Immersed Boundary Method

Immersed Boundary Method

이 기사에서 개발자인 Zongxian Liane박사는 곧 출시될 FLOW-3D v11.3에서 사용할 수 있는 새로운 Immersed Boundary Method에 대해 설명합니다.

힘과 에너지 손실에 대한 정확한 예측은 오리피스 판에서의 배출, 장애물을 지나가는 흐름 및 갑작스런 수축 관에서의 흐름과 같은 많은 엔지니어링 문제를 분석하는데 중요합니다. 셀 면적 및 부피 Method인 FAVORTM은 30년 전에 도입된 이래로 FLOW-3D의 표준 솔버로 적용되었으며 벽 근처의 운동량 fluxes를 근사화하는 간단한 방법을 사용했습니다 (Hirt and Sicilian 1985). 벽이나 자유 표면 근처에서 운동 이류항을 계산할 때 솔리드 또는 보이드 영역 내에 위치한 속도 값은  경계층의 모양을 제거하기 위해 0으로 설정됩니다. 물리적 관점에서 이 방법은 벽의 돌출부에 자유 미끄러짐(비침투)경계 조건을 적용하여 인공 경계층(Hirt1993)을 억제한다.

운동량 방정식에서 플럭스의 손실은 압력에 의해 보상됩니다. 특정 상황에서는 플럭스손실을 보상하는 압력의 비율이 시간에 따라 증가하며, 단일 유전물질로 표현되는 “세속적 불안정성”이라고 하는 수치적 불안정성을 야기할 수 있습니다. 속도의 증가 이러한 불안정성의 전개를 방지하기 위해, 경험적 기법을 사용하여 불안정성이 발생할 수 있는 위치에서 플럭스를 “보정” 했습니다. 그러나 이 방법은 선원으로부터의 플럭스 손실을 해결하지 못하며, 때때로 압력 변동과 같은 용액의 비정치적인 동작을 초래할 수 있습니다.

ghost – 내접 경계법 (Mittal et al., 2008)에 기초한 이류 항을 근사화하는 기법은 FLOW-3D v11.3을 위해 개발되었다. 이 내접 경계 방법 기술은 근본적으로이 문제를 해결하고보다 정확한 압력과 힘 예측을 제공합니다. ghost – 내접 경계법은 복잡한 형상을 포함하는 문제에서 전통적인 데카르트 그리드 근사법에서 강화 된 경계 처리로서 최근에 출현했다. 이 방법은 경계를 처리하는 수단 일 뿐이므로 기존의 해석기 구조가 비교적 적게 변경되어 기존의 FLOW-3D 해석기에 모델로 쉽게 추가 될 수 있으며 FLOW-3D의 다른 물리적 모델과 호환됩니다. 다양한 보간 방법과 함께 가중치 평균 프로브 기술을 사용하여 다른 지오메트리 구성을 처리합니다. 새 모델은 3D 메쉬 블록 또는 하이브리드 3D / 얕은 워터 메쉬 블록이있는 플로우에는 작동하지만 얕은 워터 메쉬에는 적합하지 않습니다.

Immersed Boundary Method Results

새로 도입된 경계 방법 모델의 간단한 예는 직경 1m의 원형 오리피스에서 물이 방출되는 것입니다. 물 용기의 길이는 10m, 폭은 10m, 오리피스 중앙부까지의 수위는 6m이다. 애니메이션에 표시된 것처럼 오리피스 Q에서 표고, h및 볼륨 유량의 강하는 각각 2차 곡선과 선형 곡선을 따릅니다. 

시뮬레이션에서 배출 Cd의 평균 계수는 0.660으로, 비대칭 값 0.611보다 약 8% 큽니다(SwameeandSwamee, 2010). immersed boundary solver 을 사용한 시뮬레이션은 이중 인터페이스(Xeon E5-2623 v3)에서 약 19시간이 소요된다. 반면에 the standard solver의 방전 계수와 벽-블록은 각각 0.800과 39시간이 소요된다.

또 다른 예는 NAVY 선박 모델 선체에 대한 총 저항력의 계산입니다. 이 경우, 선체 길이는 5.72m이고, 드래프트는 0.248m이다. 평균유속은 2.10m/s이고, 레이놀즈 수는 약 12 × 106입니다. 이 해석은 대칭이므로 선체의 절반만 모델링됩니다. 계산 영역은 길이 30m, 너비 8m, 깊이 5.5m입니다. 선체 절반에 대해 실험적으로 얻어진 총 저항력의 평균은 22.62N이다 (Larsson et al., 2003). the standard solver의 총 저항력의 평균은 24.41N이었으며 실험 결과보다 7.9 % 차이가 있으며 immersed boundary solver 경우 총 저항력의 평균은 22.43N이었고 0.8 % 더 낮았습니다 (오류가 8 개 줄었습니다. 또한 immersed 경계 솔버는 약 40 시간 만에 완성되었으며 표준 솔버보다 8 시간 빠릅니다).

 

References

Hirt, C., & Sicilian, J. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. International Conference on Numerical Ship Hydrodynamics, 4th. Washington, D.C.

Hirt, C. (1993). Volume-fraction techniques: powerful tools for wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 46 & 47, 327-338.

Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A., & von Loebbecke, A. (2008). A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of computational physics, 227(10), 4825-4852.

Swamee, P., & Swamee , N., (2010). Discharge equation of a circular sharp-crested orifice. Journal of Hydraulic Research, 48(1), 106-107.

[FLOW-3D 물리모델] Mass Sources / 질량소스

Mass Sources / 질량소스

질량소스는 형상요소와 연관되어 있다. 요소가 질량소스로 정의될 때 유체는 사용자가 지정한 체적이나 질량 유량으로 오픈된 표면(다른요소 또는 계산영역의 경계에 의해 막혀있지 않은 표면)을 통해 계산영역으로 들어온다. 음의 유량을 갖는 질량소스는 유체를 계산영역에서 제거하며 싱크(이 이후로 소스는 단지 양의 유량을 갖는 질량소스를 뜻한다)라고 불린다. 정지 및 이동요소 모두 질량 또는 체적유량소스로 정의될 수 있다. 이 모델에서는 각기 질량 또는 체적 유량, 유체형태(유체 1, 2 또는 이들의 혼합물), 유체밀도 그리고 온도 같은 고유한 물성 그룹으로 특화되는 다수의 소스 및 싱크를 사용할 수 있다.

정리하면

  • 질량/체적 유량은 시간에 따라 변할 수 있다. 결과적으로 모사(simulate)동안에 소스는 싱크로 변할 수 있고 반대도 마찬가지이다.
  • 두 유체문제에서 하나의 유체는 소스/싱크에서 추가/제거될 수 있다. 추가로 두 유체 혼합물은 싱크에서 제거될 수 있다.
  • 1-유체문제에서 유체가아닌 공간이 소스/싱크에서 추가/제거되면 추가되거나 제거된 공간체적은 소스/싱크에 인접한 공간에서의 상응하는 압력변화로 변환될 수 있다.
  • 유체1 과 2(또는 공간)이 싱크에서 제거될 때 제거된 각 유체의 양은 자동적으로 싱크에 인접한 인근 체적율에 비례하여 결정된다. 예를들면, 인근 체적율이1이면 체적으로 유체1의 10% 와 유체2의90%가 싱크에서 제거된다. 인근 체적율이 1.0이면 단지 유체1만이 제거된다. 유체분율은 시간에 따라 변하므로 각 유체의 제거율 또한 시간에 따라 변할 것이다.
  • 열전달을 갖는 모사(simulate)에서 싱크에서의 온도는 자동적으로 싱크에 인접한 셀 내의 평균온도로 계산되므로 사용자가 지정할 필요가 없다.

밑의 예제는 다른 모사(simulate)의 경우에 대한 질량 소스/싱크 모델의 사용을 기술한다.

경우1, 일정한 밀도를가지며 자유표면 이있으나 열전달이 없는 1-유체유동,

  • 소스는 유체(액체)또는기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수 는 없다. 유체1이 방출되면 소스 유체밀도는 유체1의 밀도가되며 사용자가 지정할 수 없다. 기공이 방출되고 질량 유량이 정의되면 소스/싱크에서의 기공에 대한 가스밀도가 지정되어야 한다. 기공이 방출되고 체적유량이 정의되면 소스에서의 기공의 가스밀도는 필요하지 않다.
  • 싱크는 유체1(액체)기공 또는 이들의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공 또는 유체1과 기공의 혼합물이 제거되면 이때 싱크에서 기공을 위한 기체 밀도는 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.

경우2, 변동밀도(밀도전달방정식이 해석된다)와 자유표면이 있으나 열전달이 없는 1-유체유동,

  • 소스는 유체(액체) 또는기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수는 없다. 유체1이 방출되면 소스 유체밀도가 정의되어야 한다. 기공이 방출되고 질량 유량이 정의되면 소스에서의 기공에 대한 가스밀도가 지정되어야 한다. 기공이 방출되고 체적유량이 정의되면 소스에서의 기공의 가스밀도는 필요하지 않다.
  • 싱크는 유체1(액체)기공 또는 이들의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공 또는 유체1과 기공의 혼합물이 제거되면 이때 싱크에서 기공을 위한 기체 밀도가 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.

경우3, 일정 또는 변동 밀도(온도의 함수), 자유표면 그리고 열전달이 있는 1-유체유동,

  • 소스는 유체(액체) 또는 기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수는 없다. 유체1이 방출되면 소스 유체밀도는 상수(유체밀도와 같은)이거나 온도에 의존하기 때문에 사용자가 정의할 수 없다. 기공이 방출되고 질량 유량이 정의되면 소스에서의 기공에 대한 가스밀도가 지정되어야 한다.
  • 싱크는 유체1(액체)기공 또는 이 둘의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공이 제거되면 이때 싱크에서 기공을 위한 기체 밀도가 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체 밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.
  • 유체의 온도는 소스에서 정의되어야 하나 싱크에서는 필요하지 않다.

경우4, 일정한 밀도를 가지나  자유표면과 열전달이 없는 1-유체유동,

  • 소스는 유체 #1만 방출할 수 있다. 소스유체밀도는 디폴트로 유체 #1의 밀도이며 사용자가 변경할 수 없다.
  • 싱크는 지 유체#1 만 제거할 수 있다. 싱크에서의 밀도는 유체#1의 밀도이며 사용자가 정의할 수 없다.

경우5, 일정한밀도와 열전달이 있으나 자유표면이 없는 1-유체유동,

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 디폴트로 유체#1의 밀도이며 사용자가 변경할 수 없다.
  • 싱크는 단지 유체#1 만 제거할 수 있다. 싱크에서의 유체 밀도는 유체#1의 밀도이며 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하나 싱크에서는 필요하지 않다.

경우6, 변동밀도(밀도전달방정식이 해석된다)를가지나, 자유표면 과 열전달이 없는 1-유체유동

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 사용자가 정의해야 한다.
  • 소스는 유체#1만 방출할 수 있다. 싱크에서의 유체 밀도는 디폴트로 그 지역의 값을 가지며 사용자가 정의할 수 없다.

경우7, 변동밀도 (온도의 함수)와 열전달이있으나 자유표면이 없는 1-유체유동,

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 온도에 의존하므로 정의될 수 없다.
  • 싱크는 단지 유체#1 만 제거할 수 있다. 싱크에서의 유체 밀도는 지역의 값을 가지므로 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우8, 열전달이 없고 현저한 경계면을 갖는2 -압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.

경우9, 열전달과 현저한 경계면을 갖는2-압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 사용자가 정의할 수 없다
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우10, 열전달과 현저한 경계면이 없는 2-압축성유체

  • 소스는 유체#1, 유체#2 또는 이의 혼합물을 방출할 수 있다. 소스에서의 유체 밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.

경우11, 열전달은 있으나 현저한 경계면이 없는 2-압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우12, 현저한 경계면을 갖는 두 유체이며 유체#2 는 압축성

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 유체#1이 방출되면 소스 유체밀도는 유체#1의 값이 되며 사용자가 변경할 수 없다. 유체#2가 방출되면 소스 유체밀도는 정의되어야 한다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

Activate Mass Source / 질량소스 활성화

질량소스모델은 Activate fluid source model. 을 체크함으로써 in Model Setup Physics Fluid sources 에서 활성화된다.

질량소스/싱크를 정의하기 위해 Meshing & Geometry Geometry Component (원하는 요소). 로간다. Component properties 창에서 Mass Source Properties 로 간다. Mass Source 체크상자를 체크한다. 질량소스 정의를 위한 변수들은 아래 그림에서 보여지는 것 같이 펄쳐질 수 있다.

Define Source Properties / 소스물성정의

사용자는 문제 정의에 따라 소스에서 유체 유형(유체 1,2 또는 이의 혼합물), 압력유형 밀도 및 온도, 그리고 싱크에서 유체유형과 밀도를 지정할 수 있다.

압력유형은 Stagnation pressure Static pressure 를 포함하고 단지소스에만 적용된다(즉 질량유량이 양의 수 일 경우에). 정체 압력소스(디폴트)일 경우, 유체는 0의 속도로 들어온다고 가정된다. 결과적으로 압력은 소스로부터 유체를 밀어내기 위해 소스에서 증가되어야 한다. 이러한 소스는 로켓 끝이나 수축하는 풍선에서 나오는 유체 모델을 목적으로 한다.

정압소스에서 유체속도는 질량유량과 소스의 표면적으로부터 계산된다. 이 경우 소스에서 유체를 밀어내기 위한 추가압력이 필요 없다. 이런 소스 예제는 긴 직선의 파이프로부터 나오는 유체의 경우이다.

일반적으로 질량소스의 두 유형의 차이는 결합운동을 하는 GMO 요소와 관련된 소스에서만 중요한데 이는 소스에서 유체압력, 즉 움직이는 물체에 작용하는 수압에 영향을 미치기 때문이다.

Define Flow Rate / 질량유동정의

유량 밑에 펼쳐지는 상자에서 소스/싱크를 위해 Mass flow rate Volume flow rate 를 정의하기 위해 선택할 수 있다. 두 유량은 모두 소스 요소의 전체유량 또는 단위면적당 유량으로 선택할 수 있다.

전체 유량은 소스 요소의 개표면상에 균일하게 분포될 수 있다. 단위 면적당 유량이 사용되면 전체유량은 단위 면적당 지정된 유량에 소스요소의 개방된 표면 면적을 곱한 양이다. 개방된 표면 면적이 시간에 따라 변하면 전체 유량도 변한다. 예를 들면 이동체의 개방된 표면 면적은 격자 크기와 분포에 달려있고 각 시간마다 새롭게 되므로 시간에 따라 변하며 전체 유량 역시 시간에 따라 변하게 된다.

전체 유량이 이동체에서 지정되면 개방된 표면을 통한 유속은 정의된 전체 질량 유량을 유지하기 위해 매시간 단계에 조절된다.

유량이 일정하면 그 때는 단순히 그 값을 Total flow rate 또는 Per unit area flow rate 밑에 상응하는 편집상자에 넣는다. 그렇지 않으면 데이터 표를 불러오기 위해 Tabular 를 클릭하고 일련의 시간대 유량의 데이터를 입력한다. 유량은 소스에서는 양이고 싱크에서는 음이며 시간에 따라 변할 수 있다. 다른 방법으로는 사용자가 Import Values 버튼을 사용하여 기존의 데이터 파일을 읽어 들임으로써 유량 대 시간을 정의할 수 있다. 파일은 두열의 데이터를 갖는데 좌에서 우로 각기 시간과 유량을 나타낸다. 파일은 csv 확장자를 필요로 한다. FLOW-3D 데이터에서의 다른 시간변동 입력과 같이 데이터는 시간 점들 사이에서는 구간별 선형형태를 이용하여 보간 된다.

유량은 능동모사(simulate) 조절을 이용해 모사(simulate) 동안에 변경될 수 있다, 또 더 상세한 내용은 Active Simulation Control 를 참조하라.

Define Scalars at Source / 소스에서의 스칼라정의

스칼라는 우선 Physics 탭 밑 Scalars 에서 활성화되어야 한다. 질량소스에서 유체에 있는 스칼라 량은 소스에서의 스칼라농도로 정의될 수 있는데 이는 계산영역 내로 들어오는 유체체적당 스칼라질량이다. 영역내로 들어오는 한 스칼라의 질량유량은 지정된 스칼라농도에 소스에서의 소스유체 체적유량을 곱한 값이다. Mass Source Properties Source Scalars User defined scalar 에서 스칼라 농도를 넣는다.

Coating Bibliography

아래는 코팅 참고 문헌의 기술 문서 모음입니다. 
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 코팅 공정을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

Coating Bibliography

Below is a collection of technical papers in our Coating Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate coating processes.

50-19     Peng Yi, Delong Jia, Xianghua Zhan, Pengun Xu, and Javad Mostaghimi, Coating solidification mechanism during plasma-sprayed filling the laser textured grooves, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi:10.1016/j.ijheatmasstransfer.2019.118451

01-19   Jelena Dinic and Vivek Sharma, Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method, Physics of Fluids, Vol. 31, 2019. doi: 10.1063/1.5061715

85-18   Zia Jang, Oliver Litfin and Antonio Delgado, A semi-analytical approach for prediction of volume flow rate in nip-fed reverse roll coating process, Proceedings in Applied Mathematics and Mechanics, Vol. 18, no. 1, Special Issue: 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics, 2018. doi: 10.1002/pamm.201800317

80-14   Hiroaki Koyama, Kazuhiro Fukada, Yoshitaka Murakami, Satoshi Inoue, and Tatsuya Shimoda, Investigation of Roll-to-Sheet Imprinting for the Fabrication of Thin-film Transistor Electrodes, IEICE TRAN, ELECTRON, VOL.E97-C, NO.11, November 2014

46-14   Isabell Vogeler, Andreas Olbers, Bettina Willinger and Antonio Delgado, Numerical investigation of the onset of air entrainment in forward roll coating, 17th International Coating Science and Technology Symposium September 7-10, 2014 San Diego, CA, USA

17-12  Chi-Feng Lin, Bo-Kai Wang, Carlos Tiu and Ta-Jo Liu, On the Pinning of Downstream Meniscus for Slot Die Coating, Advances in Polymer Technology, Vol. 00, No. 0, 1-9 (2012) © 2012 Wiley Periodicals, Inc. Available online at Wiley.

01-11  Reid Chesterfield, Andrew Johnson, Charlie Lang, Matthew Stainer, and Jonathan Ziebarth, Solution-Coating Technology for AMOLED Displays, Information Display Magazine, 1/11 0362-0972/01/2011-024 © SID 2011.

61-09 Yi-Rong Chang, Chi-Feng Lin and Ta-Jo Liu, Start-up of slot die coating, Polymer Engineering and Science, Vol. 49, pp. 1158-1167, 2009. doi:10.1002/pen.21360

26-06  James M. Brethour, 3-D transient simulation of viscoelastic coating flows, 13th International Coating Science and Technology Symposium, September 2006, Denver, Colorado

19-06  Ivosevic, M., Cairncross, R. A., and Knight, R., 3D Predictions of Thermally Sprayed Polymer Splats Modeling Particle Acceleration, Heating and Deformation on Impact with a Flat Substrate, Int. J. of Heat and Mass Transfer, 49, pp. 3285 – 3297, 2006

9-06  M. Ivosevic, R. A. Cairncross, R. Knight, T. E. Twardowski, V. Gupta, Drexel University, Philadelphia, PA; J. A. Baldoni, Duke University, Durham, NC, Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles Modeling and Experiments, International Thermal Spray Conference, Seattle, WA, May 2006.

26-05  Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc. International Thermal Spray Conference [ITSC-2005], Eds., DVS/IIW/ASM-TSS, Basel, Switzerland, May 2005.

11-05  Brethour, J., Simulation of Viscoelastic Coating Flows with a Volume-of-fluid Technique, in Proceedings of the 6th European Coating Symposium, Bradford, UK, 2005

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying, Flow Science Technical Note #70, FSI-05-TN70

38-04 K.H. Ho and Y.Y. Zhao, Modelling thermal development of liquid metal flow on rotating disc in centrifugal atomisation, Materials Science and Engineering, A365, pp. 336-340, 2004. doi:10.1016/j.msea.2003.09.044

30-04  M. Ivosevic, R.A. Cairncross, and R. Knight, Impact Modeling of HVOF Sprayed Polymer Particles, Presented at the 12th International Coating Science and Technology Symposium, Rochester, New York, September 23-25, 2004

29-04  J.M. Brethour and C.W. Hirt, Stains Arising from Dried Liquid Drops, Presented at the 12th International Coating Science and Technology Symposium, Rochester, New York, September 23-25, 2004

20-03  James Brethour, Filling and Emptying of Gravure Cells–A CFD Analysis, Convertech Pacific October 2002, Vol. 10, No 4, p 34-37

4-03   M. Toivakka, Numerical Investigation of Droplet Impact Spreading in Spray Coating of Paper, In Proceedings of 2003 TAPPI 8th Advanced Coating Fundamentals Symposium, TAPPI Press, Atlanta, 2003

28-02  J.M. Brethour and H. Benkreira, Filling and Emptying of Gravure Cells—Experiment and CFD Comparison, 11th International Coating Science and Technology Symposium, September 23-25, 2002, Minneapolis, Minnesota

22-02  Hirt, C.W., and Brethour, J.M., Contact Line on Rough Surfaces with Application to Air Entrainment, Presented at the 11th International Coating Science and Technology Symposium, September 23-25, 2002, Minneapolis, Minnesota. Unpublished.

17-01  J. M. Brethour, C. W. Hirt, Moving Contact Lines on Rough Surfaces, 4th European Coating Symposium, 2001, Belgium

16-01  J. M. Brethour, Filling and Emptying of Gravure Cells–-A CFD Analysis, proceedings of the 4th European Coating Symposium 2001, October 1-4, 2001, Brussels, Belgium

26-00 Ronald H. Miller and Gary S. Strumolo, A Self-Consistent Transient Paint Simulation, Proceedings of IMEC2000: 2000 ASME International Mechanical Engineering Congress and Exposition, November 2000, Orlando, Florida

6-99  C. W. Hirt, Direct Computation of Dynamic Contact Angles and Contact Lines, ECC99 Coating Conference, Erlangen, Germany (FSI-99-00-2), Sept. 1999

7-98 J. E. Richardson and Y. Becker, Three-Dimensional Simulation of Slot Coating Edge Effects, Flow Science Inc, and Polaroid Corporation, presented at the 9th International Coating Science and Technology Symposium, Newark, DE, May 18-20, 1998

6-98  C. W. Hirt and E. Choinski, Simulation of the Wet-Start Process in Slot Coating, Flow Science Inc, and Polaroid Corporation, presented at the 9th International Coating Science and Technology Symposium, Newark, DE, May 18-20, 1998

3-97  C. W. Hirt and J. E. Richardson of Flow Science Inc, and K.S. Chen, Sandia National Laboratory, Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique, presented at the 50th Annual Conference of the Society for Imaging and Science Technology, Boston, MA 18-23 May 1997

2-96 C. W. Hirt, K. S. Chen, Simulation of Slide-Coating Flows Using a Fixed Grid and a Volume-of-Fluid Front-Tracking Technique, presented a the 8th International Coating Process Science & Technology Symposium, February 25-29, 1996, New Orleans, LA

FLOW-3D/MP Features List

FLOW-3D/MP Features

FLOW-3D/MP v6.1 은 FLOW-3D v11.1 솔버에 기초하여 물리 모델, 특징 및 그래픽 사용자 인터페이스가 동일합니다. FLOW-3D v11.1의 새로운 기능은 아래 파란색으로 표시되어 있으며 FLOW-3D/MP v6.1 에서 사용할 수 있습니다. 새로운 개발 기능에 대한 자세한 설명은 FLOW-3D v11.1에서 새로운 기능을 참조하십시오.

Meshing & Geometry

  • Structured finite difference/control volume meshes for fluid and thermal solutions
  • Finite element meshes in Cartesian and cylindrical coordinates for structural analysis
  • Multi-Block gridding with nested, linked, partially overlapping and conforming mesh blocks
  • Fractional areas/volumes (FAVOR™) for efficient & accurate geometry definition
  • Mesh quality checking
  • Basic Solids Modeler
  • Import CAD data
  • Import/export finite element meshes via Exodus-II file format
  • Grid & geometry independence
  • Cartesian or cylindrical coordinates
Flow Type Options
  • Internal, external & free-surface flows
  • 3D, 2D & 1D problems
  • Transient flows
  • Inviscid, viscous laminar & turbulent flows
  • Hybrid shallow water/3D flows
  • Non-inertial reference frame motion
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media
Physical Modeling Options
  • Fluid structure interaction
  • Thermally-induced stresses
  • Plastic deformation of solids
  • Granular flow
  • Moisture drying
  • Solid solute dissolution
  • Sediment transport and scour
  • Cavitation (potential, passive tracking, active tracking)
  • Phase change (liquid-vapor, liquid-solid)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Visco-elastic-plastic fluids
  • Elastic membranes & walls
  • Evaporation residue
  • Electro-mechanical effects
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties
  • Spray cooling
Flow Definition Options
  • General boundary conditions
    • Symmetry
    • Rigid and flexible walls
    • Continuative
    • Periodic
    • Specified pressure
    • Specified velocity
    • Outflow
    • Grid overlay
    • Hydrostatic pressure
    • Volume flow rate
    • Non-linear periodic and solitary surface waves
    • Rating curve and natural hydraulics
    • Wave absorbing layer
  • Restart from previous simulation
  • Continuation of a simulation
  • Overlay boundary conditions
  • Change mesh and modeling options
  • Change model parameters
Thermal Modeling Options
  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transfer
  • Distributed energy sources/sinks in fluids and solids
  • Radiation
  • Viscous heating
  • Orthotropic thermal conductivity
  • Thermally-induced stresses
Turbulence Models
  • RNG model
  • Two-equation k-epsilon model
  • Two-equation k-omega model
  • Large eddy simulation
Metal Casting Models
  • Thermal stress & deformations
  • Iron solidification
  • Sand core blowing
  • Sand core drying
  • Permeable molds
  • Solidification & melting
  • Solidification shrinkage with interdendritic feeding
  • Micro & macro porosity
  • Binary alloy segregation
  • Thermal die cycling
  • Surface oxide defects
  • Cavitation potential
  • Lost-foam casting
  • Semi-solid material
  • Core gas generation
  • Back pressure & vents
  • Shot sleeves
  • PQ2 diagram
  • Squeeze pins
  • Filters
  • Air entrainment
  • Temperature-dependent material properties
  • Cooling channels
  • Fluid/wall contact time
Numerical Modeling Options
  • TruVOF Volume-of-Fluid (VOF) method for fluid interfaces
  • First and second order advection
  • Sharp and diffuse interface tracking
  • Implicit & explicit numerical methods
  • GMRES, point and line relaxation pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution
Fluid Modeling Options
  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter
Shallow Flow Models
  • General topography
  • Raster data interface
  • Subcomponent-specific surface roughness
  • Wind shear
  • Ground roughness effects
  • Laminar & turbulent flow
  • Sediment transport and scour
  • Surface tension
  • Heat transfer
  • Wetting & drying
Advanced Physical Models
  • General Moving Object model with 6 DOF–prescribed and fully-coupled motion
  • Rotating/spinning objects
  • Collision model
  • Tethered moving objects (springs, ropes, mooring lines)
  • Flexing membranes and walls
  • Porosity
  • Finite element based elastic-plastic deformation
  • Finite element based thermal stress evolution due to thermal changes in a solidifying fluid
  • Combusting solid components
Chemistry Models
  • Stiff equation solver for chemical rate equations
  • Stationary or advected species
Porous Media Models
  • Saturated and unsaturated flow
  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Heat transfer in porous media
  • Van Genunchten model for unsaturated flow
Discrete Particle Models
  • Massless marker particles
  • Mass particles of variable size/mass
  • Linear & quadratic fluid-dynamic drag
  • Monte-Carlo diffusion
  • Particle-Fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Charged particles
  • Probe particles
Two-Phase & Two-Component Models
  • Liquid/liquid & gas/liquid interfaces
  • Variable density mixtures
  • Compressible fluid with a dispersed incompressible component
  • Drift flux
  • Two-component, vapor/non-condensable gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport
  • Homogeneous bubbles
  • Super-cooling
Coupling with Other Programs
  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Direct interfaces with EnSight®, FieldView® & Tecplot® visualization software
  • Finite element solution import/export via Exodus-II file format
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Solid Properties Materials Database
Data Processing Options
  • State-of-the-art post-processing tool, FlowSight™
  • Batch post-processing
  • Report generation
  • Automatic or custom results analysis
  • High-quality OpenGL-based graphics
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving and stationary probes
  • Measurement baffles
  • Arbitrary sampling volumes
  • Force & moment output
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • Flow tracers
User Conveniences
  • Active simulation control (based on measurement of probes)
  • Mesh generators
  • Mesh quality checking
  • Tabular time-dependent input using external files
  • Automatic time-step control for accuracy & stability
  • Automatic convergence control
  • Mentor help to optimize efficiency
  • Change simulation parameters while solver runs
  • Launch and manage multiple simulations
  • Automatic simulation termination based on user-defined criteria
  • Run simulation on remote servers using remote solving
Multi-Processor Computing

FLOW-3D Features

The features in blue are newly-released in FLOW-3D v12.0.

Meshing & Geometry

  • Structured finite difference/control volume meshes for fluid and thermal solutions
  • Finite element meshes in Cartesian and cylindrical coordinates for structural analysis
  • Multi-Block gridding with nested, linked, partially overlapping and conforming mesh blocks
  • Conforming meshes extended to arbitrary shapes
  • Fractional areas/volumes (FAVOR™) for efficient & accurate geometry definition
  • Closing gaps in geometry
  • Mesh quality checking
  • Basic Solids Modeler
  • Import CAD data
  • Import/export finite element meshes via Exodus-II file format
  • Grid & geometry independence
  • Cartesian or cylindrical coordinates

Flow Type Options

  • Internal, external & free-surface flows
  • 3D, 2D & 1D problems
  • Transient flows
  • Inviscid, viscous laminar & turbulent flows
  • Hybrid shallow water/3D flows
  • Non-inertial reference frame motion
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media

Physical Modeling Options

  • Fluid structure interaction
  • Thermally-induced stresses
  • Plastic deformation of solids
  • Granular flow
  • Moisture drying
  • Solid solute dissolution
  • Sediment transport and scour
  • Sludge settling
  • Cavitation (potential, passive tracking, active tracking)
  • Phase change (liquid-vapor, liquid-solid)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Visco-elastic-plastic fluids
  • Elastic membranes & walls
  • Evaporation residue
  • Electro-mechanical effects
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties
  • Spray cooling

Flow Definition Options

  • General boundary conditions
    • Symmetry
    • Rigid and flexible walls
    • Continuative
    • Periodic
    • Specified pressure
    • Specified velocity
    • Outflow
    • Outflow pressure
    • Outflow boundaries with wave absorbing layers
    • Grid overlay
    • Hydrostatic pressure
    • Volume flow rate
    • Non-linear periodic and solitary surface waves
    • Rating curve and natural hydraulics
    • Wave absorbing layer
  • Restart from previous simulation
  • Continuation of a simulation
  • Overlay boundary conditions
  • Change mesh and modeling options
  • Change model parameters

Thermal Modeling Options

  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transfer
  • Distributed energy sources/sinks in fluids and solids
  • Radiation
  • Viscous heating
  • Orthotropic thermal conductivity
  • Thermally-induced stresses

Numerical Modeling Options

  • TruVOF Volume-of-Fluid (VOF) method for fluid interfaces
  • Steady state accelerator for free-surface flows
  • First and second order advection
  • Sharp and diffuse interface tracking
  • Implicit & explicit numerical methods
  • Immersed boundary method
  • GMRES, point and line relaxation pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution

Fluid Modeling Options

  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter

Shallow Flow Models

  • General topography
  • Raster data interface
  • Subcomponent-specific surface roughness
  • Wind shear
  • Ground roughness effects
  • Manning’s roughness
  • Laminar & turbulent flow
  • Sediment transport and scour
  • Surface tension
  • Heat transfer
  • Wetting & drying

Turbulence Models

  • RNG model
  • Two-equation k-epsilon model
  • Two-equation k-omega model
  • Large eddy simulation

Advanced Physical Models

  • General Moving Object model with 6 DOF–prescribed and fully-coupled motion
  • Rotating/spinning objects
  • Collision model
  • Tethered moving objects (springs, ropes, breaking mooring lines)
  • Flexing membranes and walls
  • Porosity
  • Finite element based elastic-plastic deformation
  • Finite element based thermal stress evolution due to thermal changes in a solidifying fluid
  • Combusting solid components

Chemistry Models

  • Stiff equation solver for chemical rate equations
  • Stationary or advected species

Porous Media Models

  • Saturated and unsaturated flow
  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Heat transfer in porous media
  • Van Genunchten model for unsaturated flow

Discrete Particle Models

  • Massless marker particles
  • Multi-species material particles of variable size and mass
  • Solid, fluid, gas particles
  • Void particles tracking collapsed void regions
  • Non-linear fluid-dynamic drag
  • Added mass effects
  • Monte-Carlo diffusion
  • Particle-fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Initial particle blocks
  • Heat transfer with fluid
  • Evaporation and condensation
  • Solidification and melting
  • Coulomb and dielectric forces
  • Probe particles

Two-Phase & Two-Component Models

  • Liquid/liquid & gas/liquid interfaces
  • Variable density mixtures
  • Compressible fluid with a dispersed incompressible component
  • Drift flux with dynamic droplet size
  • Two-component, vapor/non-condensable gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport
  • Homogeneous bubbles
  • Super-cooling
  • Two-field temperature

Coupling with Other Programs

  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Direct interfaces with EnSight®, FieldView® & Tecplot® visualization software
  • Finite element solution import/export via Exodus-II file format
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Solid Properties Materials Database

Data Processing Options

  • State-of-the-art post-processing tool, FlowSight™
  • Batch post-processing
  • Report generation
  • Automatic or custom results analysis
  • High-quality OpenGL-based graphics
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving and stationary probes
  • Visualization of non-inertial reference frame motion
  • Measurement baffles
  • Arbitrary sampling volumes
  • Force & moment output
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • Flow tracers

User Conveniences

  • Active simulation control (based on measurement of probes)
  • Mesh generators
  • Mesh quality checking
  • Tabular time-dependent input using external files
  • Automatic time-step control for accuracy & stability
  • Automatic convergence control
  • Mentor help to optimize efficiency
  • Units on all variables
  • Custom units
  • Component transformations
  • Moving particle sources
  • Change simulation parameters while solver runs
  • Launch and manage multiple simulations
  • Automatic simulation termination based on user-defined criteria
  • Run simulation on remote servers using remote solving
  • Copy boundary conditions to other mesh blocks

Multi-Processor Computing

  • Shared memory computers
  • Distributed memory clusters

FlowSight

  • Particle visualization
  • Velocity vector fields
  • Streamlines & pathlines
  • Iso-surfaces
  • 2D, 3D and arbitrary clips
  • Volume render
  • Probe data
  • History data
  • Vortex cores
  • Link multiple results
  • Multiple data views
  • Non-inertial reference frame
  • Spline clip