FLOW-3D HYDRO

응용 프로그램 개요

FLOW-3D HYDRO

FLOW-3D HYDRO 는 더 높은 수준의 정확도와 모델 해상도를 제공하기 위해 3D 비 유압 모델링 기능이 필요한 경우 고급 모델링 도구로 사용할 수 있습니다. 일반적인 모델링 응용 분야는 소형 댐 / 인프라, 운송 수력학, 복잡한 3D 하천 수력학, 열 부력 연기, 배수구 및 오염 물질 수송과 관련됩니다. 

FLOW-3D HYDRO의 핵심 기능은 전체 3D 모델과 동적으로 연결될 수있는 얕은 물 모델입니다. 

이 기능을 통해 사용자는 멀티 스케일 모델링 애플리케이션을위한 모델 도메인을 확장하여 필요한 모델 해상도로 계산 효율성을 극대화 할 수 있습니다. FLOW-3D HYDRO  또한 강 및 환경 응용 분야에 특화된 추가 기능과 고급 물리학을 포함합니다.

시뮬레이션 템플릿

FLOW-3D HYDRO 의 작업 공간 템플릿으로 시간을 절약하고 실수를 방지하며 일관된 모델을 실행하십시오 . 작업 공간 템플릿은 일반적인 응용 분야에 대한 유체 속성, 물리적 모델, 수치 설정 및 시뮬레이션 출력을 미리로드합니다.

작업 공간 템플릿은 7 가지 모델 클래스에 사용할 수 있습니다.

  • 자유 표면 – TruVOF (기본값)
  • 공기 유입
  • 열 기둥
  • 퇴적물 수송
  • 얕은 물
  • 자유 표면 – 2 유체 VOF
  • 자유 표면 없음

사전로드 된 예제 시뮬레이션

FLOW-3D HYDRO 의 40 개 이상의 사전로드 된 물 중심 예제 시뮬레이션 라이브러리는 애플리케이션 모델링을위한 훌륭한 시작점을 제공합니다. 사전로드 된 예제 시뮬레이션은 모델러에게 모델 설정 및 모범 사례의 로드맵뿐만 아니라 대부분의 애플리케이션에 대한 자세한 시작점을 제공합니다.이전다음

비디오 튜토리얼

비디오 자습서는 새로운 사용자가 다양한 응용 프로그램을 모델링하는 방법을 빠르게 배울 수있는 훌륭한 경로를 제공합니다. FLOW-3D HYDRO 비디오 튜토리얼 기능 :

  • 광범위한 응용 및 물리학을위한 AZ 단계별 기록
  • “사용 방법”정보
  • 모범 사례를위한 팁
  • CAD / GIS 데이터, 시뮬레이션 파일 및 후 처리 파일

고급 솔버 개발

Tailings Model

새로운 Tailings Model은 tailings dam failure로 인한 tailings runout을 시뮬레이션하기위한 고급 기능을 제공합니다. tailings정의에 대한 다층 접근 방식과 함께 미세하고 거친 입자 구성을 나타내는 이중 모드 점도 모델은 모든 방법으로 건설 된 tailings 댐의 모델링을 허용합니다. 

얕은 물, 3D 및 하이브리드 3D / 얕은 물 메싱을 포함한 유연한 메싱을 통해 얕은 지역에서 빠른 솔루션을 제공하면서 다층 tailings의 복잡성을 정확하게 모델링 할 수 있습니다. 점성 경계층의 정확한 표현을 위해 얕은 물 메시에 2 층 Herschel-Bulkley 점도 모델을 사용할 수 있습니다.

모델 하이라이트

  • 미세 입자 및 거친 입자 광미 조성물을위한 이중 모드 점도 모델
  • 침전, 패킹 및 입자 종의 난류 확산을 포함한 Tailings  수송
  • 얕은 물 메시를위한 2 층 Herschel-Bulkley 점도 모델
  • 3D, 얕은 물, 3D / 얕은 물 하이브리드 메시를 포함한 유연한 메시 접근 방식
  • Multi-layer, variable composition tailings for general definition of tailings dam construction

Shallow Water

FLOW-3D HYDRO 의 얕은 물 모델링 기능은 3D 메시를 얕은 물 메시와 결합하여 탁월한 모델링 다양성을 제공하는 고유 한 하이브리드 메시를 사용합니다. 압력 솔버의 수치 개선으로 더 안정적이고 빠른 시뮬레이션이 가능합니다. 하이브리드 메쉬의 하단 전단 응력 계산이 크게 향상되어 정확도가 더욱 향상되었습니다. 지형에 거칠기를 적용하는 새로운 방법에는 Strickler, Chezy, Nikuradse, Colebrook-White, Haaland 및 Ramette 방정식이 포함됩니다.

Two-Fluid VOF Model

sharp 인터페이스가 있거나 없는 압축 가능 또는 비압축성 2 유체 모델은 항상 1 유체 자유 표면 모델과 함께 FLOW-3D 에서 사용할 수 있습니다 . 사실, sharp 인터페이스 처리는 TruVOF 기술을 자유 표면 모델과 공유하며 상용 CFD 소프트웨어에서 고유합니다. 최근 개발에는 2- 필드 온도 및 인터페이스 슬립 모델이 포함되었습니다. 이 모델은 오일 / 물, 액체 / 증기, 물 / 공기 및 기타 2 상 시스템에 성공적으로 적용되었습니다.

FLOW-3D HYDRO 는 2- 유체 솔루션의 정확성과 안정성에서 두 가지 중요한 발전을보고 있습니다. 운동량과 질량 보존 방정식의 강화 된 결합은 특히 액체 / 기체 흐름에서 계면에서 운동량 보존을 향상시킵니다. 연속성 방정식에서 제한된 압축성 항의 확장 된 근사값은 더 빠르고 안정적인 2 유체 압력 솔버를 만듭니다.

예를 들어, 터널 및 드롭 샤프트 설계와 같은 유압 응용 분야에서 공기가 종종 중요한 역할을 하기 때문에 두 개발 모두 FLOW-3D HYDRO 릴리스에 적시에 적용됩니다. 일반적으로 낮은 마하 수로 인해 이러한 경우 물과 공기에 제한된 압축성이 사용됩니다.

고성능 컴퓨팅 및 클라우드

고성능 컴퓨팅 FLOW-3D HYDRO

일반 워크스테이션 또는 랩톱으로 많은 작업을 수행 할 수 있지만, 대형 시뮬레이션과 고화질 시뮬레이션은 더 많은 CPU 코어를 활용함으로써 엄청난 이점을 얻을 수 있습니다. FLOW-3D CLOUD 및 고성능 컴퓨팅은 더 빠르고 정확한 모델을 실행할 수있는 더 빠른 런타임과 더 많은 선택권을 제공합니다.

하천 및 환경 중심 애플리케이션

TRANSPORTATION HYDRAULICS
SMALL DAMS AND DIVERSIONS
RIVER HYDRAULICS
SEDIMENT TRANSPORT AND DEPOSITION
OUTFALLS EFFLUENTS
THERMAL PLUMES BUOYANT FLOWS

Case Studies

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D WELD Products

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 구조 변화를 제어할 수 있습니다.

레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D@ WELD는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리 모델을 제공합니다.

Laser Welding

최근에는 뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 주목 받고 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 낮고 변형이 적으며, 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D@는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다.

보다 나은 프로세스 제어를 통해 기공을 최소화할 수 있습니다. 열 영향부위 및 미세조직을 제어가 가능합니다. FLOW-3D는 자유표면 추적 알고리즘을 통해 매우 복잡한 용접 POOL 시뮬레이션을 해석하는데 매우 적합합니다.

용접 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas 효과, 용융 풀의 반동압력 및 다중 레이저 반사와 같은 물리적 모델을 FLOW-3D에 적용하기 위해 개발되었습니다. 키홀 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 적용하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 기공을 최소화하며, 레이저 용접공정에서의 dendrite 결정 성장 양상을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16K kW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융풀 거동을 확인할 수 있었습니다. 그들은 또한 FLOW-3D 로 용접 공정 해석으로 해석과 실험결과의 경향이 일치하는 것을 알 수 있었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
Schematic of computation domain in FLOW-3D

 

Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 용접 공정 변수, 즉 keyhole 용접에서 기공의 발생에 대해 용접 속도 및 용접 각도와 같은 공정 매개 변수가 미치는 영향을 알아보기 위해 협력하여 연구를 진행하였습니다.

레이저 용접된 Al 접합부 단면의 기공을 분석합니다. Keyhole이 유도 된 기공들은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 기공을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole 용접에서 생성된 기공들의 주요 원인으로 불안정한 Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 기공들을 생성시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 갇혔을때 기공들이 발생되었습니다.

Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해, 보다 안정적인 keyhole이 생성됩니다. 연구진은 FLOW-3D를 사용하여 용접 속도와 용접 경사각으로 기공들의 생성을 완화시킬 수 있었습니다.

바람이 개방형 철광석 골재 저장소에 미치는 영향 분석 (비산먼지 배출 방지 연구)

다양한 구성에 대한 비산 먼지 배출

이 기사는 Dhananjay Sharma, EI, CFM, 유압 모델링 엔지니어, AECOM 에 의해 기고되었습니다  .

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km2 철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

두 가지 다른 구성(옵션 A와 B)을 FLOW-3D로 모델링하여 비산먼지 배출의 영향을 연구했습니다. 옵션 A에는 4줄에 9개 더미가 있는 36개의 비축량이 있고 옵션 B에는 1줄에 총 16개의 비축량이 있습니다.

또한 장벽이 있는 공기와 장벽이 없는 공기의 속도를 비교하기 위해 비축물 주변을 따라 30미터 높이의 장벽을 모델링할 수도 있습니다. 10m 높이에서 기준 초속 7.5m(m/s)의 풍속이 두 구성을 모두 모델링하는데 사용되었습니다. 비축 옵션 A와 B에 대해 네 가지 풍향 방향이 분석되었습니다.

물리적 및 수치 적 모델링

초기 모델 설정

FLOW-3D 에서 비산 먼지 배출을 모델링하기  위해, 공기 온도는 15 ° C로 가정되었습니다. 단일의 균일한 비압축성 유체 옵션이 선택되었습니다. z 방향에서 -9.81 m / s의 중력이 사용되었습니다. 유체는 점성과 난류로 간주되었습니다. 2- 방정식 (ke) 모델은 옵션 A 및 B 구성 모두에 대해 표면 마찰없이 난류를 계산하는데 사용되었습니다.

초기 조건

1/7 power 법칙 (pproximately a logrithmic law-of-the-wall distribution)에 기반한 속도 프로파일이 각 시뮬레이션에 대한 초기 조건으로 지정되었습니다. 비축 분석에서 가장 관심있는 기준 속도는 12 및 7.5m / s입니다. 풍속을 증가시키고 파일에 인접한 속도에 미치는 영향을 측정하여 분석을 수행했으며, 레이놀즈 스케일링이 이러한 속도에 대해 유지된다는 것을 확인했습니다 (즉, 들어오는 풍속 스케일링과 파일에 인접한 속도 스케일링 간의 선형 관계).   그런 다음 7.5m / s의 속도 만 사용하여 FLOW-3D 시뮬레이션을 구성했습니다. 이러한 시뮬레이션의 결과는 12m / s 조건을 충족하도록 확장 할 수 있습니다.

풍력 프로파일 power 법칙을 사용하여 10m에서 7.5m / s 이상 및 이하의 다양한 높이에 대한 속도를 추정했습니다. 경계에서 속도를 적용하는 이 방법은 경계를 따라 지형 변화를 허용하지 않습니다. 기준 속도는 서쪽, 남서부 및 남풍 방향에 대해 해발 10 미터에서 할당되었습니다. 동풍의 경우, 속도는 뒤쪽 (Y- 최대) 경계에서 경사 10 미터 위의 기준 높이에 할당되었습니다.

풍력 프로파일 power 법칙은 z 방향으로 최대 360m까지 모든 미터에서 계산되었습니다. 속도는 메쉬 크기와 동일한 간격으로 평균화되었습니다. 속도가 할당된 높이 간격은 2, 4, 6, 8, 10, 20, 70, 181, 270 및 360 미터입니다. 속도 프로파일을 설정 한 후 각 높이 간격에 대한 값은 네 가지 풍향 (서쪽, 남서쪽, 남쪽 및 동쪽) 각각에 대해 X 및 Y 구성 요소로 세분화되었습니다. 초기 조건은 메쉬 블록의 외부면에 할당되어 비축에 도달하기 전에 속도 프로파일이 개발 될 수있는 충분한 수평 공간을 남겼습니다.

풍력 프로필 power 법칙은 다음과 같습니다.

\ displaystyle {{u} _ {x}} = {{u} _ {r}} {{\ left ({\ frac {{{{z} _ {x}}}} {{{{z} _ { r}}}}} \ right)} ^ {\ propto}}, 여기서

U x  = 높이에서의 풍속 x
U r  = 기준 높이에서의 풍속
Z x  = 높이 x
Z r  = 기준 높이
α = 1/7 ‐ 대기 안정성 계수

지형

3 개의 지형파일인 스테레오리소그래피 (STL) 파일이 생성되어 모델에 통합되었습니다. 개별 파일은 지형, 창고 및 기둥에 해당합니다. 옵션 A와 B에 대해 다른 STL 파일이 생성되었습니다.

메싱

모델 도메인은 각 풍향에 대해 조정되었습니다. 메쉬 크기는 옵션 A의 경우 240 만에서 330 만 셀, 옵션 B의 경우 130 만 셀입니다. 정확하게 기둥 근처에 높이 2m, 길이 4m, 너비 4m의 셀 크기를 사용했습니다. 해당 지역의 속도를 계산합니다.

경계 조건

비축 시뮬레이션에는 네 가지 경계 유형이 사용되었습니다. 모든 풍향에 대해 상단 경계 (Z-max)가 정체 압력으로 지정되었습니다. 바람의 방향에 따라 두 개의 측벽이 유출 경계 조건으로 지정되었습니다. 나머지 두 측벽에는 그리드 오버레이 경계가 지정되었습니다. 그리드 오버레이를 사용하면 초기 조건의 속도를 모델에 입력 할 수 있습니다. 중첩 된 블록을 사용하여 원하는 메시 해상도와 배율을 만들었습니다. 내포된 블록 사이의 경계면에서 대칭 경계 조건이 사용되었습니다. 대칭을 사용하면 블록간에 정보를 전송할 수 있습니다. 그림 1은 서쪽 풍향 (y 방향)에 대한 경계 조건 설정을 보여줍니다. 다른 풍향의 경우 경계 조건을 적용하는 데 유사한 방법이 사용되었습니다.

경계 조건 서쪽 풍향
그림 1. 서쪽 풍향의 경계 조건

장벽

FLOW-3D 의 배플 기능은 비축된 곳의 주변에 바람 장벽을 만드는데 사용되었습니다. 옵션 A와 B의 배플은 높이가 30 미터였으며 지형을 따라 여러 부분으로 구성되었습니다. 모델링된 장벽은 본질적으로 다공성입니다. 34 %의 다공성 값 (즉, 34 % 개방 면적) 및 해당 속도 대 압력 강하 값은 장벽 제조업체에서 얻었습니다. FLOW-3D의  모델과 연관된 흐름 다공성 손실이 지정될 수있는 배플 알고리즘을 사용합니다. 배플은 무한히 얇고 부피를 차지하지 않습니다.

시뮬레이션 결과

옵션 A

옵션 A의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 4 가지 풍향을 분석하고 시뮬레이션했습니다.

바람의 방향배리어없는 최대 속도 (m / s)배리어가있는 최대 속도 (m / s)최대 속도 감소
서부13.58611.27817 %
남서부13.04510.79617 %
남쪽12.35212.122 %
동쪽9.768.59712 %

각 시뮬레이션의 최대 속도와 장벽과 장벽이 없는 경우 사이의 최대 속도 감소는 위의 표 1에 나와 있습니다. 장벽은 남풍의 최대 속도에 가장 적은 영향을 미칩니다. 옵션 A에 대한 장벽 추가로 최대 속도가 2 % 감소했습니다. 장벽은 서풍 또는 남서풍이있는 전체 파일 케이스의 속도에 가장 큰 영향을 미쳤습니다. 최대 속도는 서풍과 남서풍 모두에서 17 % 감소했습니다.

옵션 B

옵션 B의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 네 가지 풍향을 분석하고 시뮬레이션했습니다.

그림 2. 옵션 A : 장벽이없는 서풍의 비축량에서 계산 된 속도 크기
장벽이있는 속도 크기 서풍
그림 3. 옵션 A : 장벽이있는 서풍 방향의 비축에서 계산 된 속도 크기
바람의 방향배리어없는 최대 속도 (m / s)배리어 포함 최대 속도 (m / s)최대 속도 감소
서부15.9711.3629 %
남서부15.149.2139 %
남쪽13.410.124 %
동쪽12.787.1544 %
그림 4. 옵션 B. 장벽이없는 동풍의 비축량에서 계산 된 속도 크기
그림 5. 옵션 B : 장벽이있는 동풍의 비축에서 계산 된 속도 크기

결론

모델 결과는 비축물 주변에 장벽을 추가하는 것이 속도를 줄이고 비산먼지 배출을 방지하는데 도움이 된다는 것을 분명히 보여주었습니다. 현장 주변의 장벽 추가와 관련된 비용이 있지만, 이 옵션은 먼지 배출량을 줄임으로써 환경 규범을 달성하는 데 도움이 될 것입니다. 모델 결과를 보면 FLOW-3D가 비산먼지 방출을 연구하기 위한 정확하고 신뢰할 수 있는 도구로 사용될 수 있다는 것이 분명합니다. 추가 설계 변경과 철골 배치의 새로운 옵션이 제안될 경우 FLOW-3D에서 쉽게 모델링하여 비용 및 환경적으로 효과적인 최적의 구성을 결정할 수 있습니다.

FLOW-3D 분말 소결 적층 조형 프로세스 해석

FLOW-3D 분말 소결 적층 조형 프로세스 해석

FLOW-3D DEM

FLOW-3D@ DEM을 이용하여 분말 적층 공정(파우더 베드 방식) 해석이 가능합니다. 여기에서는 재질: Ni 합금 (Inconel 718), 적층 피치 60μm 정도를 실시한 사례입니다. 지름 20um의 입자를 기준으로 지정하고, 자유낙하에 의해 베드를 형성합니다. 입자는 높이 방향으로 3개 정도로 적층되었습니다. 일정한 입경(case 1)에 미세한 입자를 섞은 것(case2)은 충전율이 높아졌습니다. 한편 굵은 입자를 지정한 케이스(case3)는 충전율이 나빠지는 결과를 확인할 수 있었습니다.

FLOW-3D DEM을 이용한 분말적층공정
FLOW-3D DEM을 이용한 분말적층공정

FLOW-3D WELD 용융지 형성 후 다시 응고되어 가는 모습 확인

FLOW-3D@ DEM에서 얻은 입자 배드에 레이저를 조사하여 용융 해석을 실시한 사례입니다. FLOW-3D@ WELD에서는 레이저에 의한 에너지 밀도 분포를 부여하여 열, 유동 해석을 실시합니다. 용융지가 형성되었다가 다시 응고되어 가는 모습을 확인할 수 있습니다.

입자 충전율이 높은 경우(case2)에서는 용융지가 비교적 직선으로 늘어나지만 충전율이 낮은 경우에 구불구불한 형태로 용융지가 형성되었습니다. 입자가 형성되는 표면 형상, 틈새가 비드 형성에 영향을 준다는 것을 알 수 있습니다.

FLOW-3D WELD 온도  Contour Map
FLOW-3D WELD 온도 Contour Map

F.SAI를 이용한 열응력 해석

FEM mesh 데이터와 FLOW-3D@ 결과 파일에서 구조 인터페이스 F.SAI를 이용하여 온도 데이터를 추출합니다.

여기에서는 case2의 결과를 이용하여 온도 데이터를 추출하여 얻을 수 있고, 온도 데이터를 하중 데이터로 하여 각종 구조해석 소프트웨어에서 열응력 해석을 실시했습니다.

오른쪽 그림에 NX Nastran, MSC Nastran, Marc의 결과를 보여 줍니다. 수축에 의한 응력의 발생과 변위의 모습을 확인할 수 있습니다.

FEM 메시  데이터와 FLOW-3D결과 파일에서 구조 인터페이스를 통한 열응력해석
FEM 메시 데이터와 FLOW-3D결과 파일에서 구조 인터페이스를 통한 열응력해석

Ti-6Al-4V 금속 분말에 의한 선택적 레이저 용융법 수치 해석

Ti-6Al-4V 금속 분말에 의한 선택적 레이저 용융법 수치 해석

선택적 레이저 용융법(SLM: Selective Laser Melting)은 3D 프린팅 기술의 하나로 최근 주목 받고 있습니다. SLM에서는 레이저 조사 중 높은 온도 구배로 인해, 용융과 재응고 현상이 일어나므로 용융금속 유체의 거동이 중요한 역할을 담당하고 있어, 구성 부품의 최종 구조를 결정합니다.

FLOW-3D@ WELD를 이용하여 T-6Al-4V(64티타늄 합금)에 대한 선택적 레이저 용융법 (SLM) 시뮬레이션이 가능합니다.

SLM 개념도
SLM 개념도

금속 분말을 얇게 깔아 생긴 분말층에 레이저를 조사하면 조사된 부분만 용융, 응고 됩니다. 이 공정을 반복하면서 적층하여 3차원 형상을 만듭니다. 금속을 재료로 하여 고강도 제품을 만들수 있으므로, 기존의 시작 제품(Rapid Prototyping)뿐만 아니라, 짧은 납기일, 저비용, 고기능 등을 목적으로 한 Additive Manufactuing 기술로서 주목받고 있습니다.

FLOW-3D@ WELD를 이용한 해석을 통해서, 표면의 경사에 따라 용융지의 형상과 온도 분포가 결정된다는 것을 알 수 있습니다.

용융 풀의 최대 깊이는 SLM의 형태학적 변화에 따라 달라지며 평균 깊이는 42μm입니다.

선택적 레이저 용융법 (SLM) 해석 결과
선택적 레이저 용융법 (SLM) 해석 결과

 *Source: National Cheng Kung University, Department of Materials Science and Engineering, Taiwan YC Wu, WS Hwang

분말 베드 용융 결합의 Mesoscopic 열 유동해석

분말 베드 용융 결합의 Mesoscopic 열 유동해석

자료 제공: 오하이오 주립대학교
자료 제공: FLOW Science Japan

오하이오 주립대학의 YS Lee W.Zhang 등에 의한 Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufactuing는 FLOW-3D를 이용하여 금속 분말층의 레이저에 의한 용융 결합 (L-PBF)을 분석하고 있습니다. 논문에서는 DEM으로 생성한 임의의 분말층을 분석 대상으로 하고, FSJ 에서 개발한 FLOW-3D WELD(레이저 용접 모듈) 모듈을 이용하여 균일한 분말을 바닥에 분사한 후 그 결과를 비교했습니다.

Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufactuing
Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufactuing 해석 모델
Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufactuing 해석 결과
Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufactuing 해석 결과

위 사례를 통해 열전도나 용융금속의 거동, 용접속도의 차이에 의한 영향 등, 같은 분말 베드에서도 정상적인 해석이 가능한 것을 알 수 있습니다.

온도분포등의 결과의 차이는 분말층의 차이로 발생될 수 있으며, 향후, FLOW-3D@ DEM(FSJ 개별요소법 모듈)을 이용한 분말층 생성기능도 개발 예정입니다.

탠덤 빔 레이저(Tandem laser)에 의한 플럭스리스 브레이징

탠덤 빔 레이저(Tandem laser)에 의한 플럭스리스 브레이징

자료 제공: 오사카대학
자료 제공: FLOW Science Japan

자동차 경량화를 위해 주요 구성 재료인 철강과 비강도가 높은 알루미늄 접합 기술이 요구되고 있습니다. FLOW-3D Weld 에서는 플럭스의 사용을 피하기 위해 주빔에 더해 예열빔을 이용한 탠덤빔에 의한 레이저 브레이징 과정을 검토할 수 있습니다.

탠덤 빔 레이저에 의한 플럭스리스 브레이징
탠덤 빔 레이저에 의한 플럭스리스 브레이징

주빔의 영향을 용융재 초기 온도, 예열빔의 영향을 모재의 온도 분포로 각각 모델화하고, 알루미늄 합금과 아연도금강의 레이저 브레이징 과정에서의 용융재료의 젖음과 유동성을 해석하였습니다. 여기에서는 아연도금강이 ScG270(GA)인 경우와 l170(GI)인 경우를 비교하고 있습니다.

불균일한 온도장에서 FLOW3D의 표면장력 접촉각기능을 통해 누수확대 재현
불균일한 온도장에서 FLOW3D의 표면장력 접촉각기능을 통해 누수확대 재현

GI강 조인트는 GA강 조인트에 비해 용융 밀림, 퍼짐성이 뛰어납니다. FLOW-3D@에 의한 해석 결과도 실험 결과와 잘 일치합니다. 이음매의 차이 이 외에도 주빔/예열빔 출력, 빔 간의 어긋남 거리등의 최적화 설계가 가능합니다.

레이저 용접에서의 키홀 동력학과 유도를 통한 Porosity 형성

레이저 용접에서의 Key Hole 동력학과 유도를 통한 Porosity 형성

자료 제공: General Motors Company, Shanghai Jiao Tong University
자료 제공: FLOW Science Japan

이 사례를 통해 FLOW-3D@ WELD를 이용하여 레이저 용접 프로세스의 키홀 형성 유도를 통한 porosity 형성에 대하여 검토가 가능한 것을 알 수 있습니다.

  • porosity 형성을 유도하는 키홀의 메커니즘
  • 레이저 출력과 용접 속도의 영향
  • 레이저 빔의 경사각의 영향으로 porosity 형성을 유도하는 키홀의 메커니즘
Porosity 형성을 유도하는 Key Hole 해석모델
Porosity 형성을 유도하는 Key Hole 해석모델

위 그림과 같이 온도에 따른 표면장력 값과 강한 우회전 소용돌이에 의해 후방으로의 유동은 거의 억제되는 것을 확인할 수 있습니다. 강한 용융 유동에 의한 Key Hole 붕괴는 초기 porosity 형성의 원인이 되지만, Key Hole 재개나 기포가 자유표면으로 빠져 나가도록 반드시 porosity를 이끌지는 않습니다.

그러나 키홀 바닥부에서 강한 소용돌이에 의해 기포가 키홀 용융지 후방 저부로 운반될 때는 높은 열전도율로 응고면이 빠르게 이동하므로, 응고면에 의해 포획될 위험이 매우 높습니다.

또한 용융 시의 알루미늄은 소용돌이가 강하기 때문에, 기포를 용융지의 바닥 후방에 있는 상태에서 배출시키는 것은 거의 불가능합니다. 기포가 응고면에 의해 포획될 경우 porosity가 형성됩니다.

레이저 출력과 용접속도의 영향

일반적으로 용접속도를 크게 하면 결합부에서 Porosity가 감소합니다. 이는 용접 속도 상승으로 모재 내 용해 및 키홀 깊이가 감소하여 키홀이 안정되기 때문입니다.

레이저 출력과 용접 속도의 영향
레이저 출력과 용접 속도의 영향
저속과 고속의 2 케이스에서 예측된 용융지의 유속장과 온도 분포
저속과 고속의 2 케이스에서 예측된 용융지의 유속장과 온도 분포

실험에 의한 길이 방향 단면의 Porisity 분포와 FLOW-3D@ WELD에 의한 분석 결과를 보여줍니다. 3번 케이스도 실험과 비슷한 용해 깊이를 가지고 있으며, 분석 결과도 실험과 매우 잘 일치하고 있습니다.

용접 단면의 Porosity 분포
용접 단면의 Porosity 분포

용접 단면의 Porosity 분포를 보면, 레이저 조사 각도가 증가할 수록 Porosity가 뚜렷이 감소하고 있음을 알 수 있습니다. 위의 오른쪽 그림에 용융지 내의 유속장과 온도분포를 보면 레이저 빔의 경사각도는 키홀의 생성 방향을 결정하여 후방의 용융지와 용융유동에 영향을 미치고 있습니다.

또한, 레이저의 경사각도가 작을 경우 강력한 증발 반력이나 중력에 의해 용융금속이 다른 방향으로 이동합니다. 이는 강한 소용돌이 흐름의 원인이 되는 구동력으로 작용하여 키홀 붕괴로 이어지기 쉽다는 것을 확인할 수 있습니다.

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. Lock
Advanced Analysis, Worley Pty Limited
L7, 116 Miller Street, North Sydney, NSW 2060 Australia
Tel: +61 2 8923 6817 e-mail: david.ho@worley.com.au

Abstract

엔지니어링 설계에서 유한 요소, 유한 차분 및 전산 유체 역학 분석 소프트웨어와 같은 수치 도구의 일상적인 사용이 최근 몇 년 동안 증가했습니다. 소프트웨어 및 하드웨어 기술의 발전은보다 비선형적이고 복잡한 3 차원 분석이 수행되고 있음을 의미합니다.

그러나 본질적으로 “블랙 박스”인 이러한 강력한 소프트웨어는 “컴퓨팅”기술을 보유하고 있지만 광범위한 엔지니어링 경험이 필요하지 않은 분석가의 손에 “컴퓨터 보조 재해”로 이어질 수 있습니다. 품질 보증 절차의 엄격한 구현은 수치 모델이나 분석 기법이 정확한지 확인할 필요가 없을 수 있습니다.

이 백서에서는 복잡성이 증가하는 세 가지 실제 토목 공학 응용 프로그램에서 수치 분석 결과를 검증하는 방법을 설명합니다. 여기에는 유한 요소법을 이용한 수조 탱크의 구조 해석, 전산 유체 역학법을 이용한 수력 구조물 위의 홍수 조사, 유한 ​​차분법을 이용한 안벽 시공 시뮬레이션 등이 있습니다. 입력 데이터의 불확실성 수준과 각 사례에 대한 계산 결과의 신뢰성에 대해 논의합니다. 분석 과정에서 몇 가지 흥미로운 결과가 발견되었습니다.

첫 번째 사례 연구는 시공의 질이 구조물의 성능에 상당한 영향을 미친다는 것을 보여주었습니다. 그러나 설계자는 설계 단계에서 이러한 상황을 수량화하고 분석하지 못할 수도 있습니다. 필요할 경우 향후 역분석은 물론 설계 검증의 기준점이 될 수 있도록 공사 종료 시 모니터링의 중요성이 필수적입니다. 유한 요소 분석은 복잡한 문제를 분석할 수 있는 강력한 수치 도구이지만, 분석가들은 문제의 행동이 단순하고 잘 이해되는 것처럼 보일 수 있는 상황에서 예상치 못한 결과를 만날 수 있도록 준비해야 합니다.

두 번째 사례 연구에서는 중요한 배수로 구조에 전산 유체 역학 분석이 처음으로 적용 되었기 때문에 엄격한 검증 프로세스가 강조됩니다. 그것은 2D ogee 방수로 프로파일로 시작하여 문제의 방수로의 3D 모델을 분석하기 위해 진행되는 방식으로 수행되었습니다.
계산된 결과를 각 단계에서 이론 및 물리적 테스트 데이터와 비교했습니다. 유체 흐름 문제의 비선형적 특성에도 불구하고, 분석은 확신을 가지고 실제 설계 목적에 적합한 결과를 제공할 수 있었습니다.

최종 사례 연구에서는 안벽의 거동이 시공 이력과 매립 방식에 영향을 받은 것으로 나타났습니다. 벽의 움직임은 매우 가변적인 토양 속성에도 불구하고 질적으로도 단순한 비선형 토양 모델을 사용하여 정확하게 예측되었습니다. 지속적인 모니터링 기록이 없기 때문에 검증은 어려웠습니다. 계산된 결과를 검증하는 열쇠는 수치 소프트웨어 도구를 사용하지 않는 독립적인 계산을 찾는 것입니다. 대부분의 경우 이러한 솔루션을 사용할 수 있습니다. 그러나 다른 경우에는 실험실 또는 현장 관찰에만 의존할 수 있습니다.

Introduction

오늘날 수치 해석은 대부분의 엔지니어링 설계에서 필수적인 부분을 형성합니다. 따라서 결과 검증의 필요성은 분석 기술 / 방법론을 신뢰할 수 있고 설계자가 계산 된 결과에 대한 확신을 가질 수 있도록 설계 프로세스 전반에 걸쳐 매우 중요합니다.

일반적인 관행은 고전 이론, 실험 데이터, 게시 된 데이터, 유사한 구조의 성능 및 다른 사람이 수행 한 수치 계산에 대해 결과를 검증하는 것입니다. 때때로 소프트웨어 개발자가 제공 한 벤치 마크 또는 검증 예제가 이러한 목적으로 사용될 수 있지만 전체 범위의 문제를 포괄 할만큼 포괄적 인 경우는 거의 없습니다.

수치 해석을 시작하기 전에 분석가는 입력 데이터의 신뢰성, 소프트웨어 도구가 문제의 문제를 해결할 수 있는지 여부 및 결과를 검증하는 방법을 결정해야합니다. 검증 프로세스가 많은 실무자들에 의해 품질 보증 절차의 일부로 채택되었지만 비용이 많이 드는 실패가 여전히 발생했습니다 [1].

Validation

결과 검증의 필요성은 수치 분석의 사용 (남용)에서 일부 나쁜 업계 관행을 관찰함으로써 강화 될 수 있습니다. 수치 계산을 수행하기 위해 고용 된 일부 엔지니어 / 분석가는 계산 뒤에있는 기본 이론을 완전히 이해하지 못하거나 숨겨진 함정을 처리 할 수있는 실제 엔지니어링 경험이 충분하지 않을 수 있습니다.

일부 소프트웨어가 “CAD와 유사”해지고 많은 사람들이 작동하기 쉽다고 주장하기 때문에 엔지니어링 회사가 대학원 엔지니어 대신 초보를 고용하여 수치 모델링 및 분석을 수행하는 경향이 점차 증가하고 있습니다.

사용자는 복잡한 지오메트리 모델을 생성하고, 적절한 요소와 메시를 만들고, 각 하중 케이스에 대한 경계 조건 (접촉, 하중 및 고정)을 적용하고, 속성을 할당하고, 제출에 필요한 모든 플래그 / 스위치 / 버튼을 설정하는 데 상당한 노력을 기울일 것입니다.

분석이 실행됩니다. 자체 검사를위한 일부 품질 보증 절차는 전처리 단계에서 따를 수 있지만 계산이 완료되고 결과가 후 처리 될 때까지 많은 사용자는 출력이 어느 정도 정확하다고 쉽게 믿을 것입니다. 지오메트리 생성은 수치 모델링 프로세스의 일부일뿐입니다. 가장 어려운 문제 중 하나는 전체 설계 프로세스에서 불확실성을 다루는 것입니다. 재료 속성 및 로딩 순서와 같은 입력과 관련된 불확실성이 있습니다.

예를 들어 모델이 선형 또는 비선형 방식으로 동작하는지 여부와 같이 솔루션 유형의 적절성과 관련된 불확실성이 있습니다. 마지막으로 결과 해석과 관련된 불확실성이 있습니다. 수치 분석에서 결과를 검증하고 문제를 발견하는 데있어 분석가를위한 좋은 방법에 대한 간단한 지침은 없습니다. 그러나 다음 방법을 통해 점차적으로 달성 할 수 있습니다.

• 수치 적 방법 과정에 대한 좋은 이해 – 이것은 학부 및 / 또는 대학원 수준의 공식 교육을 통해 얻을 수 있으며 지속적인 전문성 개발의 일환으로 자습을 통해 더욱 향상 될 수 있습니다.
• 특정 유형의 문제에 대한 기본 이론과 해결책의 범위를 잘 이해합니다. 이 역시 위와 같은 교육을 통해 이루어질 수 있습니다.
• 실제 문제를 해결하는 데 공학적 판단을 사용하고 수치 분석을 수행 한 경험이 있습니다. 이는 숙련 된 엔지니어가 분석가를 적절하게 감독하는 환경에서 작업함으로써 얻을 수 있습니다.

품질 보증 시스템의 구현이 실행 가능한 솔루션으로 이어지는 엔지니어링 판단을 대체하는 것은 아니라는 점에 유의해야합니다. 복잡한 대규모 모델을 분석하기 전에 시뮬레이션 기술과 문제의 근본적인 동작을 완전히 이해하기 위해 간단한 테스트 모델을 사용하여 수치 “실험”을 수행해야하는 경우가 매우 많습니다.

경험에 따르면 때때로 테스트 모델 자체가 분석가가 최종 설계 솔루션에 도달 할 수있는 충분한 정보를 제공 할 수 있습니다. 해당 대형 복합 모델의 분석은 설계 기대치를 확인하는 것입니다. 다음 사례 연구는 결과 검증이 수행 된 방법과 신뢰 수준 및 불확실성이 해결된 방법을 보여줍니다.

Applications

일반적인 토목 공학 프로젝트에서 수치 분석은 구조 역학, 기하학 및 유체 역학의 세 가지 기본 분야 중 하나 또는 조합을 포함 할 수 있습니다. 문제의 성격은 토양-구조 상호 작용, 유체-구조 상호 작용 또는 토양-유체 상호 작용 중 하나로 분류 될 수 있습니다.

어떤 경우에는 세 가지 모두를 포함 할 수 있습니다. 잠재적 인 복잡성을 고려하여, 정확도를 잃지 않고 실제 목적을 위해 중요한 동작을 캡처하지 않고 문제를 단순화하기 위해 몇 가지 가정과 이상화가 이루어져야합니다. 이러한 문제를 해결할 수있는 범용 및 특수 수치 분석 소프트웨어가 있습니다. 두 가지 유형의 소프트웨어가 사례 연구에 사용되었습니다.

Case 1 – Deflection of a steel water tank

직경 약 90m의 대형 원형 강철 물 탱크는 처음 채울 때 큰 벽면이 휘어지면서 탱크의 장기적인 구조적 무결성에 대한 우려를 불러 일으켰습니다.

물의 높이는 전체 저장 용량에서 약 10m였습니다. 지붕 구조는 탱크 내부에있는 기둥으로 거의 전적으로지지되었습니다. 스트레이크(strakes)는 벽의 바닥 1/3이 더 두꺼운 고급 강판으로 구성되었습니다. 1 차 윈드 거더는 탱크 상단 주위에 용접되었고 2 차 윈드 거더는베이스 위 2/3에 위치했습니다. 하단 스트레이 크는 환형베이스 플레이트에 필렛 용접되었습니다. 내부 기둥의 기초를 제외한 전체 바닥은 용접 된 강판으로 덮여있었습니다.

이 탱크는 유능한 중간층 사암과 미사암 기반암 위에 압축된 채움물 위에 세워졌습니다. 일련의 축 대칭 유한 요소 분석 (FEA)을 수행하여 관찰된 처짐을 예측할 수 있는지 여부를 결정하고 매일 물을 채우고 비울 때 피로 파괴가 발생할 가능성으로 인해 벽 바닥의 응력 상태를 계산했습니다.

내부 기둥과 지붕 빔을 포함하는 탱크의 12 분의 1 섹터에 대한 3 차원 모델을 처음에 분석하여 벽이 얼마나 많은 지붕 자중을지지하고 축 대칭 가정의 타당성을 조사했는지 조사했습니다. 이 분석의 결과는 지붕 구조의 강성 기여도가 중요하지 않아 후속 축 대칭 모델에 포함되지 않았 음을 보여주었습니다.

그러나 지붕 자체 무게의 작은 부분이 벽에 적용됩니다. 축 대칭 모델은 모든 강철 섹션, 필렛 및 맞대기 용접 및 기초로 구성되었습니다 (그림 1). 그것들은 몇 개의 3 노드 삼각형 축 대칭 요소가있는 4 노드 비 호환 모드 사변형으로 이산화되었습니다.

용접 재료를 통해서만 하중 전달이 허용되도록 용접이 모델링되었습니다. 용접 연결부에 미세한 메시를 사용하여 응력 상태를 정확하게 포착했습니다. 롤러 지지대는 모델의 측면 및 하단 경계에 적용되었습니다. 다음과 같은 하중이 적용되었습니다 :

철골 구조물의 자중, 지붕 자중, 벽의 정수압, 수위에 따른 바닥의 균일 한 압력. 한 모델은 용접 또는베이스의 강판이 플라스틱 힌지를 형성하기 위해 항복되었다고 가정했습니다. 이 경우 벽 바닥에서 핀 연결이 모델링되었습니다.

Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base
그림2 Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base

벽 처짐은 그림 2에 나와 있습니다. 측정 범위와 계산 된 결과는 비교 목적으로 표시됩니다. 계산 된 벽 처짐을 검증하기 위해 두 벽 두께에 대한 Timoshenko 및 Woinowsky-Krieger [2]에 기반한 고전 이론도 그림에 표시되었습니다. 계산 된 편향은 이론적 계산에 의해 제한됨을 관찰 할 수 있습니다.

벽 두께의 변화로 인한 전이가 분석에서 포착되었습니다. 이것은 유한 요소 모델에 대한 확신을 제공했습니다. 윈드 거더와 구속 된베이스의 영향도 볼 수 있습니다. 윈드 거더 설치로 인해 초기 변형이 발생하여 공사가 끝날 때 벽 상단이 안쪽으로 당겨질 수 있습니다. 굽힘 동작이 발생한베이스 근처를 제외하고는 후프 동작이 벽 동작을 지배했습니다.

계산된 최대 처짐이 측정된 순서와 동일하더라도 최대 돌출이 발생한 높이는 예측되지 않았습니다. 실제로 조사 데이터는 몇 가지 가능한 시나리오를 제안했습니다.베이스에 플라스틱 힌지 형성 (그러나이 영역에서 계산 된 응력은 항복 강도를 초과하지 않았습니다). 지반 재료의 국부적 인 베어링 고장 (다시 현장에서 균열과 같은 명백한 지시 신호가 보이지 않음); 또는 탱크 건설이 끝날 때 내장 된 기하학적 결함이있었습니다. 사전 변형 된 탱크에서 역 분석을 수행하여 측정 된 처짐이 정수압 하에서 “회복”되었습니다. 그러나 계산된 응력은 수율을 훨씬 초과했습니다. 불행히도 탱크는 완성 후 첫 번째 충전 전에 즉시 조사되지 않았습니다.

Figure 2 Wall deflection of water tank
Figure 2 Wall deflection of water tank

탱크의 원래 디자인과 건설이 2000 년대 초에 수행되었다는 점은 흥미 롭습니다. 설계 계산에 관련 표준 [3]을 사용했습니다. 이 표준은 탱크 벽이 후프 동작만으로 작용한다고 가정하고이 구조의 경우가 아닌베이스의 제약 조건을 무시합니다. 벽 처짐의 크기는 기초 강성을 고려한 Rish [4]가 개발 한 고전 이론 [2] 또는 FEA와 같은 수치 분석에 의해 결정될 수 있습니다. 고급 강철을 사용하면 설계자는 강도에는 적합하지만 서비스 가능성에는 필요하지 않은 더 얇은 섹션을 선택해야합니다. 굽힘 강성은 큐브 두께에 의해 결정됩니다. 수중 부하에서 후속 벽 변형 프로파일은 제작 품질에 영향을받습니다. 이것은 설계 단계에서 추정하기 어려웠을 것입니다.

사례 2 – 배수로 배출

호주의 많은 댐 구조는 제한된 수 문학적 정보로 1950 년대와 60 년대에 설계 및 건설되었습니다. 이러한 기존 방수로 구조는 수정 된 가능한 최대 홍수 수준에 대처하기 위해 크기가 작습니다. 증가 된 홍수 조건 하에서 방수로 꼭대기에 대한 음압 생성과 같은 잠재적 인 문제가 발생할 수 있습니다. 이는 방수로 및 게이트 구조에 불안정성 또는 캐비테이션 손상을 유발할 수 있습니다. 역사적으로 스케일링 된 물리적 모델은 이러한 동작을 연구하기 위해 수력 학 실험실에서 구성되었지만 비용이 많이 들고 시간이 많이 걸리며 스케일링 효과와 관련된 많은 어려움이 있습니다. 오늘날 고성능 컴퓨터와보다 효율적인 전산 유체 역학 (CFD) 코드를 사용하여 수리적 구조의 동작을 합리적인 시간과 비용으로 수치 적으로 조사 할 수 있습니다. 이 분석 기법은 대도시 지역에 주요 상수원을 제공하는 가장 큰 콘크리트 중력 댐에 호주에서 처음으로 적용 되었기 때문에 검증을 수행 할 필요가있었습니다. 이것은 그림 3과 같이 조사 프로세스에 통합되었습니다. 순서도는 간단한 2D에서 상세한 3D 방수로 모델로 어떻게 발전했는지 보여줍니다.

Figure 3 Flowchart showing the validation process
Figure 3 Flowchart showing the validation process

미 육군 공병대 [5]에서 발표 한 광범위한 데이터가 있기 때문에 검증을 위해 ogee 방수로 프로필 (그림 4 참조)이 선택되었습니다. 계산 된 결과는 조사의 각 단계에서 검토되었습니다. 게시 된 데이터에서 크게 벗어나면 프로젝트가 중단됩니다. 이것은 프로젝트가 시작되기 전에 고객과 상호 합의되었습니다.

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

이러한 종류의 분석의 초기 어려움 중 하나는 개방 채널 중력 흐름 문제에서 자유 표면의 정확한 계산이었습니다. 자유 표면을 추적하는 데 적응 형 메싱 및 반복 방법을 사용하는 것은 일부 유한 체적 CFD 코드에서 사용되었지만 성공은 제한적이었습니다. 본 연구에 사용 된 코드는 SOLA-VOF 방법으로 Navier-Stokes 방정식을 해결합니다. 유체 운동의 과도 동작을 해결하기 위해 유한 차분 방법이 사용되었습니다. 유체의 부피 (VOF) 함수는 자유 표면 운동을 계산하는 데 사용됩니다 [6].

분석에 대한 자세한 내용은 [7]에 설명되어 있습니다. 계산 된 파고 압력 분포, 자유 표면 프로파일 및 정상 상태에서의 배출 속도는 검증 목적으로 사용되었습니다. 다른 상류 수두 (H) 아래의 배수로 꼭대기를 따라 압력 분포가 그림 5에 나와 있습니다. 일부 압력 진동은 코드가 일반 메시와 곡선 배수로 장애물 사이의 인터페이스에서 계산을 처리하는 방식에 기인 할 수 있습니다. 훨씬 더 미세한 메쉬는 이러한 불규칙성을 부드럽게 만들었습니다. 압력 분포에 대한 교각의 영향은 3D 모델에서 올바르게 예측되었습니다 (그림 6).

계산된 자유 표면 프로파일 (그림 7)도 게시 된 데이터와 잘 일치했습니다. Savage와 Johnson [8]은 분석 기법에 대한 신뢰도를 높이는 동일한 CFD 코드를 사용하여 유사한 유효성 검사를 수행했습니다. 문제의 배수로에 대한 후속 분석은 스케일링 된 물리적 모델 테스트에서 얻은 결과와 비교할 때 상당히 좋은 결과를 제공했습니다.

Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 7 Upper nappe profile next to pier
Figure 7 Upper nappe profile next to pier

분석에서 배수로의 기하학적 구조와 물 속성이 잘 정의되었습니다. 물은 비압축성이며 고정 된 온도에서 일정한 특성을 가지고 있다고 가정했습니다. 실제로 좋은 품질의 콘크리트 표면 마감을 얻을 수 있기 때문에 배수로 경계는 매끄럽다 고 가정했습니다. 불확실성은 메쉬 밀도와 적절한 난류 모델의 선택이라는 두 가지 소스에서 비롯됩니다. 메쉬 크기는 메모리 양과 컴퓨터의 클럭 속도에 의해 제한됩니다.

높은 레이놀즈 수의 난류 흐름은 소용돌이와 소용돌이의 형성을 포착 할 수있는 매우 미세한 메시로 계산할 수 있지만 현재 메시 밀도는 검증 및 설계 목적에 필요한 변수를 예측하기에 충분히 미세했습니다. 조사 결과는 큰 와류, k-ε 및 RNG 모델과 같은 난류 모델의 선택에 의해 크게 영향을받지 않는 것으로 나타났습니다. 분명히 벽 거칠기와 난류 모델의 도입은 방전율을 감소시킬 것입니다. 그러나 다시 분석 결과는 사용 된 메시에 거의 영향을 미치지 않음을 보여줍니다. 향후 분석은 다른 메쉬 밀도로 인한 이산화 오류를 조사 할 것입니다.

사례 3 – 안벽 건설
주요 컨테이너 항구 시설은 설계 단계에서 최소한의 수치 분석을 수행하여 약 25 년 전에 건설되었습니다. 당시에는 이러한 분석 도구를 사용하는 것이 비용 효율적이지 않은 것으로 간주되었습니다. 다수의 컨테이너 크레인이 측면을 따라 이어지는 2km 길이의 안벽을 건설하기 위해 광범위한 준설 및 매립 작업이 수행되었습니다.

시설이 완공 된 이후 일련의 콘크리트 카운터 포트 유닛으로 구성된 안벽과 후방 크레인 빔은 크레인이 할 수 있도록 후방 빔에 대한 레벨 조정 작업이 수행 될 정도로 지속적으로 이동하고 있습니다. 정상적으로 작동합니다. 그러나 영향을받는 두 구조물의 움직임을 저지하기 위해보다 영구적 인 해결책을 모색했습니다. 토양-구조 상호 작용 및 시공 시뮬레이션을 처리 할 수있는 명시 적 유한 차이 분석을 사용하여 다양한 교정 옵션의 순위를 지정했습니다.

그라우트 기둥, 타이백 앵커 및 말뚝 지지대와 같은 다양한 제안 된 개선을 분석하기 전에, 토양 및 구조적 특성과 시공 과정의 선택이 적절하도록 계산 모델을 관찰에 대해 보정해야한다고 결정했습니다. 지질 및 지질 공학 정보는 현장 및 실험실 테스트 데이터를 포함하는 현장 조사 보고서에서 평가되었습니다. 시설의 범위를 고려할 때 현장에서 만나는 특정 토양 유형에 대해 상당한 분산 테스트 데이터가 예상됩니다. 수력 모래 충전재에 대한 표준 침투 테스트 (SPT) 블로우 횟수 (N) 및 콘 침투 테스트 (CPT) 저항 (qc)에 대한 몇 가지 일반적인 기록이 그림 8과 9에 나와 있습니다.

Figure 8 SPT ‘N’ profiles
Figure 8 SPT ‘N’ profiles
Figure 9 CPT profiles
Figure 9 CPT profiles

이 결과로부터 평균 해수면 위와 아래에있는 모래 채우기의 강도와 강성의 대비를 관찰 할 수 있습니다. 이 현상은 배치 방법에 기인한다고 제안되었다 [9]. 또한 기초 수준에서 진동 압축 된 모래의 특성에도 변동이있었습니다. 분석을 위해 선택된 토양 특성은 테스트 데이터, 인근 사이트의 경험 및 유사한 토양 조건에 대한 발표 된 데이터를 기반으로합니다. 그것들은 표 1에 요약되어 있습니다. 일반적으로 시설의 건설 순서는 다음과 같습니다.

  1. Removal of pockets of soft marine clay by dredging
  2. Dredging of sand to the required level
  3. Vibro-compaction of the sand on which the counterfort units were to be founded
  4. Placement of gravel for the quay wall foundation.
  5. Placement of concrete counterfort units weighing 360 tonne each
  6. Placement of hydraulic sand fill behind the units
  7. Surcharging the fill just behind the capping beam
  8. Construct capping beam and place more sand fill to the finished level
  9. Additional surcharge prior to the operation of container cranes.

Table 1 Soil properties used in the construction
simulation of the quay wall

Table 1 Soil properties used in the construction simulation of the quay wal
Table 1 Soil properties used in the construction simulation of the quay wal

2D 평면 변형 모델의 수치 시뮬레이션에서 구성 순서 (그림 10)와 하중은 다음 단계에 따라 단순화 / 이상적입니다.

  1. The starting condition of the seabed consisted of the vibrocompacted sand, gravel bed, native sand, clay and fissured clay at depth. The “in-situ” stresses were also switched on in this step.
  2. Placement of counterfort unit (using equivalent linear elastic beam elements) with a vertical force applied through the centre of gravity of the unit to represent the buoyant self-weight.
  3. Sequentially placing hydraulic sand fill behind the unit to the level prior to surcharging.
  4. Apply an equivalent trapezoidal pressure to represent the surcharge.
  5. Placement of capping beam and the sand fill to the required level.
  6. Apply additional surcharge.
  7. Application of repeated loads from the crane seaward and landward legs.
Figure 10 Construction sequence
Figure 10 Construction sequence

분석에서는 침수 된 물질과 평균 해수면 위에있는 물질을 나타 내기 위해 적절한 밀도를 사용했습니다. 안벽의 장기적인 움직임이 중요했기 때문에 배수 된 토양 매개 변수가 사용되었습니다. 토양은 분석에서 Mohr-Coulomb 실패 기준을 따르는 것으로 가정되었습니다. 단순한 탄성-완전 소성 응력-변형 거동이 가정되었습니다. 일련의 강체 다이어그램으로 표현 된 안벽 이동의 역사는 그림 11에 나와 있습니다. 벽의 상단과 바닥에서 계산 된 수직 및 수평 이동은 그림 12와 13에 표시됩니다. 수치는 모니터링 된 데이터와 해당 상한 및 하한 (해당 상자에 표시됨)입니다. 측정에서 산란의 양에도 불구하고 벽 건설에 대해 계산 된 움직임은 합리적으로 잘 비교되었습니다. 조사 데이터와 예측을 일치시키기 위해 분석에서 토양 속성을 변경하려는 시도가 없었습니다. 반복되는 크레인 하중의 래칫 효과를 관찰 할 수 있습니다. 불행히도 반복적 인 크레인 하중 하에서 벽 이동에 대한 기준이 없었기 때문에 이러한 예상 이동을 비교할 수 없었습니다. 문제의 복잡성과 고도로 가변적 인 토양 특성을 고려할 때 계산 된 결과는 매우 고무적입니다.

Figure 11 Wall deformations
Figure 11 Wall deformations

토양에서 플라스틱 구역의 발달도 분석에서 계산되었습니다. 벽의 발가락 아래의 토양이 여러 번 과도하게 압박을받는 것으로 밝혀졌습니다. 접촉 압력은 경사 하중으로 인한 베어링 고장에 대한 안전 지표 (FOS)를 결정하는 데 사용되었습니다. 지지력은 계산 방법에 의해 크게 영향을 받았다고보고되었습니다 [10]. 원래의 기초 디자인은 덴마크 코드 [11]를 기반으로했기 때문에이 경우 일관성을 위해 사용되었습니다. 편심의 함수로서 FOS의 발전과 수평 대 수직 추력 (H / V)의 비율이 각각 그림 14와 15에 나와 있습니다.

Figure 12 Wall top movements
Figure 12 Wall top movements
Figure 13 Wall base movements
Figure 13 Wall base movements
Figure 14 ‘FOS’ vs. eccentricity
Figure 14 ‘FOS’ vs. eccentricity
Figure 15 ‘FOS’ vs. H/V ratio
Figure 15 ‘FOS’ vs. H/V ratio

그림은 벽이 추가 요금과 반복적 인 적재 단계 동안 국부적 인 베어링 고장에 가까웠음을 보여줍니다. 크레인 하중 하에서 FOS의 명백한 증가는 벽에 대한 수직 하중이 증가하는 반면 유지된 토양의 수평 압력이 다소 일정하게 유지됨에 따라 편심이 감소했기 때문입니다.

끝 맺는 말
세 가지 매우 다른 실제 응용 프로그램의 유효성 검사 프로세스가 설명되었습니다. 각 사례의 주요 특징과 결과는 표 2에 요약되어 있습니다. 재료 및 하중 불확도 및 예상 결과가 강조 표시됩니다. 건설 품질은 구조의 성능에 상당한 영향을 미치는 것으로 나타났습니다.

이는 분석가가 프로젝트의 설계 단계에서 정량화하고 정확하게 분석하지 못할 수도 있습니다. 구조가 완료된 직후 모니터링의 중요성을 간과해서는 안됩니다. 이것은 미래의 역 분석을위한 유용한 자료가 될 것입니다. 수치 도구가 이러한 복잡한 문제를 분석 할 수 있다는 사실에도 불구하고 분석가는 어떤 매개 변수가 중요하거나 중요하지 않은지 식별 할 준비가되어 있어야합니다.

익숙하지 않은 문제를 분석 할 때 유효성 검사 프로세스를 점진적으로 수행해야합니다. 아마도 검증 방법을 찾는 핵심은 수치 분석 도구를 사용하지 않고 솔루션에 도달 할 수있는 다른 방법이 있는지 묻는 것입니다. 많은 경우 이러한 솔루션은 광범위한 문헌 검색 후에 존재합니다. 그러나 다른 경우에는 실험실 테스트와 현장 관찰이 유일한 대안이 될 것입니다.

자세한 내용은 원문을 참고하시기 바랍니다.

References
[1] Puri, S.P.S. (1998) “Avoiding Engineering Failures Caused by Computer-Related Errors”, J. Comp. in Civil Engineering, ASCE, 12(4), 170-172.
[2] Timoshenko, S.P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, 2nd edition, McGraw-Hill Kogakusha. p.580.
[3] BS2654 (1989) Manufacturing of vertical steel welded non-refrigerated storage tanks with butt-welded shells for the petroleum industry.
[4] Rish, R.F. (1977) “Design of Cylindrical Tanks on Elastic Foundations”, Civil Engineering Transactions, The Institution of Engineers, Australia, 192-195.
[5] US Army Corps of Engineers (1990) Hydraulic Design of Spillways, Engineer Manual No. 1110-2-1603.
[6] Hirt, C.W. and Nichols, B.D. (1981) “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, J. Comp. Phys. 39, 201- 225.
[7] Ho, D.K.H., Boyes, K.M and Donohoo, S.M. (2001) “Investigation of Spillway Behaviour under Increased Maximum Flood by Computational Fluid Dynamics Technique”, Proc. Conf. 14th Australasian Fluid Mechanics, Adelaide, December, 577-580.
[8] Savage, B.M. and Johnson, M.C. (2001) “Flow over Ogee Spillway: Physical and Numerical Model Case Study”, J. Hydraulic Engineering, ASCE, 127(8), 640-649.
[9] Lee, K.M., Shen, C.K., Leung, D.H.K. and Mitchell, J.K. (1999) “Effects of placement method on geotechnical behaviour of hydraulic fill sands” J. Geotech. and Geoenviron. Engineering, ASCE, 125(10), 832-846.
[10] Sieffert, J.G. and Bay-Gress, Ch. (2000) “Comparison of European bearing capacity calculation methods for shallow foundations”, Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 143, April, 65-74.
[11] DS 415 (1984) Code of Practice for Foundation Engineering. Table 2 Summary of findings for the three case studies

2 Fluid, 2 Temperature 모델

2 Fluid, 2 Temperature 모델

우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 액체 및 기체 상태 모델링이 필요합니다. 이러한 시스템에 유체 계면이 존재하는 것 외에도, 열 전달 및 상 변화의 물리학도 정확하게 포착해야합니다. 얼마나 복잡합니까!

이러한 복잡한 시나리오를 시뮬레이션하기 위해 FLOW-3D v12.0에는 2 Fluid, 2 Temperature 모델이 도입되었습니다.

 

단순화 된 모델 : 2 Fluid, 1 Temperature

FLOW-3D 의 인터페이스 추적 방법인 TruVOF는 열 전달 및 위상 변화를 포함하여 2 Fluid 모델과 함께 작동합니다. 그러나,이 모델의 단순화 중 하나는, 인터페이스를 갖는 메쉬 셀의 온도가 다음의 개략도에 도시 된 바와 같이 혼합물 온도 (따라서 단순화 된 모델) Tmix로 표현된다는 것입니다.

온도가 경계면을 가로 질러 연속적이고 매끄러 울 때 혼합물 근사치가 적절하지만, 열-물리적 특성의 큰 차이로 인해 액체 및 가스가 있는 경우에는 이를 추정 할 수 없습니다. 이러한 시스템에서 용액의 정확도는 액체-기체 혼합물을 함유하는 셀에서 유체 에너지 및 온도의 평균으로부터 발생하는 과도한 수치 확산에 의해 압도 될 수 있습니다. 단순화 된 온도 슬립 모델은 이러한 경우 부분적인 솔루션만 제공합니다.

단순화 된 모델-2 Fluid, 1 Temperature

종합 모델 : 2 Fluid, 2 Temperature

1 Temperature 접근 방식의 결함을 극복하기 위해 2 Fluid 솔루션에 대한 2 Temperature 모델이 버전 11.3에 도입되었습니다. 여기에는 아래 회로도에 표시된 것처럼 각 유체에 대한 에너지 전달 방정식을 해결하고 각 상의 온도를 저장하는 작업이 포함됩니다. 자유 표면이 있는 메쉬 셀은 이제 액체 (T1)와 가스 (T2) 온도를 모두 나타냅니다.

종합 모델 : 2 유체, 2 온도

탱크 슬로싱(Tank sloshing)

탱크 슬로싱에 대한 이 사례 연구에서, 액체는 초기 온도 300K이고 가스는 400K입니다. 단순화 된 모델과 포괄적인 모델 사이의 수치 확산 정도의 차이는 아래 애니메이션에 나와 있습니다. 온도 윤곽에서 시간이 지남에 따라 용액의 수치 확산은 1 Temperature 접근 방식으로 보여지고 계면 물리를 완전히 가리게 됩니다.

단순화 된 모델 : 2 Fluid, 1 Temperature

종합 모델 : 2 Fluid, 2 Temperature

공기중 드롭 용접(Drop welding in air)

이 낙하 용접 사례 연구에서 액체 금속은 중력 하에서 2300K에서 공기를 통해 고체화 된 금속 베드로 떨어집니다. 공기 및 베드 초기 온도는 293K입니다. simplified model에서는 수치 확산으로 인해 액체 금속 낙하 온도가 베드에 도달하기 전에도 급격히 감소하기 시작합니다. 반면에 comprehensive model에서는 방울이 초기 온도를 유지하여 훨씬 더 나은 솔루션을 제공합니다.

단순화 된 모델을 사용한 온도 필드 진화

종합 모델의 온도 필드

FLOW-3D의 2 Fluid, 2 Temperature 모델과 유체 인터페이스 추적을 결합하면 사용자는 특히 연료 슬로싱 시스템과 같이 복잡한 열전달 및 위상 변화 문제를 정확하게 모델링 할 수 있습니다.

이 새로운 모델에 대한 제안이나 의견은 adwaith@flow3d.com에 문의하십시오.

FLOW-3D 용접해석 개요

FLOW-3D 용접해석 개요

자료 제공: FLOW Science Japan

용접은 금속의 상변화, 용융시의 유동, 방열에 의한 응고 등을 포함한 복잡한 물리 현상입니다. FLOW-3D@에는 그 현상을 정밀하게 모델링하는 기능이 있고, 용접 현상을 충실하게 재현할 수 있습니다.

특히 용융 금속의 유동은 표면 장력의 영향이 강하고, 그 해석은 정확한 자유 계면의 추적이 필요합니다.

FLOW-3D@의 정확한 계면 추적 기능인 TruVOF®는 그 현상을 파악하기에 매우 적합합니다.

해석 조건으로 레이저의 power, spot size, distance, 움직임(분사방향) 등을 입력할 수 있으며, 보호가스는 밀도와 유속으로 설정 할 수 있습니다. 스패터의 분출 해석은 현재 지원되지 않습니다.

해석 결과로 용접 비드의 폭, 깊이, 기공의 유무 등 관찰할 수 있습니다.

열응력 해석은 FLOW-3D 유동 해석 결과를 Abaqus 등의 구조해석 프로그램에서 불러와서 별도로 열응력 해석을 수행해야 합니다.

해석 필요성

FLOW-3D 를 이용한 용접해석은

  • 높은 방사 강도와 고온으로 직접 관찰하기 어려운 내부 현상의 상세 내용을 가시화
  • 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 파라미터 연구 검토
  • 결함 예측 (공기연행, 응고 수축, 금속 산화) 등의 필요성

해석을 통해 얻는 이점

금속의 상변화, 용융시의 유체의 힘, 방열에 의한 응고 등의 물리모델 용접 현상을 분석할 수 있습니다.

또한 용융시에는 표면장력의 영향이 강하고, 자유계면을 추적하는 수치해석 방법에 대해 높은 정밀도가 요구됩니다. FLOW-3D@는 이러한 요구사항을 잘 처리할 수 있는 장점을 가지고 있어, 용접 용융-응고의 연속적인 현상을 정확하게 파악합니다.

열전달(Heat Transfer)

열전달(Heat Transfer)

열전달은 전도, 대류 및 복사를 통한 열 에너지의 전달입니다. 일반적이지만 매우 중요한 물리적 현상입니다. 재료 특성 및 기타 물리적 현상은 온도 (또는 열에너지)에 매우 민감합니다. FLOW-3DFLOW-3D  CAST의 열전달 모델은 전도, 대류 및 복사를 통해 유체 내, 고체 및 공극 내에서 열전달을 처리하는 완전 복합 열전달 방정식을 해석합니다.

또한, 이 모델은 사용자가 다양한 애플리케이션을 모델링 할 수 있도록 유연하고 편리한 옵션을 제공합니다.

  • 명시적 및 암시적인 열전달 옵션을 모두 사용할 수 있습니다. 암시적 방법을 사용하여 명시적 접근과 관련된 시간 단계별 크기의 안정성 제한을 제거 할 수 있습니다. 전도성 또는 열전달의 안정성 제한이 시뮬레이션에서 다른 안정성 제한보다 실질적으로 작을 때, 암시적 방법을 사용하면 계산 효율성이 크게 향상 될 수 있습니다.

  • 각기 다른 매체 사이의 열전달 계수는 흐름 유형에 따라 사용자 정의되거나 자동으로 계산 될 수 있습니다.


  • 1차 및 2차 열에너지의 이류 알고리즘을 모두 사용할 수 있습니다. 1차 옵션은 효율적이고 견고하며 대부분의 열전달 문제에 적합하지만 높은 열 구배가 예상되는 시뮬레이션의 경우 인공적인 열 확산으로 이어질 수 있습니다. 2차 옵션은 가령, 부력 중심의 흐름에서 온도 구배를 해결하는 것이 중요한 상황에 적합합니다.


  • 유체와 고체 사이의 열전달을 모델링하기 위해 여러 가지 옵션을 사용할 수 있습니다 (지정된 열유속에서 전원, 규정 온도까지). 이러한 옵션은 다양한 프로세스 및 응용 프로그램을 모델링 할 수 있는 유연성과 성능을 제공합니다.

다른 물리 모델과 함께 FLOW-3DFLOW-3D  CAST의 열전달 모델은 고급 모델링 기능을 위한 견고한 토대가 됩니다. 예를 들어, 액체 / 고체 및 액체 / 증기 상 변화 모델을 사용하여 금속 응고, 물의 건조 및 비등, 분무 냉각을 시뮬레이션 할 수 있습니다. 점성 가열은 고속 점성 흐름에도 포함될 수 있습니다.

[FLOW-3D 이론] 1. 개요

  1. 개요

FLOW-3D는 범용 전산 유체 역학(CFD) 소프트웨어입니다. 유체의 운동 방정식을 계산하기 위해 특별히 개발된 수치 기법을 사용하여 다중 스케일, 다중 물리 흐름 문제에 대해 과도적 3차원 해결책을 얻습니다. 다양한 물리적 및 수치 옵션을 통해 사용자는 다양한 유체 흐름 및 열 전달 현상 분석을 위해 FLOW-3D를 적용할 수 있습니다.

유체 운동은 비선형, 과도, 2차 미분 방정식으로 설명됩니다. 이러한 방정식을 풀기 위해 유체 운동 방정식을 사용해야합니다. 이러한 방법을 개발하는 과학을 전산 유체 역학이라고 합니다. 이 방정식의 수치해는 대수적 표현으로 다양한 항을 근사화 합니다. 그런 다음 결과 방정식을 해결하여 원래 문제에 대한 대략적인 해결책을 제시합니다. 이 과정을 시뮬레이션이라고 합니다. FLOW-3D에서 사용할 수 있는 수치해석 알고리즘의 개요는 운동 방정식에 대한 섹션에 나옵니다.

일반적으로 수치 모델은 계산 Mesh 또는 그리드로 시작합니다. 이것은 여러 개의 서로 연결된 요소 또는 셀로 구성됩니다. 이러한 셀은 물리적 공간을 해당 볼륨과 관련된 여러 노드가 있는 작은 볼륨으로 세분화합니다. 노드는 압력, 온도 및 속도와 같은 미지수의 값을 저장하는데 사용됩니다. Mesh는 사실상 원래의 물리적 공간을 대체하는 숫자 공간입니다. 또한 별도의 위치에서 흐름 파라미터를 정의하고, 경계 조건을 설정하고, 유체 운동 방정식의 수치 근사치를 개발하는 방법을 제공합니다. FLOW-3D 접근 방식은 흐름 영역을 직사각형 셀의 격자로 세분하는 것입니다. 이 격자는 brick elements라고도 합니다.

계산 Mesh는 물리적 공간을 효과적으로 이산화 시킵니다. 각 유체 매개 변수는 불연속 지점에서 값 배열에 의해 Mesh로 표시됩니다. 실제 물리적 파라미터는 공간에서 연속적으로 변하기 때문에 노드 사이의 간격이 미세한 Mesh는 더 거친 Mesh보다 현실을 더욱 잘 표현해줍니다. 그런 다음 수치 근사치의 기본 속성에 도달합니다. 그리드 간격이 줄어들면 유효한 모든 유효한 수치 근사가 원래 방정식에 접근합니다. 근사치가 이 조건을 만족하지 않으면 올바르지 않은 것으로 간주해야 합니다.

동일한 물리적 공간에 대해 격자 간격을 줄이거나 Mesh를 조정하면 더 많은 요소와 노드가 생겨 수치 모델의 크기가 커집니다. 그러나 유체 흐름 및 열 전달의 실제 현실과는 별도로, 시뮬레이션 엔지니어들이 적절한 크기의 Mesh를 선택하도록 하는것과 밀접한 관계에 있는 설계 주기, 컴퓨터 하드웨어 및 마감일의 현실적인 문제도 있습니다. 이러한 제약 조건을 만족시키는 것과 사용자가 정확한 결과를 얻는 것 사이에서 타협점을 찾는 것은, CFD 모델 개발 못지않은 중요한 균형 잡힌 행위입니다.

직사각형 그리드는 규칙적이거나 구조적인 특성 때문에 생성 및 저장이 매우 쉽습니다. 균일하지 않은 그리드 간격은 복잡한 흐름 도메인을 매칭할 때 유연성을 더합니다. 연산 셀은 세 개의 지수를 사용하여 연속적으로 번호가 매겨집니다. 즉, x 방향은 i, y 방향은 j, z 방향은 k입니다. 이 방법으로 3차원 Mesh의 각 셀은 물리적 공간의 점의 좌표와 유사한 고유한 주소(i, j, k)로 식별할 수 있습니다.

구조화된 직사각형 그리드는 수치적 방법의 개발의 상대적 용이성, 원래의 물리적 문제와의 관계에 대한 후자의 투명성, 그리고 마지막으로 수치적 해결의 정확성과 안정성의 추가적인 이점을 가지고 있습니다. 유한 차분법과 유한 체적법에 기초한 가장 오래된 수치 알고리즘은 원래 이러한 Mesh에서 개발되었습니다. 이것은 FLOW-3D에서 수치적 접근방식의 핵심을 형성합니다. 유한차분법은 테일러 확장의 특성과 파생된 정의의 직접적인 적용에 기초합니다. 미분 방정식에 대한 수치적 해결책을 얻기 위해 적용된 방법 중 가장 오래된 방법이며, 첫 번째 적용은 1768년 오일러에 의해 개발된 것으로 간주됩니다. 유한체적법은 유체 운동을 위한 보존법의 일체형태에서 직접 파생되므로 자연적으로 보존 특성을 보유합니다.

FLOW-3D는 일반적인 유체 방정식의 다른 제한 사례에 해당하는 여러 모드에서 작동할 수 있습니다. 예를 들어, 하나의 모드는 압축 가능한 흐름을 위한 것이고 다른 하나는 압축할 수 없는 흐름 상황을 위한 것입니다. 후자의 경우 유체의 밀도와 에너지가 일정하다고 가정할 수 있으므로 계산할 필요가 없습니다. 또한 1유체 모드와 2유체 모드가 있습니다. 자유 표면은 단일 유체 비압축 모드에 포함될 수 있습니다. 이러한 작동 모드는 동작 방정식에 대한 다양한 선택에 해당합니다.

자유 표면은 FLOW-3D로 수행된 많은 시뮬레이션에서 존재합니다. 유량 매개변수와 재료 특성(밀도, 속도, 압력 등)이 불연속성을 경험하기 때문에 모든 계산 환경에서 자유 표면을 모델링하는 것은 어렵습니다. FLOW-3D에서는, 액체에 인접한 가스의 관성이 무시되고, 가스에 의해 점유되는 부피는 균일한 압력과 온도로만 표현되는 빈 공간, 질량의 공백으로 대체됩니다. 대부분의 경우 가스 모션의 세부 사항은 훨씬 무거운 액체의 움직임에 중요하지 않기 때문에 이 접근 방식은 계산 노력을 줄이는 이점이 있습니다. 자유 표면은 액체의 외부 경계 중 하나가 됩니다. 자유 표면의 경계 조건에 대한 적절한 정의는 자유 표면 역학을 정확하게 포착하기 위해 중요합니다.

VOF(Volume of Fluid) 방법은 이러한 목적으로 FLOW-3D에 사용됩니다. 유체 함수의 볼륨 정의, VOF 전송 방정식 해결 방법, 자유 표면의 경계 조건 설정 등 세 가지 주요 구성요소로 구성됩니다.

일부 물리 및 수치 모델은 Flow Science의 기술 노트: http://users.flow3d.com/technical-notes/ 에 자세히 설명되어 있으며, 여기에는 예제도 포함되어 있습니다.

Cavitation | 캐비테이션

캐비테이션이란 무엇입니까?

The spillways of the Glen Canyon dam in 1983 (Lee and Hoopes, 1996).

캐비테이션은 유체 흐름의 매우 낮은 압력 또는 포화 압력을 높이는 온도 상승으로 인해 유체 내에서 증기 또는 기포가 빠르게 발생하는 것입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유도 된 힘은 1983 년 Glen Canyon 댐의 배수로에서 경험 한 손상에서 볼 수 있듯이 며칠 내에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

또한 고압 다이 캐스팅에서 캐비테이션이 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 급속한 압력 강하를 초래하고 후속 캐비테이션으로 이어질 수 있습니다. 생성된 증기 기포는 최종 주조에서 다공성을 유발하거나 더 나쁜 경우 다이에 손상을 일으켜 주조품을 훼손시키고 다이 수명을 감소시킬 수 있습니다.

캐비테이션은 터빈과 파이프에 손상을 줄 수 있고, 댐의 배수로에서 콘크리트를 침식하는 등의 원인이 될 수 있습니다. 아래 이미지는 댐의 배수로 바닥 근처의 콘크리트 침식을 보여줍니다. 댐에 사용되는 콘크리트는 일반적으로 강도가 높지만 캐비테이션은 여전히 그것을 부식시킬 수 있습니다.

Eroded concrete due to cavitation on the spillway of a dam

캐비테이션은 때때로 오염 물질과 유기 분자를 분해하고, 소수성 화학 물질을 결합하고, 캐비테이션 기포의 파열로 인해 생성 된 충격파를 통해 신장 결석을 파괴하고, 혼합을위한 난류를 증가시켜 수질 정화와 같은 특정 산업 응용 분야에서 의도적으로 유도됩니다.

따라서 캐비테이션이 발생할 가능성이있는 위치와 그 강도를 이해하는 것이 중요합니다. 캐비테이션을 실험을 수행하거나 실험 결과의 현상을 시각화하는 것이 어렵고, 잠재적으로 손상 될 수 있으므로 수치해석 시뮬레이션으로 검토하는 것이 매우 필요하고, 유용합니다.

Real-World Applications | 실제 응용 분야

  • 물 및 환경 구조 내에서 손상을 주는 캐비테이션 시뮬레이션
  • 다이 손상 및 주조 다공성을 유발할 수 있는 고압 다이 캐스팅 중 캐비테이션 시뮬레이션
  • MEMS 장치 내의 열 거품 형성 시뮬레이션
  • 열 전달 표면의 비등 거동 예측
  • 캐비테이션 역학으로 인한 혼합 예측

Modeling Cavitation in FLOW-3D

FLOW-3D의 캐비테이션 모델은 thermal bubble jets 와 MEMS devices를 시뮬레이션하는데 성공적으로 사용되었습니다. FLOW-3D는 “active”또는 “passive” 모델 옵션을 제공합니다. Active 모델은 기포 영역을 열고 수동 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전파하지만, 기포 영역의 형성을 시작하지는 않습니다.

Active모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합하며, Passive모델은 작은 기포의 간단한 모양이 예상되는 시뮬레이션에 가장 적합합니다. 활성 모델과 에너지 전송 계산을 통해 위상 변화도 옵션입니다. 기포는 계면에서의 증발 또는 응축으로 인해 추가로 팽창하거나 수축 할 수 있습니다.

Sample Results

아래 시뮬레이션은 수축 노즐을 보여줍니다. 애니메이션은 매우 일시적인 진동 동작을 보여주는 캐비테이션 버블의 진화를 보여줍니다. 캐비테이션 부피 분율은 초기 연속 액체에서 캐비테이션의 시작을 시각화하기 위해 플롯됩니다.

아래 애니메이션은 진입 속도가 8m/s이고 수렴 기울기가 18 °이고 발산 기울기가 8 ° 인 벤츄리 내의 캐비테이션을 보여줍니다. 다시 말하지만, 캐비테이션의 과도 동작은 잘 모델링되어 있으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션주기 기간을 예측합니다 (Stutz and Reboud 1997).

Cavitation in a venturi

물 탱크를 통해 이동하는 고속 발사체를 시뮬레이션하여 발사체 후류에서 생성 된 저압 영역의 공동 기둥을 보여줍니다. 발사체의 초기 속도는 600m / s입니다. 아래는 탱크의 움직임과 후행하는 캐비테이션 유체의 애니메이션입니다. 발사체가 감속함에 따라 캐비테이션 기둥의 반경이 좁아집니다.

@

High-speed bullet

References

Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.

Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.

Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.

Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.

The realm of operations of FLOW-3D

ADDITIVE MANUFACTURING SIMULATIONS

Capabilities of FLOW-3D

FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.

또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다.
적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.

유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.

FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다.
구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.

The realm of operations of FLOW-3D
The realm of operations of FLOW-3D

FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다.
FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.

예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다.
FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.

FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다.
또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.

Sequence of a multi-layer L-PBF simulation setup in FLOW-3D

Ease of Use

FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다.
사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다.
사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.

Available Literature

실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.

Laser Welding

  1. L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014.
    A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
  2. Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E.
    Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017.
    General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
  3. Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015.
    Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.

Additive Manufacturing

  1. Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018
    This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
  2. Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015
    A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
  3. Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016
    A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.

 

 

자유 표면 모델링 방법

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Free Surface Modeling Methods

An interface between a gas and liquid is often referred to as a free surface. The reason for the “free” designation arises from the large difference in the densities of the gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density means that its inertia can generally be ignored compared to that of the liquid. In this sense the liquid moves independently, or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.

자유 표면 모델링 방법

기체와 액체 사이의 계면은 종종 자유 표면이라고합니다.  ‘자유’라는 호칭이 된 것은 기체와 액체의 밀도가 크게 다르기 때문입니다 (예를 들어, 물 공기에 대한 밀도 비는 1000입니다).  기체의 밀도가 낮다는 것은 액체의 관성에 비해 기체의 관성은 일반적으로 무시할 수 있다는 것을 의미합니다.  이러한 의미에서, 액체는 기체에 대해 독립적으로, 즉 자유롭게 움직입니다.  기체의 유일한 효과는 액체의 표면에 대한 압력입니다.  즉, 기체와 액체의 표면은 제약되어있는 것이 아니라 자유롭다는 것입니다.

In heat-transfer texts the term ‘Stephen Problem’ is often used to describe free boundary problems. In this case, however, the boundaries are phase boundaries, e.g., the boundary between ice and water that changes in response to the heat supplied from convective fluid currents.

열전달에 관한 문서는 자유 경계 문제를 묘사할 때 “Stephen Problem’”라는 용어가 자주 사용됩니다.  그러나 여기에서 경계는 상(phase) 경계, 즉 대류적인 유체의 흐름에 의해 공급된 열에 반응하여 변화하는 얼음과 물 사이의 경계 등을 말합니다.

Whatever the name, it should be obvious that the presence of a free or moving boundary introduces serious complications for any type of analysis. For all but the simplest of problems, it is necessary to resort to numerical solutions. Even then, free surfaces require the introduction of special methods to define their location, their movement, and their influence on a flow.

이름이 무엇이든, 자유 또는 이동 경계가 존재한다는 것은 어떤 유형의 분석에도 복잡한 문제를 야기한다는 것은 분명합니다. 가장 간단한 문제를 제외한 모든 문제에 대해서는 수치 해석에 의존할 필요가 있습니다. 그 경우에도 자유 표면은 위치, 이동 및 흐름에 미치는 영향을 정의하기 위한 특별한 방법이 필요합니다.

In the following discussion we will briefly review the types of numerical approaches that have been used to model free surfaces, indicating the advantages and disadvantages of each method. Regardless of the method employed, there are three essential features needed to properly model free surfaces:

  1. A scheme is needed to describe the shape and location of a surface,
  2. An algorithm is required to evolve the shape and location with time, and
  3. Free-surface boundary conditions must be applied at the surface.

다음 설명에서는 자유 표면 모델링에 사용되어 온 다양한 유형의 수치적 접근에 대해 간략하게 검토하고 각 방법의 장단점을 설명합니다. 어떤 방법을 사용하는지에 관계없이 자유롭게 표면을 적절히 모델화하는 다음의 3 가지 기능이 필요합니다.

  1. 표면의 형상과 위치를 설명하는 방식
  2. 시간에 따라 모양과 위치를 업데이트 하는 알고리즘
  3. 표면에 적용할 자유 표면 경계 조건

Lagrangian Grid Methods

Conceptually, the simplest means of defining and tracking a free surface is to construct a Lagrangian grid that is imbedded in and moves with the fluid. Many finite-element methods use this approach. Because the grid and fluid move together, the grid automatically tracks free surfaces.

라그랑주 격자 법

개념적으로 자유 표면을 정의하고 추적하는 가장 간단한 방법은 유체와 함께 이동하는 라그랑주 격자를 구성하는 것입니다. 많은 유한 요소 방법이 이 접근 방식을 사용합니다. 격자와 유체가 함께 움직이기 때문에 격자는 자동으로 자유 표면을 추적합니다.

At a surface it is necessary to modify the approximating equations to include the proper boundary conditions and to account for the fact that fluid exists only on one side of the boundary. If this is not done, asymmetries develop that eventually destroy the accuracy of a simulation.

표면에서 적절한 경계 조건을 포함하고 유체가 경계의 한면에만 존재한다는 사실을 설명하기 위해 근사 방정식을 수정해야합니다. 이것이 수행되지 않으면 결국 시뮬레이션의 정확도를 훼손하는 비대칭이 발생합니다.

The principal limitation of Lagrangian methods is that they cannot track surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE) method. References 1970 and 1974 may be consulted for early examples of these approaches.

라그랑지안 방법의 주요 제한은 분리되거나 교차하는 표면을 추적 할 수 없다는 것입니다. ALE (Arbitrary-Lagrangian-Eulerian) 방법과 같은 격자 재생성 기법을 도입하지 않으면 진폭이 큰 표면 움직임도 추적하기 어려울 수 있습니다. 이러한 접근법의 초기 예를 보려면 참고 문헌 1970 및 1974를 참조하십시오.

The remaining free-surface methods discussed here use a fixed, Eulerian grid as the basis for computations so that more complicated surface motions may be treated.

여기에서 논의된 나머지 자유 표면 방법은 보다 복잡한 표면 움직임을 처리할 수 있도록 고정된 오일러 그리드를 계산의 기준으로 사용합니다.

Surface Height Method

Low amplitude sloshing, shallow water waves, and other free-surface motions in which the surface does not deviate too far from horizontal, can be described by the height, H, of the surface relative to some reference elevation. Time evolution of the height is governed by the kinematic equation, where (u,v,w) are fluid velocities in the (x,y,z) directions. This equation is a mathematical expression of the fact that the surface must move with the fluid:

표면 높이 법

낮은 진폭의 슬로 싱, 얕은 물결 및 표면이 수평에서 너무 멀리 벗어나지 않는 기타 자유 표면 운동은 일부 기준 고도에 대한 표면의 높이 H로 설명 할 수 있습니다. 높이의 시간 진화는 운동학 방정식에 의해 제어되며, 여기서 (u, v, w)는 (x, y, z) 방향의 유체 속도입니다. 이 방정식은 표면이 유체와 함께 움직여야한다는 사실을 수학적으로 표현한 것입니다.

Finite-difference approximations to this equation are easy to implement. Further, only the height values at a set of horizontal locations must be recorded so the memory requirements for a three-dimensional numerical solution are extremely small. Finally, the application of free-surface boundary conditions is also simplified by the condition on the surface that it remains nearly horizontal. Examples of this technique can be found in References 1971 and 1975.

이 방정식의 유한 차분 근사를 쉽게 실행할 수 있습니다.  또한 3 차원 수치 해법의 메모리 요구 사항이 극도로 작아지도록 같은 높이의 위치 값만을 기록해야합니다.  마지막으로 자유 표면 경계 조건의 적용도 거의 수평을 유지하는 표면의 조건에 의해 간소화됩니다.  이 방법의 예는 참고 문헌의 1971 및 1975을 참조하십시오.

Marker-and-Cell (MAC) Method

The earliest numerical method devised for time-dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method (see Ref. 1965). This scheme is based on a fixed, Eulerian grid of control volumes. The location of fluid within the grid is determined by a set of marker particles that move with the fluid, but otherwise have no volume, mass or other properties.

MAC 방법

시간 의존성을 가지는 자유 표면 흐름의 문제에 대해 처음 고안된 수치 법이 MAC (Marker-and-Cell) 법입니다 (참고 문헌 1965 참조).  이 구조는 컨트롤 볼륨 고정 오일러 격자를 기반으로합니다.  격자 내의 유체의 위치는 유체와 함께 움직이고, 그 이외는 부피, 질량, 기타 특성을 갖지 않는 일련의 마커 입자에 의해 결정됩니다.

Grid cells containing markers are considered occupied by fluid, while those without markers are empty (or void). A free surface is defined to exist in any grid cell that contains particles and that also has at least one neighboring grid cell that is void. The location and orientation of the surface within the cell was not part of the original MAC method.

마커를 포함한 격자 셀은 유체로 채워져있는 것으로 간주되며 마커가 없는 격자 셀은 빈(무효)것입니다.  입자를 포함하고, 적어도 하나의 인접 격자 셀이 무효인 격자의 자유 표면은 존재하는 것으로 정의됩니다.  셀 표면의 위치와 방향은 원래의 MAC 법에 포함되지 않았습니다.

Evolution of surfaces was computed by moving the markers with locally interpolated fluid velocities. Some special treatments were required to define the fluid properties in newly filled grid cells and to cancel values in cells that are emptied.

표면의 발전(개선)은 국소적으로 보간된 유체 속도로 마커를 이동하여 계산되었습니다.  새롭게 충전된 격자 셀의 유체 특성을 정의하거나 비어있는 셀의 값을 취소하거나 하려면 특별한 처리가 필요했습니다.

The application of free-surface boundary conditions consisted of assigning the gas pressure to all surface cells. Also, velocity components were assigned to all locations on or immediately outside the surface in such a way as to approximate conditions of incompressibility and zero-surface shear stress.

자유 표면 경계 조건의 적용은 모든 표면 셀에 가스 압력을 할당하는 것으로 구성되었습니다. 또한 속도 성분은 비압축성 및 제로 표면 전단 응력의 조건을 근사화하는 방식으로 표면 위 또는 외부의 모든 위치에 할당되었습니다.

The extraordinary success of the MAC method in solving a wide range of complicated free-surface flow problems is well documented in numerous publications. One reason for this success is that the markers do not track surfaces directly, but instead track fluid volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces may appear, merge or disappear as volumes break apart or coalesce.

폭넓게 복잡한 자유 표면 흐름 문제 해결에 MAC 법이 놀라운 성공을 거두고 있는 것은 수많은 문헌에서 충분히 입증되고 있습니다.  이 성공 이유 중 하나는 마커가 표면을 직접 추적하는 것이 아니라 유체의 체적을 추적하는 것입니다.  표면은 체적의 경계에 불과하며, 그러한 의미에서 표면은 분할 또는 합체된 부피로 출현(appear), 병합, 소멸 할 가능성이 있습니다.

A variety of improvements have contributed to an increase in the accuracy and applicability of the original MAC method. For example, applying gas pressures at interpolated surface locations within cells improves the accuracy in problems driven by hydrostatic forces, while the inclusion of surface tension forces extends the method to a wider class of problems (see Refs. 1969, 1975).

다양한 개선으로 인해 원래 MAC 방법의 정확성과 적용 가능성이 증가했습니다. 예를 들어, 셀 내 보간 된 표면 위치에 가스 압력을 적용하면 정 수력으로 인한 문제의 정확도가 향상되는 반면 표면 장력의 포함은 방법을 더 광범위한 문제로 확장합니다 (참조 문헌. 1969, 1975).

In spite of its successes, the MAC method has been used primarily for two-dimensional simulations because it requires considerable memory and CPU time to accommodate the necessary number of marker particles. Typically, an average of about 16 markers in each grid cell is needed to ensure an accurate tracking of surfaces undergoing large deformations.

수많은 성공에도 불구하고 MAC 방법은 필요한 수의 마커 입자를 수용하기 위해 상당한 메모리와 CPU 시간이 필요하기 때문에 주로 2 차원 시뮬레이션에 사용되었습니다. 일반적으로 큰 변형을 겪는 표면의 정확한 추적을 보장하려면 각 그리드 셀에 평균 약 16 개의 마커가 필요합니다.

Another limitation of marker particles is that they don’t do a very good job of following flow processes in regions involving converging/diverging flows. Markers are usually interpreted as tracking the centroids of small fluid elements. However, when those fluid elements get pulled into long convoluted strands, the markers may no longer be good indicators of the fluid configuration. This can be seen, for example, at flow stagnation points where markers pile up in one direction, but are drawn apart in a perpendicular direction. If they are pulled apart enough (i.e., further than one grid cell width) unphysical voids may develop in the flow.

마커 입자의 또 다른 한계는 수렴 / 발산 흐름이 포함된 영역에서 흐름 프로세스를 따라가는 작업을 잘 수행하지 못한다는 것입니다. 마커는 일반적으로 작은 유체 요소의 중심을 추적하는 것으로 해석됩니다. 그러나 이러한 유체 요소가 길고 복잡한 가닥으로 당겨지면 마커가 더 이상 유체 구성의 좋은 지표가 될 수 없습니다. 예를 들어 마커가 한 방향으로 쌓여 있지만 수직 방향으로 떨어져 있는 흐름 정체 지점에서 볼 수 있습니다. 충분히 분리되면 (즉, 하나의 그리드 셀 너비 이상) 비 물리적 공극이 흐름에서 발생할 수 있습니다.

Surface Marker Method

One way to limit the memory and CPU time consumption of markers is to keep marker particles only on surfaces and not in the interior of fluid regions. Of course, this removes the volume tracking property of the MAC method and requires additional logic to determine when and how surfaces break apart or coalesce.

표면 마커 법

마커의 메모리 및 CPU 시간의 소비를 제한하는 방법 중 하나는 마커 입자를 유체 영역의 내부가 아니라 표면에만 보존하는 것입니다.  물론 이는 MAC 법의 체적 추적 특성이 배제되기 때문에 표면이 분할 또는 합체하는 방식과 시기를 특정하기위한 논리를 추가해야합니다.

In two dimensions the marker particles on a surface can be arranged in a linear order along the surface. This arrangement introduces several advantages, such as being able to maintain a uniform particle spacing and simplifying the computation of intersections between different surfaces. Surface markers also provide a convenient way to locate the surface within a grid cell for the application of boundary conditions.

2 차원의 경우 표면 마커 입자는 표면을 따라 선형으로 배치 할 수 있습니다.  이 배열은 입자의 간격을 균일하게 유지할 수있는 별도의 표면이 교차하는 부분의 계산이 쉽다는 등 몇 가지 장점이 있습니다.  또한 표면 마커를 사용하여 경계 조건을 적용하면 격자 셀의 표면을 간단한 방법으로 찾을 수 있습니다.

Unfortunately, in three-dimensions there is no simple way to order particles on surfaces, and this leads to a major failing of the surface marker technique. Regions may exist where surfaces are expanding and no markers fill the space. Without markers the configuration of the surface is unknown, consequently there is no way to add markers. Reference 1975 contains examples that show the advantages and limitations of this method.

불행히도 3 차원에서는 표면에 입자를 정렬하는 간단한 방법이 없으며 이로 인해 표면 마커 기술이 크게 실패합니다. 표면이 확장되고 마커가 공간을 채우지 않는 영역이 존재할 수 있습니다. 마커가 없으면 표면의 구성을 알 수 없으므로 마커를 추가 할 방법이 없습니다.
참고 문헌 1975이 방법의 장점과 한계를 보여주는 예제가 포함되어 있습니다.

Volume-of-Fluid (VOF) Method

The last method to be discussed is based on the concept of a fluid volume fraction. The idea for this approach originated as a way to have the powerful volume-tracking feature of the MAC method without its large memory and CPU costs.

VOF (Volume-of-Fluid) 법

마지막으로 설명하는 방법은 유체 부피 분율의 개념을 기반으로합니다. 이 접근 방식에 대한 아이디어는 대용량 메모리 및 CPU 비용없이 MAC 방식의 강력한 볼륨 추적 기능을 갖는 방법에서 시작되었습니다.

Within each grid cell (control volume) it is customary to retain only one value for each flow quantity (e.g., pressure, velocity, temperature, etc.) For this reason it makes little sense to retain more information for locating a free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction in each grid cell, is consistent with the resolution of the other flow quantities.

각 격자 셀 (제어 체적) 내에서 각 유량 (예 : 압력, 속도, 온도 등)에 대해 하나의 값만 유지하는 것이 일반적입니다. 이러한 이유로 자유 표면을 찾기 위해 더 많은 정보를 유지하는 것은 거의 의미가 없습니다. 이러한 추론에 따라 각 격자 셀의 유체 부피 분율인 단일 수량의 사용은 다른 유량의 해상도와 일치합니다.

If we know the amount of fluid in each cell it is possible to locate surfaces, as well as determine surface slopes and surface curvatures. Surfaces are easy to locate because they lie in cells partially filled with fluid or between cells full of fluid and cells that have no fluid.

각 셀 내의 유체의 양을 알고 있는 경우, 표면의 위치 뿐만 아니라  표면 경사와 표면 곡률을 결정하는 것이 가능합니다.  표면은 유체 가 부분 충전 된 셀 또는 유체가 전체에 충전 된 셀과 유체가 전혀없는 셀 사이에 존재하기 때문에 쉽게 찾을 수 있습니다.

Slopes and curvatures are computed by using the fluid volume fractions in neighboring cells. It is essential to remember that the volume fraction should be a step function, i.e., having a value of either one or zero. Knowing this, the volume fractions in neighboring cells can then be used to locate the position of fluid (and its slope and curvature) within a particular cell.

경사와 곡률은 인접 셀의 유체 체적 점유율을 사용하여 계산됩니다.  체적 점유율은 계단 함수(step function)이어야 합니다, 즉, 값이 1 또는 0 인 것을 기억하는 것이 중요합니다.  이 것을 안다면, 인접 셀의 부피 점유율을 사용하여 특정 셀 내의 유체의 위치 (및 그 경사와 곡률)을 찾을 수 있습니다.

Free-surface boundary conditions must be applied as in the MAC method, i.e., assigning the proper gas pressure (plus equivalent surface tension pressure) as well as determining what velocity components outside the surface should be used to satisfy a zero shear-stress condition at the surface. In practice, it is sometimes simpler to assign velocity gradients instead of velocity components at surfaces.

자유 표면 경계 조건을 MAC 법과 동일하게 적용해야 합니다.  즉, 적절한 기체 압력 (및 대응하는 표면 장력)을 할당하고, 또한 표면에서 제로 전단 응력을 충족 시키려면 표면 외부의 어떤 속도 성분을 사용할 필요가 있는지를 확인합니다.  사실, 표면에서의 속도 성분 대신 속도 구배를 지정하는 것이보다 쉬울 수 있습니다.

Finally, to compute the time evolution of surfaces, a technique is needed to move volume fractions through a grid in such a way that the step-function nature of the distribution is retained. The basic kinematic equation for fluid fractions is similar to that for the height-function method, where F is the fraction of fluid function:

마지막으로, 표면의 시간 변화를 계산하려면 분포의 계단 함수의 성질이 유지되는 방법으로 격자를 통과하고 부피 점유율을 이동하는 방법이 필요합니다.  유체 점유율의 기본적인 운동학방정식은 높이 함수(height-function) 법과 유사합니다.  F는 유체 점유율 함수입니다.

A straightforward numerical approximation cannot be used to model this equation because numerical diffusion and dispersion errors destroy the sharp, step-function nature of the F distribution.

이 방정식을 모델링 할 때 간단한 수치 근사는 사용할 수 없습니다.  수치의 확산과 분산 오류는 F 분포의 명확한 계단 함수(step-function)의 성질이 손상되기 때문입니다.

It is easy to accurately model the solution to this equation in one dimension such that the F distribution retains its zero or one values. Imagine fluid is filling a column of cells from bottom to top. At some instant the fluid interface is in the middle region of a cell whose neighbor below is filled and whose neighbor above is empty. The fluid orientation in the neighboring cells means the interface must be located above the bottom of the cell by an amount equal to the fluid fraction in the cell. Then the computation of how much fluid to move into the empty cell above can be modified to first allow the empty region of the surface-containing cell to fill before transmitting fluid on to the next cell.

F 분포가 0 또는 1의 값을 유지하는 같은 1 차원에서이 방정식의 해를 정확하게 모델링하는 것은 간단합니다.  1 열의 셀에 위에서 아래까지 유체가 충전되는 경우를 상상해보십시오.  어느 순간에 액체 계면은 셀의 중간 영역에 있고, 그 아래쪽의 인접 셀은 충전되어 있고, 상단 인접 셀은 비어 있습니다.  인접 셀 내의 유체의 방향은 계면과 셀의 하단과의 거리가 셀 내의 유체 점유율과 같아야 한다는 것을 의미합니다.  그 다음 먼저 표면을 포함하는 셀의 빈 공간을 충전 한 후 다음 셀로 유체를 보내도록 위쪽의 빈 셀에 이동하는 유체의 양의 계산을 변경할 수 있습니다.

In two or three dimensions a similar procedure of using information from neighboring cells can be used, but it is not possible to be as accurate as in the one-dimensional case. The problem with more than one dimension is that an exact determination of the shape and location of the surface cannot be made. Nevertheless, this technique can be made to work well as evidenced by the large number of successful applications that have been completed using the VOF method. References 1975, 1980, and 1981 should be consulted for the original work on this technique.

2 차원과 3 차원에서 인접 셀의 정보를 사용하는 유사한 절차를 사용할 수 있지만, 1 차원의 경우만큼 정확하게 하는 것은 불가능합니다.  2 차원 이상의 경우의 문제는 표면의 모양과 위치를 정확히 알 수없는 것입니다.  그래도 VOF 법을 사용하여 달성 된 다수의 성공 사례에서 알 수 있듯이 이 방법을 잘 작동시킬 수 있습니다.  이 기법에 관한 초기의 연구 내용은 참고 문헌 1975,1980,1981를 참조하십시오.

The VOF method has lived up to its goal of providing a method that is as powerful as the MAC method without the overhead of that method. Its use of volume tracking as opposed to surface-tracking function means that it is robust enough to handle the breakup and coalescence of fluid masses. Further, because it uses a continuous function it does not suffer from the lack of divisibility that discrete particles exhibit.

VOF 법은 MAC 법만큼 강력한 기술을 오버 헤드없이 제공한다는 목표를 달성 해 왔습니다.  표면 추적이 아닌 부피 추적 기능을 사용하는 것은 유체 질량의 분할과 합체를 처리하는 데 충분한 내구성을 가지고 있다는 것을 의미합니다.  또한 연속 함수를 사용하기 때문에 이산된 입자에서 발생하는 숫자를 나눌 수 없는 문제를 겪지 않게 됩니다.

Variable-Density Approximation to the VOF Method

One feature of the VOF method that requires special treatment is the application of boundary conditions. As a surface moves through a grid, the cells containing fluid continually change, which means that the solution region is also changing. At the free boundaries of this changing region the proper free surface stress conditions must also be applied.

VOF 법의 가변 밀도 근사

VOF 법의 특수 처리가 필요한 기능 중 하나는 경계 조건의 적용입니다.  표면이 격자를 통과하여 이동할 때 유체를 포함하는 셀은 끊임없이 변화합니다.  즉, 계산 영역도 변화하고 있다는 것입니다.  이 변화하고있는 영역의 자유 경계에는 적절한 자유 표면 응력 조건도 적용해야합니다.

Updating the flow region and applying boundary conditions is not a trivial task. For this reason some approximations to the VOF method have been used in which flow is computed in both liquid and gas regions. Typically, this is done by treating the flow as a single fluid having a variable density. The F function is used to define the density. An argument is then made that because the flow equations are solved in both liquid and gas regions there is no need to set interfacial boundary conditions.

유체 영역의 업데이트 및 경계 조건의 적용은 중요한 작업입니다.  따라서 액체와 기체의 두 영역에서 흐름이 계산되는 VOF 법에 약간의 근사가 사용되어 왔습니다.  일반적으로 가변 밀도를 가진 단일 유체로 흐름을 처리함으로써 이루어집니다.  밀도를 정의하려면 F 함수를 사용합니다.  그리고, 흐름 방정식은 액체와 기체의 두 영역에서 계산되기 때문에 계면의 경계 조건을 설정할 필요가 없다는 논증이 이루어집니다.

Unfortunately, this approach does not work very well in practice for two reasons. First, the sensitivity of a gas region to pressure changes is generally much greater than that in liquid regions. This makes it difficult to achieve convergence in the coupled pressure-velocity solution. Sometimes very large CPU times are required with this technique.

공교롭게도 이 방법은 두 가지 이유로 인해 실제로는 그다지 잘 작동하지 않습니다.  하나는 압력의 변화에 대한 기체 영역의 감도가 일반적으로 액체 영역보다 훨씬 큰 것입니다.  따라서 압력 – 속도 결합 해법 수렴을 달성하는 것은 어렵습니다.  이 기술은 필요한 CPU 시간이 매우 커질 수 있습니다.

The second, and more significant, reason is associated with the possibility of a tangential velocity discontinuity at interfaces. Because of their different responses to pressure, gas and liquid velocities at an interface are usually quite different. In the Variable-Density model interfaces are moved with an average velocity, but this often leads to unrealistic movement of the interfaces.

두 번째 더 중요한 이유는 계면에서 접선 속도가 불연속이되는 가능성에 관련이 있습니다.  압력에 대한 반응이 다르기 때문에 계면에서 기체와 액체의 속도는 일반적으로 크게 다릅니다.  가변 밀도 모델은 계면은 평균 속도로 동작하지만, 이는 계면의 움직임이 비현실적으로 되는 경우가 많습니다.

Even though the Variable-Density method is sometimes referred to as a VOF method, because is uses a fraction-of-fluid function, this designation is incorrect. For accurately tracking sharp liquid-gas interfaces it is necessary to actually treat the interface as a discontinuity. This means it is necessary to have a technique to define an interface discontinuity, as well as a way to impose the proper boundary conditions at that interface. It is also necessary to use a special numerical method to track interface motions though a grid without destroying its character as a discontinuity.

가변 밀도 방법은 유체 분율 함수를 사용하기 때문에 VOF 방법이라고도하지만 이것은 올바르지 않습니다. 날카로운 액체-가스 인터페이스를 정확하게 추적하려면 인터페이스를 실제로 불연속으로 처리해야합니다. 즉, 인터페이스 불연속성을 정의하는 기술과 해당 인터페이스에서 적절한 경계 조건을 적용하는 방법이 필요합니다. 또한 불연속성으로 특성을 훼손하지 않고 격자를 통해 인터페이스 동작을 추적하기 위해 특수한 수치 방법을 사용해야합니다.

Summary

A brief discussion of the various techniques used to numerically model free surfaces has been given here with some comments about their relative advantages and disadvantages. Readers should not be surprised to learn that there have been numerous variations of these basic techniques proposed over the years. Probably the most successful of the methods is the VOF technique because of its simplicity and robustness. It is this method, with some refinement, that is used in the FLOW-3D program.

여기에서는 자유 표면을 수치적으로 모델링 할 때 사용하는 다양한 방법에 대해 상대적인 장점과 단점에 대한 설명을 포함하여 쉽게 설명하였습니다.  오랜 세월에 걸쳐 이러한 기본적인 방법이 많이 제안되어 온 것을 알고도 독자 여러분은 놀라지 않을 것입니다.  아마도 가장 성과를 거둔 방법은 간결하고 강력한 VOF 법 입니다.  이 방법에 일부 개량을 더한 것이 현재 FLOW-3D 프로그램에서 사용되고 있습니다.

Attempts to improve the VOF method have centered on better, more accurate, ways to move fluid fractions through a grid. Other developments have attempted to apply the method in connection with body-fitted grids and to employ more than one fluid fraction function in order to model more than one fluid component. A discussion of these developments is beyond the scope of this introduction.

VOF 법의 개선은 더 나은, 더 정확한 방법으로 유체 점유율을 격자를 통과하여 이동하는 것에 중점을 두어 왔습니다.  기타 개발은 물체 적합 격자(body-fitted grids) 관련 기법을 적용하거나 여러 유체 성분을 모델링하기 위해 여러 유체 점유율 함수를 채용하기도 했습니다.  이러한 개발에 대한 논의는 여기에서의 설명 범위를 벗어납니다.

References

1965 Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible Flow, Phys. Fluids 8, 2182.

1969 Daly, B.J., Numerical Study of the Effect of Surface Tension on Interface Instability, Phys. Fluids 12, 1340.

1970 Hirt, C.W., Cook, J.L. and Butler, T.D., A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface, J. Comp. Phys. 5, 103.

1971 Nichols, B.D. and Hirt, C.W.,Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures, J. Comp. Phys. 12, 234.

1974 Hirt, C.W., Amsden, A.A., and Cook, J.L.,An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds, J. Comp. Phys., 14, 227.

1975 Nichols, B.D. and Hirt, C.W., Methods for Calculating Multidimensional, Transient Free Surface Flows Past Bodies, Proc. of the First International Conf. On Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23.

1980 Nichols, B.D. and Hirt, C.W., Numerical Simulation of BWR Vent-Clearing Hydrodynamics, Nucl. Sci. Eng. 73, 196.

1981 Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, 201.

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

많은 제품들이 모두 자신의 소프트웨어가 가장 적합하다고 말하기 떄문에, 사람들은 자신의 업무에 적합한 CFD 소프트웨어 선택에 어려움을 겪습니다. 그 이유는 유체 흐름 및 열 전달 분석을 위한 소프트웨어 패키지는 다양한 형태로 제공됩니다. 이러한 패키지는 물리적 근사치와 수치적 솔루션 기법이 크게 다르기 때문에 적합한 패키지를 선택하는 것이 어렵습니다.

아래 내용에서 올바른 CFD 소프트웨어를 선택할 때 고려해야 할 중요한 항목을 설명합니다.

Spillway’s tailrace over natural rock

1. 메싱 및 지오메트리

유한 요소 또는 “바디 맞춤 좌표”를 사용하는 솔루션 방법은 유동 영역의 기하학적 구조를 준수하는 해석용 그리드를 생성해야합니다. 정확한 수치 근사를 위해 허용 가능한 요소 크기와 모양으로 이러한 그리드를 생성하는 것은 쉽지 않은 작업입니다. 복잡한 경우 이러한 유형의 그리드 생성에는 며칠 또는 몇주의 노력이 소요될 수 있습니다. 일부 프로그램은 직사각형 그리드 요소만 사용하여 이러한 생성 문제를 제거하려고 시도하지만 흐름 및 열 전달 특성을 변경하는 “계단현상” 경계 문제를 해결해야 합니다. FLOW-3D는 FAVOR ™ (분수 면적 / 체적) 방법을 사용하여 기하학적 특성이 매끄럽게 포함된 생성하기 쉬운 직사각형 그리드를 사용하여 두 문제를 모두 해결합니다. 간단하고 강력한 솔리드 모델러가 FLOW-3D와 함께 패키지로 제공되거나 사용자가 CAD 프로그램에서 기하학적 데이터를 가져올 수 있습니다.

2. 운동량 방정식과 대략적인 흐름 모델

유체 운동량의 정확한 처리는 여러 가지 이유로 중요합니다. 첫째, 복잡한 지오메트리를 통해 유체가 어떻게 흐를지 예측할 수 있는 유일한 방법입니다. 둘째, 유체에 의해 가해지는 동적 힘 (즉, 압력)은 모멘텀을고려하여야만 계산할 수 있습니다. 마지막으로, 열 에너지의 대류 이동을 계산하려면 개별 유체 입자가 다른 유체 입자 및 제한 경계와 관련하여 어떻게 움직이는지를 정확하게 파악할 수 있어야 합니다.

이것은 운동량의 정확한 처리를 의미합니다. 모멘텀의 보존을 대략적으로만 하는 단순화된 흐름 모델은 실제적인 유체 구성과 온도 분포를 예측하는데 사용할 수 없기 때문에 FLOW-3D에서는 사용되지 않습니다.

3. 액체-고체 열 전달 영역

액체와 고체 (예 : 금속-금형) 사이의 열 전달에는 계면 영역의 정확한 추정이 필요합니다. 계단 경계는 이 영역을 과대 평가합니다. 예를 들어, 실린더의 표면적은 27 %의 비율로 과대 평가됩니다. FLOW-3D 전 처리기의 각 제어 볼륨에 대해 FAVOR ™ 방법에 의해 정확한 계면 영역이 자동으로 계산됩니다.

4. 액체-고체 열 전달에 대한 볼륨 효과 제어

제어 볼륨의 크기는 액체 / 고체 인터페이스를 포함하는 제어 볼륨에서도 열이 흐르기 때문에 액체와 고체 사이에서 교환되는 열의 속도와 양에 영향을 미칠 수 있습니다. FLOW-3D에서는 액체-고체 인터페이스에서 열 전달 속도를 계산할 때 체적 크기와 전도도가 고려됩니다.

5. 암시성(Implicitness)과 정확성

비선형 및 결합 방정식에 대한 암시적 방법에는 각 반복에서 under-relaxation 특성이 있는 반복 솔루션 방법이 필요합니다. 이 동작은 일부 상황에서 심각한 오류 (또는 매우 느린 수렴)를 일으킬 수 있습니다 (예 : 큰 종횡비로 제어 볼륨을 사용하거나 실제로 중요하지 않은 효과를 예상하여 암시성이 사용되는 경우).

FLOW-3D에서는 계산 노력FLOW-3D에서는 계산 작업이 덜 필요하기 때문에 가능한 경우 언제나 명시적 수치 방법을 사용하며, 수치 안정성 요구 사항은 정확도 요구 사항과 동일합니다. Implicit vs. Explicit Numerical Methods 문서에서 자세히 알아보세요.

6. 대류 전송을 위한 암시적 수치 방법 (Implicit Numerical Methods)

임의적으로 큰 시간 단계 크기를 계산에 사용할 수 있는 암시적 수치 기법은 CPU 시간을 줄이는데 널리 사용되는 방법입니다. 불행히도 이러한 방법은 대류 해석에 정확하지 않습니다. 암시적 방법은 근사 방정식에 확산 효과를 도입하여 시간 단계 독립성을 얻습니다. 물리적 확산(예 : 열전도)에 수치적 확산을 추가하는 것은 확산 속도만 수정하기 때문에 심각한 문제를 일으키지 않을 수 있습니다. 그러나 대류 과정에 수치 확산을 추가하면 모델링되는 물리적 현상의 특성이 완전히 바뀝니다. FLOW-3D에서 시간 단계는 프로그램에 의해 자동으로 제어되어 정확한 시간 근사치를 보장합니다.

7. 이완 및 수렴 매개 변수 (Relaxation and Convergence Parameters)

암시적 근사를 사용하는 수치 방법은 하나 이상의 수렴 및 이완 매개 변수를 선택해야합니다. 이러한 매개 변수를 잘못 선택하면 발산 또는 수렴 속도가 느려질 수 있습니다. FLOW-3D에서는 하나의 수렴 및 하나의 이완 매개 변수만 사용되며, 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다. 사용자는 수치해석 솔버를 제어하는 ​​매개 변수를 설정할 필요가 없습니다.

8. 자유 표면 추적

액체-가스 인터페이스 (즉, 자유 표면)를 모델링하는 데 사용되는 두 가지 방법이 있습니다. 그 중 하나는 액체 및 가스 영역의 흐름을 계산하고 계면을 유체 밀도의 급격한 변화로 처리하는 것입니다. 일반적으로 밀도 불연속성은 고차 수치 근사를 사용하여 모델링됩니다.

불행히도, 이 치료는 몇몇 그리드 셀에 걸쳐 인터페이스가 매끄럽게 진행되도록 해주며, 그러한 인터페이스에 일반적으로 존재하는 접선 유속의 급격한 변화는 설명하지 않습니다. 또한 이 기법은 가스가 계산 영역으로 유입되는 액체로 대체될 경우 탈출 포트 또는 가스의 싱크로도 보완해야 합니다. 또한 이러한 방법은 일반적으로 유체의 비압축성을 만족시키기 위해 더 많은 노력을 기울여야 합니다.  가스 영역은 거의 균일한 압력 조정을 통해 솔루션 수렴 속도를 늦추는 경향이 있기 때문에 이러한 현상이 발생합니다.

FLOW-3D에서는 다른 기술인 VOF (Volume-of-Fluid) 방법이 사용됩니다. 이것은 인터페이스가 단계 불연속으로 긴밀하게 유지되는 진정한 3 차원 인터페이스 추적 체계입니다. 또한 선택적 표면 장력을 포함하여 수직 및 접선 응력 경계 조건이 인터페이스에 적용됩니다. 가스 영역은 사용자가 모델에 포함되도록 요청하지 않는 한 계산되지 않습니다.

Moving Boundaries: An Eulerian Approach

Moving Boundaries: An Eulerian Approach

많은 문제에서, 유체 및 고체 영역의 내부 경계가 그 안에서 이동할 수 있도록하면서 공간에 고정 된 그리드를 유지하는 것이 유리합니다. 이는 리 메싱의 필요성을 피할 수 있으므로 이러한 경계의 형태에 급격한 변화가 발생할 때마다 적절합니다. 메시 생성도 크게 단순화되었습니다.

고정 그리드 내에서 유체 인터페이스, 침전물, 응고 된 유체 및 탄성 재료의 경계 이동을 모델링하기위한 다양한 접근 방식이 표시됩니다. 유체 경계의 이동은 VOF (Volume-of-Fluid) 방법의 변형으로 수행되며, 각 계산 셀에서 유체의 양을 나타내는 양이 고정 메시를 통해 조정됩니다.

퇴적물의 침식 및 퇴적은 퇴적물 수색 모델을 사용하여 계산됩니다. 국부적 인 침식 속도는 패킹 된 퇴적물 / 유체 경계면에 존재하는 국부적 인 전단 응력을 기반으로하며, 증착은 Stokes 유동 근사치로 예측됩니다.

Emptying of gravure cell (same cell dimensions as filling case); a
three-dimensional perspective is shown. The transfer roll surface
(block at top) is moving away from the gravure roll at 0.5m/s. The
static contact of the fluid with all surfaces is 30°. The elapsed time
is 150

충진 층 경계면은 퇴적물 농도와 퇴적물의 포장 분율에 따라 달라집니다. 용융 금속은 온도가 빙점 아래로 떨어지면 굳을 수 있습니다. 응고 된 “유체”는 동결 및 용융을 유발하는 열유속의 양으로부터 결정된대로 표면이 증가하거나 수축하는 고체처럼 처리됩니다.

탄성 응력은 응고 된 재료 / 공기 인터페이스를 예측하는 VOF 방법을 사용하여 동일한 고정 그리드 내의 운동량 균형에 탄성 응력 계산을 추가하여 응고 된 영역에서 계산됩니다.

매우 일시적인 흐름 문제의 경우 유체와 공극 공간 사이 또는 두 개의 혼합 불가능한 유체 사이에있는 유체 인터페이스는 문제의 역학에 따라 자유롭게 움직여야합니다.

한 가지 해결책은 인터페이스와 함께 변형되는 메시를 만드는 것입니다. 이것은 시뮬레이션 중에 인터페이스의 형태가 거의 변경되지 않는 상황에서 잘 작동합니다. 그러나보다 일반적인 경우에는 시뮬레이션 중에 새 메시를 반복적으로 생성해야하거나 변경되지 않은 메시 내에서 자유 표면 경계를 생성하는 방법이 필요합니다. 이 작업은 후자를 제시합니다. VOF (Vol-of-fluid) 함수는 자유 표면의 위치를 추적하는 데 사용됩니다. 또한이 함수는 곡률을 계산하여 표면 장력의 영향을 예측하는 데 사용됩니다.

<원문보기> Moving-Boundaries-an-Eularian-Approach.pdf

접촉선의 고정(Contact Line Pinning)

접촉선의 고정(Contact Line Pinning)

증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.

액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.

모델링 접근법

FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 ​​데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.

커피 링 얼룩 검증

그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.

그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.

액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.

정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.

잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.

이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)

그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.

그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.

접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.

그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) .
가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.

물방울 벽의 검증

그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색).
해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.

접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.

초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.

요약

FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면 여기에서 찾을 수 있습니다.

Capillary Flows/Capillary Filling/Thermocapillary Switch/Capillary Absorption/Marangoni flow

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서는 한 곳에서 다른 곳으로 액체 용액을 전달하기 위해 긴 마이크로 채널이 자주 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력은 액체를 마이크로 채널로 끌어 당깁니다 (액체가 칩 표면에 “젖은”경우). 이 페이지에서는 충진, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D의 특정 응용 분야를 다룹니다.

Marangoni flow in a dish of water that is heated at its center.

Marangoni flow는 중앙에서 데워진 물이 담긴 접시에 흐릅니다. 불균일한 표면 장력에 의해 생성 된 흐름은 20ºC의 초기 온도에서 0.75cm 깊이의 얕은 8.0cm 직경의 물 접시에 의해 입증됩니다. 원형 접시의 중앙에는 직경 0.5cm의 원통형 막대가 있습니다. 80 Cº의 온도로 가열하고 0.05 cm 깊이까지 수면에 담근다. 핫로드 근처의 물이 가열됨에 따라 표면 장력이 0.1678 dyne / cm / ºC만큼 감소하여 표면이 접시의 바깥 쪽 테두리쪽으로 후퇴합니다. Retraction는 처음에 표면에 뿌려진 질량없는 마커 입자로 표시됩니다.

Capillary Absorption

고체 물질의 기공에 모세관 흡수 때문에 액체와 고체 사이의 접착 발생합니다. 이 같은 흡수의 간단하면서도 유용한 시험은 핀란드 ABO Akademi 대학의 마르티 Toivakka에 의해 제안되었습니다. 테스트 기공은 ± 1.0 μm의 측면 벽 1.0 μm의 반경 원호입니다. 팽창 목에 연결된 넓은 2차원 채널로 구성되어 있습니다. 체적력의 부재 하에서, 표면장력 과 wall adhesion pull liquid 는 액체와 고체 사이의 static contact angle에 의해 결정됩니다. 첨부된 그림은 FLOW-3D가 올바르게 특정 접촉 각도 (유체는 적색표현) 충전 레벨을 계산하는 것을 나타냅니다.

Thermocapillary Switch

액체의 작은 덩어리나 가벼운 빔의 경로에서 움직이는 굴절, 혹은 반사로 다른 길로 리디렉션 할 수 있습니다. 이 개념은 특히나 한번 빔 내부 반사로 인해 갇혀 있는 섬유에 들어가 광학 섬유로 연결에서 매력적입니다. 어떠한 복잡성의 광 회로를 만들려면, 하나의 광섬유에서 다른 가벼운 방향을 바꿀 수 있는“스위치”를 둘 필요가 있습니다.

The animation above shows a FLOW-3D simulation of a drop of water in a 14mm-wide channel that is being heated at the bottom.

Capillary Filling

모세관 충전 과정을 이해하는 것은 칩 설계에 중요합니다.. 액체 흐름 통로의 다른 형상 포획 기포의 가능성 등의 충전 공정의 기술은, 같은 챔버와 칩의 내부 구조를 배치 기둥 분할하고, 밸브 결합에 설계자 안내 등 다양한 모세관 충전 동작이 발생할 수 있습니다.

시뮬레이션은 아래의 모세관 작용의 분석 예측의 유효성을 검사합니다. 모세관 채우기는 정확하게 표면 장력과 중력에 의해 균형을 잡습니다.이것은 FLOW-3D에 의해서 정확하게 예측되는 기본적인 과정입니다.

Non-Newtonian Fluids

Non-Newtonian Fluids

혈액, 케첩, 치약, 샴푸, 페인트 및 로션과 같은 비 뉴턴 유체는 점도가 다양한 복잡한 유변학을 가지고 있습니다. FLOW-3D는 변형 및 온도에 따라 달라지는 비 뉴턴 점도를 가진 유체를 모델링합니다. 전단 및 온도 의존 점도는 Carreau, 거듭 제곱 법칙 함수 또는 단순히 표 형식 입력을 통해 설명됩니다. 일부 폴리머, 세라믹 및 반고체 금속의 특성인 시간 의존적 또는 요 변성 거동(thixotropic behavior)도 시뮬레이션 할 수 있습니다.

Hand Lotion Pump

핸드 로션 펌프는 종종 몇 가지 설계 문제와 관련이 있습니다. 펌프가 공극을 막지 않고 효과적으로 작동하고 로션을 연속적으로 생성하는 것이 중요합니다. 좋은 디자인은 노력을 덜 필요로하며 이상적으로는 로션을 원하는 위치로 향하게합니다. FLOW-3D의 움직이는 물체 모델은 노즐이 아래로 밀리는 것을 시뮬레이션하여 저장소의 로션을 가압하는 데 사용됩니다. 로션의 압력과 로션을 추출하는 데 필요한 힘을 연구 할 수 있습니다. 동일한 고정 구조화 된 메시 내에서 여러 설계 변수를 쉽게 분석 할 수 있습니다.

FLOW-3D’s TruVOF method accurately captures the pulsating lotion as the ball regulates the frequency of dispensing lotion.

원자력 시설물의 잔해물 거동 예측

Debris Transport in a Nuclear Reactor Containment Building

원자로 격리 건물에서 파편 운송

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Emergency Core Cooling System (ECCS)

파이프 파손 후 ECCS (비상 코어 냉각 시스템)가 활성화됩니다. 격리 건물 압력을 낮추고 대기에서 방사성 물질을 제거하기 위해 격리 스프레이를 켤 것입니다. 물은 부식 열을 제거하고 용융을 방지하기 위해 코어에 주입됩니다. 이 물은 이후 파이프 파손 부위에서 흘러 나옵니다. 격납 스프레이와 부식 열 제거에서 나온 물은 외부 탱크에서 ECCS 펌프에 의해 격납용기로 펌핑됩니다. 스프레이 및 브레이크 흐름을 통해 격리실로 펌핑된 물의 양은 격리실 바닥에 모이고 풀을 형성합니다.

Sump Strainers and Debris

외부 탱크의 물이 고갈된 후에는 ECCS 펌프에 대한 흡입기가 격납건물 내 하나 이상의 섬프로 전환됩니다(두 개의 섬프 스트레이너 예가 왼쪽에 표시됨). 섬프의 기능은 원자로 건물 풀에서 펌프 흡입구로 물을 재순환하는 것입니다. 각 섬프에는 이물질이 ECCS 펌프로 빨려 들어가 막힘이나 손상이 발생하는 것을 방지하기 위해 스트레이너 시스템이 있습니다. 그러나 스트레이너에 쌓인 이물질로 인해 펌프가 요구하는 순정 흡수헤드(NPSH)를 초과하는 헤드 손실이 발생하여 펌프가 고장을 일으키고 발전소를 안전하게 정지시킬 수 없습니다. 원자력규제위원회 일반안전문제(GSI) 191의 핵심입니다.

FLOW-3D Applied to Evaluate Performance

FLOW-3D는 격납용기 풀을 모델링하고 스트레이너에 도달할 수 있는 이물질의 양을 결정하는 데 사용됩니다. 파이프 파손, 직접 분무 구역(분무기가 비처럼 POOL에 유입되는 지역), 유출 분무 구역(분무수가 더 높은 고도에서 바닥에서 흘러나와 폭포처럼 POOL에 유입되는 지역)은 질량-모멘텀 소스 입자가 밀집된 지역으로 모델링되며, 적절한 유량과 속도가 할당됩니다. 후자는 POOL 표면까지의 자유 낙하 거리에 따라 달라집니다. 여과기 영역은 격납용기 POOL에서 물을 끌어오는 흡입구로 모델링됩니다.

Containment pool simulation

모델을 자유 표면으로 실행하여 (풀의 섬프 흡입 또는 초크 포인트로 인한) 상당한 수위 변화를 식별하고, RNG 모델을 활성화하여 풀의 난류를 예측합니다. 파괴된 절연체가 격납용기 풀을 통해 이동할 수 있는 능력은 정착 속도(정지 상태에서 이동할 수 있는 기능)와 텀블링 속도(바닥을 가로질러 이동할 수 있는 기능)의 기능입니다. 안착 속도는 절연체를 고정하는 데 필요한 운동 에너지의 양과 관련이 있습니다. 이러한 안착 및 텀블링 속도는 연도 및 탱크 테스트를 통해 결정되며, FLOW-3D 모델에 의해 계산된 값입니다.

모델이 정상 상태 상태에 도달한 후에는 FLOW-3D 결과가 후처리되어 다양한 이물질 유형을 POOL 바닥(빨간색으로 표시됨)으로 넘어뜨릴 수 있을 정도로 속도가 높은 영역 또는 난류가 서스펜션의 이물질을 운반할 수 있을 정도로 높은 영역(노란색으로 표시됨)을 결정합니다.

그런 다음 속도 벡터를 빨간색 및 노란색 영역과 함께 사용하여 흐름이 이물질을 스트레이너 쪽으로 운반하는지 여부를 확인합니다. 그런 다음 이러한 영역을 초기 이물질 분포 영역과 비교하여 각 이물질의 유형 및 크기에 대한 운송 분율을 결정합니다.

Conclusions

이물질 잔해 수송 테스트를 CFD 모델링과 결합하면 ECCS 스트레이너가 견딜 수 있어야하는 잔해 부하를 다른 방법으로는 가정해야하는 지나치게 보수적인 값에서 크게 줄일 수 있습니다. CFD는 또한 수두 손실 테스트를 지원하기 위해 ECCS 스트레이너 주변의 흐름 패턴, 수두 손실 테스트 및 플랜트 설계 수정을 식별하는 데있어 격납용 POOL 수위 변화를 식별하는데 유용함이 입증되었습니다.

Alion logo

1Alion Science and Technology is a consulting engineering company with the ITS Operation comprised of engineering professionals skilled at developing and completing diverse projects vital to power plant operations. Alion ITSO provides engineering, program management, system integration, human-systems integration, design review, testing, and analysis for nuclear, electrical and mechanical systems, as well as environmental services. Alion ITSO has developed a meticulous Quality Assurance Program, which is compliant with 10CFR50 Appendix B, 10CFR21, ASME NQA-1, ANSI N45.2 and applicable daughter standards. Alion ITSO has provided a myriad of turnkey services to customers, delivering the highest levels of satisfaction for almost 15 years.

Thermocapillary Actuation

Thermocapillary Actuation

표면 장력의 온도 의존성은 유체 방울을 패턴 있는 표면 위로 전달하는 데 사용될 수 있습니다. 표면은 유체 방울이 친수성-수소성 인터페이스에 의해 형성된 채널을 따르도록 제한되도록 친수성 또는 친수성 접촉 각도로 패턴화됩니다. 또한 프로그램 가능한 방식으로 가열된 마이크로 히터의 배열은 열전압 작동을 유발하여 유체 방울을 뜨거운 영역에서 차가운 지역으로 유도합니다. 아래 이미지는 문제 설정의 상단 및 단면 뷰(Anton A)를 보여줍니다. Darhuber 외.) 다음에 Flow-3D를 설정합니다.

Liquid droplet moving along hydrophilic microstripe
Top-view of a liquid droplet moving along a hydrophilic microstripe. The array of Ti-resistors (shown in light gray) beneath the hydrophilic stripes locally heat the droplet thereby modifying the surface tension and propelling the liquid toward the colder regions of the device surface. The dark gray stripes represent the leads and contacts (Au) for the heating resistors.
Cross sectional view of device
Cross-sectional view of a portion of the device containing two micro-heaters and an overlying droplet.

더 차가운 표면 온도 영역은 인접한 따뜻한 지점보다 더 높은 표면 장력을 유지하여 액체를 당기는 접선 표면 힘을가합니다. 부분적 습윤 (접촉각> 0) 표면은 전체 습윤 표면 (접촉각 = 0)에 비해 부피 손실이 적은 유체 수송을 허용하기 때문에 바람직한 옵션입니다.

FLOW-3D setup of three microheaters

Top view of the setup in FLOW-3D showing three microheaters in pink, yellow and blue respectively. The central hydrophilic strip is shown in black with a fluid (water) droplet in sky blue.

아래 애니메이션은 완전히 젖은 표면과 부분적으로 젖은 표면의 비교를 보여줍니다. 예상대로 완전히 젖은 표면은 부분적으로 젖은 표면보다 액적을 더 평평하게 (그리고 더 많이 퍼지게) 만듭니다. 히터가 한 번에 하나씩 활성화되면 물방울이 더 차가운 영역으로 이동됩니다. 더 많은 유체가 남겨질수록 시뮬레이션이 끝날 때까지 완전히 젖은 표면은 더 많은 유체 볼륨을 잃는 것을 볼 수 있습니다. 따라서 부분적으로 젖은 표면은 유체 손실을 줄이기위한 더 바람직한 옵션입니다. 두 경우 모두 소수성 표면으로 둘러싸인 중앙 친수성 스트립으로 인해 물방울이 중앙에 머물러야합니다.

Animation of the results post-processed in FlowSight.

References

Anton A. Darhuber, Joseph P. Valentino, Sandra M. Trian and Sigurd Wagner, Thermocapillary Actuation of Droplets on Chemically Patterned Surfaces by Programmable Microheater Arrays, Journal of Microelectrochemical Systems, Vol. 12, No. 6, December 2003

Digital Microfluidics

Electrowetting은 전기장을 사용하여 표면 습윤 특성을 변경하는 과정입니다. Digital microfluidics는 전기 습식이 개별 유체 방울을 제어하고 조작하는데 사용되는 미세 유체 분야입니다. 이 아이디어는 디지털 마이크로 일렉트로닉스에서 영감을 얻었지만 전류 대신 이산 (또는 디지털화 된)액적을 사용하여 특정 시간 내에 특정 거리에 포함된 특정 양의 유체 또는 반응물을 이동합니다. 디지털 마이크로 플루이딕스는 높은 재구성 가능성과 대규모 병렬화를 통해 프로세스 속도를 높일 수있는 능력 때문에 다양한 바이오칩 설계에서 응용 분야를 찾습니다.

가장 중요한 표면 습윤 특성은 유체와 표면 사이의 접촉각입니다. FLOW-3D의 강력한 표면장력 모델은 전기 운동 모델과 함께 유전 영동, 열 모세관 작동 (온도에 따른 표면 장력을 통한 작동) 및 전기 습윤 자체와 같은 디지털 미세 유체 공정에서 습윤 역학을 포착하는 데 사용됩니다.

접촉선의 이해(Contact Line Insights)

접촉선의 이해(Contact Line Insights)

FLOW-3D는 코팅 성능 향상에 관심이있는 엔지니어에게 이상적인 수치 모델링 기능을 많이 갖추고 있습니다. 전산 시뮬레이션은 코팅 흐름에 영향을 미치는 여러 물리적 과정의 상대적 중요성과 효과를 연구 할 수있는 훌륭한 방법입니다. 물리적인 테스트에서 항상 프로세스를 분리하거나 해당 프로세스의 크기를 임의로 조정할 수있는 것은 아닙니다. 여기에서는 리 볼렛 형성(rivulet formation), 핑거링(fingering), 증발, 거친 표면에서의 접촉선 이동 및 유체 흡수와  관련하여 정적 및 동적 접촉각에 대하여 FLOW-3D의 처리에 대해 설명합니다.

 

정적 및 동적 접촉각(Static and Dynamic Contact Angles)

FLOW-3D는 정적 접촉각의 함수로 동적 접촉각을 정확하게 계산하고 입력으로 설정하며 자유 표면 인터페이스에서 작용하는 관련된 힘을 정확하게 계산하여 유체의 소수성을 캡처 할 수 있습니다. 아래 시뮬레이션은 물방울이 경사를 따라 내려갈 때 정적 접촉각이 동적 접촉각에 미치는 영향을 보여줍니다.

 

흡수(Absorption)

종이 기판에 액 적의 충격 및 흡수는 전산 유체 역학 소프트웨어를 사용하여 연구 할 수 있습니다. 여기서 FLOW-3D는 섬유층에서 물방울 충돌을 시뮬레이션하는데 사용되며 표면 장력, 접촉각 및 점도와 관련된 유체 전면의 전파를 살펴 봅니다.

 

 

아래의 FLOW-3D 시뮬레이션에서, 낙하는 직경이 40 미크론이며 초기 하향 속도는 300 cm / s입니다. 기재는 종이이고, 기공률이 30 % 인 20 미크론 두께입니다.

 

 

액체 필름의 핑거링(Fingering in Liquid Films)

FLOW-3D에서 동적 접촉선은 동적 접촉각이나 접촉선의 위치를 ​​지정할 필요없이 직접 모델링됩니다. 이는 소량의 유체에서 유체에 영향을 미치는 모든 동적 힘을 포함하는 수치 모델을 사용하여 수행됩니다. 정적 접촉각은 액체-고체 접착력을 특성화 하는데 사용됩니다.

액체 시트의 핑거링. 왼쪽은 0 °, 오른쪽은 70 °

여기서, 이러한 접근법의 힘의 적용은 경사 표면 아래로 흐르는 액체 필름에서 관찰 된 핑거링에 의해 제공됩니다. 실험적 관찰에 따르면 두 가지 뚜렷한 핑거링 패턴이 발생합니다. 첫 번째 패턴은 작은 정적 접촉각(즉, 습윤 조건)이며 상하한이 모두 하향으로 움직이는 쐐기형 핑거를 나타냅니다. 두 번째 패턴은 큰 정적 접촉각(즉, 습윤 조건이 열악함)이며 가장 균일한 폭을 가진 긴 핑거이고 가장 큰 한계점은 하향으로 움직이지 않는 것이 특징입니다.

 

 

증발 효과(Evaporative Effects)

퇴적(Deposit)

분산 된 고체 물질을 함유하는 액 적은 고체 표면에서 건조 될 때, 함유하고 있는 고체 물질을 침전물로서 남깁니다. 이 침전물의 형상이 많은 인쇄 공정, 청소 및 코팅 공정에 중요한 영향을 미칩니다. 한 종류의 퇴적물의 전형적인 예는 위의 이미지와 같이 엎질러 진 커피 패치의 둘레를 따라 링 얼룩이 형성되는 “커피 링” 문제입니다. 이 유형의 링 침전물은 액체의 증발로 인한 표면 장력 구동 흐름의 결과로, 특히 낙하 둘레에서 발생합니다.

 

건조(Drying)

FLOW-3D의 증발 잔류 액체 모델은 건조 후 톨루엔으로 형성된 잔류된 물의 3D형상을 시뮬레이션합니다. (30 배 확대)

건조는 코팅 공정의 중요한 부분입니다. 하지만 건조의 결함으로 잘 도포 된 코팅을 완전히 취소 할 수도 있습니다. 건조 중에 온도 및 용질 구배는 밀도 및 표면 장력 구배로 인해 코팅 내 유동을 유도 할 수 있으며, 이는 코팅 품질을 잠재적으로 파괴 할 수 있습니다. FLOW-3D의 증발 잔류 물 모델을 사용하면 건조로 인한 흐름을 시뮬레이션하고 값 비싼 물리적 실험에 소요되는 시간을 줄일 수 있습니다.

 

모델링 링 형성(Modeling Ring Formation)

증발에 의해 접촉 라인에서 생성 된 흐름 시뮬레이션

윗쪽 그림에서 FLOW-3D는 증발이 가장 큰 접촉선에서의 증착으로 인해 에지 피닝(edge pinning)이 발생함을 보여줍니다. 증발은 증발로 인한 열 손실로 인해 액체를 냉각시킵니다 (색상은 온도를 나타냄). 동시에 고체 표면은 전도에 의해 액체를 가열합니다. 접촉선 주변에서 증발이 가장 커서, 액체가 접촉선을 향해 흘러 정적 조건을 재설정합니다. 최종 결과는 액체가 완전히 증발하는 액체 가장자리에 현탁 된 고체의 증착입니다.

 

 

참고
[1] Deegan, R., Bakajin, O., Dupont, T. et al. Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827–829 (1997).

 

Capillary Flows

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서 긴 마이크로 채널은 종종 액체 용액을 한 장소에서 다른 장소로 전달하는 데 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력이 액체를 마이크로 채널로 당깁니다(액체가 칩 표면에 “습기”되는 경우). 이 페이지에서는 충전, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D에 대한 몇 가지 특정 용도에 대해 다룹니다.

Marangoni Flows

마랑고니는 그 중심에 가열된 물 접시에 흐릅니다. 균일하지 않은 표면 장력에 의해 발생하는 흐름은 20ºC의 초기 온도에서 깊이 0.75cm의 얕은 8.0cm의 물 접시에 의해 입증됩니다. 원형 접시 중앙에 놓인 원통형 막대는 직경 0.5cm로 80Cº의 온도로 가열되고 0.05cm의 깊이까지 수면에 잠깁니다. 핫 로드 주변의 물이 가열되면 표면 장력이 0.1678dyne/cm/ºC만큼 감소하여 표면이 접시의 바깥쪽 림 쪽으로 수축됩니다. 수축은 처음에 표면에 뿌려진 질량이 없는 마커 입자에 의해 나타납니다.

Capillary Filling

모세관 충전 공정을 이해하는 것은 칩 설계에 중요합니다. 액체 흐름 경로의 기하학적 구조가 다르면 기포를 고정할 수 있는 등의 모세관 충진 동작이 달라질 수 있습니다. 충전 프로세스에 대한 지식은 설계자가 챔버, 결합 기둥, 분할 및 밸브와 같은 칩의 내부 구조를 정렬하는 데 도움이 됩니다. 오른쪽의 시뮬레이션은 모세관 작용의 분석적 예측을 검증합니다. 모세관 충전은 표면 장력과 중력에 의해 균형을 이루며, 이는 FLOW-3D로 정확하게 예측되는 기본 공정입니다.

Thermocapillary Switch

910/5000광선의 경로 안팎으로 이동하는 소량의 액체는 굴절이나 반사를 통해 다른 경로로 방향을 바꿀 수 있습니다. 이 개념은 광선이 광섬유에 들어가면 내부 반사에 의해 포착되는 광섬유와 관련하여 특히 매력적입니다. 복잡한 광학 회로를 만들려면 한 광섬유에서 다른 광섬유로 빛을 리디렉션 할 수있는 “스위치”가 필요합니다.

제안 된 한 가지 개념은 열 모세관을 기반으로합니다. 광섬유 광선을 교차하는 마이크로 채널에 액체의 작은 방울을 놓습니다. 방울이 채널을 따라 빔이 통과해야하는 곳으로 이동하면 빔이 다른 섬유로 반사됩니다. 방울은 양면을 다르게 가열하여 이동합니다. 이것은 방울이 채널의 더 차가운 끝쪽으로 당겨 지도록 방울의 양쪽에있는 반월판의 표면 장력의 변화를 일으 킵니다.

Whole Blood Spontaneous Capillary Flow

Sketch of the cross section of the device (w=150 µm, h1=300 µm, h2=1200 µm, α=14.5o)

모세관 기반 마이크로 시스템은 추가 작동 메커니즘이 필요하지 않기 때문에 저렴하고 제작하기 쉽습니다. 마이크로펌프나 주사기와 같은 일반적인 마이크로 시스템은 부피가 크고 휴대할 수 없는 흐름 작동을 필요로 합니다.

버팔로 대학의 최근 연구는 모세관 유동 작용을 사용하여 미세 기기에서 액체를 이동시키는 간단한 해결책을 연구했습니다. 이 작업은 FLOW-3D를 사용하여 수정된 V-그루브 채널에서 자발적 모세관 흐름을 시뮬레이션합니다. 좁은 V-그루브 기하학(왼쪽)은 전혈과 같은 높은 점도의 유체도 이 유체를 통해 이동할 수 있기 때문에 좋은 솔루션을 제공합니다. 홈의 끝부분은 자발적인 모세관 흐름을 촉진하고 평행판은 충분한 혈액수송을 보장합니다.

본 연구에서는 FLOW-3D를 사용하여 채널 내 유체 헤드의 유속과 액체 전방의 진행을 추정합니다.

결과는 실험 및 분석(간단한) 결과와 비교됩니다. 아래 그림은 수치, 실험 및 분석 결과의 비교를 보여줍니다. FLOW-3D 결과는 실험 결과와 매우 일치합니다.

FLOW-3D Results

Analysis A: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes
Analysis B: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes

Animation of the results post-processed in FlowSight.

References

J. Berthiera, K.A. Brakke, E.P. Furlani, I.H. Karampelas, V. Pohera, D. Gosselin, M. Cubizolles, P. Pouteau, Whole blood spontaneous capillary flow in narrow V-groove microchannels, Sensors and Actuators B: Chemical, 2014

화학기반 응고모델 / chemistry-based solidification

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 응고 모델은 업계를 주조 시뮬레이션의 다음 개척지로 발전시켜 사용자에게 캐스트 부품의 강도와 무결성을 예측하는 동시에 스크랩을 줄이고 제품 안전 및 성능 요구 사항을 충족합니다.

응고 모델 기능

새로운 응고 모델은 핵 생성, 분리 및 냉각 조건을 고려한 온도 및 화학의 진화로부터 잠열, 열전도율, 열용량, 밀도, 점도 등 응고 경로 및 재료 특성을 계산합니다.

응고 모델은 SDAS (secondary dendrite arm sapcing) 및 입자 크기와 같은 구성 및 냉각 조건을 기반으로 미세 구조 진화를 예측합니다. 또한 확산 및 이류로 인한 거시적 분리를 예측합니다. 기계적 특성과 미세 구조 간의 경험적 관계는 실험 측정을 기반으로합니다. 독특하고 강력한 미세 구조 및 기계적 특성 예측 기능을 갖춘 새로운 응고 모델은 미세 다공성 예측을위한 무 차원 Niyama 기준과 같은 다른 모델의 기반을 마련합니다.

응고 미세 구조 및 다공성 결함은 주조의 기계적 특성에 영향을 미치는 주요 요인입니다. 차례로 국부적 인 미세 구조는 합금의 화학적 조성, 응고 속도 및 합금 원소의 분리로 인한 화학적 비균질성에 의해 결정됩니다. 새로운 응고 모델을 사용하여 공정 설계자는 다양한 공정 매개 변수 및 합금 구성이 기계적 특성에 미치는 영향을 결정하여 가능한 최고 품질의 안전한 제품을 생산하기 위해 주조 성능을 최적화 할 수 있습니다.

Solidification of AlSi9Cu3

Aluminium A356

응고 모델에는 전체 모델과 단순화 된 모델이 모두 포함되어있어 사용자가 시뮬레이션 워크 플로를 더 잘 제어 할 수 있습니다. 전체 모델은 용융물이 응고됨에 따라 화학적 조성과 상 변화를 고려하는 반면, 단순화 된 모델은 더 빠른 런타임을 제공하고 전체 모델만큼 많은 메모리를 필요로하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화 된 모델에서 시작할 수 있으며 그 반대의 경우도 마찬가지입니다. 이는 시뮬레이션의 여러 단계뿐만 아니라 다양한 유형의 시뮬레이션에 적합한 모델을 사용할 수있는 완벽한 유연성을 제공합니다.

리소스를 적게 사용한다는 분명한 이점이 있으므로 사용자는 가능한 한 단순화 된 모델을 사용하는 것이 좋습니다. 사용자는 매크로 분리가 중요한 경우 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클링 시뮬레이션의 경우 이러한 모델링 시나리오에서는 전체 분석이 필요하지 않기 때문에 소프트웨어에 의해 단순화 된 모델이 적용됩니다.

벽이 얇은 일부 주조의 경우 확산 및 이류에 기반한 매크로 분리는 중요하지 않습니다. 이러한 주물에서 응고 경로는 전체적으로 거의 동일하며 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 진화를 추적 할 필요가 없습니다. 이러한 유형의 시나리오의 경우 사용자가 단순화 된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

FLOW-3D RESIN

FLOW-3D RESIN 모듈

FLOW-3D RESIN 는 FLOW Science Japan에서 개발된 열 경화성 수지 유동과 열 특성을 해석하는 모듈입니다.
열 경화성 수지 재료는 강한 접착성 구조 강도, 열 및 화학적 내구성이 뛰어나며, 반도체 장치, 발전기, 변압기, 개폐기, 전기 자동차 및 하이브리드 전기 자동차의 코일이나 다른 파트, 프린트 기판, MRI등에 사용되고 있습니다.

주요 기능:Castro-Macosko, Cross-WLF등의 점성 모델 지수 감쇠, Kamal등의 발열 모델 겔화 이후의 경화 수축 모델 수지 함침 해석용 포러스 체내 유동 모델(점성 의존 저항, 이방성 저항 등) 2-domain Tait pvT밀도식 모델 구조 해석 인터페이스 F.SAI 경유의 압력, 온도 데이터 내보내기

적용 사례

resin3 트랜스퍼 성형
resin4
사출 성형
background_phone_case_compare
실제 제품과 비교
resin5
트랜스퍼 몰드(충전의 결과:온도[위] / 속도[하단])
resin6
트랜스퍼 몰드(발열의 결과:온도[위]총 / 변형[하단])
resin7
트랜스퍼 몰드(냉각의 결과:온도)
background_resin1
FLOW-3D의 온도 데이터를 기반으로 수지에 매핑
background_resin2
구조 해석의 결과(Von Mises stress)
background_resin3
구조 해석의 결과(Total translation)
resin8
트랜스퍼 몰드(충전 해석:온도[위] / 공기 흡입[하단])
resin9
트랜스퍼 몰드(냉각 해석:응력[좌측]총 변형[오른쪽 위] / 온도[아래])
background_resin4
트랜스퍼 몰드 반응률[시간 추이]
background_resin5
트랜스퍼 몰드 응력[시간 추이]
background_resin6
FLOW-3D의 온도 데이터를 기반으로 수지에 매핑
background_resin7
구조 해석의 결과(변위[왼쪽] / Von Mises stress[오른쪽])

^back to top

FLOW FSAI

F.SAI module

FSAI는 유체-구조 연성해석을 쉽게 할 수 있는 프로그램으로 FLOW-3D / FLOW-3D MP 해석 결과 데이터(유체 압력, 유체 온도, 벽 온도)를 구조 해석의 유한 요소(FEM) Mesh에 출력할 수 있습니다.  반대로 구조 해석의 유한 요소(FEM) Mesh 데이터를 FLOW-3D Solid 형상으로 읽어 처리 할 수 있습니다.

F.SAI는 FLOW Science Japan 개발 제품입니다.

F.SAI module Features

  • Transfer fluid pressures , temperature, and wall temperature
  • FLOW-3D® & FLOW-3D ®/MP support (Multi block support)
  • Support for Solid / Shell FEA meshes ( can be intermixed )
  • Node probe search distance
  • Automatic local interpolation on element faces
  • Add default value for nodes with no probe values
  • Limit the probe values to a given Min/Max values of the probe output
  • Runs in standalone mode ( does not require FLOW-3D ® or FEA package to be installed on the same machine )
  • Platforms: Windows 64 bit / Linux 64 bit

F.SAI module Features (Supported Features)

  • NASTRAN  (Bulk Data)
  • SIMULA  Abaqus ( version 6 and above )
  • MSC Mentat Marc 2012 (comma separated / fixed column format)
  • Altair HyperWorks OptiStruct
  • Altair HyperWorks Radioss
  • Calclix

Transfer verification sample

Comparison