Figure 14. Defects: (a) Unmelt defects(Scheme NO.4);(b) Pores defects(Scheme NO.1); (c); Spattering defect (Scheme NO.3); (d) Low overlapping rate defects(Scheme NO.5).

Molten pool structure, temperature and velocity
flow in selective laser melting AlCu5MnCdVA alloy

용융 풀 구조, 선택적 온도 및 속도 흐름 레이저 용융 AlCu5MnCdVA 합금

Pan Lu1 , Zhang Cheng-Lin2,6,Wang Liang3, Liu Tong4 and Liu Jiang-lin5
1 Aviation and Materials College, Anhui Technical College of Mechanical and Electrical Engineering, Wuhu Anhui 241000, People’s
Republic of China 2 School of Engineering Science, University of Science and Technology of China, Hefei Anhui 230026, People’s Republic of China 3 Anhui Top Additive Manufacturing Technology Co., Ltd., Wuhu Anhui 241300, People’s Republic of China 4 Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Anhui 241300, People’s Republic of China 5 School of Mechanical and Transportation Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, People’s Republic of
China 6 Author to whom any correspondence should be addressed.
E-mail: ahjdpanlu@126.com, jiao__zg@126.com, ahjdjxx001@126.com,tongliu1988@126.com and liujianglin@tyut.edu.cn

Keywords

SLM, molten pool, AlCu5MnCdVA alloy, heat flow, velocity flow, numerical simulation

Abstract

선택적 레이저 용융(SLM)은 열 전달, 용융, 상전이, 기화 및 물질 전달을 포함하는 복잡한 동적 비평형 프로세스인 금속 적층 제조(MAM)에서 가장 유망한 기술 중 하나가 되었습니다. 용융 풀의 특성(구조, 온도 흐름 및 속도 흐름)은 SLM의 최종 성형 품질에 결정적인 영향을 미칩니다. 이 연구에서는 선택적 레이저 용융 AlCu5MnCdVA 합금의 용융 풀 구조, 온도 흐름 및 속도장을 연구하기 위해 수치 시뮬레이션과 실험을 모두 사용했습니다.

그 결과 용융풀의 구조는 다양한 형태(깊은 오목 구조, 이중 오목 구조, 평면 구조, 돌출 구조 및 이상적인 평면 구조)를 나타냈으며, 용융 풀의 크기는 약 132 μm × 107 μm × 50 μm였습니다. : 용융풀은 초기에는 여러 구동력에 의해 깊이 15μm의 깊은 오목형상이었으나, 성형 후기에는 장력구배에 의해 높이 10μm의 돌출형상이 되었다. 용융 풀 내부의 금속 흐름은 주로 레이저 충격력, 금속 액체 중력, 표면 장력 및 반동 압력에 의해 구동되었습니다.

AlCu5MnCdVA 합금의 경우, 금속 액체 응고 속도가 매우 빠르며(3.5 × 10-4 S), 가열 속도 및 냉각 속도는 각각 6.5 × 107 K S-1 및 1.6 × 106 K S-1 에 도달했습니다. 시각적 표준으로 표면 거칠기를 선택하고, 낮은 레이저 에너지 AlCu5MnCdVA 합금 최적 공정 매개변수 창을 수치 시뮬레이션으로 얻었습니다: 레이저 출력 250W, 부화 공간 0.11mm, 층 두께 0.03mm, 레이저 스캔 속도 1.5m s-1 .

또한, 실험 프린팅과 수치 시뮬레이션과 비교할 때, 용융 풀의 폭은 각각 약 205um 및 약 210um이었고, 인접한 두 용융 트랙 사이의 중첩은 모두 약 65um이었다. 결과는 수치 시뮬레이션 결과가 실험 인쇄 결과와 기본적으로 일치함을 보여 수치 시뮬레이션 모델의 정확성을 입증했습니다.

Selective Laser Melting (SLM) has become one of the most promising technologies in Metal Additive Manufacturing (MAM), which is a complex dynamic non-equilibrium process involving heat transfer, melting, phase transition, vaporization and mass transfer. The characteristics of the molten pool (structure, temperature flow and velocity flow) have a decisive influence on the final forming quality of SLM. In this study, both numerical simulation and experiments were employed to study molten pool structure, temperature flow and velocity field in Selective Laser Melting AlCu5MnCdVA alloy. The results showed the structure of molten pool showed different forms(deep-concave structure, double-concave structure, plane structure, protruding structure and ideal planar structure), and the size of the molten pool was approximately 132 μm × 107 μm × 50 μm: in the early stage, molten pool was in a state of deep-concave shape with a depth of 15 μm due to multiple driving forces, while a protruding shape with a height of 10 μm duo to tension gradient in the later stages of forming. The metal flow inside the molten pool was mainly driven by laser impact force, metal liquid gravity, surface tension and recoil pressure. For AlCu5MnCdVA alloy, metal liquid solidification speed was extremely fast(3.5 × 10−4 S), the heating rate and cooling rate reached 6.5 × 107 K S−1 and 1.6 × 106 K S−1 , respectively. Choosing surface roughness as a visual standard, low-laser energy AlCu5MnCdVA alloy optimum process parameters window was obtained by numerical simulation: laser power 250 W, hatching space 0.11 mm, layer thickness 0.03 mm, laser scanning velocity 1.5 m s−1 . In addition, compared with experimental printing and numerical simulation, the width of the molten pool was about 205 um and about 210 um, respectively, and overlapping between two adjacent molten tracks was all about 65 um. The results showed that the numerical simulation results were basically consistent with the experimental print results, which proved the correctness of the numerical simulation model.

Figure 1. AlCu5MnCdVA powder particle size distribution.
Figure 1. AlCu5MnCdVA powder particle size distribution.
Figure 2. AlCu5MnCdVA powder
Figure 2. AlCu5MnCdVA powder
Figure 3. Finite element model and calculation domains of SLM.
Figure 3. Finite element model and calculation domains of SLM.
Figure 4. SLM heat transfer process.
Figure 4. SLM heat transfer process.
Figure 14. Defects: (a) Unmelt defects(Scheme NO.4);(b) Pores defects(Scheme NO.1); (c); Spattering defect (Scheme NO.3); (d) Low
overlapping rate defects(Scheme NO.5).
Figure 17. Two-pass molten tracks overlapping for Scheme NO.2.
Figure 17. Two-pass molten tracks overlapping for Scheme NO.2.

References

[1] Cuiyun H 2008 Phase diagram determination and thermodynamic study of Al–Cu–Mn, Al–Cu–Si, Al–Mg–Ni and Ni–Ti–Si systems Central South University
[2] Zhanfei Z 2017 Study on theta phase segregation and room temperature properties of high strength cast Al–Cu–Mn alloy Lanzhou University of Technology
[3] Nie X et al 2018 Analysis of processing parameters and characteristics of selective laser melted high strength Al–Cu–Mg alloys: from single tracks to cubic samplesJ. Mater. Process. Technol. 256 69–77
[4] Shenping Y et al 2017 Laser absorptance measurement of commonly used metal materials in laser additive manufacturing technology Aviation Manufacturing Technology 12 23–9
[5] Wenqing W 2007 Relationship between cooling rate and grain size of AlCu5MnCdVA alloy Harbin University of Technology
[6] Majeed M, Vural M, Raja S and Bilal Naim Shaikh M 2019 Finite element analysis of thermal behavior in maraging steel during SLM process Optik 208 113–24
[7] Khairallah S A, Anderson A T, Rubenchik A and King W E 2016 Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones Acta Mater. 108 36–45
[8] Bo C, Zhiyu X, Quanquan Z, Yuanbiao W, Liping W and Jin C 2020 Process optimization and microstructure and properties of SLM forming Cu6AlNiSnInCe imitation gold alloy Chin. J. Nonferr. Met. 30 372–82
[9] Li W 2012 Research on performance of metal parts formed by selective laser melting Huazhong University of Science and Technology
[10] Yu Q 2013 The influence of different laser heat sources on the surface shape of the molten pool in laser cladding Surf. Technol. 42 40–3

[11] Xianfeng J, Xiangchen M, Rongwei S, Xigen Y and Ming Y 2015 Research on the influence of material state change on temperature field
in SLM processing Applied Laser 35 155–9
[12] Körner C, Attar E and Heinl P 2011 Mesoscopic simulation of selective beam melting processesJ. Mater. Process. Technol. 211 978–87
[13] Yadroitsev I, Gusarov A, Yadroitsava I and Smurov I 2010 Single track formation in selective laser melting of metal powdersJ. Mater.
Process. Technol. 210 1624–31
[14] King W, Anderson A T, Ferencz R M, Hodge N E, Kamath C and Khairallah S A 2014 Overview of modelling and simulation of metal
powder bed fusion process at Lawrence Livermore National Laboratory Mater. Sci. Technol. 31 957–68
[15] Hussein A, Hao L, Yan C and Everson R 2013 Finite element simulation of the temperature and stress fields in single layers built
without-support in selective laser melting Materials & Design (1980–2015) 52 638–47
[16] Qiu C, Panwisawas C, Ward M, Basoalto H C, Brooks J W and Attallah M M 2015 On the role of melt flow into the surface structure and
porosity development during selective laser melting Acta Mater. 96 72–9
[17] Weihao Y, Hui C and Qingsong W 2020 Thermodynamic behavior of laser selective melting molten pool under the action of recoil
pressure Journal of Mechanical Engineering 56 213–9
[18] Weijuan Y 2019 Numerical simulation of melt pool temperature field and morphology evolution during laser selective melting process
Xi’an University of Technology
[19] Genwang W 2017 Research on the establishment of laser heat source model based on energy distribution and its simulation application
Harbin Institute of Technology
[20] FLOW-3D 2017 User Manual (USA: FLOW SCIENCE)
[21] Hirt C and Nichols B 1981 Volume of fluid (VOF) method for the dynamics of free boundariesJ. Comput. Phys. 39 201–25
[22] Hu Z, Zhang H, Zhu H, Xiao Z, Nie X and Zeng X 2019 Microstructure, mechanical properties and strengthening mechanisms of
AlCu5MnCdVA aluminum alloy fabricated by selective laser melting Materials Science and Engineering: A 759 154–66
[23] Ketai H, Liu Z and Lechang Y 2020 Simulation of temperature field, microstructure and mechanical properties of 316L stainless steel in
selected laser melting Progress in Laser and Optoelectronics 9 1–18
[24] Cao L 2020 Workpiece-scale numerical simulations of SLM molten pool dynamic behavior of 316L stainless steel Comput. Math. Appl.
4 22–34
[25] Dening Z, Yongping L, Tinglu H and Junyi S 2000 Numerical study of fluid flow and heat transfer in molten pool under the condition of
moving heat source J. Met. 4 387–90
[26] Chengyun C, Cui F and Wenlong Z 2018 The effect of Marangoni flow on the thermal behavior and melt flow behavior of laser cladding
Applied Laser 38 409–16
[27] Peiying B and Enhuai Y 2020 The effect of laser power on the morphology and residual stress of the molten pool of metal laser selective
melting Progress in Laser and Optoelectronics 7 1–12 http://kns.cnki.net/kcms/detail/31.1690.TN.20190717.0933.032.html
[28] Zhen L, Dongyun Z, Zhe F and Chengjie W 2017 Numerical simulation of the influence of overlap rate on the forming quality of
Inconel 718 alloy by selective laser melting processing Applied Laser 37 187–93
[29] Wei W, Qi L, Guang Y, Lanyun Q and Xiong X 2015 Numerical simulation of electromagnetic field, temperature field and flowfield of
laser melting pool under the action of electromagnetic stirring China Laser 42 48–55
[30] Hu Y, He X, Yu G and Zhao S 2016 Capillary convection in pulsed—butt welding of miscible dissimilar couple Proc. Inst. Mech. Eng.
Part C J. Mech. Eng. Sci. 231 2429–40
[31] Li R 2010 Research on the key basic problems of selective laser melting forming of metal powder Huazhong University of Science and
Technology
[32] Zijue T, Weiwei L, Zhaorui Y, Hao W and Hongchao Z 2019 Study on the shape evolution behavior of metal laser melting deposition
based on molten pool dynamic characteristicsJournal of Mechanical Engineering 55 39–47
[33] Pan L, Cheng-Lin Z, Hai-Yi L, Liang W and Tong L 2020 A new two-step selective laser remelting of 316L stainless steel: process,
density, surface roughness, mechanical properties, microstructure Mater. Res. Express 7 056503
[34] Pan L, Cheng-Lin Z, Hai-Yi L, Jiang H, Tong L and Liang W 2019 The influence and optimization of forming process parameters of
316L stainless steel prepared by laser melting on the density Forging Technology 44 103–9

Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

M. BAYAT1,* , AND J. H. HATTEL1

  • Corresponding author
    1 Technical University of Denmark (DTU), Building 425, Kgs. 2800 Lyngby, Denmark

ABSTRACT

Spatter and denudation are two very well-known phenomena occurring mainly during the laser powder bed fusion process and are defined as ejection and displacement of powder particles, respectively. The main driver of this phenomenon is the formation of a vapor plume jet that is caused by the vaporization of the melt pool which is subjected to the laser beam. In this work, a 3-dimensional transient turbulent computational fluid dynamics model coupled with a discrete element model is developed in the finite volume-based commercial software package Flow-3D AM to simulate the spatter phenomenon. The numerical results show that a localized low-pressure zone forms at the bottom side of the plume jet and this leads to a pseudo-Bernoulli effect that drags nearby powder particles into the area of influence of the vapor plume jet. As a result, the vapor plume acts like a momentum sink and therefore all nearby particles point are dragged towards this region. Furthermore, it is noted that due to the jet’s attenuation, powder particles start diverging from the central core region of the vapor plume as they move vertically upwards. It is moreover observed that only particles which are in the very central core region of the plume jet get sufficiently accelerated to depart the computational domain, while the rest of the dragged particles, especially those which undergo an early divergence from the jet axis, get stalled pretty fast as they come in contact with the resting fluid. In the last part of the work, two simulations with two different scanning speeds are carried out, where it is clearly observed that the angle between the departing powder particles and the vertical axis of the plume jet increases with increasing scanning speed.

스패터와 denudation은 주로 레이저 분말 베드 융합 과정에서 발생하는 매우 잘 알려진 두 가지 현상으로 각각 분말 입자의 배출 및 변위로 정의됩니다.

이 현상의 주요 동인은 레이저 빔을 받는 용융 풀의 기화로 인해 발생하는 증기 기둥 제트의 형성입니다. 이 작업에서 이산 요소 모델과 결합된 3차원 과도 난류 ​​전산 유체 역학 모델은 스패터 현상을 시뮬레이션하기 위해 유한 체적 기반 상용 소프트웨어 패키지 Flow-3D AM에서 개발되었습니다.

수치적 결과는 플룸 제트의 바닥면에 국부적인 저압 영역이 형성되고, 이는 근처의 분말 입자를 증기 플룸 제트의 영향 영역으로 끌어들이는 의사-베르누이 효과로 이어진다는 것을 보여줍니다.

결과적으로 증기 기둥은 운동량 흡수원처럼 작용하므로 근처의 모든 입자 지점이 이 영역으로 끌립니다. 또한 제트의 감쇠로 인해 분말 입자가 수직으로 위쪽으로 이동할 때 증기 기둥의 중심 코어 영역에서 발산하기 시작합니다.

더욱이 플룸 제트의 가장 중심 코어 영역에 있는 입자만 계산 영역을 벗어날 만큼 충분히 가속되는 반면, 드래그된 나머지 입자, 특히 제트 축에서 초기 발산을 겪는 입자는 정체되는 것으로 관찰됩니다. 그들은 휴식 유체와 접촉하기 때문에 꽤 빠릅니다.

작업의 마지막 부분에서 두 가지 다른 스캔 속도를 가진 두 가지 시뮬레이션이 수행되었으며, 여기서 출발하는 분말 입자와 연기 제트의 수직 축 사이의 각도가 스캔 속도가 증가함에 따라 증가하는 것이 명확하게 관찰되었습니다.

Fig 1. Two different views of the computational domain for the fluid domain. The vapor plume is simulated by a moving momentum source with a prescribed temperature of 3000 K.
Fig 1. Two different views of the computational domain for the fluid domain. The vapor plume is simulated by a moving momentum source with a prescribed temperature of 3000 K.
Fig 2. (a) and (b) are two snapshots taken at an x-y plane parallel to the powder layer plane before and 0.008 seconds after the start of the scanning process. (c) Shows a magnified view of (b) where detailed powder particles' movement along with their velocity magnitude and directions are shown.
Fig 2. (a) and (b) are two snapshots taken at an x-y plane parallel to the powder layer plane before and 0.008 seconds after the start of the scanning process. (c) Shows a magnified view of (b) where detailed powder particles’ movement along with their velocity magnitude and directions are shown.
Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.
Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.

References

[1] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure
and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, 2018, doi:
10.1016/j.pmatsci.2017.10.001.
[2] M. Markl and C. Körner, “Multiscale Modeling of Powder Bed–Based Additive
Manufacturing,” Annu. Rev. Mater. Res., vol. 46, no. 1, pp. 93–123, 2016, doi:
10.1146/annurev-matsci-070115-032158.
[3] A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, “Evolution
of grain structure during laser additive manufacturing. Simulation by a cellular automata
method,” Mater. Des., vol. 106, pp. 321–329, 2016, doi: 10.1016/j.matdes.2016.05.125.
[4] Y. Zhang and J. Zhang, “Modeling of solidification microstructure evolution in laser
powder bed fusion fabricated 316L stainless steel using combined computational fluid
dynamics and cellular automata,” Addit. Manuf., vol. 28, no. July 2018, pp. 750–765,
2019, doi: 10.1016/j.addma.2019.06.024.
[5] A. A. Martin et al., “Ultrafast dynamics of laser-metal interactions in additive
manufacturing alloys captured by in situ X-ray imaging,” Mater. Today Adv., vol. 1, p.
100002, 2019, doi: 10.1016/j.mtadv.2019.01.001.
[6] Y. C. Wu et al., “Numerical modeling of melt-pool behavior in selective laser melting
with random powder distribution and experimental validation,” J. Mater. Process.
Technol., vol. 254, no. July 2017, pp. 72–78, 2018, doi:
10.1016/j.jmatprotec.2017.11.032.
[7] W. Gao, S. Zhao, Y. Wang, Z. Zhang, F. Liu, and X. Lin, “Numerical simulation of
thermal field and Fe-based coating doped Ti,” Int. J. Heat Mass Transf., vol. 92, pp. 83–
90, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.082.
[8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J. H. Hattel, and S. Scholz, “Elucidation of
dross formation in laser powder bed fusion at down-facing surfaces: Phenomenonoriented multiphysics simulation and experimental validation,” Addit. Manuf., vol. 50,
2022, doi: 10.1016/j.addma.2021.102551.
[9] C. Meier, R. W. Penny, Y. Zou, J. S. Gibbs, and A. J. Hart, “Thermophysical phenomena
in metal additive manufacturing by selective laser melting: Fundamentals, modeling,
simulation and experimentation,” arXiv, 2017, doi:
10.1615/annualrevheattransfer.2018019042.
[10] W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, and S. A. Khairallah,
“Overview of modelling and simulation of metal powder bed fusion process at Lawrence
Livermore National Laboratory,” Mater. Sci. Technol. (United Kingdom), vol. 31, no. 8,
pp. 957–968, 2015, doi: 10.1179/1743284714Y.0000000728.

Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.

MULTI-PHYSICS NUMERICAL MODELLING OF 316L AUSTENITIC STAINLESS STEEL IN LASER POWDER BED FUSION PROCESS AT MESO-SCALE

W.E. Alphonso1, M.Bayat1,*, M. Baier 2, S. Carmignato2, J.H. Hattel1
1Department of Mechanical Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
2Department of Management and Engineering – University of Padova, Padova, Italy

ABSTRACT

L-PBF(Laser Powder Bed Fusion)는 레이저 열원을 사용하여 선택적으로 통합되는 분말 층으로 복잡한 3D 금속 부품을 만드는 금속 적층 제조(MAM) 기술입니다. 처리 영역은 수십 마이크로미터 정도이므로 L-PBF를 다중 규모 제조 공정으로 만듭니다.

기체 기공의 형성 및 성장 및 용융되지 않은 분말 영역의 생성은 다중물리 모델에 의해 예측할 수 있습니다. 또한 이러한 모델을 사용하여 용융 풀 모양 및 크기, 온도 분포, 용융 풀 유체 흐름 및 입자 크기 및 형태와 같은 미세 구조 특성을 계산할 수 있습니다.

이 작업에서는 용융, 응고, 유체 흐름, 표면 장력, 열 모세관, 증발 및 광선 추적을 통한 다중 반사를 포함하는 스테인리스 스틸 316-L에 대한 충실도 다중 물리학 중간 규모 수치 모델이 개발되었습니다. 완전한 실험 설계(DoE) 방법을 사용하는 통계 연구가 수행되었으며, 여기서 불확실한 재료 특성 및 공정 매개변수, 즉 흡수율, 반동 압력(기화) 및 레이저 빔 크기가 용융수지 모양 및 크기에 미치는 영향을 분석했습니다.

또한 용융 풀 역학에 대한 위에서 언급한 불확실한 입력 매개변수의 중요성을 강조하기 위해 흡수율이 가장 큰 영향을 미치고 레이저 빔 크기가 그 뒤를 잇는 주요 효과 플롯이 생성되었습니다. 용융 풀 크기에 대한 반동 압력의 중요성은 흡수율에 따라 달라지는 용융 풀 부피와 함께 증가합니다.

모델의 예측 정확도는 유사한 공정 매개변수로 생성된 단일 트랙 실험과 시뮬레이션의 용융 풀 모양 및 크기를 비교하여 검증됩니다.

더욱이, 열 렌즈 효과는 레이저 빔 크기를 증가시켜 수치 모델에서 고려되었으며 나중에 결과적인 용융 풀 프로파일은 모델의 견고성을 보여주기 위한 실험과 비교되었습니다.

Laser Powder Bed Fusion (L-PBF) is a Metal Additive Manufacturing (MAM) technology where a complex 3D metal part is built from powder layers, which are selectively consolidated using a laser heat source. The processing zone is in the order of a few tenths of micrometer, making L-PBF a multi-scale manufacturing process. The formation and growth of gas pores and the creation of un-melted powder zones can be predicted by multiphysics models. Also, with these models, the melt pool shape and size, temperature distribution, melt pool fluid flow and its microstructural features like grain size and morphology can be calculated. In this work, a high fidelity multi-physics meso-scale numerical model is developed for stainless steel 316-L which includes melting, solidification, fluid flow, surface tension, thermo-capillarity, evaporation and multiple reflection with ray-tracing. A statistical study using a full Design of Experiments (DoE) method was conducted, wherein the impact of uncertain material properties and process parameters namely absorptivity, recoil pressure (vaporization) and laser beam size on the melt pool shape and size was analysed. Furthermore, to emphasize on the significance of the above mentioned uncertain input parameters on the melt pool dynamics, a main effects plot was created which showed that absorptivity had the highest impact followed by laser beam size. The significance of recoil pressure on the melt pool size increases with melt pool volume which is dependent on absorptivity. The prediction accuracy of the model is validated by comparing the melt pool shape and size from the simulation with single track experiments that were produced with similar process parameters. Moreover, the effect of thermal lensing was considered in the numerical model by increasing the laser beam size and later on the resultant melt pool profile was compared with experiments to show the robustness of the model.

Figure 1: a) Computational domain for single track L-PBF which includes a 200 μm thick substrate and 45 μm powder layer thickness b) 3D temperature contour plot after scanning a single track with melt pool contours at two locations along the scanning direction where the green region indicates the melted regions.
Figure 1: a) Computational domain for single track L-PBF which includes a 200 μm thick substrate and 45 μm powder layer thickness b) 3D temperature contour plot after scanning a single track with melt pool contours at two locations along the scanning direction where the green region indicates the melted regions.
Figure 2: Main effects plot of uncertain parameters: absorptivity, recoil pressure coefficient and laser beam radius on the melt pool dimensions (width and depth)
Figure 2: Main effects plot of uncertain parameters: absorptivity, recoil pressure coefficient and laser beam radius on the melt pool dimensions (width and depth)
Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.
Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.
Figure 4: Validation of Numerical model with Recoil pressure coefficient B= 20, absorptivity = 0.45 and a) laser beam radius = 15 µm b) laser beam radius = 20 µm
Figure 4: Validation of Numerical model with Recoil pressure coefficient B= 20, absorptivity = 0.45 and a) laser beam radius = 15 µm b) laser beam radius = 20 µm

CONCLUSION

In this work, a high-fidelity multi-physics numerical model was developed for L-PBF using the FVM method in Flow-3D. The impact of uncertainty in the input parameters including absorptivity, recoil pressure and laser beam size on the melt pool is addressed using a DoE method. The DoE analysis shows that absorptivity has the highest impact on the melt pool. The recoil pressure and laser beam size only become significant once absorptivity is 0.45. Furthermore, the numerical model is validated by comparing the predicted melt pool shape and size with experiments conducted with similar process parameters wherein a high prediction accuracy is achieved by the model. In addition, the impact of thermal lensing on the melt pool dimensions by increasing the laser beam spot size is considered in the validated numerical model and the resultant melt pool is compared with experiments.

REFERENCES

[1] T. Bonhoff, M. Schniedenharn, J. Stollenwerk, P. Loosen, Experimental and theoretical analysis of thermooptical effects in protective window for selective laser melting, Proc. Int. Conf. Lasers Manuf. LiM. (2017)
26–29. https://www.wlt.de/lim/Proceedings2017/Data/PDF/Contribution31_final.pdf.
[2] L.R. Goossens, Y. Kinds, J.P. Kruth, B. van Hooreweder, On the influence of thermal lensing during selective
laser melting, Solid Free. Fabr. 2018 Proc. 29th Annu. Int. Solid Free. Fabr. Symp. – An Addit. Manuf. Conf.
SFF 2018. (2020) 2267–2274.
[3] J. Shinjo, C. Panwisawas, Digital materials design by thermal-fluid science for multi-metal additive
manufacturing, Acta Mater. 210 (2021) 116825. https://doi.org/10.1016/j.actamat.2021.116825.
[4] Z. Zhang, Y. Huang, A. Rani Kasinathan, S. Imani Shahabad, U. Ali, Y. Mahmoodkhani, E. Toyserkani, 3-
Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat
sources based on varied thermal conductivity and absorptivity, Opt. Laser Technol. 109 (2019) 297–312.
https://doi.org/10.1016/j.optlastec.2018.08.012.
[5] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyholeinduced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and
experimental validation, Addit. Manuf. 30 (2019) 100835. https://doi.org/10.1016/j.addma.2019.100835.
[6] M. Bayat, S. Mohanty, J.H. Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution
in IN718 made by multi-track/multi-layer L-PBF, Int. J. Heat Mass Transf. 139 (2019) 95–114.
https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003.
[7] J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw, B. Van Hooreweder, On the influence
of laser defocusing in Selective Laser Melting of 316L, Addit. Manuf. 23 (2018) 161–169.
https://doi.org/10.1016/j.addma.2018.08.006.

Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling

Laser Powder Bed에서 Laser Drilling에 의한 Keyhole 형성 Ti6Al4V 생체 의학 합금의 융합: 메조스코픽 전산유체역학 시뮬레이션 대 경험적 검증을 사용한 수학적 모델링

Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation

Asif Ur Rehman 1,2,3,*
,† , Muhammad Arif Mahmood 4,*
,† , Fatih Pitir 1
, Metin Uymaz Salamci 2,3
,
Andrei C. Popescu 4 and Ion N. Mihailescu 4

Abstract

LPBF(Laser Powder Bed fusion) 공정에서 작동 조건은 열 분포를 기반으로 레이저 유도 키홀 영역을 결정하는 데 필수적입니다. 얕은 구멍과 깊은 구멍으로 분류되는 이러한 영역은 LPBF 프로세스에서 확률과 결함 형성 강도를 제어합니다.

LPBF 프로세스의 핵심 구멍을 연구하고 제어하기 위해 수학적 및 CFD(전산 유체 역학) 모델이 제공됩니다. CFD의 경우 이산 요소 모델링 기법을 사용한 유체 체적 방법이 사용되었으며, 분말 베드 보이드 및 표면에 의한 레이저 빔 흡수를 포함하여 수학적 모델이 개발되었습니다.

동적 용융 풀 거동을 자세히 살펴봅니다. 실험적, CFD 시뮬레이션 및 분석적 컴퓨팅 결과 간에 정량적 비교가 수행되어 좋은 일치를 얻습니다.

LPBF에서 레이저 조사 영역 주변의 온도는 높은 내열성과 분말 입자 사이의 공기로 인해 분말층 주변에 비해 급격히 상승하여 레이저 횡방향 열파의 이동이 느려집니다. LPBF에서 키홀은 에너지 밀도에 의해 제어되는 얕고 깊은 키홀 모드로 분류될 수 있습니다. 에너지 밀도를 높이면 얕은 키홀 구멍 모드가 깊은 키홀 구멍 모드로 바뀝니다.

깊은 키홀 구멍의 에너지 밀도는 다중 반사와 키홀 구멍 내의 2차 반사 빔의 집중으로 인해 더 높아져 재료가 빠르게 기화됩니다.

깊은 키홀 구멍 모드에서는 온도 분포가 높기 때문에 액체 재료가 기화 온도에 가까우므로 얕은 키홀 구멍보다 구멍이 형성될 확률이 훨씬 높습니다. 온도가 급격히 상승하면 재료 밀도가 급격히 떨어지므로 비열과 융해 잠열로 인해 유체 부피가 증가합니다.

그 대가로 표면 장력을 낮추고 용융 풀 균일성에 영향을 미칩니다.

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.

Keywords: laser powder bed fusion; computational fluid dynamics; analytical modelling; shallow
and deep keyhole modes; experimental correlation

Figure 1. Powder bed schematic with voids.
Figure 1. Powder bed schematic with voids.
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width

References

  1. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and
    mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]
  2. Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter
    investigation through multiphysics simulation and experimental validation. J. Alloys Compd. 2022, 890, 161873. [CrossRef]
  3. Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243.
    [CrossRef]
  4. Mohsin Raza, M.; Lo, Y.L. Experimental investigation into microstructure, mechanical properties, and cracking mechanism of
    IN713LC processed by laser powder bed fusion. Mater. Sci. Eng. A 2021, 819, 141527. [CrossRef]
  5. Dezfoli, A.R.A.; Lo, Y.L.; Raza, M.M. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated
    Finite Element and Cellular Automaton Approach. Materials 2021, 14, 5202. [CrossRef]
  6. Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of selective laser sintering materials for different applications. Rapid
    Prototyp. J. 2015, 21, 630–648. [CrossRef]
  7. Liu, F.H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol-Gel Sci. Technol.
    2012, 64, 704–710. [CrossRef]
  8. Ur Rehman, A.; Sglavo, V.M. 3D printing of geopolymer-based concrete for building applications. Rapid Prototyp. J. 2020, 26,
    1783–1788. [CrossRef]
  9. Ur Rehman, A.; Sglavo, V.M. 3D printing of Portland cement-containing bodies. Rapid Prototyp. J. 2021. ahead of print. [CrossRef]
  10. Popovich, A.; Sufiiarov, V. Metal Powder Additive Manufacturing. In New Trends in 3D Printing; InTech: Rijeka, Croatia, 2016.
  11. Jia, T.; Zhang, Y.; Chen, J.K.; He, Y.L. Dynamic simulation of granular packing of fine cohesive particles with different size
    distributions. Powder Technol. 2012, 218, 76–85. [CrossRef]
  12. Ansari, P.; Ur Rehman, A.; Pitir, F.; Veziroglu, S.; Mishra, Y.K.; Aktas, O.C.; Salamci, M.U. Selective Laser Melting of 316L
    Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals 2021,
    11, 1076. [CrossRef]
  13. Ur Rehman, A.; Tingting, L.; Liao, W. 4D Printing; Printing Ceramics from Metals with Selective Oxidation. Patent No.
    W0/2019/052128, 21 March 2019.
  14. Ullah, A.; Wu, H.; Ur Rehman, A.; Zhu, Y.; Liu, T.; Zhang, K. Influence of laser parameters and Ti content on the surface
    morphology of L-PBF fabricated Titania. Rapid Prototyp. J. 2021, 27, 71–80. [CrossRef]
  15. Ur Rehman, A. Additive Manufacturing of Ceramic Materials and Combinations with New Laser Strategies. Master’s Thesis,
    Nanjing University of Science and Technology, Nanjing, China, 2017.
  16. Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [CrossRef]
  17. Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016,
    61, 361–377. [CrossRef]
  18. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive
    manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128.
    [CrossRef]
  19. Everton, S.K.; Hirsch, M.; Stavroulakis, P.I.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology
    for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [CrossRef]
  20. Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A
    review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [CrossRef] [PubMed]
  21. Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy
    powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
  22. Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.I.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry
    and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations.
    Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [CrossRef]
  23. Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-jet powder flow
    and laser–powder interaction in laser melting deposition: Modelling versus experimental correlations. Metals 2020, 10, 1113.
    [CrossRef]
  24. King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of
    metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [CrossRef]
  1. Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion
    additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [CrossRef]
  2. Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
  3. Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the
    evolution of porosity during selective laser melting. Scr. Mater. 2015, 105, 14–17. [CrossRef]
  4. Yan, W.; Ge, W.; Qian, Y.; Lin, S.; Zhou, B.; Liu, W.K.; Lin, F.; Wagner, G.J. Multi-physics modeling of single/multiple-track defect
    mechanisms in electron beam selective melting. Acta Mater. 2017, 134, 324–333. [CrossRef]
  5. Qian, Y.; Yan, W.; Lin, F. Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp. J.
    2018, 24, 1586–1598. [CrossRef]
  6. Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal
    fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126,
    251–263. [CrossRef]
  7. King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of
    keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925.
    [CrossRef]
  8. Panwisawas, C.; Sovani, Y.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C.; Choquet, I. Modelling of thermal fluid dynamics for fusion
    welding. J. Mater. Process. Technol. 2018, 252, 176–182. [CrossRef]
  9. Martin, A.A.; Calta, N.P.; Hammons, J.A.; Khairallah, S.A.; Nielsen, M.H.; Shuttlesworth, R.M.; Sinclair, N.; Matthews, M.J.;
    Jeffries, J.R.; Willey, T.M.; et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ
    X-ray imaging. Mater. Today Adv. 2019, 1, 100002. [CrossRef]
  10. Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology
    in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [CrossRef] [PubMed]
  11. Tang, C.; Tan, J.L.; Wong, C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser
    melting. Int. J. Heat Mass Transf. 2018, 126, 957–968. [CrossRef]
  12. Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S. Thermal Modeling of Temperature Distribution in Metal
    Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J.
    Manuf. Mater. Process. 2018, 2, 63. [CrossRef]
  13. Oane, M.; Sporea, D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys.
    Technol. 2001, 42, 31–40. [CrossRef]
  14. Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper
    discharge. Appl. Math. Model. 2002, 26, 89–111. [CrossRef]
  15. Parteli, E.J.R.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288,
    96–102. [CrossRef]
  16. Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass
    Transf. 2019, 141, 1036–1048. [CrossRef]
  17. Tian, Y.; Yang, L.; Zhao, D.; Huang, Y.; Pan, J. Numerical analysis of powder bed generation and single track forming for selective
    laser melting of SS316L stainless steel. J. Manuf. Process. 2020, 58, 964–974. [CrossRef]
  18. Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by
    laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [CrossRef]
  19. Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48.
    [CrossRef]
  20. Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A Comprehensive Comparison of the Analytical and Numerical
    Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion.
    Engineering 2017, 3, 685–694. [CrossRef]
  21. Rosenthal, D. Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 1941, 20, 220–234.
  22. Chen, Q.; Zhao, Y.Y.; Strayer, S.; Zhao, Y.Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the Effect
    of Preheating Temperature on Melt Pool Morphology Variation in Inconel 718 Laser Powder Bed Fusion via Simulation and
    Experiment. Available online: https://www.sciencedirect.com/science/article/pii/S2214860420310149#bb8 (accessed on 30
    April 2021).
  23. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and
    1000 ◦C: Operando Study. Materials 2021, 14, 6683. [CrossRef] [PubMed]
  24. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed
    Fusion of SS316L. Materials 2021, 14, 6264. [CrossRef] [PubMed]
  25. Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B.; Christiansen, D.; Beuth, J.; Lewandowski, J.J. Melt Pool Characterization
    for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. In Proceedings of the International Solid Freeform Fabrication
    Symposium, Austin, TX, USA, 10–12 August 2014; 2014; pp. 256–267.
  26. Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature
    distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 2012, 61, 967–974. [CrossRef]
  27. Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Hojjatzadeh, S.M.H.; Escano, L.I.; Parab, N.D.; Fezzaa, K.; Sun, T.; Chen, L. In-situ full-field
  28. mapping of melt flow dynamics in laser metal additive manufacturing. Addit. Manuf. 2020, 31, 100939. [CrossRef]
  29. Messler, J.R.W. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy; John Wiley & Sons: New York, NY, USA, 2008;
  30. ISBN 9783527617494.
  31. Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.M.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of
  32. complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [CrossRef]
  33. Ur Rehman, A.; Mahmood, M.A.; Pitir, F.; Salamci, M.U.; Popescu, A.C.; Mihailescu, I.N. Mesoscopic Computational Fluid
  34. Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A
  35. Novel Study. Metals 2021, 11, 1569. [CrossRef]
  36. Paul, A.; Debroy, T. Free surface flow and heat transfer in conduction mode laser welding. Metall. Trans. B 1988, 19, 851–858.
  37. [CrossRef]
  38. Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing
  39. internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [CrossRef]
  40. Abderrazak, K.; Bannour, S.; Mhiri, H.; Lepalec, G.; Autric, M. Numerical and experimental study of molten pool formation
  41. during continuous laser welding of AZ91 magnesium alloy. Comput. Mater. Sci. 2009, 44, 858–866. [CrossRef]
  42. Bayat, M.; Thanki, A.; Mohanty, S.; Witvrouw, A.; Yang, S.; Thorborg, J.; Tiedje, N.S.; Hattel, J.H. Keyhole-induced porosities in
  43. Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Addit. Manuf. 2019,
  44. 30, 100835. [CrossRef]

Initiating Homogeneous Bubbles in Pure Liquid

Initiating Homogeneous Bubbles in Pure Liquid

  1. Barkhudarov and C.W. Hirt

Flow Science, Inc.

The combined Temperature-Dependent-Cavitation and Homogenous Bubble models work together as a way to simulate the formation and growth of vapor bubbles by locally heating a liquid. The Homogeneous Bubble model is only activated when a bubble has a size that encompasses at least one complete grid cell, i.e., can be resolved as a “bubble” or void region.

The Cavitation model contains a mechanism for the initiation of bubbles, which works in the follow way. At the end of each time cycle of a transient computation every grid cell containing liquid is tested to see if its pressure is less than the saturation pressure corresponding to the temperature in the cell. The saturation pressure is computed from the pressure-temperature saturation relation specified by the user (e.g., usually a Clapeyron relation). If the cell pressure is less than its saturation pressure it is assumed that boiling can begin. The essential assumption is that there exist sufficient impurities or nucleation sites for this to happen. A very simple model nucleation has been incorporated into FLOW-3D®.

Once a cell has been identified for possible boiling it is given a time delay before vaporization begins. For vaporization to occur it is necessary to have at least 1% void fraction in the cell. This small void can be thought of as the nucleation process. The time delay is input as variable CAVRT (denoted as Ccav in the following).