Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting

Metals and Materials International (2021)Cite this article

Abstract

선택적 레이저 용융 동안 CP-Ti의 열 거동을 연구하기 위해 무작위 패킹 분말 베드 모델을 기반으로 하는 메조스코프 시뮬레이션이 설정되었습니다. 레이저와 분말의 상호 작용에 따른 용융 풀의 특성과 레이저 출력이 용융 풀의 열 거동, 유체 역학 및 표면 형태 변화에 미치는 영향을 연구했습니다.

결과는 레이저 출력이 증가함에 따라 최대 온도, 온도 변화율, 용융 풀의 수명 및 크기가 크게 향상되었음을 보여줍니다. 또한 본 연구에서는 이중궤도 하의 용융지의 특성과 열거동을 주로 연구하였다.

두 번째 트랙의 용융 풀의 최대 온도, 수명 및 길이와 너비는 첫 번째 트랙보다 더 높고 레이저 출력이 증가함에 따라 용융 풀에서 두 번째 트랙의 길이 너비 비율이 증가함을 알 수 있습니다. 더 커집니다.

A mesoscopic simulation based on random packing powder bed model was established to study the heat behavior of CP-Ti during selective laser melting. The characteristics of the molten pool under the interaction of laser and powder, and the influence of laser power on the thermal behavior, hydrodynamics and surface morphology evolution of the molten pool were studied. The results show that with the increase of laser power, the maximum temperature, temperature change rate, lifetime of molten pool and size are greatly improved. In addition, the characteristics and heat behavior of the molten pool under the double track are mainly studied in this study. It is found that the maximum temperature, lifetime, and the length and width of the molten pool of the second track are higher than those in the first, and with the increase of laser power, the length width ratio of the second track in molten pool becomes larger.

Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting
Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting

Keywords

  • Additive manufacturing
  • Selective laser melting
  • Numerical simulation
  • Thermal behavior

References

  • 1.D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Acta Biomater. 7, 1398 (2011)CAS Article Google Scholar 
  • 2.A.K. Patnaik, N. Poondla, C.C. Menzemer, T.S. Srivatsan, Mater. Sci. Eng. A 590, 390 (2014)CAS Article Google Scholar 
  • 3.D.D. Gu, Y.C. Hagedorn, W. Meiners, G.B. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60, 3849 (2012)CAS Article Google Scholar 
  • 4.H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Sci. Eng. A 593, 170 (2014)CAS Article Google Scholar 
  • 5.J. Shen, B. Chen, J. Umeda, K. Kondoh, Mater. Sci. Eng. A 716, 1 (2018)CAS Article Google Scholar 
  • 6.E. Santos, K. Osakada, M. Shiomi, M. Morita, F. Abe, Fabrication of titanium dental implants by selective laser melting. in Proceedings of the 5th International Symposium on Laser Precision Microfabrication, Nara, 11–14 May 2004
  • 7.C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, JOM 60, 46 (2008)CAS Article Google Scholar 
  • 8.J.-P. Kruth, G. Levy, F. Klocke, T.H.C. Child, CIRP Ann.-Manuf. Techn. 56, 730 (2007)Article Google Scholar 
  • 9.D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev. 57, 133 (2012)CAS Article Google Scholar 
  • 10.​T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112 (2018)CAS Article Google Scholar 
  • 11.D.D. Gu, H.Q. Wang, G.Q. Zhang, Metall Mater. Trans. A 45, 464 (2014)CAS Article Google Scholar 
  • 12.M. Das, V.K. Balla, D. Basu, S. Bose, A. Bandyopadhyay, Scripta Mater. 63, 438 (2010)CAS Article Google Scholar 
  • 13.X.P. Li, J. Van Humbeeck, J.P. Kruth, Mater. Design 116, 352 (2017)CAS Article Google Scholar 
  • 14.N. Jeyaprakash, C.-H. Yang, K.R. Ramkumar, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00933-0Article Google Scholar 
  • 15.Y. Li, D. Gu, Addit. Manuf. 1–4, 99 (2014)Google Scholar 
  • 16.P. Lu, M. Wu, X. Liu, W. Duan, J. Han, Met. Mater. Int. 26, 1182 (2020)Google Scholar 
  • 17.B. Schoinochoritis, D. Chantzis, K. Salonitis, P. I. Mech. Eng. B J. Eng. 231, 96 (2014)Article Google Scholar 
  • 18.G.M. Karthik, H.S. Kim, Met. Mater. Int. 27, 1 (2021)CAS Article Google Scholar 
  • 19.W.J. Sames, K.A. Unocic, R.R. Dehof, T. Lolla, S.S. Babu, J. Mater. Res. 29, 1920 (2014)Google Scholar 
  • 20.P.S. Cook, A.B. Murphy, Addit. Manuf. 31, 100909 (2020)Google Scholar 
  • 21.A. Raghavan, H.L. Wei, T.A. Palmer, T. DebRoy, J. Laser. Appl. 25, 052006 (2013)Article CAS Google Scholar 
  • 22.C.-J. Li, T.-W. Tsai, C.-C. Tseng, Phys. Procedia 83, 1444 (2016)CAS Article Google Scholar 
  • 23.C. Panwisawas, C.L. Qiu, Y. Sovani, J.W. Brooks, M.M. Attallah, H.C. Basoalto, Scripta Mater. 105, 14 (2015)CAS Article Google Scholar 
  • 24.M. Markl, C. Körner, Annu. Rev. Mater. Res. 46, 93 (2016)CAS Article Google Scholar 
  • 25.E.J.R. Parteli, T. Pöschel, Powder Technol. 288, 96 (2016)CAS Article Google Scholar 
  • 26.Y.S. Lee, W. Zhang, Modeling of heat transfer, Addit. Manuf. 12, 178 (2016)CAS Google Scholar 
  • 27.I. Kovaleva, O. Kovalev, I. Smurov, Phys. Procedia 56, 400 (2014)Article Google Scholar 
  • 28.Y.S. Lee, W. Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. in Proceedings of 26th Solid Freeform Fabrication Symposium, Austin, 10-12 ​August 2015
  • 29.W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, Acta Mater. 134, 324 (2017)CAS Article Google Scholar 
  • 30.I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, J. Mater. Process. Tech. 210, 1624 (2010)CAS Article Google Scholar 
  • 31.L. Cao, Int. J. Heat Mass Tran. 141, 1036 (2019)Article Google Scholar 
  • 32.Y. Li, D. Gu, Mater. Design 63, 856 (2014)CAS Article Google Scholar 
  • 33.S. Liu, J. Zhu, H. Zhu, J. Yin, C. Chen, X. Zeng, Opt. Laser Technol. 123, 105924 (2020)Article CAS Google Scholar 
  • 34.Z. Wang, W. Yan, W.K. Liu, M. Liu, Comput. Mech. 63, 649 (2019)Article Google Scholar 
  • 35.C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201 (1981)Article Google Scholar 
  • 36.EDEM, User Guide, DEM Solutions Ltd., Edinburgh, Scotland, UK. Copyright © (2011). http://tm.spbstu.ru/images/2/28/EDEM2.4_user_guide.pdf. Accessed 25 Aug 2021
  • 37.Y. Hu, J. Li, J. Mater. Process. Tech. 249, 426 (2017)CAS Article Google Scholar 
  • 38.H. Hertz, J. Reine Angew. Math. 92, 156 (1881)
  • 39.R.D. Mindlin, J. Appl. Mech. 16, 259 (1949)Article Google Scholar 
  • 40.R.D. Mindlin, H. Deresiewicz, J. Appl. Mech. 20, 327 (1953)Article Google Scholar 
  • 41.Y. Tsuji, T. Tanaka, T. Ishida, Powder Technol. 71, 239 (1992)CAS Article Google Scholar 
  • 42.P.A. Cundall, O.D.L. Strack, Géotechnique 30, 331 (1980)Article Google Scholar 
  • 43.H. Sakaguchi, E. Ozaki, T. Igarashi, Int. J. Mod. Phys. B 7, 1949 (1993)
  • 44.Flow3D: Version 11 0.1.2: User Manual, Flow Science, Santa Fe, NM, USA, (2014)
  • 45.S. Kolossov, E. Boillat, R. Glardon, P. Fischer, M. Locher, Int. J. Mach. Tool. Manu. 44, 117 (2004)Article Google Scholar 
  • 46.V.R. Voller, A.D. Brent, C. Prakash, Int. J. Heat Mass Tran. 32, 1719 (1989)CAS Article Google Scholar 
  • 47.Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, W.-S. Hwang, J. Mater. Process. Tech. 254, 72 (2018)Article Google Scholar 
  • 48.B. Cheng, X. Li, C. Tuile, A. Ilin, H. Willeck, U. Hartel, Multi-physics modeling of single-track scanning in selective laser melting: powder compaction effect. in Proceedings of 29th Annual International Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, Austin, 13–15 ​August 2018
  • 49.B. Liu, G. Fang, L. Lei, W. Liu, Appl. Math. Model. 79, 506 (2020)Article Google Scholar 
  • 50.S. Lee, J. Kim, J. Choe, S.-W. Kim, J.-K. Hong, Y.S. Choi, Met. Mater. Int. 27, 78 (2021)
  • 51.S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)CAS Article Google Scholar 
  • 52.K. Dai, L. Shaw, Acta Mater. 53, 4743 (2005)
  • 53.L. Cao, Comp. Mater. Sci. 179, 109686 (2020)CAS Article Google Scholar 
  • 54.W. Yuan, H. Chen, T. Cheng, Q. Wei, Mater. Design 189, 108542 (2020)Article Google Scholar 
  • 55.S.A. Khairallah, A. Anderson, J. Mater. Process. Tech. 214, 2627 (2014)CAS Article Google Scholar 
  • 56.R. Li, J. Liu, Y. Shi, L. Wang, W. Jiang, Int. J. Adv. Manuf. Tech. 59, 1025 (2012)Article Google Scholar 
  • 57.D. Dai, D. Gu, Int. J. Mach. Tool. Manu. 100, 14 (2016)
  • 58.A. Simchi, H. Pohl, Mater. Sci. Eng. A 359, 119 (2003)Article CAS Google Scholar