kuroda M., Kioka N., Sugimoto K. Fluid shear stress applied by orbital shaking induces MG-63 osteosarcoma cells to activate ERK in two phases through distinct signaling pathways. Biochem. Biophys. Rep. 2017;9:257–265. doi: 10.1016/j.bbrep.2017.01.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  134. Wu D.W., Wu T.C., Wu J.Y., Cheng Y.W., Chen Y.C., Lee M.C., Chen C.Y., Lee H. Phosphorylation of paxillin confers cisplatin resistance in non-small cell lung cancer via activating ERK-mediated Bcl-2 expression. Oncogene. 2014;33:4385–4395. doi: 10.1038/onc.2013.389. [PubMed] [CrossRef] [Google Scholar]
  135. Kessel D. Apoptosis and associated phenomena as a determinants of the efficacy of photodynamic therapy. Photochem. Photobiol. Sci. 2015;14:1397–1402. doi: 10.1039/C4PP00413B. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  136. Agostinis P., Berg K., Cengel K.A., Foster T.H., Girotti A.W., Gollnick S.O., Hahn S.M., Hamblin M.R., Juzeniene A., Kessel D., et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011;61:250–281. doi: 10.3322/caac.20114. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  137. Sorrin A.J., Ruhi M.K., Ferlic N.A., Karimnia V., Polacheck W.J., Celli J.P., Huang H.C., Rizvi I. Photodynamic Therapy and the Biophysics of the Tumor Microenvironment. Photochem. Photobiol. 2020 doi: 10.1111/php.13209. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  138. Niu C.J., Fisher C., Scheffler K., Wan R., Maleki H., Liu H., Sun Y., C A.S., Birngruber R., Lilge L. Polyacrylamide gel substrates that simulate the mechanical stiffness of normal and malignant neuronal tissues increase protoporphyin IX synthesis in glioma cells. J. Biomed. Opt. 2015;20:098002. doi: 10.1117/1.JBO.20.9.098002. [PubMed] [CrossRef] [Google Scholar]
  139. Perentes J.Y., Wang Y., Wang X., Abdelnour E., Gonzalez M., Decosterd L., Wagnieres G., Van den Bergh H., Peters S., Ris H.B., et al. Low-Dose Vascular Photodynamic Therapy Decreases Tumor Interstitial Fluid Pressure, which Promotes Liposomal Doxorubicin Distribution in a Murine Sarcoma Metastasis Model. Transl. Oncol. 2014;7 doi: 10.1016/j.tranon.2014.04.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  140. Leunig M., Goetz A.E., Gamarra F., Zetterer G., Messmer K., Jain R.K. Photodynamic therapy-induced alterations in interstitial fluid pressure, volume and water content of an amelanotic melanoma in the hamster. Br. J. Cancer. 1994;69:101–103. doi: 10.1038/bjc.1994.15. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  141. Foster T.H., Murant R.S., Bryant R.G., Knox R.S., Gibson S.L., Hilf R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat Res. 1991;126:296–303. doi: 10.2307/3577919. [PubMed] [CrossRef] [Google Scholar]
  142. Foster T.H., Hartley D.F., Nichols M.G., Hilf R. Fluence rate effects in photodynamic therapy of multicell tumor spheroids. Cancer Res. 1993;53:1249–1254. [PubMed] [Google Scholar]
  143. Nichols M.G., Foster T.H. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids. Phys. Med. Biol. 1994;39:2161–2181. doi: 10.1088/0031-9155/39/12/003. [PubMed] [CrossRef] [Google Scholar]
  144. Cavin S., Wang X., Zellweger M., Gonzalez M., Bensimon M., Wagnieres G., Krueger T., Ris H.B., Gronchi F., Perentes J.Y. Interstitial fluid pressure: A novel biomarker to monitor photo-induced drug uptake in tumor and normal tissues. Lasers Surg. Med. 2017;49:773–780. doi: 10.1002/lsm.22687. [PubMed] [CrossRef] [Google Scholar]
  145. Garcia Calavia P., Chambrier I., Cook M.J., Haines A.H., Field R.A., Russell D.A. Targeted photodynamic therapy of breast cancer cells using lactose-phthalocyanine functionalized gold nanoparticles. J. Colloid Interface Sci. 2018;512:249–259. doi: 10.1016/j.jcis.2017.10.030. [PubMed] [CrossRef] [Google Scholar]
  146. Kato T., Jin C.S., Ujiie H., Lee D., Fujino K., Wada H., Hu H.P., Weersink R.A., Chen J., Kaji M., et al. Nanoparticle targeted folate receptor 1-enhanced photodynamic therapy for lung cancer. Lung Cancer. 2017;113:59–68. doi: 10.1016/j.lungcan.2017.09.002. [PubMed] [CrossRef] [Google Scholar]
  147. Sebak A.A., Gomaa I.E.O., ElMeshad A.N., AbdelKader M.H. Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma. Photodiagnosis Photodyn. Ther. 2018;23:181–189. doi: 10.1016/j.pdpdt.2018.05.017. [PubMed] [CrossRef] [Google Scholar]
  148. Fernandes S.R.G., Fernandes R., Sarmento B., Pereira P.M.R., Tome J.P.C. Photoimmunoconjugates: Novel synthetic strategies to target and treat cancer by photodynamic therapy. Org. Biomol. Chem. 2019;17:2579–2593. doi: 10.1039/C8OB02902D. [PubMed] [CrossRef] [Google Scholar]
  149. Hamblin M.R., Miller J.L., Hasan T. Effect of charge on the interaction of site-specific photoimmunoconjugates with human ovarian cancer cells. Cancer Res. 1996;56:5205–5210. [PubMed] [Google Scholar]
  150. Flont M., Jastrzebska E., Brzozka Z. Synergistic effect of the combination therapy on ovarian cancer cells under microfluidic conditions. Anal. Chim. Acta. 2020;1100:138–148. doi: 10.1016/j.aca.2019.11.047. [PubMed] [CrossRef] [Google Scholar]
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

Cristina González Fernández,1 Jenifer Gómez Pastora,2 Arantza Basauri,1 Marcos Fallanza,1 Eugenio Bringas,1 Jeffrey J. Chalmers,2 and Inmaculada Ortiz1,*
Author information Article notes Copyright and License information Disclaimer

생체 유체에서 자성 입자의 연속 흐름 분리 : 마이크로 장치 형상이 분리 성능을 어떻게 결정합니까?

Abstract

The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.

생체 유체에서 여러 화학 물질과 생체 분자의 검출 또는 분리를 위한 기능화된 자성 입자의 사용은 계속해서 상당한 관심을 받고 있습니다. 표적 물질과 함께 배양 한 후 비드는 자기적으로 회수되어 분석 또는 진단 테스트를 수행 할 수 있습니다.

연속 흐름 마이크로 장치에서 영구 자석을 사용한 입자 회수는 마이크로 유체의 여러 장점으로 인해 지난 10 년 동안 큰 관심을 모았습니다. 따라서 완전한 입자 포획을 달성하기 위한 자기 및 유체 조건을 결정하기 위해 많은 노력을 기울였습니다.

그러나 높은 입자 회수율과 유속을 동시에 제공하는 시스템을 설계하는데 있어 핵심이기는 하지만 시스템 성능에 대한 채널 형상의 영향에 대해서는 덜 주의를 기울였습니다.

여기에서 우리는 자기 비드가 혈액에서 분리되어 외부 자기장을 적용하여 버퍼 스트림으로 수집되는 Y-Y 모양의 마이크로 채널의 최적화를 다룹니다. 비드 회수 및 시스템 처리량에 대한 여러 기하학적 특징 (즉, 단면 형상, 두께, 길이 및 부피)의 영향을 연구합니다.

이를 위해 분리 중에 비드에 작용하는 지배적인 힘을 고려하는 실험적으로 검증된 CFD (Computational Fluid Dynamics) 수치 모델을 사용합니다.

우리의 결과는 직사각형의 긴 장치가 높은 입자 회수율과 높은 처리량을 제공하기 때문에 최고의 성능을 보여줍니다. 따라서 이 방법론은 자기 구동 정제, 농축 또는 분리를 위한 랩 온어 칩 장치의 합리적인 설계에 적용될 수 있습니다.

Keywords: particle magnetophoresis, CFD, cross section, chip fabrication

Figure 1 (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
Figure 1 (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.
Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
Figure 7. Dependence of bead capture on the (a) functional channel volume, and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.
Figure 7. Dependence of bead capture on the (a) functional channel volume, and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.

References

  1. Gómez-Pastora J., Xue X., Karampelas I.H., Bringas E., Furlani E.P., Ortiz I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 2017;172:16–31. doi: 10.1016/j.seppur.2016.07.050. [CrossRef] [Google Scholar]
  2. Wise N., Grob T., Morten K., Thompson I., Sheard S. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J. Magn. Magn. Mater. 2015;384:328–334. doi: 10.1016/j.jmmm.2015.02.031. [CrossRef] [Google Scholar]
  3. Khashan S.A., Elnajjar E., Haik Y. CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 2011;323:2960–2967. doi: 10.1016/j.jmmm.2011.06.001. [CrossRef] [Google Scholar]
  4. Khashan S.A., Furlani E.P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 2014;125:311–318. doi: 10.1016/j.seppur.2014.02.007. [CrossRef] [Google Scholar]
  5. Furlani E.P. Magnetic biotransport: Analysis and applications. Materials. 2010;3:2412–2446. doi: 10.3390/ma3042412. [CrossRef] [Google Scholar]
  6. Gómez-Pastora J., Bringas E., Ortiz I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 2016;47:241–246. [Google Scholar]
  7. Gómez-Pastora J., Bringas E., Lázaro-Díez M., Ramos-Vivas J., Ortiz I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs) In: Stroeve P., Mahmoudi M., editors. Drug Delivery Systems. World Scientific; Hackensack, NJ, USA: 2017. pp. 207–244. [Google Scholar]
  8. Ruffert C. Magnetic bead-magic bullet. Micromachines. 2016;7:21. doi: 10.3390/mi7020021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  9. Yáñez-Sedeño P., Campuzano S., Pingarrón J.M. Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors. 2016;16:1585. doi: 10.3390/s16101585. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  10. Schrittwieser S., Pelaz B., Parak W.J., Lentijo-Mozo S., Soulantica K., Dieckhoff J., Ludwig F., Guenther A., Tschöpe A., Schotter J. Homogeneous biosensing based on magnetic particle labels. Sensors. 2016;16:828. doi: 10.3390/s16060828. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  11. He J., Huang M., Wang D., Zhang Z., Li G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014;101:84–101. doi: 10.1016/j.jpba.2014.04.017. [PubMed] [CrossRef] [Google Scholar]
  12. Ha Y., Ko S., Kim I., Huang Y., Mohanty K., Huh C., Maynard J.A. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater. 2018;1:512–521. doi: 10.1021/acsanm.7b00025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  13. Gómez-Pastora J., González-Fernández C., Fallanza M., Bringas E., Ortiz I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 2018;344:487–497. doi: 10.1016/j.cej.2018.03.110. [CrossRef] [Google Scholar]
  14. Gale B.K., Jafek A.R., Lambert C.J., Goenner B.L., Moghimifam H., Nze U.C., Kamarapu S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions. 2018;3:60. doi: 10.3390/inventions3030060. [CrossRef] [Google Scholar]
  15. Niemeyer C.M., Mirkin C.A., editors. Nanobiotechnology; Concepts, Applications and Perspectives. Wiley-VCH; Weinheim, Germany: 2004. [Google Scholar]
  16. Khashan S.A., Dagher S., Alazzam A., Mathew B., Hilal-Alnaqbi A. Microdevice for continuous flow magnetic separation for bioengineering applications. J. Micromech. Microeng. 2017;27:055016. doi: 10.1088/1361-6439/aa666d. [CrossRef] [Google Scholar]
  17. Basauri A., Gomez-Pastora J., Fallanza M., Bringas E., Ortiz I. Predictive model for the design of reactive micro-separations. Sep. Purif. Technol. 2019;209:900–907. doi: 10.1016/j.seppur.2018.09.028. [CrossRef] [Google Scholar]
  18. Abdollahi P., Karimi-Sabet J., Moosavian M.A., Amini Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol. 2020;231:115875. doi: 10.1016/j.seppur.2019.115875. [CrossRef] [Google Scholar]
  19. Khashan S.A., Alazzam A., Furlani E. A novel design for a microfluidic magnetophoresis system: Computational study; Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization (FLUCOME2013); Nara, Japan. 18–23 November 2013. [Google Scholar]
  20. Pamme N. Magnetism and microfluidics. Lab Chip. 2006;6:24–38. doi: 10.1039/B513005K. [PubMed] [CrossRef] [Google Scholar]
  21. Gómez-Pastora J., Amiri Roodan V., Karampelas I.H., Alorabi A.Q., Tarn M.D., Iles A., Bringas E., Paunov V.N., Pamme N., Furlani E.P., et al. Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. J. Phys. Chem. C. 2019;123:10065–10080. doi: 10.1021/acs.jpcc.9b01393. [CrossRef] [Google Scholar]
  22. Gómez-Pastora J., Karampelas I.H., Bringas E., Furlani E.P., Ortiz I. Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions. Sci. Rep. 2019;9:7265. doi: 10.1038/s41598-019-43827-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  23. Tarn M.D., Pamme N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In: Taly V., Viovy J.L., Descroix S., editors. Microchip Diagnostics Methods and Protocols. Humana Press; New York, NY, USA: 2017. pp. 69–83. [Google Scholar]
  24. Phurimsak C., Tarn M.D., Peyman S.A., Greenman J., Pamme N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem. 2014;86:10552–10559. doi: 10.1021/ac5023265. [PubMed] [CrossRef] [Google Scholar]
  25. Wu X., Wu H., Hu Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid. 2011;11:11–24. doi: 10.1007/s10404-011-0768-7. [CrossRef] [Google Scholar]
  26. Vojtíšek M., Tarn M.D., Hirota N., Pamme N. Microfluidic devices in superconducting magnets: On-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 2012;13:625–635. doi: 10.1007/s10404-012-0979-6. [CrossRef] [Google Scholar]
  27. Gómez-Pastora J., González-Fernández C., Real E., Iles A., Bringas E., Furlani E.P., Ortiz I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip. 2018;18:1593–1606. doi: 10.1039/C8LC00396C. [PubMed] [CrossRef] [Google Scholar]
  28. Forbes T.P., Forry S.P. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip. 2012;12:1471–1479. doi: 10.1039/c2lc40113d. [PubMed] [CrossRef] [Google Scholar]
  29. Nandy K., Chaudhuri S., Ganguly R., Puri I.K. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J. Magn. Magn. Mater. 2008;320:1398–1405. doi: 10.1016/j.jmmm.2007.11.024. [CrossRef] [Google Scholar]
  30. Plouffe B.D., Lewis L.H., Murthy S.K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics. 2011;5:013413. doi: 10.1063/1.3553239. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  31. Hale C., Darabi J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics. 2014;8:044118. doi: 10.1063/1.4893772. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  32. Becker H., Gärtner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 2000;21:12–26. doi: 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7. [PubMed] [CrossRef] [Google Scholar]
  33. Pekas N., Zhang Q., Nannini M., Juncker D. Wet-etching of structures with straight facets and adjustable taper into glass substrates. Lab Chip. 2010;10:494–498. doi: 10.1039/B912770D. [PubMed] [CrossRef] [Google Scholar]
  34. Wang T., Chen J., Zhou T., Song L. Fabricating microstructures on glass for microfluidic chips by glass molding process. Micromachines. 2018;9:269. doi: 10.3390/mi9060269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  35. Castaño-Álvarez M., Pozo Ayuso D.F., García Granda M., Fernández-Abedul M.T., Rodríguez García J., Costa-García A. Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem. 2008;130:436–448. doi: 10.1016/j.snb.2007.09.043. [CrossRef] [Google Scholar]
  36. Prakash S., Kumar S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015;229:1273–1288. doi: 10.1177/0954405414535581. [CrossRef] [Google Scholar]
  37. Leester-Schädel M., Lorenz T., Jürgens F., Ritcher C. Fabrication of Microfluidic Devices. In: Dietzel A., editor. Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells. Springer; Basel, Switzerland: 2016. pp. 23–57. [Google Scholar]
  38. Bartlett N.W., Wood R.J. Comparative analysis of fabrication methods for achieving rounded microchannels in PDMS. J. Micromech. Microeng. 2016;26:115013. doi: 10.1088/0960-1317/26/11/115013. [CrossRef] [Google Scholar]
  39. Ng P.F., Lee K.I., Yang M., Fei B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers. 2019;11:64. doi: 10.3390/polym11010064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  40. Furlani E.P., Sahoo Y., Ng K.C., Wortman J.C., Monk T.E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices. 2007;9:451–463. doi: 10.1007/s10544-007-9050-x. [PubMed] [CrossRef] [Google Scholar]
  41. Tarn M.D., Peyman S.A., Robert D., Iles A., Wilhelm C., Pamme N. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 2009;321:4115–4122. doi: 10.1016/j.jmmm.2009.08.016. [CrossRef] [Google Scholar]
  42. Furlani E.P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications. Academic Press; Waltham, MA, USA: 2001. [Google Scholar]
  43. White F.M. Viscous Fluid Flow. McGraw-Hill; New York, NY, USA: 1974. [Google Scholar]
  44. Mathew B., Alazzam A., El-Khasawneh B., Maalouf M., Destgeer G., Sung H.J. Model for tracing the path of microparticles in continuous flow microfluidic devices for 2D focusing via standing acoustic waves. Sep. Purif. Technol. 2015;153:99–107. doi: 10.1016/j.seppur.2015.08.026. [CrossRef] [Google Scholar]
  45. Furlani E.J., Furlani E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007;312:187–193. doi: 10.1016/j.jmmm.2006.09.026. [CrossRef] [Google Scholar]
  46. Furlani E.P., Ng K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E. 2006;73:061919. doi: 10.1103/PhysRevE.73.061919. [PubMed] [CrossRef] [Google Scholar]
  47. Eibl R., Eibl D., Pörtner R., Catapano G., Czermak P. Cell and Tissue Reaction Engineering. Springer; Berlin/Heidelberg, Germany: 2009. [Google Scholar]
  48. Pamme N., Eijkel J.C.T., Manz A. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater. 2006;307:237–244. doi: 10.1016/j.jmmm.2006.04.008. [CrossRef] [Google Scholar]
  49. Alorabi A.Q., Tarn M.D., Gómez-Pastora J., Bringas E., Ortiz I., Paunov V.N., Pamme N. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules. Lab Chip. 2017;17:3785–3795. doi: 10.1039/C7LC00918F. [PubMed] [CrossRef] [Google Scholar]
  50. Zhang H., Guo H., Chen Z., Zhang G., Li Z. Application of PECVD SiC in glass micromachining. J. Micromech. Microeng. 2007;17:775–780. doi: 10.1088/0960-1317/17/4/014. [CrossRef] [Google Scholar]
  51. Mourzina Y., Steffen A., Offenhäusser A. The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst. Technol. 2005;11:135–140. doi: 10.1007/s00542-004-0430-3. [CrossRef] [Google Scholar]
  52. Mata A., Fleischman A.J., Roy S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 2006;16:276–284. doi: 10.1088/0960-1317/16/2/012. [CrossRef] [Google Scholar]
  53. Su N. 8 2000 Negative Tone Photoresist Formulations 2002–2025. MicroChem Corporation; Newton, MA, USA: 2002. [Google Scholar]
  54. Su N. 8 2000 Negative Tone Photoresist Formulations 2035–2100. MicroChem Corporation; Newton, MA, USA: 2002. [Google Scholar]
  55. Fu C., Hung C., Huang H. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. J. Phys. Conf. Ser. 2006;34:330–335. doi: 10.1088/1742-6596/34/1/054. [CrossRef] [Google Scholar]
  56. Kazoe Y., Yamashiro I., Mawatari K., Kitamori T. High-pressure acceleration of nanoliter droplets in the gas phase in a microchannel. Micromachines. 2016;7:142. doi: 10.3390/mi7080142. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  57. Sharp K.V., Adrian R.J., Santiago J.G., Molho J.I. Liquid flows in microchannels. In: Gad-el-Hak M., editor. MEMS: Introduction and Fundamentals. CRC Press; Boca Raton, FL, USA: 2006. pp. 10-1–10-46. [Google Scholar]
  58. Oh K.W., Lee K., Ahn B., Furlani E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip. 2012;12:515–545. doi: 10.1039/C2LC20799K. [PubMed] [CrossRef] [Google Scholar]
  59. Bruus H. Theoretical Microfluidics. Oxford University Press; New York, NY, USA: 2008. [Google Scholar]
  60. Beebe D.J., Mensing G.A., Walker G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002;4:261–286. doi: 10.1146/annurev.bioeng.4.112601.125916. [PubMed] [CrossRef] [Google Scholar]
  61. Yalikun Y., Tanaka Y. Large-scale integration of all-glass valves on a microfluidic device. Micromachines. 2016;7:83. doi: 10.3390/mi7050083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  62. Van Heeren H., Verhoeven D., Atkins T., Tzannis A., Becker H., Beusink W., Chen P. [(accessed on 9 March 2020)];Design Guideline for Microfluidic Device and Component Interfaces (Part 2) Version 3. Available online: http://www.makefluidics.com/en/design-guideline?id=7.
  63. Scheuble N., Iles A., Wootton R.C.R., Windhab E.J., Fischer P., Elvira K.S. Microfluidic technique for the simultaneous quantification of emulsion instabilities and lipid digestion kinetics. Anal. Chem. 2017;89:9116–9123. doi: 10.1021/acs.analchem.7b01853. [PubMed] [CrossRef] [Google Scholar]
  64. Lynch E.C. Red blood cell damage by shear stress. Biophys. J. 1972;12:257–273. [PMC free article] [PubMed] [Google Scholar]
  65. Paul R., Apel J., Klaus S., Schügner F., Schwindke P., Reul H. Shear stress related blood damage in laminar Couette flow. Artif. Organs. 2003;27:517–529. doi: 10.1046/j.1525-1594.2003.07103.x. [PubMed] [CrossRef] [Google Scholar]
  66. Gómez-Pastora J., Karampelas I.H., Xue X., Bringas E., Furlani E.P., Ortiz I. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C. 2017;121:7466–7477. doi: 10.1021/acs.jpcc.6b12835. [CrossRef] [Google Scholar]
  67. Lim J., Yeap S.P., Leow C.H., Toh P.Y., Low S.C. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J. Colloid Interface Sci. 2014;421:170–177. doi: 10.1016/j.jcis.2014.01.044. [PubMed] [CrossRef] [Google Scholar]
  68. Culbertson C.T., Sibbitts J., Sellens K., Jia S. Fabrication of Glass Microfluidic Devices. In: Dutta D., editor. Microfluidic Electrophoresis: Methods and Protocols. Humana Press; New York, NY, USA: 2019. pp. 1–12. [Google Scholar]
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.

MODELING AND CHARACTERIZATION OF MICROFABRICATED EMITTERS: IN PURSUIT OF IMPROVED ESI-MS PERFORMANCE

미세 가공 방사체의 모델링 및 특성화 : 개선된 ESI-MS 성능 추구

by XINYUN WU

A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada December, 2011 Copyright © Xinyun Wu, 2011

Abstract

ESI (Electrospray ionization)는 특히 탁월한 감도, 견고성 및 단순성으로 대형 생체 분자를 분석하는 데있어 질량 분석 (MS)에 매우 귀중한 기술이었습니다. ESI 기술 개발에 많은 노력을 기울였습니다. 그 형태와 기하학적 구조가 전기 분무 성능과 추가 MS 감지에 중추적 인 것으로 입증 되었기 때문입니다.

막힘 및 낮은 처리량을 포함하여 전통적인 단일 홀 이미터의 본질적인 문제는 기술의 적용 가능성을 제한합니다. 이 문제를 해결하기 위해 현재 프로젝트는 향상된 ESI-MS 분석을위한 다중 전자 분무(MES) 방출기를 개발하는데 초점을 맞추고 있습니다.

이 논문에서는 스프레이 전류 측정을 위한 전기 분무와 오프라인 전기 분무 실험을 위한 전산 유체 역학 (CFD) 시뮬레이션의 공동 작업이 수행되었습니다. 전기 분무 성능에 대한 다양한 이미터 설계의 영향을 테스트하기 위해 수치 시뮬레이션이 사용되었으며 실험실 결과는 가이드 및 검증으로 사용되었습니다.

CFD 코드는 Taylor-Melcher 누설 유전체 모델(LDM)을 기반으로 하며 과도 전기 분무 공정이 성공적으로 시뮬레이션되었습니다.

이 방법은 750 μm 내경 (i.d.) 이미 터를 통해 먼저 검증되었으며 20 μm i.d.에 추가로 적용되었습니다. 모델. 전기 분무 공정의 여러 단계가 시각적으로 시연되었으며 다양한 적용 전기장 및 유속에서 분무 전류의 변화에 ​​대한 정량적 조사는 이전 시뮬레이션 및 측정과 잘 일치합니다.

단일 조리개 프로토 타입을 기반으로 2 홀 및 3 홀 이미터로 MES 시뮬레이션을 수행했습니다. 시뮬레이션 예측은 실험 결과와 유사하게 비교되었습니다. 이 작업의 증거는 CFD 시뮬레이션이 MES의 이미 터 설계를 테스트하는 효과적인 수치 도구로 사용될 수 있음을 입증했습니다.

이 작업에서 달성 된 마이크로 스케일 에미 터 전기 분무의 성공적인 시뮬레이션에 대한 벤치마킹 결과는 현재까지 발표 된 전기 분무에 대한 동적 시뮬레이션의 가장 작은 규모로 여겨집니다.

Co-Authorship

공동 저자: 이 논문에 대한 모든 연구는 Natalie M. Cann 박사와 Richard D. Oleschuk 박사의 지도하에 완료되었습니다. 다중 전자 분무에 관한 4 장에서 제시된 연구 작업의 일부는 Ramin Wright가 공동 저술했으며, 이 작업은 press에서 다음 논문에서 인용되었습니다.

ibson,G.T.T.; Wright, R.D.; Oleschuk, R.D. Multiple electrosprays generated from a single poly carbonate microstructured fibre. Journal of Mass Spectrometry, 2011, in press.

Chapter 1 Introduction

소프트 이온화 방법으로 ESI (electrospray ionization)의 도입은 질량 분석법 (MS)의 적용 가능성에 혁명을 일으켰습니다. 이 기술의 부드러운 특징은 상대적으로 높은 전하를 가진 이온을 생성하는 고유한 이점으로 인해 액상에서 직접 펩티드 및 단백질과 같은 큰 생체 분자를 분석 할 수 있게했습니다 [1].

지난 10 년 동안 ESI-MS는 놀라운 성장을 보였으며 현재는 단백질 체학, 대사 체학, 글리코 믹스, 합성 화학자를 위한 식별 도구 등 다양한 생화학 분야에서 광범위하게 채택되고 있습니다 [2-3].

ESI-MS는 겔 전기 영동과 같은 생물학적 분자에 대한 기존의 질량 측정 기술보다 훨씬 빠르고 민감하며 정확합니다. 또한, 액체상에서 직접 분석 할 수 있는 큰 비 휘발성 분자의 능력은 고성능 액체 크로마토 그래피 (HPLC) 및 모세관 전기 영동 (CE)과 같은 업스트림 분리 기술과의 결합을 가능하게합니다 [4].

일반적인 ESI 공정은 일반적으로 액적 형성, 액적 수축 및 기상 이온의 최종 형성을 포함합니다. 일렉트로 스프레이의 성능에 영향을 미치는 많은 요소 중에서 스프레이를 위한 이미터의 구조 (즉, 기하학, 모양 등)가 중요한 요소입니다.

전통적인 전기 분무 이미터는 일반적으로 풀링 또는 에칭 기술로 제작 된 단일 채널 테이퍼 형 또는 비 테이퍼 형입니다. 그러나 이러한 이미터는 종종 막힘, 부적절한 처리량 등과 같은 문제로 어려움을 겪습니다. [5]

향상된 감도 및 샘플 활용을 위해 다중 스프레이를 생성하는 새로운 이미터 설계 개발로 분명한 발전이 있었습니다. 새로운 ESI 이미터 설계에 대한 연구는 실험적으로나 이론적으로 큰 관심을 불러 일으켰습니다 [3]. 그러나 ESI의 복잡한 물리적 과정은 팁 형상 외에도 많은 다른 변수에 의존하기 때문에 연구간 직접 비교의 어려움은 장애물이 됩니다.

또한 새로운 나노 이미터 제조 및 테스트 비용이 상당히 높을 수 있습니다. 이 논문은 CFD 시뮬레이션 도구를 활용하여 가상 랩을 설정함으로써 이러한 문제를 해결합니다. 다른 매개 변수로 인해 상호 연결된 변경 없이 다양한 이미터 설계를 비교할 수 있도록 이상적으로 균일한 물리적 조건을 제공합니다.

맞춤 제작된 프로토 타입의 실험 측정 값도 수집되어 더 나은 계산 체계를 형성하는 데 도움이 되는 지침과 검증을 모두 제공합니다. 특히 이 분야의 주요 미래 플랫폼으로 여겨지는 다중 노즐 이미 터 설계에 중점을 둘 것입니다.

전기 분무 거동에 영향을 미치는 요인에 대한 추가 기본 연구는 다양한 기하학적 및 작동 매개 변수와 관련하여 수행됩니다. 이는 보다 효율적이고 견고한 이미터의 개발을 가능하게 할 뿐만 아니라 더 넓은 영역에서 ESI의 적용을 향상시킬 수 있습니다.

Figure 1.1Schematic setup for ESI-MS technique
Figure 1.1Schematic setup for ESI-MS technique
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.4 (A)Externally tapered emitter  (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.4 (A)Externally tapered emitter (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times    (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).

Omit below: Please refer to the original text for the full content.

Bibliography

1. Mclafferty, F.W., Tandem Fourier-Transform Mass-Spectrometry of Large Molecules.Abstracts of Papers of the American Chemical Society, 1986. 192: p. 21-Anyl. 2. Griffiths, W.J. and Y.Q. Wang, Mass spectrometry: from proteomics to metabolomics and lipidomics. Chemical Society Reviews, 2009. 38(7): p. 1882-1896. 3. Gibson, G.T.T., S.M. Mugo, and R.D. Oleschuk, Nanoelectrospray Emitters: Trends and Perspective. Mass Spectrometry Reviews, 2009. 28(6): p. 918-936. 4. Cech, N.B. and C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews, 2001. 20(6): p. 362-387. 5. Su, S., Development and Application of Non-tapered Electrospray Emitters for Nano-ESI Mass Spectrometry, in Chemistry. 2008, Queen’s University: Kingston. p. 185. 6. Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914. 3(2): p. 69-91. 7. Dole, M., L.L. Mack, and R.L. Hines, Molecular Beams of Macroions. Journal of Chemical Physics, 1968. 49(5): p. 2240-&. 8. Yamashita, M. and J.B. Fenn, Negative-Ion Production with the Electrospray Ion-Source.Journal of Physical Chemistry, 1984. 88(20): p. 4671-4675. 9. Kebarle, P. and U.H. Verkerk, Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrometry Reviews, 2009. 28(6): p. 898-917. 10. Taylor, G., Disintegration of Water Drops in Electric Field. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1964. 280(138): p. 383. 11. Cole, R.B., Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2000. 35(7): p. 763-772. 12. Rayleigh, L., On the equilibrium of liquid conducting masses charged with electricity.Philos. Mag., 1882. 14: p. 184-186. 13. Mack, L.L., et al., Molecular Beams of Macroions .2. Journal of Chemical Physics, 1970. 52(10): p. 4977-&. 14. Gamero-Castano, M. and J.F. de la Mora, Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. Journal of Mass Spectrometry, 2000. 35(7): p. 790-803. 15. Gamero-Castano, M. and J.F. de la Mora, Modulations in the abundance of salt clusters in electrosprays. Analytical Chemistry, 2000. 72(7): p. 1426-1429. 16. Loscertales, I.G. and J.F. Delamora, Experiments on the Kinetics of Field Evaporation of Small Ions from Droplets. Journal of Chemical Physics, 1995. 103(12): p. 5041-5060. 17. Rohner, T.C., N. Lion, and H.H. Girault, Electrochemical and theoretical aspects of electrospray ionisation. Physical Chemistry Chemical Physics, 2004. 6(12): p. 3056-3068.

18. Iribarne, J.V. and B.A. Thomson, Evaporation of Small Ions from Charged Droplets.Journal of Chemical Physics, 1976. 64(6): p. 2287-2294. 19. Meng, C.K. and J.B. Fenn, Formation of Charged Clusters during Electrospray Ionization of Organic Solute Species. Organic Mass Spectrometry, 1991. 26(6): p. 542-549. 20. Nohmi, T. and J.B. Fenn, Electrospray Mass-Spectrometry of Poly(Ethylene Glycols) with Molecular-Weights up to 5 Million. Journal of the American Chemical Society, 1992. 114(9): p. 3241-3246. 21. de la Mora, J.F., Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chimica Acta, 2000. 406(1): p. 93-104. 22. Iavarone, A.T., J.C. Jurchen, and E.R. Williams, Supercharged protein and peptide lone formed by electrospray ionization. Analytical Chemistry, 2001. 73(7): p. 1455-1460. 23. Hogan, C.J., et al., Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization. Journal of the American Chemical Society, 2008. 130(22): p. 6926-+. 24. Nguyen, S. and J.B. Fenn, Gas-phase ions of solute species from charged droplets of solutions. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(4): p. 1111-1117. 25. Luedtke, W.D., et al., Nanojets, electrospray, and ion field evaporation: Molecular dynamics simulations and laboratory experiments. Journal of Physical Chemistry A, 2008. 112(40): p. 9628-9649. 26. Enke, C.G., A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Analytical Chemistry, 1997. 69(23): p. 4885-4893. 27. Maze, J.T., T.C. Jones, and M.F. Jarrold, Negative droplets from positive electrospray.Journal of Physical Chemistry A, 2006. 110(46): p. 12607-12612. 28. Kebarle, P. and M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analytica Chimica Acta, 2000. 406(1): p. 11-35. 29. Loeb, L.B., A.F. Kip, and G.G. Hudson, Pulses in negative point-to-plane corona.Physical Review, 1941. 60(10): p. 714-722. 30. Cole, R.B., Electrospray ionization mass spectrometry : fundamentals, instrumentation, and applications. 1997, New York: Wiley. xix, 577 p. 31. Smith, D.P.H., The Electrohydrodynamic Atomization of Liquids. Ieee Transactions on Industry Applications, 1986. 22(3): p. 527-535. 32. Taylor, G.I. and A.D. Mcewan, Stability of a Horizontal Fluid Interface in a Vertical Electric Field. Journal of Fluid Mechanics, 1965. 22: p. 1-&. 33. Ikonomou, M.G., A.T. Blades, and P. Kebarle, Electrospray Mass-Spectrometry of Methanol and Water Solutions Suppression of Electric-Discharge with Sf6 Gas. Journal of the American Society for Mass Spectrometry, 1991. 2(6): p. 497-505.

34. Wampler, F.M., A.T. Blades, and P. Kebarle, Negative-Ion Electrospray Mass-Spectrometry of Nucleotides – Ionization from Water Solution with Sf6 Discharge Suppression. Journal of the American Society for Mass Spectrometry, 1993. 4(4): p. 289-295. 35. Marginean, I., P. Nemes, and A. Vertes, Order-chaos-order transitions in electrosprays: The electrified dripping faucet. Physical Review Letters, 2006. 97(6): p. -. 36. Marginean, I., P. Nemes, and A. Vertes, Astable regime in electrosprays. Physical Review E, 2007. 76(2): p. -. 37. Nemes, P., I. Marginean, and A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays. Analytical Chemistry, 2007. 79(8): p. 3105-3116. 38. Marginean, I., et al., Electrospray characteristic curves: In pursuit of improved performance in the nanoflow regime. Analytical Chemistry, 2007. 79(21): p. 8030-8036. 39. Page, J.S., et al., Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Analytical Chemistry, 2008. 80(5): p. 1800-1805. 40. Delamora, J.F. and I.G. Loscertales, The Current Emitted by Highly Conducting Taylor Cones. Journal of Fluid Mechanics, 1994. 260: p. 155-184. 41. Ganan-Calvo, A.M., On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 2004. 507: p. 203-212. 42. Smith, D.R., G. Sagerman, and T.D. Wood, Design and development of an interchangeable nanomicroelectrospray source for a quadrupole mass spectrometer.Review of Scientific Instruments, 2003. 74(10): p. 4474-4477. 43. Barnidge, D.R., S. Nilsson, and K.E. Markides, A design for low-flow sheathless electrospray emitters. Analytical Chemistry, 1999. 71(19): p. 4115-4118. 44. Guzzetta, A.W., R.A. Thakur, and I.C. Mylchreest, A robust micro-electrospray ionization technique for high-throughput liquid chromatography/mass spectrometry proteomics using a sanded metal needle as an emitter. Rapid Communications in Mass Spectrometry, 2002. 16(21): p. 2067-2072. 45. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source.Analytical Chemistry, 1996. 68(1): p. 1-8. 46. Covey, T.R. and D. Pinto, Practical Spectroscopy. Vol. 32. 2002. 47. Kelly, R.T., et al., Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Analytical Chemistry, 2008. 80(14): p. 5660-5665. 48. Choi, Y.S. and T.D. Wood, Polyaniline-coated nanoelectrospray emitters treated with hydrophobic polymers at the tip. Rapid Communications in Mass Spectrometry, 2007. 21(13): p. 2101-2108. 49. Tojo, H., Properties of an electrospray emitter coated with material of low surface energy. Journal of Chromatography A, 2004. 1056(1-2): p. 223-228.

50. Liu, J., et al., Electrospray ionization with a pointed carbon fiber emitter. Analytical Chemistry, 2004. 76(13): p. 3599-3606. 51. Sen, A.K., et al., Modeling and characterization of a carbon fiber emitter for electrospray ionization. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 620-630. 52. Tang, K.Q., et al., Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Analytical Chemistry, 2001. 73(8): p. 1658-1663. 53. Deng, W. and A. Gomez, Influence of space charge on the scale-up of multiplexed electrosprays. Journal of Aerosol Science, 2007. 38(10): p. 1062-1078. 54. Su, S.Q., et al., Microstructured Photonic Fibers as Multichannel Electrospray Emitters.Analytical Chemistry, 2009. 81(17): p. 7281-7287. 55. Sen, A.K., J. Darabi, and D.R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI-MS applications. Microfluidics and Nanofluidics, 2007. 3(3): p. 283-298. 56. Hayati, I., A. Bailey, and T.F. Tadros, Investigations into the Mechanism of Electrohydrodynamic Spraying of Liquids .2. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. Journal of Colloid and Interface Science, 1987. 117(1): p. 222-230. 57. Glonti, G.A., On the Theory of the Stability of Liquid Jets in an Electric Field. Soviet Physics Jetp-Ussr, 1958. 7(5): p. 917-918. 58. Nayyar, N.K. and G.S. Murty, The Stability of a Dielectric Liquid Jet in the Presence of a Longitudinal Electric Field. Proceedings of the Physical Society of London, 1960. 75(483): p. 369-373. 59. Allan, R.S. and S.G. Mason, Particle Behaviour in Shear and Electric Fields .1. Deformation and Burst of Fluid Drops. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1962. 267(1328): p. 45-&. 60. Melcher, J.R. and G.I. Taylor, Electrohydrodynamics – a Review of Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1969. 1: p. 111-&. 61. Saville, D.A., Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 1997. 29: p. 27-64. 62. Carretero Benignos, J.A. and Massachusetts Institute of Technology. Dept. of Mechanical Engineering., Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode. 2005. p. 117 leaves. 63. Hartman, R.P.A., et al., The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. Journal of Electrostatics, 1999. 47(3): p. 143-170. 64. Hartman, R.P.A., et al., Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 1999. 30(7): p. 823-849.

65. Yoon, S.S., et al., Modeling multi-jet mode electrostatic atomization using boundary element methods. Journal of Electrostatics, 2001. 50(2): p. 91-108. 66. Zeng, J., D. Sobek, and T. Korsmeyer, Electro-hydrodynamic modeling of electrospray ionization: Cad for a mu fluidic device – Mass spectrometer interface. Boston Transducers’03: Digest of Technical Papers, Vols 1 and 2, 2003: p. 1275-1278, 1938. 67. Lastow, O. and W. Balachandran, Numerical simulation of electrohydrodynamic (EHD) atomization. Journal of Electrostatics, 2006. 64(12): p. 850-859. 68. http://www.flow3d.com. 69. Valaskovic, G.A., et al., Attomole-Sensitivity Electrospray Source for Large-Molecule Mass-Spectrometry. Analytical Chemistry, 1995. 67(20): p. 3802-3805. 70. Kriger, M.S., K.D. Cook, and R.S. Ramsey, Durable Gold-Coated Fused-Silica Capillaries for Use in Electrospray Mass-Spectrometry. Analytical Chemistry, 1995. 67(2): p. 385-389. 71. Fang, L.L., et al., Online Time-of-Flight Mass-Spectrometric Analysis of Peptides Separated by Capillary Electrophoresis. Analytical Chemistry, 1994. 66(21): p. 3696-3701. 72. Cao, P. and M. Moini, A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. Journal of the American Society for Mass Spectrometry, 1997. 8(5): p. 561-564. 73. Fong, K.W.Y. and T.W.D. Chan, A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. Journal of the American Society for Mass Spectrometry, 1999. 10(1): p. 72-75. 74. Emmett, M.R. and R.M. Caprioli, Micro-Electrospray Mass-Spectrometry – Ultra-High-Sensitivity Analysis of Peptides and Proteins. Journal of the American Society for Mass Spectrometry, 1994. 5(7): p. 605-613. 75. Gatlin, C.L., et al., Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Analytical Biochemistry, 1998. 263(1): p. 93-101. 76. Aturki, Z., et al., On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis, 2006. 27(23): p. 4666-4673. 77. Edwards, J.L., et al., Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 2006. 1106(1-2): p. 80-88. 78. http://www.kiriama.com/kiriama%20single-mode%20polymer%20fibers_009.htm. 79. Wilm, M.S. and M. Mann, Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last. International Journal of Mass Spectrometry, 1994. 136(2-3): p. 167-180.

80. Hirt, C.W. and B.D. Nichols, Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 1981. 39(1): p. 201-225. 81. Melcher, J.R., Continuum electromechanics. 1981, Cambridge, Mass.: MIT Press. 1 v. (various pagings). 82. http://www.flow3d.com/cfd-101/cfd-101-FAVOR.html. 83. http://www.flow3d.com/cfd-101/cfd-101-FAVOR-no-loss.html. 84. Savage, B.M. and M.C. Johnson, Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering-Asce, 2001. 127(8): p. 640-649. 85. http://www.flow3d.com/cfd-101/cfd-101-free-surface-fluid-flow.html. 86. Graham T. T. Gibson, R.D.W.a.R.D.O., Multiple electrosprays generated from a single poly carbonate microstructured fibre. Mass Spectrometry, 2011. 87. Smith, R.D., et al., Analytical characterization of the electrospray ion source in the nanoflow regime. Analytical Chemistry, 2008. 80(17): p. 6573-6579. 88. Hirt, C.W., Electro-hydrodynamics of semi-conductive fluids: with application to electro-spraying. Flow Science Technical Note, 2004. 70(FSI–04–TN70): p. 1-7. 89. de la Mora, J.F., The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 2007. 39: p. 217-243. 90. Cloupeau, M. and B. Prunetfoch, Electrostatic Spraying of Liquids in Cone-Jet Mode.Journal of Electrostatics, 1989. 22(2): p. 135-159. 91. Hayati, I., A.I. Bailey, and T.F. Tadros, Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids .1. Effect of Electric-Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization. Journal of Colloid and Interface Science, 1987. 117(1): p. 205-221. 92. FLOW-3D User Manual, Ver. 9.4. 93. Sen, A.K., J. Darabi, and D.R. Knapp, Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter. Journal of Fluids Engineering-Transactions of the Asme, 2011. 133(7).

Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

Modeling and characterization of a carbon fiber emitter for electrospray ionization

A K Sen1, J Darabi1, D R Knapp2 and J Liu2
1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering,
University of South Carolina, 300 Main Street, Columbia, SC 29208, USA
2 Department of Pharmacology, Medical University of South Carolina, 173 Ashley Avenue,
Charleston, SC 29425, USA
E-mail: darabi@engr.sc.edu

뾰족한 탄소 섬유(CF)를 사용하는 새로운 마이크로 스케일 이미터는 질량 분석 (MS) 분석에서 전기 분무에 사용할 수 있습니다. 탄소 섬유는 360 µm OD 및 75 µm ID의 용융 실리카 모세관과 동축에 위치하며 날카로운 팁은 튜브 말단에서 30 µm 연장됩니다.

Abstract

전기 분무 이온화 (ESI) 프로세스는 전기 유체 역학을 해결하기 위한 Taylor–Melcher 누설 유전체 유체 모델 및 액체-가스 인터페이스 추적을 위한 유체 부피 (VOF) 접근 방식을 기반으로 하는 전산 유체 역학 (CFD) 코드를 사용하여 시뮬레이션 됩니다. CFD 코드는 먼저 기존 지오메트리에 대해 검증한 다음 CF 이미터 기반 ESI 모델을 시뮬레이션하는데 사용됩니다.

시뮬레이션된 전류 흐름 및 전류 전압 결과는 CF 이미터의 실험 결과와 잘 일치합니다. 이미터 형상, 전위차, 유속 및 액체의 물리적 특성이 CF 이미터의 전기 분무 거동에 미치는 영향을 철저히 조사합니다.

스프레이 전류와 제트 직경은 액체의 유속, 전위차 및 물리적 특성과 상관 관계가 있으며 상관 결과는 문헌에 보고된 결과와 정량적으로 비교됩니다. (이 기사의 일부 그림은 전자 버전에서만 색상입니다)

Introduction

1980 년대 후반부터 매트릭스 보조 레이저 탈착 이온화 (MALDI)와 전기 분무 이온화 (ESI)의 두 가지 이온화 기술을 구현하여 감도, 속도 및 구조 정보 수준 측면에서 MS 분석이 엄청나게 성장했습니다. 1980 년대 초까지 전자 충격 (EI) 또는 화학 이온화 (CI) 방법은 가스 크로마토 그래피에 적합한 작은 생체 분자를 이온화 하는 데 사용되었습니다.

그러나 크고 열에 민감한 비 휘발성 샘플은 적절한 사전 처리 없이 EI 또는 CI-MS 기술로 분석 할 수 없습니다 [1]. ESI 기술을 사용하면 액체상에서 직접 이러한 큰 분자를 분석 할 수 있습니다 [2]. Zeleny [3, 4]는 출구에 높은 전위를 적용하여 모세관에서 액체 용액을 분사 할 수 있음을 보여주었습니다.

Dole [5, 6] 및 Fenn [7]의 선구적인 연구는 ESI를 고분자 및 생체 분자와 같은 대형 화합물의 이온화 방법으로 표시했습니다. 이에 이어이 기술에 의한 기상 이온 발생에 관련된 과정과 메커니즘이 널리 조사되고 있습니다.

ESI 방법에서 기체 이온화 된 분자는 강한 전계가 있는 상태에서 미세한 물방울을 생성하여 액체 용액에서 생성됩니다. ESI 프로세스의 이러한 능력은 단백질 및 기타 생체 분자 연구에 자연적으로 적용됨을 발견했습니다. ESI 방법과 관련된 다양한 프로세스가 그림 1에 나와 있습니다.

Figure 1. Schematic of an ESI process.
Figure 1. Schematic of an ESI process.

ESI 전위는 일반적으로 전도성 물질로 코팅 된 이미 터 튜브를 통해 외부에서 샘플 액체에 적용되지만 액체 샘플 내부에 적용될 수도 있습니다. Herring과 Qin [8]은 이미 터 팁에 삽입된 팔라듐 와이어를 통해 전기 분무 전위가 적용되는 모세관 전기 영동 (CE)을위한 ESI 인터페이스를 보여주었습니다.

Chiou의 설계 [9]에서는 작은 PDMS 칩에 있는 샘플 저장소, 마이크로 채널 및 실리카 모세관 노즐과 통합 된 내장 전극을 통해 전기 분무를 위한 고전압이 적용되었습니다.

Cao and Moini [10]는 ESI 전압이 모세관 내부에 위치한 전극을 통해인가되고 전기적 접촉이 출구 근처 모세관 벽의 작은 구멍을 통해 유지되는 전기 분무 방출기를 설계했습니다. 작은 모세관 직경 (~ 10 µm)을 가진 이미 터를 사용하여 낮은 전압에서 전기 분무가 가능하지만, 더 작은 구멍은 과도한 배압으로 인해 쉽게 막힐 수 있습니다.

직경이 더 큰 (> 50µm) 이미 터를 처리하는 것이 더 쉽습니다. 그러나 그들은 더 작은 직경의 이미 터만큼 효율적이지 않습니다 [11]. 일반적으로 ESI 전압을 적용하기 위해 유리 또는 용융 실리카와 같은 절연 재료로 제작 된 저 유량 이미 터의 외주에 전도성 코팅이 적용됩니다.

용융 실리카 모세관의 끝 부분에있는 스퍼터 코팅 된 귀금속 층은 내구성에 빠르게 영향을 미치는 것으로 관찰되었습니다. 코팅의 빠른 열화는 방전, 전기 화학적 반응 및 층과 용융 실리카 표면 사이의 불량한 기계적 결합으로 인해 발생할 수 있습니다.

이러한 에미 터의 수명은 스퍼터 코팅 후에 금을 전기 도금하거나 [12] 스퍼터 코팅 된 금 위에 SiOx를 코팅하여 증가시킬 수 있습니다 [13]. 크롬 또는 니켈 합금의 접착층 위에 금으로 코팅 된 이미 터는 우수한 결합력을 제공 할 수 있으며 음극으로 작동 할 때 내구성이 있습니다.

그러나 양극으로 작동하는 동안 접착층은 금 막을 통해 화학적으로 용해됩니다. 이미 터의 안정성과 내구성을 향상시키기 위해 대체 전도성 코팅이 평가되었습니다.

안정적인 ESI 작동을 위해 콜로이드 흑연 코팅 이미 터가 사용되었으며 수명이 길었습니다 [14]. 폴리아닐린 (PANI) 코팅 이미 터는 두꺼운 코팅으로 인해 높은 내구성을 보여주고 방전에 강합니다. PANIcoated와 gold-coated nanospray emitter의 electrospray ionization 거동을 비교 한 결과 PANIcoated emitter는 goldcoated emitter와 비슷한 향상된 감도를 제공합니다 [15].

그라파이트-폴리이 미드 혼합물은 또한 무 접착 전기 분무 방출기의 경우 전도성 코팅으로 사용되었습니다. 전도성 코팅의 안정성은 산화 스트레스 동안 좋은 성능을 나타내는 전기 화학적 방법에 의해 조사되었습니다 [16].

탄소 코팅 이미 터의 기능은 마이크로 스프레이 및 시스리스 CE 및 ESI 응용 분야에서 입증되었습니다. 이 이미 터는 견고하지는 않지만 방수가 되지 않는 CE 또는 ESI 애플리케이션에 충분히 내구성이있었습니다 [17].

우리는 막힘 문제를 제거하고 시료 액체와 금층 사이의 접촉 문제를 피할 수있는 뾰족한 탄소 섬유 기반의 새로운 ESI 방출기를 도입하여 ESI 시스템의 적용 성, 신뢰성 및 내구성을 향상 시켰습니다 [18]. 이 작업에서 탄소 섬유 기반 ESI 이미 터는 전산 유체 역학 (CFD) 소프트웨어 패키지 FLOW-3D [19]를 사용하여 시뮬레이션됩니다.

실험은 새로운 CF 이미 터를 사용하여 수행됩니다. 모델 예측은 실험 결과와 비교됩니다. 새로운 이미 터의 ESI 성능은 이미 터의 기하학적 구조, 유속, 액체의 물리적 특성과 같은 다양한 매개 변수에 대한 반응을 연구하여 평가됩니다.

스프레이 전류 및 제트 직경은 유량 및 액체의 특성과 상관 관계가 있으며 상관 결과는 문헌에보고 된 결과와 정량적으로 비교됩니다. 다음 섹션에서 ESI 공정을 지배하는 전기 유체 역학 이론은 Taylor–Melcher 누설 유전체 모델 [20]을 참조하여 설명됩니다.

그런 다음 Hartman 등이 사용하는 ESI 구성을 고려하여 CFD 코드의 유효성을 확인합니다 [21]. 또한 CF 기반 ESI 모델에 대한 시뮬레이션 및 실험 결과가 제시되고 논의됩니다. 마지막으로 모수 연구 결과와 상관 관계를 제시하고 논의합니다.

Figure 2. Forces in the liquid cone.
Figure 2. Forces in the liquid cone.
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 3. Schematic of the ESI model studied by Hartman et al [21].
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 6. Cone-Jet profile and the electric potential contours at 19 kV; cone length is 4.3 mm.
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 7. A photograph of the experimental cone shape; cone length is 4.2 ± 0.2 mm [21].
Figure 15. Electric field contours at various time steps
Figure 15. Electric field contours at various time steps
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .
Figure 20. Top: image of electrospray, bottom: cone-jet profile using the CF emitter. Distance between the carbon fiber tip and the counter electrode is 4.0 mm, potential difference is 3500 V, flow rate is 300 nL min−1 .

References

[1] Siuzdak M 1996 Mass Spectrometry for Biotechnology (New York: Academic)
[2] Cole R B (ed) 1997 Electrospray Ionization Mass Spectrometry (New York: Wiley-Interscience)
[3] Zeleny J 1914 Phys. Rev. 3 69–91
[4] Zeleny J 1917 Phys. Rev. 10 1–6
[5] Dole M, Mack L L, Hines R L, Mobley R C, Ferguson L D and Alice M B 1968 Molecular beams of macroions
J. Chem. Phys. 49 2240–9
[6] Clegg G A and Dole M 1971 Molecular beams of macroions: III. Zein and polyvinylpyrrolidone Biopolymers
10 821–6
[7] Fenn J B, Mann M, Meng C K, Wong S F and Whitehouse C M 1989 Electrospray ionization for mass
spectrometry of large biomolecules Science 246 64–71
[8] Herring C J and Qin J 1999 An on-line preconcentrator and the evaluation of electrospray interfaces for the capillary
electrophoresis/mass spectrometry of peptides Rapid Commun. Mass Spectr. 13 1–7
[9] Chiou C H, Lee G B, Hsu H T, Chen P W and Liao P C B 2002 Microscale Tools for Sample Preparation, Separation
and Detection of Neuropeptides Sensors Actuators B 86 280–6
[10] Cao P and Moini M 1997 A novel sheathless interface for capillary electrophoresis/electrospray ionization mass
spectrometry using an in-capillary electrode J. Am. Soc. Mass Spectrom 8 561–4
[11] Janini G M, Conards T P, Wilkens K L, Issaq H J and Veenstra T D 2003 A sheathless nanoflow electrospray
interface for on-line capillary electrophoresis mass spectrometry Anal. Chem 75 1615–9
[12] Barroso M B de Jong and Ad P 1999 Sheathless preconcentration-capillary zone electrophoresis-mass
spectrometry applied to peptide analysis J. Am. Soc. Mass Spectrom 10 1271–8
[13] Valaskovic G A and McLafferty F W 1996 Long-lived metallized tips for nanoliter electrospray mass spectrometry
J. Am. Soc. Mass Spectrom. 7 1270–2
[14] Zhu X, Thiam S, Valle B C and Warner I M 2002 A colloidal graphite coated emitter for seathless capillary
electrophoresis/nanoelectrospray ionization mass spectrometry Anal. Chem 74 5405–9
[15] Maziarz E P I II, Lorenz S A, White T P and Wood T D 2000 Polyaniline: a conductive polymer coating for durable
nanospray emitters J. Am. Soc. Mass. Spectrom 11 659–63
[16] Nilsson S, Wetterhall M, Bergquist J, Nyholm L and Markides K E 2001 A simple and robust conductive
graphite coating for sheathless electrospray emitters used in capillary electrophoresis/mass spectrometry Rapid
Commun. Mass Spectr. 15 1997–2000
[17] Chang Y Z and Her G R 2000 Sheathless capillary electrophoresis/electospray mass spectrometry using a
carbon-coated tapered fused silica capillary with a beveled edge Anal. Chem. 72 626–30
[18] Liu J, Ro K W, Busman M and Knapp D R 2004 Electrospray ionization with a pointed carbon fiber emitter Anal. Chem. 76 3599–606
[19] Hirt C W 2004 Electro-hydrodynamics of semi–conductive fluids: with application to electro–spraying Flow Science
Technical Note 70 FSI–04–TN70 1–7
[20] Saville D A 1997 Electrohydrodynamcis: the Taylor–Melcher leaky dielectric model Annu. Rev. Fluid Mech. 29 27–64
[21] Hartman R P A, Brunner D J, Camelot D M A, Marijnissen J C M and Scarlett B 1999
Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet J. Aerosol Sci.
30 823–49
[22] Castellanos A 1998 Basic Concepts and Equations in Electrohydrodynamics Electrohydrodynamics
ed A Castellanos (Berlin: Springer)
[23] Melcher J R 1981 Continuum Electromechanics (Cambridge, MA: MIT Press)
[24] Hirt C W and Nichols B D 1981 Volume of fluid (VOF) method for the dynamics of free boundaries J. Comp. Phys.
39 201–25
[25] De la Mora F J and Loscertales I G 1994 The current emitted by highly conducting Taylor cones J. Fluid Mech. 260
155–84
[26] Ganan-Calvo A M 1997 Cone–jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal
scaling laws in electrospraying Phys. Rev. Lett. 79 217–20
[27] Higuera F J 2004 Current/flow–rate characteristic of an electrospray with a small meniscus J. Fluid Mech.
513 239–46
[28] Zeng J, Sobek D and Korsmeyer T Electro-hydrodynamic modeling of electrospray ionization: cad for a microfluidic
device-mass spectrometer interface Transducers ’03: 12th Int. Conf. on Solid State Sensors, Actuators and
Microsystems 2 1275–8
[29] Ganan–Calvo A M, Davila J and Barrero A 1997 Current and droplet size in the electrospraying of liquids. Scaling laws J. Aerosol Sci. 28 249–75
[30] Cloupeau M and Prunet-Foch B 1989 Electrostatic spraying of liquids in cone–jet mode J. Electrost. 22 135–59

Figure 2. Simulation of droplet separation by EWOD

Non-Linear Electrohydrodynamics in Microfluidic Devices

미세 유체 장치의 비선형 전기 유체 역학

by Jun ZengHewlett-Packard Laboratories, Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, CA 94304, USAInt. J. Mol. Sci.201112(3), 1633-1649; https://doi.org/10.3390/ijms12031633Received: 24 January 2011 / Revised: 10 February 2011 / Accepted: 24 February 2011 / Published: 3 March 2011

Abstract

Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS) fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications. 

Keywords: dielectrophoresiselectrohydrodynamicselectrowettinglab-on-a-chipmicrofluidicsmodelingnumerical simulationreflective display

요약

미세 유체학이 시작된 이래로 전기력은 작동 유체와 충전 된 서스펜션의 움직임을 제어하고 제어하는 ​​주요 메커니즘 중 하나로 활용되어 왔습니다. 전기력은 소형 장치에서 본질적인 이점이 있습니다. 전극이 밀리미터 미만에서 수 미크론까지 작은 거리에 배치되기 때문에 매우 높은 전기장을 쉽게 얻을 수 있습니다. 

전기력은 강도가 피크에서 멀어지면서 빠르게 감소하기 때문에 고도로 국부화 될 수 있습니다. 이것은 전기력을 정밀한 공간 제어를 위한 이상적인 후보로 만듭니다.

전극의 기하학적 구조와 배치는 다양한 분포의 전기장을 설계하는 데 사용될 수 있으며, 이는 MEMS (Micro-Electro-Mechanical Systems) 제조 방법으로 쉽게 실현할 수 있습니다. 

이 논문에서 우리는 몇 가지 전기 구동 액체 처리 작업을 검토합니다. 비선형 전기 유체 역학적 효과에 중점을 둡니다. 이론적 처리 및 관련 수치 방법에 대해 논의합니다. 모델링과 시뮬레이션은 관련된 전기 유체 역학 현상을 밝히는 데 사용됩니다. 모델링 기반 조사는 응용 분야를 설명하기 위해 미세 유체 장치의 예와 결합됩니다. 

키워드 : 유전 영동 ; 전기 유체 역학 ; 전기 습윤 ; 랩 온어 칩 ; 미세 유체 ; 모델링 ; 수치 시뮬레이션 ; 반사 디스플레이

Droplet processing array Droplet based BioFlip
igure 1. Example of droplet-based digital microfluidics architecture. Above is an elevation view showing the layered structure of the chip. Below is a diagram illustrating the system (Adapted from [4]).
Figure 2. Simulation of droplet separation by EWOD
Figure 2. Simulation of droplet separation by EWOD. The top two figures illustrate the device configuration. Electric voltages are applied to all four electrodes embedded in the insulating material. The bottom left figure shows transient simulation solution. It illustrates the process of separating one droplet into two via EWOD. The bottom right figure shows the electric potential distribution inside the device. The color indicates the electric potential; the iso-potential surfaces are also drawn. The image shows the electric field is absent within the droplet body indicating the droplet is either conductive or highly polarizable.
Figure 4. Transient sequence of the Taylor cone formation
Figure 4. Transient sequence of the Taylor cone formation: simulation and experiment comparison. Experimental images are shown in the top row. Simulation results are shown in the bottom row. Their correspondence is indicated by the vertical alignment (Adapted from [4]).
Figure 6. Simulation of charge screening effect using a parallel-plate cell
Figure 6. Simulation of charge screening effect using a parallel-plate cell. Top-left image shows the electric current as function of time and driving voltage, top-right image shows the evolution of the species concentration as function of time and space, the bottom image shows the electric current readout after switching the applied voltage.
Figure 7. Transient simulation of electrohydrodynamic instability and the development of the cellular convective flow pattern.
Figure 7. Transient simulation of electrohydrodynamic instability and the development of the cellular convective flow pattern.
Figure 3. Simulation of dielectrophoresis driven axon migration
Figure 3. Simulation of dielectrophoresis driven axon migration. The set of small images on the left shows a transient simulation of single axon migration under an electric field generated by a pin electrode. The image on the right is a snapshot of a simulation where two axons are fused by dielectrophoresis using a pin electrode. Axons are outlined in white. Also shown are the iso-potential curves.

References

  1. Muller, RS. MEMS: Quo vadis in century XXI. Microelectron. Eng 200053(1–4), 47–54. [Google Scholar]
  2. Reyes, DR; Iossifidis, D; Auroux, PA; Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal.Chem 200274, 2623–2636. [Google Scholar]
  3. Levy, U; Shamai, R. Tunable optofluidic devices. Microfluid. Nanofluid 20084, 97–105. [Google Scholar]
  4. Zeng, J; Korsmeyer, FT. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 20044, 265–277. [Google Scholar]
  5. Fair, RB. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluid. Nanofluid 20073, 245–281. [Google Scholar]
  6. Pollack, MG; Fair, RB; Shenderov, AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett 200077(11), 1725–1726. [Google Scholar]
  7. Peykov, V; Quinn, A; Ralston, J. Electrowetting: A model for contact-angle saturation. Colloid Polym. Sci 2000278, 789–793. [Google Scholar]
  8. Verheijen, HJJ; Prins, MWJ. Reversible electrowetting and trapping of charge: Model and experiments. Langmuir 199915, 6616–6620. [Google Scholar]
  9. Mugele, F; Baret, J. Electrowetting: From basics to applications. J. Phys. Condens. Matter 200517, R705–R774. [Google Scholar]
  10. Quilliet, C; Berge, B. Electrowetting: A recent outbreak. Curr. Opin. Colloid Interface Sci 20016, 34–39. [Google Scholar]
  11. Probstein, RF. Physicochemical Hydrodynamics; Wiley: New York, NY, USA, 1994. [Google Scholar]
  12. Koo, J; Kleinstreuer, C. Liquid flow in microchannels: Experimental observations and computational analyses of microfluidics effects. J. Micromech. Microeng 200313, 568–579. [Google Scholar]
  13. Hu, G; Li, D. Multiscale phenomena in microfluidics and nanofluidics. Chem. Eng. Sci 200762, 3443–3454. [Google Scholar]
  14. Haus, HA; Melcher, JR. Electromagnetic Fields and Energy; Prentice-Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
  15. Leal, LG. Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis; Butterworth-Heinemann: Oxford, UK, 1992. [Google Scholar]
  16. Collins, RT; Harris, MT; Basaran, OA. Breakup of electrified jets. J. Fluid Mech 2007588, 75–129. [Google Scholar]
  17. Sista, R; Hua, Z; Thwar, P; Sudarsan, A; Srinivasan, V; Eckhardt, A; Pollack, M; Pamula, V. Development of a digital microfluidic platform for point of care testing. Lab Chip 20088, 2091–2104. [Google Scholar]
  18. Zeng, J. Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst 200625(2), 224–233. [Google Scholar]
  19. Walker, SW; Bonito, A; Nochetto, RH. Mixed finite element method for electrowetting on dielectric with contact line pinning. Interface. Free Bound 201012, 85–119. [Google Scholar]
  20. Eck, C; Fontelos, M; Grün, G; Klingbeil, F; Vantzos, O. On a phase-field model for electrowetting. Interface. Free Bound 200911, 259–290. [Google Scholar]
  21. Gascoyne, PRC; Vykoukal, JV. Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE 200492(1), 22–42. [Google Scholar]
  22. Jones, TB; Gunji, M; Washizu, M. Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl. Phys 200189(3), 1441–1448. [Google Scholar]
  23. Sretavan, D; Chang, W; Keller, C; Kliot, M. Microscale surgery on single axons. Neurosurgery 200557(4), 635–646. [Google Scholar]
  24. Pohl, HA; Crane, JS. Dielectrophoresis of cells. Biophys. J 197111, 711–727. [Google Scholar]
  25. Melcher, JR; Taylor, GI. Electrohydrodynamics: A review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech 19691, 111–146. [Google Scholar]
  26. Saville, DA. Electrohydrodynamics: The taylor-melcher leaky-dielectric model. Annu. Rev. Fluid Mech 199729, 27–64. [Google Scholar]
  27. Schultz, GA; Corso, TN; Prosser, SJ; Zhang, S. A fully integrated monolithic microchip electrospray device for mass spectrometry. Anal. Chem 200072(17), 4058–4063. [Google Scholar]
  28. Killeen, K; Yin, H; Udiavar, S; Brennen, R; Juanitas, M; Poon, E; Sobek, D; van de Goor, T. Chip-MS: A polymeric microfluidic device with integrated mass-spectrometer interface. Micro Total Anal. Syst 2001, 331–332. [Google Scholar]
  29. Dukhin, SS. Electrokinetic phenomena of the second kind and their applications. Adv. Colloid Interface Sci 199135, 173–196. [Google Scholar]
  30. Wang, Y-C; Stevens, AL; Han, J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem 200577(14), 4293–4299. [Google Scholar]
  31. Kim, SJ; Wang, Y-C; Han, J. Nonlinear electrokinetic flow pattern near nanofluidic channel. Micro Total Anal. Syst 20061, 522–524. [Google Scholar]
  32. Comiskey, B; Albert, JD; Yoshizawa, H; Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1998394(6690), 253–255. [Google Scholar]
  33. Beunis, F; Strubbe, F; Neyts, K; Bert, T; De Smet, H; Verschueren, A; Schlangen, L. P-39: Electric field compensation in electrophoretic ink display. In Proceedings of the Twenty-fifth International Display Research Conference—Eurodisplay 2005; Edinburgh, UK, 19–22 2005; pp. 344–345. [Google Scholar]
  34. Strubbe, F; Verschueren, ARM; Schlangen, LJM; Beunis, F; Neyts, K. Generation current of charged micelles in nonaqueous liquids: Measurements and simulations. J. Colloid Interface Sci 2006300, 396–403. [Google Scholar]
  35. Hsu, MF; Dufresne, ER; Weitz, DA. Charge stabilization in nonpolar solvents. Langmuir 200521, 4881–4887. [Google Scholar]
  36. Hayes, RA; Feenstra, BJ. Video-speed electronic paper based on electrowetting. Nature 2003425, 383–385. [Google Scholar]
  37. Chakrabarty, K; Su, F. Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
  38. Chakrabarty, K; Fair, RB; Zeng, J. Design tools for digital microfluidic biochips: Towards functional diversification and more than Moore. IEEE Trans.CAD Integr. Circ. Syst 201029(7), 1001–1017. [Google Scholar]
컴팩트 디스크 ELISA 칩 [2]

컴팩트 디스크 미세 유체 장치: Optimizing Real Estate

Compact Disc Microfluidic Devices: Optimizing Real Estate

미세 유체 장치 사용자의 증가하는 기대를 충족하려면 작은 미세 유체 장치에서 제한된 공간을 최적화하는 것이 중요합니다. 사용자는 단일 미세 유체 장치에서 최대의 기능과 여러 병렬 작업을 기대합니다. 제한된 공간을 최적화하는 문제는 이러한 장치의 많은 물리적 이점에도 불구하고 회전하는 미세 유체 장치로 확장됩니다. 회전 에너지를 이용하여 미세 유체 작업을 수행하는 회전 장치를 컴팩트 디스크 (CD) 미세 유체 장치라고합니다.

컴팩트 디스크 ELISA 칩 [1]
컴팩트 디스크 ELISA 칩 [2]
컴팩트 디스크 ELISA 칩 [2]

10 년 넘게 CD는 혈액 진단을위한 신속한 면역 분석 및 임상 생화학에서 지속적으로 장점을 보여 왔습니다. 마이크로 토탈 분석 시스템 (μTAS)으로 사용되며, 여러 개별 분석이 내장되어 단일 칩에서 동시에 실행됩니다. 핸즈프리 제어를 위해 프로그래밍 된 간단하고 저렴한 모터에서 작동하며 자석이나 표면 처리와 같은 외부 액추에이터가 필요하지 않습니다. 기본적으로 CD는 훌륭합니다! 그러나 공짜 점심 같은 것은 없습니다. 단방향 (방사형) 원심력으로 인해 CD는 회전하지 않는 미세 유체 장치보다 빠르게 공간이 부족합니다. 유체는 방사형으로 바깥쪽으로 만 이동하므로 CD가 수행 할 수있는 분석 단계의 수가 제한됩니다.

그림 3. CD 채널 내부의 방사형 물 기둥에 적용되는 다양한 신체 힘을 강조하는 회로도. 방사상으로 바깥쪽으로 작용하는 원심력을 확인합니다.
그림 3. CD 채널 내부의 방사형 물 기둥에 적용되는 다양한 신체 힘을 강조하는 회로도. 방사상으로 바깥쪽으로 작용하는 원심력을 확인합니다.

CD의 단 방향성 극복

Gorkin    [3]에서는 CD의 단 방향성 제약을 극복하기 위해 공압 펌핑이 제안되었습니다. 아이디어는 원심 에너지를 압축 에너지로 저장하고 다시 풀어서 유체를 중심으로 발사하는 것입니다. 아래 이미지는 로딩 챔버, 흡입 하위 구획 및 압축 하위 구획의 세 개의 챔버가있는 비교적 간단한 미세 유체 칩을 보여줍니다.

그림 4. CD 사진
그림 4. CD 사진
그림 5. FLOW-3D에서 모방 된 CD 디자인
그림 5. FLOW-3D에서 모방 된 CD 디자인

공압 펌핑 프로세스

유체가 로딩 챔버로 들어간 다음, 흡입 하위 구획을 통해 공기가 갇힌 압축 하위 구획으로 이동합니다. 공기가 갇 히면 CD가 특정 각속도로 회전하여 갇힌 공기가 압축됩니다. 공기가 더 이상 압축 할 수없는 경우 (안정 상태에 도달했기 때문에), 회전 속도가 감소하거나 완전히 꺼져 (누군가이 작업을 수행하고 있습니까? 아니면 장치가 수행하고 있습니까?) 유체가 로딩 챔버로 다시 펌핑됩니다. 이 마지막 단계는 이완 단계입니다. 공압 펌핑 공정의 5 단계는 다음과 같습니다.

그림 6. CD의 5 단계 공압 펌핑 [3]
그림 6. CD의 5 단계 공압 펌핑 [3]

회전 속도의 영향

회전 속도가 다르면 압축 하위 구획에서 공기의 압축 수준이 다릅니다. 회전 속도가 높을수록 유체가 공기에 더 세게 밀려 공기가 더 많이 압축됩니다. 그러나 공기가 압축 될 수있는 양에는 한계가 있습니다. 사실, 공기의 압축은 특정 회전 속도 이상으로 점진적으로 증가합니다. 압축 하위 구획의 부피는 회전 속도가 증가함에 따라 감소합니다. 흡입구의 액체 위치는 디스크 중앙에서 흡입 하위 구획의 유체 수준까지의 거리입니다. 이 거리는 증가합니다. 즉, 회전 속도가 증가함에 따라 유체가 중심에서 멀어집니다.

그림 7. 회전 주파수가 증가하면 압축이 증가합니다. [3]
그림 7. 회전 주파수가 증가하면 압축이 증가합니다. [3]

CD 미세 유체 장치 모델링

실험은 미세 유체 장치 설계의 핵심입니다. 그러나 충분한 실험을 수행하고 각 실험에 대한 완벽한 제어 환경을 유지하는 것은 불가능할 수 있습니다. 복잡한 설계에는 복잡한 실험 설정 및 분석이 필요합니다. FLOW-3D 의 정확하고 포괄적 인 다중 물리  모델링 기능 은 미세 유체 설계에 대한 통찰력과이를 최적화하는 방법을 제공합니다. FLOW-3D가  위에서 논의한 CD 미세 유체 장치에 대한 실험적 및 이론적 결과와 어떻게 비교되는지 보여 드리겠습니다  .

CD 미세 유체 장치에 대한 실험적 및 이론적 결과와 비교
CD 미세 유체 장치에 대한 실험적 및 이론적 결과와 비교

이미지 시퀀스는 실험 및 FLOW-3D  시뮬레이션 결과 의 시각적 비교를 제공합니다  . 두 유체 (공기 및 물) 압축 가능 모델을 사용하여 서로 다른 회전 속도에 대해 챔버 내부의 유체 역학을 시뮬레이션했습니다. 회귀 분석을 사용하여 아래 플롯에서 이러한 시각적 비교를 정량화하면 FLOW-3D  와 실험 결과,  FLOW-3D  및 분석 결과 간에 탁월한 상관 관계 (R 2 > 0.99)가 제공  됩니다.

그림 9. FLOW-3D 데이터와 실험 데이터의 비교. (Poly는 다항식 곡선 맞춤을 의미합니다.)
그림 9. FLOW-3D 데이터와 실험 데이터의 비교. (Poly는 다항식 곡선 맞춤을 의미합니다.)

시뮬레이션은 또한 다양한 회전 속도에 대한 정상 상태에 대한 접근 방식을 보여줍니다. 아래의 애니메이션은 CD의 운동 에너지 변동을 1000rpm nd 7000rpm에서 보여줍니다. 더 빠른 속도는 더 빠른 정상 상태를 강제하지만 정상 상태에 도달할 때까지 수위를 빠르게 변동시킵니다. 저속 시뮬레이션의 경우 그 반대입니다.

Mean kinetic energy fluctuations for the CD rotating at 1000 rpm
Mean kinetic energy fluctuations for the CD rotating at 1000 rpm
Mean kinetic energy fluctuations for the CD rotating at 7000 rpm
Mean kinetic energy fluctuations for the CD rotating at 7000 rpm

전반적으로  FLOW-3D  는 실험 결과를 정확하게 검증합니다. 사소한 오류는 부정확 한 지오메트리 (CAD) 생성 및 / 또는 물과 공기 사이의 인터페이스를 엄격하게 정의하기 때문일 수 있습니다. 이 사례 연구는 FLOW-3D  가 실험 결과를 검증하고 컴팩트 디스크 설계의 신뢰도를 높이는 데 효과적으로 사용될 수 있음을 보여줍니다  .

References

[1] He, Hongyan et al. “Design and Testing of a Microfluidic Biochip for Cytokine Enzyme-Linked Immunosorbent Assay”. Biomicrofluidics 3(2):22401 February 2009

[2] Roy, Emmanuel, et al. “From Cellular Lysis to Microarray Detection, an Integrated Thermoplastic Elastomer (TPE) Point of Care Lab on a Disc.” Lab on a Chip, vol. 15, no. 2

[3] Gorkin III, Robert et al. “Pneumatic pumping in centrifugal microfluidic platforms”. February 2010 Springerlink.com

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

중력을 사용한 미세 유체 입자 분류

Microfluidics Particle Sorting Using Gravity

미세 유체 입자 분류는 진단, 화학적 및 생물학적 분석, 식품 및 화학 처리, 환경 평가에 적용됩니다. 이전 블로그에서 유체 역학을 사용한 미세 유체 입자 분류에 대해 이야기했습니다 . 같은 주제를 바탕으로 중력을 사용하여 미세 입자를 분류하는 또 다른 방법에 대해 논의하겠습니다. 아래 애니메이션에서 볼 수 있습니다.

유비쿼터스 중력(Ubiquitous gravity)은 미세 유체 장치에서 미세 입자를 분류하는 데 사용할 수 있습니다. 중력이 입자의 움직임에 수직으로 작용할 때 입자는 반경에 따른 속도로 안정됩니다. 또한 입자의 운동은 입자의 밀도, 유체의 밀도 및 유체의 점도 사이의 차이에서 비롯된 유체 역학적 효과의 영향을받습니다. 아래 이미지는 중력 분류 기술 회로도를 보여줍니다.

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류
Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

부력 대 항력

앞서 언급했듯이 중력은 서로 다른 입자가 서로 다른 속도로 침전되도록합니다. 모든 입자의 밀도가 같고 입자 밀도가 주변 유체의 밀도보다 낮 으면 부력 우세와 항력 우세라는 두 가지 유형의 분류를 사용할 수 있습니다. 반경이 더 큰 입자는 더 많은 부력을 경험하고 작은 입자 위의 경로를 따르는 경향이 있습니다. 그러나 외장 액체 (입자를 운반하는 용액)의 유입 속도가 충분히 높으면 항력 효과가 우세하기 시작하고 더 큰 입자가 더 작은 입자의 경로 아래로 이동하는 경향이 있습니다.

FLOW-3D 시뮬레이션 결과

경쟁하는 부력과 항력은 아래 FLOW-3D 에서 얻은 시뮬레이션 결과에서 명확하게 볼 수 있습니다 . 그림 1은 부력 지배적 인 입자 분류의 경우를 보여줍니다. 더 큰 (빨간색) 입자는 수평 채널의 상단을 향해 정렬됩니다. Fig. 2에 나타난 결과는 부력이 우세한 경우의 유입 초 속도를 20 배로 설정 한 후 얻은 것이다. 더 높은 입구 속도에서 더 큰 입자는 더 많은 운동량을 전달하므로 그 위치는 수직 부력의 영향을받지 않습니다. 따라서 입자는 수평 채널의 상단으로 올라가지 않습니다. 대신 그들은 계속해서 바닥으로 이동합니다.

부력

Buoyancy dominant sorting
Buoyancy dominant sorting

Drag

Figure 2. Drag dominant sorting
Figure 2. Drag dominant sorting

LOW-3D 의 입자 모델은입자 분류 또는 기타 입자 역학과 관련된 미세 유체 시뮬레이션에 성공적이고 쉽게 사용할 수 있습니다. 지금까지 우리는 FLOW-3D 의 입자 모델을사용하여 두 가지 입자 분류 기술을 보았습니다. 하나는 유체 역학을 사용하고 다른 하나는 중력을 사용합니다.

Droplet Based Microfluidics

Droplet Based Microfluidics

연속 미세 유체와 달리 액적 기반 미세 유체는 개별 볼륨의 유체만 조작합니다. 마이크로 스케일 액적 시스템은 액적 역학에 대한 깊은 이해가 있는 경우 높은 처리량을 허용 할 수도 있습니다. 전산 유체 역학은 이러한 시스템의 동작을 이해하고 예측하는데 매우 유용한 도구입니다. 수치 시뮬레이션을 통한 액적 역학 연구는 잉크젯 기술의 확산에 중요한 역할을했습니다. 지난 10 년 동안 FLOW-3D는 상업 및 학술 응용 분야 모두에서 이러한 연구에 선호되는 분석 도구로 확립되었습니다. FLOW-3D는 음향 유도 잉크젯, 피에조 잉크젯, 열 거품 잉크젯 및 기타 여러 유형을 연구하는데 사용되었습니다.

강력한 표면 장력 모델과 성공적인 잉크젯 모델링 이력을 갖춘 FLOW-3D는 자연스럽게 액적 기반 미세 유체 공정 모델링으로 확장됩니다. FLOW-3D는 오늘날 다른 응용 분야 중에서도 정밀 액적 생성, 정밀 액적 증착, 액적 병합, 액적 분리, 액적 움직임, 흐름 집중, 잉크젯 인쇄 및 액적 T 접합을 시뮬레이션하는 데 사용됩니다.

Co flow fluid dynamics
Co-Flow
Droplet based microfluidics
Flow Focusing
Piston driven inkjets simulation
Inkjets
T-junction device multi-phase flow simulation
Multi-phase Flows
Computational analysis drop formation low viscosity
Precision Droplet Creation

Digital Microfluidics

Electrowetting은 전기장을 사용하여 표면 습윤 특성을 변경하는 과정입니다. Digital microfluidics는 전기 습식이 개별 유체 방울을 제어하고 조작하는데 사용되는 미세 유체 분야입니다. 이 아이디어는 디지털 마이크로 일렉트로닉스에서 영감을 얻었지만 전류 대신 이산 (또는 디지털화 된)액적을 사용하여 특정 시간 내에 특정 거리에 포함된 특정 양의 유체 또는 반응물을 이동합니다. 디지털 마이크로 플루이딕스는 높은 재구성 가능성과 대규모 병렬화를 통해 프로세스 속도를 높일 수있는 능력 때문에 다양한 바이오칩 설계에서 응용 분야를 찾습니다.

가장 중요한 표면 습윤 특성은 유체와 표면 사이의 접촉각입니다. FLOW-3D의 강력한 표면장력 모델은 전기 운동 모델과 함께 유전 영동, 열 모세관 작동 (온도에 따른 표면 장력을 통한 작동) 및 전기 습윤 자체와 같은 디지털 미세 유체 공정에서 습윤 역학을 포착하는 데 사용됩니다.

Microfluidic Circuits

Microfluidic Circuits

생물학에서 물질을 한 장소에서 다른 장소로 운반하거나 수백 개의 검사를 병렬로 수행하기 위해 사용하는 미세 유체 회로 장치 분야에서 최근 발전하고 있습니다. 일반적으로 이러한 회로는 특정 논리(AND, OR, XOR 등) 또는 여러 로직의 조합을 기반으로 합니다. 따라서 이러한 회로를 마이크로유체 논리 회로라고도 합니다. 전자 회로와 유사하게 오일은 채널과 공압 밸브를 통과하며 압력 디퍼렌셜에 의해 구동됩니다(전자 회로의 기존 전위/전압 디퍼렌셜과는 대조적으로). FLOW-3D의 움직이는 물체 모델은 유체 흐름과 결합되어 공압 밸브의 움직임을 시뮬레이션할 수 있습니다.

Simulation of a pneumatic latching valve used in microfluidic demultiplexer. The animation starts at stage 3 – the open stage, and finally evolves to stage 7 – the closed stage.

Read the Microfluidic Circuit – Pneumatic Latching Valve blog.

Lab-on-a-chip

다양한 표면 장력을 사용하는 패턴화된 표면

마이크로 채널의 패턴화된 표면은 액체 사이의 실제 물리적 벽 없이도 여러 액체가 나란히 흐르는 특정 경로를 따라 한 저장소에서 다른 저장소로 액체를 운반하는 데 사용할 수 있습니다. 패턴화된 표면은 랩 온어 칩 (lab-on-a-chip), 바이오어세이, 마이크로 리액터 및 화학적 및 생물학적 감지를 통해 유체를 운반하는 데 사용됩니다. 이 경우 표면 장력은 패턴화된 흐름을 생성하기 위해 마이크로 채널의 유체 흐름을 조작하는데 사용됩니다. 고체 표면에서 유체의 친수성 또는 소수성 거동을 이용하여 마이크로 채널을 통한 여러 유체의 움직임을 제어합니다. 마이크로 채널 내부의 유체 흐름은 층상이므로 여러 유체 흐름 (이 경우 2 개)이 난류 혼합없이 나란히 흐를 수 있습니다. 유체 흐름의 측면에는 물리적 벽이 없기 때문에 흐름은 소위 가상 벽에 의해 제한됩니다. 이 벽은 기본적으로 두 유체 사이의 친수성 경계입니다.

Patterned surfaces in micro channels
Experimental results showing the three phases – A, B and C (left to right), Bin Zhao et al.

위 그림은 마이크로 채널의 실험을 보여줍니다. 중앙 수평 채널의 중간 스트립은 친수성이지만 상부 및 하부 수직 채널과 함께 나머지 채널은 소수성의 정도가 다릅니다. 소수성은 접촉각의 몇도 정도만 다릅니다. 상부 채널의 접촉각은 118o이고 하부 채널의 접촉각은 112o입니다. 그러나 접촉각의 작은 차이는 유체가 이러한 영역으로 흐르기 위해 상당히 다른 압력을 필요로합니다.

Numerical Simulation

처음에는 모든 채널이 다른 유체(투명)로 채워집니다. 분홍색 액체가 수평 채널로 밀리면 중앙 영역(단계 A)의 친수성 경로를 사용합니다. 압력이 증가하면 유체는 하부 친수성-수성 장벽을 깨고 하부 친수성 영역(단계 B)으로 흐르기 시작합니다. 압력을 더 높이면 마침내 유체가 상부 친수성-수소성 장벽을 부수고 상부 영역에서도 흐르기 시작합니다(Phase C).

Numerical results - patterned surfaces using varied surface tension
Numerical results showing the three phases – A, B and C.

위의 수치 결과는 둘 사이에 중요한 차이가 있다는 점을 고려할 때 실험에서 패턴화된 표면 연구의 전반적인 아이디어와 합리적인 비교 가능성을 보여줍니다. 위에 표시된 수치 결과는 과도 상태 (압력이 지속적으로 증가)이므로 유체 경계가 실험 결과와 정확히 유사하지 않습니다. 마찬가지로 유체 특성은 실험에 사용 된 특성과 정확히 유사하지 않습니다. 그럼에도 불구하고 유체 1은 실험에서와 같이 압력이 증가함에 따라 단계 A, B 및 C를 통과합니다. 단계 B에서 투명한 유체는 계속해서 위쪽 채널을 통해 흐르지 만 분홍색 유체만 아래쪽 영역으로 흐릅니다. 이것은 실험과 일치합니다. 흥미로운 것은 C 단계에서 나타난 기포 형성입니다. C 단계에서 기포 형성과 같은 흥미로운 물리학에 대한 계시와 연구는 미세 유체 장치의 설계 및 제작 과정에 중요 할 수 있습니다.

FLOW-3D Results

아래 애니메이션은 위의 실험에 대한 FLOW-3D의 시뮬레이션 결과를 보여줍니다. 유체 1 (하늘색)은 실험의 분홍색 유체와 동일합니다. 처음에는 전체 도메인이 Fluid 2 (투명 유체)로 채워집니다. 압력은 단계적으로 증가하고 시뮬레이션이 진행됨에 따라 세 단계를 모두 볼 수 있습니다.

Evolution of fluid flow with increasing pressure in patterned micro channels created by varying contact angles.

Ref: Bin Zhao, Jeffrey S. Moore, David J. Beebe, Surface-Directed Liquid Flow Inside Microchannels, Science 291, 1023 (2001)

Learn more about the power and versatility of modeling microfluidic applications with FLOW-3D

Continuous Flow Microfluidics

Continuous Flow Microfluidics

연속 흐름 미세 유체는 연속성을 깨지 않고 제작 된 마이크로 채널을 통해 액체 흐름을 조작하는 것입니다. 유체 흐름은 마이크로 펌프 (예 : 연동 펌프 또는 주사기 펌프)와 같은 외부 소스 또는 전기, 자기 또는 모세관 힘과 같은 내부 메커니즘에 의해 설정됩니다. 연속 유동 미세 유체 학은 미세 및 나노 입자 분리기, 입자 집속, 화학적 분리는 물론 단순한 생화학 적 응용을 포함한 다양한 응용 분야에서 응용 분야를 찾아 내지 만 높은 수준의 제어가 필요한 경우에는 선택 방법이 아닐 수 있습니다.

이 범주에 속하며 FLOW-3D를 사용하여 성공적으로 시뮬레이션한 프로세스 또는 장치로는 Joule 가열, 액체 게이트, 마이크로 유체 회로, 전기-오토믹 밸브, 입자 집중, 분류 및 분리, POC(Point-of-Care) 모세관 유량 장치 및 패턴 있는 표면 장치가 있습니다.

Sketch of cross section of the device
Capillary Flows
Electro osmosis
Electro-osmosis
Simulating joule heating
Joule Heating
Patterned surfaces in micro channels
Lab-on-a-chip
Magnetic fields
Magnetic Fields
Pneumatic valve
Microfluidic Circuits
Hong chamber simulations
Mixing Dynamics
Buoyancy dominant sorting
Particle Sorting

Cell Behavior

Cell Behavior

정밀하고 신중하게 제어되는 화학 반응성 구배를 생성 할 수있는 능력은 미세 유체학을 운동성, 화학성 및 소수의 미생물 집단에서 항생제에 대한 내성을 단기간에 진화시키고 개발하는 능력을 연구하는 이상적인 도구가 됩니다. FLOW-3D는 연구자들이 아래 예제에 표시된 것처럼 새롭고 더 나은 gradient generators를 고안하는 데 도움이 될 수 있습니다.

1-D Gradient generator with de-coupled convection and diffusion

FLOW-3D를 사용한 이 1-D 미세유체 팔레트 시뮬레이션에서는 표시된 흐름선을 통해 주 중앙 마이크로 채널에서 대류 셀의 깨끗한 디커플링을 확인할 수 있습니다. 이 흐름은 모두 대류 단위로만 제한되며 마이크로 채널로 유출되는 단 한 개의 흐름도 없어 대류 및 확산의 디커플링이 우수합니다. 소스 농도의 진화는 그림에서 볼 수 있으며, 애니메이션이 끝날 때쯤이면 눈에 띄게 일정해집니다.

This FLOW-3D simulation of a 2-D microfluidic palette demonstrates a spatio-temporal control on the generated gradients. The source and sink are rotated at an angular velocity. Also, after every t seconds, the active access port is deactivated and the next port is turned on. To see the live status of the diffusion inside the chamber, three line probes are placed in the simulation (marked in red, blue and black, respectively, in the bottom right window of the simulation).2-D 마이크로 유체 팔레트의 이  FLOW-3D 시뮬레이션은 생성된 그라데이션에 대한 spatio-temporal 제어를 보여줍니다. 소스 및 sink는 각 속도로 회전합니다. 또한 t초마다 활성 액세스 포트가 비활성화되고 다음 포트가 켜집니다. 챔버 내부의 확산 상태를 확인하기 위해 시뮬레이션에 세 개의 라인 프로브가 배치됩니다(시뮬레이션의 오른쪽 하단 창에 각각 빨간색, 파란색 및 검은색 표시).

Read the Microfluidic Palette – A Gradient Generator blog.

Micro/Bio/Nano Fluidics

Micro/Bio/Nano Fluidics

기계적, 유체적, 광학적 및 전자적 기능을 매우 작은 패키지에 통합한 현대적인 마이크로 유체 장치는 비용, 규모 및 대규모 시스템에 직접 통합하는 능력 면에서 기존 장치에 비해 중요한 장점을 가지고 있다. 3D모델링 및 시각화는 풍부한 기능을 제공하는 효율적인 도구이다. Ivy분석을 통해 연구 시간, 설계 및 생산 비용을 크게 절감할 수 있습니다. 마이크로, 바이오 및 나노 유체 역학은 FLOW-3D의 자유 표면 및 다중 유체 모델링 기능으로 쉽고 정확하게 시뮬레이션할 수 있습니다. 이 섹션의 시뮬레이션을 통해 보다 잘 이해할 수 있는 다양한 애플리케이션과 프로세스를 살펴보시기 바랍니다.

FLOW-3D는 시각적 관찰과 양호한 정량적 추세 예측을 바탕으로 우수한 정성적 합의를 제공했습니다. 마찬가지로 중요한 것은 소프트웨어가 설계 민감도를 정확하게 예측한다는 점이다. 그 결과, FLOW-3D는 Kodak의 고급 연구 개발 작업을 지원하는 데 유용한 통찰력을 제공했습니다.

FLOW-3D는 시각적 관찰과 양호한 정량적 추세 예측을 바탕으로 우수한 정성적 합의를 제공했습니다. 마찬가지로 중요한 것은 소프트웨어가 설계 민감도를 정확하게 예측한다는 점이다. 그 결과, FLOW-3D는 Kodak의 고급 연구 개발 작업을 지원하는 데 유용한 통찰력을 제공했습니다.

Christopher Delametter, Senior Research Scientist, Eastman Kodak Company

Acoustophoresis
Acoustophoresis
Microfluidics palette
Cell Behavior
Microfluidics particle sorting using hydrodynamics
Continuous Flow Microfluidics
Digital microfluidics
Digital Microfluidics
Droplet based microfluidics
Droplet Based Microfluidics
Optofluidics
Optofluidics
Phase change
Phase Change

Customer Case Studies

육안으로 볼 수 있는 것보다 더 작은 도전은 FLOW-3D를 사용하여 미세 유체 소자 응용 프로그램을 모델링하는 고객들이 매일 직면하는 과제입니다. FLOW-3D를 통해 이러한 엔지니어와 과학자들은 실험실에서 복제할 수 없는 것을 모델링하고, 생명을 구하는 의료 기기를 검증하고, 잉크젯 형성을 연구하며, 경우에 따라 육안 모델을 제작할 수 있습니다. 때로는 가장 작은 문제가 가장 큰 문제이기도 하지만, FLOW-3D가 도움이 될 수 있습니다.

CFD analysis of stem cell culture
Advances in Nanotechnology
Computational analysis drop formation low viscosity
Computational Analysis of Drop Formation and Detachment
Inkjet formations simulations
Inkjet Printhead Performance
Thermal bubble model
Kodak Develops New Printhead Design in 1/3rd the Time
Photonic switching platform
Microscopic Bubbles Switch Fiber-Optic Circuits
Blood volumetric fraction
Optimization of Magnetic Blood Cleansing Microdevices

관련 기술자료

Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. Chinaa ...
더 보기
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

by  Cristina González Fernández1, Jenifer Gómez Pastora2, Arantza Basauri1, Marcos Fallanza1, Eugenio Bringas1, Jeffrey J. Chalmers2 and Inmaculada Ortiz1,* 1Department of Chemical and Biomolecular Engineering, ETSIIT, ...
더 보기
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Jenifer Gómez-Pastora,  Ioannis H. Karampelas,  Eugenio Bringas,  Edward P. Furlani &  Inmaculada Ortiz  Scientific Reports volume 9, Article number: 7265 (2019) Cite this article Abstract 이 연구에서는 ...
더 보기
Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

A. Chandorkar Published 2009 Abstract This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD ...
더 보기
Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링 Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, ...
더 보기
Fig.4 Schematic of a package structure

Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling

Junichi Saeki and Tsutomu KonoProduction Engineering Research Laboratory, Hitachi Ltd.292, Y shida-cho, Totsuka-ku, Yokohama, 244-0817 Japan Abstract Thermosetting molding compounds ...
더 보기
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션 ZhenyanXiaa YangZhaoa ZhenYangabc ChengjuanYangab ...
더 보기
A new dynamic masking technique for time resolved PIV analysis

A new dynamic masking technique for time resolved PIV analysis

시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술 물체 가시성을 허용하기 위해 형광 코팅과 결합 된 새로운 프리웨어 레이 캐스팅 ...
더 보기
On the role of the powder stream on the heat and fluid flow conditions during Directed Energy Deposition of maraging steel-Fig3

On the role of the powder stream on the heat and fluid flow conditions during Directed Energy Deposition of maraging steel—Multiphysics modeling and experimental validation

MohamadBayataVenkata K.NadimpalliaFrancesco G.BiondaniaSinaJafarzadehbJesperThorborgaNiels S.TiedjeaGiulianoBissaccoaDavid B.PedersenaJesper H.Hattela a Department of Mechanical Engineering, Technical University of Denmark, Building 425, Lyngby, Denmark b Department ...
더 보기
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

On-chip fabrication and in-flow 3D-printing of cellladen microgel constructs: From chip to scaffold materials in one integral process

cellladen 마이크로 겔 구조의 온칩 제작 및 인플 로우 3D 프린팅 : 하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지 Benjamin Reineke ...
더 보기