다기능 응용을 위한 Forward Roll Coating 공정의 리브 경함 형상 제어를 통한 선형 주기적 미세구조물의 템플릿 프리 제작
Md Didarul Islam, Himendra Perera, Benjamin Black, Matthew Phillips,Muh-Jang Chen, Greyson Hodges, Allyce Jackman, Yuxuan Liu, Chang-Jin Kim,Mohammed Zikry, Saad Khan, Yong Zhu, Mark Pankow, and Jong Eun Ryu
Abstract
Periodic micro/nanoscale structures from nature have inspired the scientific community to adopt surface design for various applications, including superhydrophobic drag reduction. One primary concern of practical applications of such periodic microstructures remains the scalability of conventional microfabrication technologies. This study demonstrates a simple template-free scalable manufacturing technique to fabricate periodic microstructures by controlling the ribbing defects in the forward roll coating. Viscoelastic composite coating materials are designed for roll-coating using carbon nanotubes (CNT) and polydimethylsiloxane (PDMS), which helps achieve a controllable ribbing with a periodicity of 114–700 µm. Depending on the process parameters, the patterned microstructures transition from the linear alignment to a random structure. The periodic microstructure enables hydrophobicity as the water contact angles of the samples ranged from 128° to 158°. When towed in a static water pool, a model boat coated with the microstructure film shows 7%–8% faster speed than the boat with a flat PDMS film. The CNT addition shows both mechanical and electrical properties improvement. In a mechanical scratch test, the cohesive failure of the CNT-PDMS film occurs in ≈90% higher force than bare PDMS. Moreover, the nonconductive bare PDMS shows sheet resistance of 747.84–22.66 Ω □−1 with 0.5 to 2.5 wt% CNT inclusion.
X. Wang, B. Ding, J. Yu, M. Wang, Nano Today 2011, 6, 510.
Z. Guo, W. Liu, B. L. Su, J. Colloid Interface Sci. 2011, 353, 335.
Q. Xu, W. Zhang, C. Dong, T. S. Sreeprasad, Z. Xia, J. R. Soc. Inter-face 2016, 13, 20160300.
W. L. Min, B. Jiang, P. Jiang, Adv. Mater. 2008, 20, 3914.
C. Peng Guo, Y. Zheng, M. Wen, C. Song, Y. Lin, L. Jiang, P. Guo,Y. Zheng, M. Wen, C. Y. S. Lin, L. Jiang, Adv. Mater. 2012, 24, 2642.
Q. Li, Z. Guo, J. Mater. Chem. A 2018, 6, 13549.
L. Li, B. Yan, J. Yang, L. Chen, H. Zeng, L. Li, B. Yan, H. Zeng,J. Yang, L. Chen, Adv. Mater. 2015, 27, 1294.
J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng, Q. Li, J. Yang,X. Zhang, L. Wang, W. Feng, X. F. Zhang, Q. Li, Adv. Mater. 2021, 33,2004754.
Y. Y. Yan, N. Gao, W. Barthlott, Adv. Colloid Interface Sci. 2011, 169,80.[10] B. Bhushan, Philos. Trans. R. Soc., A 2009, 367, 1445.
C. Zhang, D. A. Mcadams, J. C. Grunlan, Adv. Mater. 2016, 28, 8566.[12] T. Sun, L. Feng, X. Gao, L. Jiang, Acc. Chem. Res. 2005, 38, 644.
P. Vukusic, J. R. Sambles, Nature 2003, 424, 852.
M. Srinivasarao, Chem. Rev. 1999, 99, 1935.
W. Yu, J. Koc, J. A. Finlay, J. L. Clarke, A. S. Clare, A. Rosenhahn,Biointerphases 2019, 14, 051002.
M. D. Ibrahim, S. N. A. Amran, Y. S. Yunos, M. R. A. Rahman,M. Z. Mohtar, L. K. Wong, A. Zulkharnain, Appl. Bionics Biomech.2018, 2018, 7854321.
X. Li, J. Deng, Y. Lu, L. Zhang, J. Sun, F. Wu, Ceram. Int.2019, 45,21759.
G. Liu, Z. Yuan, Z. Qiu, S. Feng, Y. Xie, D. Leng, X. Tian, Ocean Eng.2020, 199, 106962.
X. Feng, P. Sun, G. Tian, X. Feng, P. Sun, G. Tian,Adv. Mater. Inter-faces 2022, 9, 2101616.
M. Xu, A. Grabowski, N. Yu, G. Kerezyte, J. W. Lee, B. R. Pfeifer,C.-J. J. Kim, Phys. Rev. Appl. 2020, 13, 034056.
H. Park, G. Sun, C. J. Kim, J. Fluid Mech. 2014, 747, 722.
M. Xu, N. Yu, J. Kim, C.-J. Kim, J. Fluid Mech. 2021, 908, A6.
B. Liu, Y. He, Y. Fan, X. Wang, Macromol. Rapid Commun. 2006, 27,1859.
H. S. Hwang, N. H. Kim, S. G. Lee, D. Y. Lee, K. Cho, I. Park,ACSAppl. Mater. Interfaces 2011, 3, 2179.
S. Kato, A. Sato, J. Mater. Chem. 2012, 22, 8613.
J. Zou, H. Chen, A. Chunder, Y. Yu, Q. Huo, L. Zhai, Adv. Mater.2008, 20, 3337.
S. Lee, J. Lee, J. Park, Y. Choi, K. Yong, Adv. Mater. 2012, 24, 2418.
L. Zhu, Y. Xiu, J. Xu, P. A. Tamirisa, D. W. Hess, C. P. Wong, Lang-muir 2005, 21, 11208.
X. Hu, L. Chen, T. Ji, Y. Zhang, A. Hu, F. Wu, G. Li, Y. Chen, X. Hu,L. Chen, T. Ji, Y. Zhang, A. Hu, F. Wu, Y. Chen, G. Li, Adv. Mater.Interfaces 2015, 2, 1500445.
X. Liang, J. Lu, T. Zhao, X. Yu, Q. Jiang, Y. Hu, P. Zhu, R. Sun,C. P. Wong, Adv. Mater. Interfaces 2019, 6, 1801635.
S. Chae, K. H. Cho, S. Won, A. Yi, J. Choi, H. H. Lee, J. H. Kim,H. J. Kim, Adv. Mater. Interfaces 2017, 4, 1701099.
M. E. G. Castillo, A. T. Patera, J. Fluid Mech. 1997, 335, 323.
Y. H. Chong, P. H. Gaskell, N. Kapur, Chem. Eng. Sci. 2007, 62, 4138.
T. Bauman, T. Sullivan, S. Middleman, Chem. Eng. Commun. 1982,14, 35.
J. Greener, T. Sullivan, B. Turner, S. Middleman, Chem. Eng.Commun. 1980, 5, 73.
G. A. Zevallos, M. S. Carvalho, M. Pasquali, J. Non-Newtonian FluidMech. 2005, 130, 96.
R. J. Fields, M. F. Ashby, Philos. Mag. 1976, 33, 33.
A. M. Grillet, A. G. Lee, E. S. G. Shaqfeh, J. Fluid Mech. 1999, 399,49.
E. Szczurek, M. Dubar, R. Deltombe, A. Dubois, L. Dubar,J. Mater.Process. Technol. 2009, 209, 3187.
O. Cohu, A. Magnin, J. Rheol. 1995, 39, 767.
C. K. Yang, D. S. H. Wong, T. J. Liu, Polym. Eng. Sci. 2004, 44, 1970.
G. P. Bierwagen, Electrochim. Acta 1992, 37, 1471.
P. Brumm, H. Sauer, E. Dörsam, Colloids Interfaces 2019, 3, 37.
M. Pudas, J. Hagberg, S. Leppävuori, Int. J. Electron. 2005, 92, 251.
M. Yamamura, J. Coat. Technol. Res. 2020, 17, 1447.
J. H. Lee, S. K. Han, J. S. Lee, H. W. Jung, J. C. Hyun, Korea Aust.Rheol. J. 2010, 22, 75.
M. Rosen, M. Vazquez, AIP Conf. Proc. 2007, 913, 14.
D. J. Coyle, C. W. Macosko, L. E. Scriven, J. Rheol. 1990, 34, 615.
F. V. López, L. Pauchard, M. Rosen, M. Rabaud, J. Non-NewtonianFluid Mech. 2002, 103, 123.
D. A. Soules, R. H. Fernando, J. E. Glass, J. Rheol. 1988, 32, 181.
D. J. Coyle, Liquid Film Coating, Springer, Netherlands, Dordrecht1997, pp. 539–571.
A. Shahsavar, M. Bahiraei, Powder Technol. 2017, 318, 441.
S. Abbasi, S. M. Zebarjad, S. H. N. Baghban, A. Youssefi,M.-S. Ekrami-Kakhki, J. Therm. Anal. Calorim. 2016, 123, 81.
B. Jo, D. Banerjee, Mater. Lett. 2014, 122, 212.
S. Mueller, E. W. Llewellin, H. M. Mader, Proc. R. Soc. A: Math. Phys.Eng. Sci. 2010, 466, 1201.
E. Anczurowski, S. G. Mason, Trans. Soc. Rheol. 1968, 12, 209.
C. W. Macosko, Rheology: Principles, Measurements, and Applications,VCH, Weinheim 1994.
R. D. Corder, P. Adhikari, M. C. Burroughs, O. J. Rojas, S. A. Khan,Soft Matter 2020, 16, 8602.
S. A. Jin, E. G. Facchine, S. A. Khan, O. J. Rojas, R. J. Spontak, J. Col-loid Interface Sci. 2021, 599, 207.
S. Wang, H. Tang, J. Guo, K. Wang, Carbohydr. Polym. 2016, 147, 455.
M. Razavi-Nouri, A. Sabet, M. Mohebbi, Polym. Bull. 2020, 77, 5933.
T. V. Neumann, E. G. Facchine, B. Leonardo, S. Khan, M. D. Dickey,Soft Matter 2020, 16, 6608.
Y. Y. Huang, S. V. Ahir, E. M. Terentjev, Phys. Rev. B: Condens. MatterMater. Phys. 2006, 73, 125422.
N. A. Burns, M. A. Naclerio, S. A. Khan, A. Shojaei, S. R. Raghavan,J. Rheol. 2014, 58, 1599.
S. Wu, J. Polym. Sci., Part C: Polym. Symp. 1971, 34, 19.
J. E. Mark, Physical Properties of Polymers Handbook, 2nd ed.,Springer, Berlin 2007.
B. B. Sauer, N. V. Dipaolo, J. Colloid Interface Sci. 1991, 144, 527.
M. Morra, E. Occhiello, R. Marola, F. Garbassi, P. Humphrey,D. Johnson, J. Colloid Interface Sci. 1990, 137, 11.
A. Dresel, U. Teipel, Colloids Surf., A 2016, 489, 57.
S. C. Roh, E. Y. Choi, Y. S. Choi, C. K. Kim, Polymer 2014, 55, 1527.
S. Nuriel, L. Liu, A. H. Barber, H. D. Wagner, Chem. Phys. Lett. 2005,404, 263.
Y. C. Jeong, S. J. Yang, K. Lee, A.-Y. Kamebuchi, Y. Kamimoto,M. H. Al-Saleh, Mater. Res. Express 2019, 6, 115088.
S.-H. Park, S. Lee, D. Moreira, P. R. Bandaru, I. Han, D.-J. Yun, Sci.Rep. 2015, 5, 15430.
D. J. Coyle, C. W. Macosko, L. E. Scriven, J. Fluid Mech. 1986, 171, 183.
D. J. Coyle, C. W. Macosko, L. E. Scriven, AIChE J. 1987, 33, 741.
M. S. Owens, M. Vinjamur, L. E. Scriven, C. W. Macosko, J. Non-Newtonian Fluid Mech. 2011, 166, 1123.
C. Lee, C. H. Choi, C. J. Kim, Exp. Fluids 2016, 57, 176.
M. P. Schultz, Biofouling 2007, 23, 331.
Y. Xia, P. Cai, Y. Liu, J. Zhu, R. Guo, W. Zhang, Y. Gan, H. Huang,J. Zhang, C. Liang, X. He, Z. Xiao, J. Electron. Mater. 2021, 50, 3084.
B. Earp, J. Simpson, J. Phillips, D. Grbovic, S. Vidmar, J. McCarthy,C. C. Luhrs, Nanomaterials 2019, 9, 491.
D. M. Kalyon, E. Birinci, R. Yazici, B. Karuv, S. Walsh, Polym. Eng.Sci. 2002, 42, 1609.
A. Mora, P. Verma, S. Kumar, Composites, Part B 2020, 183, 107600.
C. Lee, C. J. Kim, Phys. Rev. Lett. 2011, 106, 014502.
M. Xu, C. T. Liu, C. J. Kim, Langmuir 2020, 36, 8193.
D. Li, Scratch Hardness Measurement Using Tribometer, Nanovea,Irvine, CA 2014.
D. Li, Understanding Coating Failures Using Scratch Testing, Nanovea,Irvine, CA 2013.
X. Li, J. Deng, H. Yue, D. Ge, X. Zou, Tribol. Int. 2019, 134, 240.
S. N. Li, Z. R. Yu, B. F. Guo, K. Y. Guo, Y. Li, L. X. Gong, L. Zhao,J. Bae, L. C. Tang, Nano Energy 2021, 90, 106502.
S. W. Dai, Y. L. Gu, L. Zhao, W. Zhang, C. H. Gao, Y. X. Wu,S. C. Shen, C. Zhang, T. T. Kong, Y. T. Li, L. X. Gong, G. D. Zhang,L. C. Tang, Composites, Part B 2021, 225, 109243.
Y. T. Li, W. J. Liu, F. X. Shen, G. D. Zhang, L. X. Gong, L. Zhao,P. Song, J. F. Gao, L. C. Tang, Composites, Part B2022, 238,109907.
H. J. Walls, S. B. Caines, A. M. Sanchez, S. A. Khan, J. Rheol. 2003,47, 847.
F. M. Fowkes, J. Phys. Chem. 1963, 67, 2538.
D. K. Owens, R. C. Wendt, J. Appl. Polym. Sci. 1969, 13, 1741.
N. Selvakumar, H. C. Barshilia, K. S. Rajam, J. Appl. Phys. 2010, 108,013505.
A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat,F. Zhou, B. Durso, H. Liu, L. Li, Langmuir 2014, 30, 8598.
A. F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann, ColloidsSurf., A 2006, 286, 92.
C. A. Schneider, W. S. Rasband, K. W. Eliceiri, Nat. Methods 2012, 9, 671.Adv. Mater. Interfaces 2022, 9, 2201237
Review on Blood Flow Dynamics in Lab-on-a-Chip Systems: An Engineering Perspective
Bin-Jie Lai
,
Li-Tao Zhu
,
Zhe Chen*
,
Bo Ouyang*
, and
Zheng-Hong Luo*
Abstract
다양한 수송 메커니즘 하에서, “LOC(lab-on-a-chip)” 시스템에서 유동 전단 속도 조건과 밀접한 관련이 있는 혈류 역학은 다양한 수송 현상을 초래하는 것으로 밝혀졌습니다.
본 연구는 적혈구의 동적 혈액 점도 및 탄성 거동과 같은 점탄성 특성의 역할을 통해 LOC 시스템의 혈류 패턴을 조사합니다. 모세관 및 전기삼투압의 주요 매개변수를 통해 LOC 시스템의 혈액 수송 현상에 대한 연구는 실험적, 이론적 및 수많은 수치적 접근 방식을 통해 제공됩니다.
전기 삼투압 점탄성 흐름에 의해 유발되는 교란은 특히 향후 연구 기회를 위해 혈액 및 기타 점탄성 유체를 취급하는 LOC 장치의 혼합 및 분리 기능 향상에 논의되고 적용됩니다. 또한, 본 연구는 보다 정확하고 단순화된 혈류 모델에 대한 요구와 전기역학 효과 하에서 점탄성 유체 흐름에 대한 수치 연구에 대한 강조와 같은 LOC 시스템 하에서 혈류 역학의 수치 모델링의 문제를 식별합니다.
전기역학 현상을 연구하는 동안 제타 전위 조건에 대한 보다 실용적인 가정도 강조됩니다. 본 연구는 모세관 및 전기삼투압에 의해 구동되는 미세유체 시스템의 혈류 역학에 대한 포괄적이고 학제적인 관점을 제공하는 것을 목표로 한다.
1.1. Microfluidic Flow in Lab-on-a-Chip (LOC) Systems
Over the past several decades, the ability to control and utilize fluid flow patterns at microscales has gained considerable interest across a myriad of scientific and engineering disciplines, leading to growing interest in scientific research of microfluidics.
(1) Microfluidics, an interdisciplinary field that straddles physics, engineering, and biotechnology, is dedicated to the behavior, precise control, and manipulation of fluids geometrically constrained to a small, typically submillimeter, scale.
(2) The engineering community has increasingly focused on microfluidics, exploring different driving forces to enhance working fluid transport, with the aim of accurately and efficiently describing, controlling, designing, and applying microfluidic flow principles and transport phenomena, particularly for miniaturized applications.
(3) This attention has chiefly been fueled by the potential to revolutionize diagnostic and therapeutic techniques in the biomedical and pharmaceutical sectorsUnder various driving forces in microfluidic flows, intriguing transport phenomena have bolstered confidence in sustainable and efficient applications in fields such as pharmaceutical, biochemical, and environmental science. The “lab-on-a-chip” (LOC) system harnesses microfluidic flow to enable fluid processing and the execution of laboratory tasks on a chip-sized scale. LOC systems have played a vital role in the miniaturization of laboratory operations such as mixing, chemical reaction, separation, flow control, and detection on small devices, where a wide variety of fluids is adapted. Biological fluid flow like blood and other viscoelastic fluids are notably studied among the many working fluids commonly utilized by LOC systems, owing to the optimization in small fluid sample volumed, rapid response times, precise control, and easy manipulation of flow patterns offered by the system under various driving forces.
(4)The driving forces in blood flow can be categorized as passive or active transport mechanisms and, in some cases, both. Under various transport mechanisms, the unique design of microchannels enables different functionalities in driving, mixing, separating, and diagnosing blood and drug delivery in the blood.
(5) Understanding and manipulating these driving forces are crucial for optimizing the performance of a LOC system. Such knowledge presents the opportunity to achieve higher efficiency and reliability in addressing cellular level challenges in medical diagnostics, forensic studies, cancer detection, and other fundamental research areas, for applications of point-of-care (POC) devices.
1.2. Engineering Approach of Microfluidic Transport Phenomena in LOC Systems
Different transport mechanisms exhibit unique properties at submillimeter length scales in microfluidic devices, leading to significant transport phenomena that differ from those of macroscale flows. An in-depth understanding of these unique transport phenomena under microfluidic systems is often required in fluidic mechanics to fully harness the potential functionality of a LOC system to obtain systematically designed and precisely controlled transport of microfluids under their respective driving force. Fluid mechanics is considered a vital component in chemical engineering, enabling the analysis of fluid behaviors in various unit designs, ranging from large-scale reactors to separation units. Transport phenomena in fluid mechanics provide a conceptual framework for analytically and descriptively explaining why and how experimental results and physiological phenomena occur. The Navier–Stokes (N–S) equation, along with other governing equations, is often adapted to accurately describe fluid dynamics by accounting for pressure, surface properties, velocity, and temperature variations over space and time. In addition, limiting factors and nonidealities for these governing equations should be considered to impose corrections for empirical consistency before physical models are assembled for more accurate controls and efficiency. Microfluidic flow systems often deviate from ideal conditions, requiring adjustments to the standard governing equations. These deviations could arise from factors such as viscous effects, surface interactions, and non-Newtonian fluid properties from different microfluid types and geometrical layouts of microchannels. Addressing these nonidealities supports the refining of theoretical models and prediction accuracy for microfluidic flow behaviors.
The analytical calculation of coupled nonlinear governing equations, which describes the material and energy balances of systems under ideal conditions, often requires considerable computational efforts. However, advancements in computation capabilities, cost reduction, and improved accuracy have made numerical simulations using different numerical and modeling methods a powerful tool for effectively solving these complex coupled equations and modeling various transport phenomena. Computational fluid dynamics (CFD) is a numerical technique used to investigate the spatial and temporal distribution of various flow parameters. It serves as a critical approach to provide insights and reasoning for decision-making regarding the optimal designs involving fluid dynamics, even prior to complex physical model prototyping and experimental procedures. The integration of experimental data, theoretical analysis, and reliable numerical simulations from CFD enables systematic variation of analytical parameters through quantitative analysis, where adjustment to delivery of blood flow and other working fluids in LOC systems can be achieved.
Numerical methods such as the Finite-Difference Method (FDM), Finite-Element-Method (FEM), and Finite-Volume Method (FVM) are heavily employed in CFD and offer diverse approaches to achieve discretization of Eulerian flow equations through filling a mesh of the flow domain. A more in-depth review of numerical methods in CFD and its application for blood flow simulation is provided in Section 2.2.2.
1.3. Scope of the Review
In this Review, we explore and characterize the blood flow phenomena within the LOC systems, utilizing both physiological and engineering modeling approaches. Similar approaches will be taken to discuss capillary-driven flow and electric-osmotic flow (EOF) under electrokinetic phenomena as a passive and active transport scheme, respectively, for blood transport in LOC systems. Such an analysis aims to bridge the gap between physical (experimental) and engineering (analytical) perspectives in studying and manipulating blood flow delivery by different driving forces in LOC systems. Moreover, the Review hopes to benefit the interests of not only blood flow control in LOC devices but also the transport of viscoelastic fluids, which are less studied in the literature compared to that of Newtonian fluids, in LOC systems.
Section 2 examines the complex interplay between viscoelastic properties of blood and blood flow patterns under shear flow in LOC systems, while engineering numerical modeling approaches for blood flow are presented for assistance. Sections 3 and 4 look into the theoretical principles, numerical governing equations, and modeling methodologies for capillary driven flow and EOF in LOC systems as well as their impact on blood flow dynamics through the quantification of key parameters of the two driving forces. Section 5 concludes the characterized blood flow transport processes in LOC systems under these two forces. Additionally, prospective areas of research in improving the functionality of LOC devices employing blood and other viscoelastic fluids and potentially justifying mechanisms underlying microfluidic flow patterns outside of LOC systems are presented. Finally, the challenges encountered in the numerical studies of blood flow under LOC systems are acknowledged, paving the way for further research.
Blood, an essential physiological fluid in the human body, serves the vital role of transporting oxygen and nutrients throughout the body. Additionally, blood is responsible for suspending various blood cells including erythrocytes (red blood cells or RBCs), leukocytes (white blood cells), and thrombocytes (blood platelets) in a plasma medium.Among the cells mentioned above, red blood cells (RBCs) comprise approximately 40–45% of the volume of healthy blood.
(7) An RBC possesses an inherent elastic property with a biconcave shape of an average diameter of 8 μm and a thickness of 2 μm. This biconcave shape maximizes the surface-to-volume ratio, allowing RBCs to endure significant distortion while maintaining their functionality.
(8,9) Additionally, the biconcave shape optimizes gas exchange, facilitating efficient uptake of oxygen due to the increased surface area. The inherent elasticity of RBCs allows them to undergo substantial distortion from their original biconcave shape and exhibits high flexibility, particularly in narrow channels.RBC deformability enables the cell to deform from a biconcave shape to a parachute-like configuration, despite minor differences in RBC shape dynamics under shear flow between initial cell locations. As shown in Figure 1(a), RBCs initiating with different resting shapes and orientations displaying display a similar deformation pattern
(10) in terms of its shape. Shear flow induces an inward bending of the cell at the rear position of the rim to the final bending position,
(11) resulting in an alignment toward the same position of the flow direction.
The flexible property of RBCs enables them to navigate through narrow capillaries and traverse a complex network of blood vessels. The deformability of RBCs depends on various factors, including the channel geometry, RBC concentration, and the elastic properties of the RBC membrane.
(12) Both flexibility and deformability are vital in the process of oxygen exchange among blood and tissues throughout the body, allowing cells to flow in vessels even smaller than the original cell size prior to deforming.As RBCs serve as major components in blood, their collective dynamics also hugely affect blood rheology. RBCs exhibit an aggregation phenomenon due to cell to cell interactions, such as adhesion forces, among populated cells, inducing unique blood flow patterns and rheological behaviors in microfluidic systems. For blood flow in large vessels between a diameter of 1 and 3 cm, where shear rates are not high, a constant viscosity and Newtonian behavior for blood can be assumed. However, under low shear rate conditions (0.1 s
–1) in smaller vessels such as the arteries and venules, which are within a diameter of 0.2 mm to 1 cm, blood exhibits non-Newtonian properties, such as shear-thinning viscosity and viscoelasticity due to RBC aggregation and deformability. The nonlinear viscoelastic property of blood gives rise to a complex relationship between viscosity and shear rate, primarily influenced by the highly elastic behavior of RBCs. A wide range of research on the transient behavior of the RBC shape and aggregation characteristics under varied flow circumstances has been conducted, aiming to obtain a better understanding of the interaction between blood flow shear forces from confined flows.
For a better understanding of the unique blood flow structures and rheological behaviors in microfluidic systems, some blood flow patterns are introduced in the following section.
2.1.1. RBC Aggregation
RBC aggregation is a vital phenomenon to be considered when designing LOC devices due to its impact on the viscosity of the bulk flow. Under conditions of low shear rate, such as in stagnant or low flow rate regions, RBCs tend to aggregate, forming structures known as rouleaux, resembling stacks of coins as shown in Figure 1(b).
(13) The aggregation of RBCs increases the viscosity at the aggregated region,
(14) hence slowing down the overall blood flow. However, when exposed to high shear rates, RBC aggregates disaggregate. As shear rates continue to increase, RBCs tend to deform, elongating and aligning themselves with the direction of the flow.
(15) Such a dynamic shift in behavior from the cells in response to the shear rate forms the basis of the viscoelastic properties observed in whole blood. In essence, the viscosity of the blood varies according to the shear rate conditions, which are related to the velocity gradient of the system. It is significant to take the intricate relationship between shear rate conditions and the change of blood viscosity due to RBC aggregation into account since various flow driving conditions may induce varied effects on the degree of aggregation.
2.1.2. Fåhræus-Lindqvist Effect
The Fåhræus–Lindqvist (FL) effect describes the gradual decrease in the apparent viscosity of blood as the channel diameter decreases.
(16) This effect is attributed to the migration of RBCs toward the central region in the microchannel, where the flow rate is higher, due to the presence of higher pressure and asymmetric distribution of shear forces. This migration of RBCs, typically observed at blood vessels less than 0.3 mm, toward the higher flow rate region contributes to the change in blood viscosity, which becomes dependent on the channel size. Simultaneously, the increase of the RBC concentration in the central region of the microchannel results in the formation of a less viscous region close to the microchannel wall. This region called the Cell-Free Layer (CFL), is primarily composed of plasma.
(17) The combination of the FL effect and the following CFL formation provides a unique phenomenon that is often utilized in passive and active plasma separation mechanisms, involving branched and constriction channels for various applications in plasma separation using microfluidic systems.
2.1.3. Cell-Free Layer Formation
In microfluidic blood flow, RBCs form aggregates at the microchannel core and result in a region that is mostly devoid of RBCs near the microchannel walls, as shown in Figure 1(c).
(18) The region is known as the cell-free layer (CFL). The CFL region is often known to possess a lower viscosity compared to other regions within the blood flow due to the lower viscosity value of plasma when compared to that of the aggregated RBCs. Therefore, a thicker CFL region composed of plasma correlates to a reduced apparent whole blood viscosity.
(19) A thicker CFL region is often established following the RBC aggregation at the microchannel core under conditions of decreasing the tube diameter. Apart from the dependence on the RBC concentration in the microchannel core, the CFL thickness is also affected by the volume concentration of RBCs, or hematocrit, in whole blood, as well as the deformability of RBCs. Given the influence CFL thickness has on blood flow rheological parameters such as blood flow rate, which is strongly dependent on whole blood viscosity, investigating CFL thickness under shear flow is crucial for LOC systems accounting for blood flow.
2.1.4. Plasma Skimming in Bifurcation Networks
The uneven arrangement of RBCs in bifurcating microchannels, commonly termed skimming bifurcation, arises from the axial migration of RBCs within flowing streams. This uneven distribution contributes to variations in viscosity across differing sizes of bifurcating channels but offers a stabilizing effect. Notably, higher flow rates in microchannels are associated with increased hematocrit levels, resulting in higher viscosity compared with those with lower flow rates. Parametric investigations on bifurcation angle,
(21) and RBC dynamics, including aggregation and deformation,
(22) may alter the varying viscosity of blood and its flow behavior within microchannels.
2.2. Modeling on Blood Flow Dynamics
2.2.1. Blood Properties and Mathematical Models of Blood Rheology
Under different shear rate conditions in blood flow, the elastic characteristics and dynamic changes of the RBC induce a complex velocity and stress relationship, resulting in the incompatibility of blood flow characterization through standard presumptions of constant viscosity used for Newtonian fluid flow. Blood flow is categorized as a viscoelastic non-Newtonian fluid flow where constitutive equations governing this type of flow take into consideration the nonlinear viscometric properties of blood. To mathematically characterize the evolving blood viscosity and the relationship between the elasticity of RBC and the shear blood flow, respectively, across space and time of the system, a stress tensor (τ) defined by constitutive models is often coupled in the Navier–Stokes equation to account for the collective impact of the constant dynamic viscosity (η) and the elasticity from RBCs on blood flow.The dynamic viscosity of blood is heavily dependent on the shear stress applied to the cell and various parameters from the blood such as hematocrit value, plasma viscosity, mechanical properties of the RBC membrane, and red blood cell aggregation rate. The apparent blood viscosity is considered convenient for the characterization of the relationship between the evolving blood viscosity and shear rate, which can be defined by Casson’s law, as shown in eq 1.
𝜇=𝜏0𝛾˙+2𝜂𝜏0𝛾˙⎯⎯⎯⎯⎯⎯⎯√+𝜂�=�0�˙+2��0�˙+�
(1)where τ
0 is the yield stress–stress required to initiate blood flow motion, η is the Casson rheological constant, and γ̇ is the shear rate. The value of Casson’s law parameters under blood with normal hematocrit level can be defined as τ
0 = 0.0056 Pa and η = 0.0035 Pa·s.
(23) With the known property of blood and Casson’s law parameters, an approximation can be made to the dynamic viscosity under various flow condition domains. The Power Law model is often employed to characterize the dynamic viscosity in relation to the shear rate, since precise solutions exist for specific geometries and flow circumstances, acting as a fundamental standard for definition. The Carreau and Carreau–Yasuda models can be advantageous over the Power Law model due to their ability to evaluate the dynamic viscosity at low to zero shear rate conditions. However, none of the above-mentioned models consider the memory or other elastic behavior of blood and its RBCs. Some other commonly used mathematical models and their constants for the non-Newtonian viscosity property characterization of blood are listed in Table 1 below.
(24−26)Table 1. Comparison of Various Non-Newtonian Models for Blood Viscosity
The blood rheology is commonly known to be influenced by two key physiological factors, namely, the hematocrit value (H
t) and the fibrinogen concentration (c
f), with an average value of 42% and 0.252 gd·L
–1, respectively. Particularly in low shear conditions, the presence of varying fibrinogen concentrations affects the tendency for aggregation and rouleaux formation, while the occurrence of aggregation is contingent upon specific levels of hematocrit.
(28) modifies the Casson model through emphasizing its reliance on hematocrit and fibrinogen concentration parameter values, owing to the extensive knowledge of the two physiological blood parameters.The viscoelastic response of blood is heavily dependent on the elasticity of the RBC, which is defined by the relationship between the deformation and stress relaxation from RBCs under a specific location of shear flow as a function of the velocity field. The stress tensor is usually characterized by constitutive equations such as the Upper-Convected Maxwell Model
(30) to track the molecule effects under shear from different driving forces. The prominent non-Newtonian features, such as shear thinning and yield stress, have played a vital role in the characterization of blood rheology, particularly with respect to the evaluation of yield stress under low shear conditions. The nature of stress measurement in blood, typically on the order of 1 mPa, is challenging due to its low magnitude. The occurrence of the CFL complicates the measurement further due to the significant decrease in apparent viscosity near the wall over time and a consequential disparity in viscosity compared to the bulk region.In addition to shear thinning viscosity and yield stress, the formation of aggregation (rouleaux) from RBCs under low shear rates also contributes to the viscoelasticity under transient flow
(32) of whole blood. Given the difficulty in evaluating viscoelastic behavior of blood under low strain magnitudes and limitations in generalized Newtonian models, the utilization of viscoelastic models is advocated to encompass elasticity and delineate non-shear components within the stress tensor. Extending from the Oldroyd-B model, Anand et al.
(33) developed a viscoelastic model framework for adapting elasticity within blood samples and predicting non-shear stress components. However, to also address the thixotropic effects, the model developed by Horner et al.
(34) serves as a more comprehensive approach than the viscoelastic model from Anand et al. Thixotropy
(32) typically occurs from the structural change of the rouleaux, where low shear rate conditions induce rouleaux formation. Correspondingly, elasticity increases, while elasticity is more representative of the isolated RBCs, under high shear rate conditions. The model of Horner et al.
(34) considers the contribution of rouleaux to shear stress, taking into account factors such as the characteristic time for Brownian aggregation, shear-induced aggregation, and shear-induced breakage. Subsequent advancements in the model from Horner et al. often revolve around refining the three aforementioned key terms for a more substantial characterization of rouleaux dynamics. Notably, this has led to the recently developed mHAWB model
(35) and other model iterations to enhance the accuracy of elastic and viscoelastic contributions to blood rheology, including the recently improved model suggested by Armstrong et al.
Numerical simulation has become increasingly more significant in analyzing the geometry, boundary layers of flow, and nonlinearity of hyperbolic viscoelastic flow constitutive equations. CFD is a powerful and efficient tool utilizing numerical methods to solve the governing hydrodynamic equations, such as the Navier–Stokes (N–S) equation, continuity equation, and energy conservation equation, for qualitative evaluation of fluid motion dynamics under different parameters. CFD overcomes the challenge of analytically solving nonlinear forms of differential equations by employing numerical methods such as the Finite-Difference Method (FDM), Finite-Element Method (FEM), and Finite-Volume Method (FVM) to discretize and solve the partial differential equations (PDEs), allowing for qualitative reproduction of transport phenomena and experimental observations. Different numerical methods are chosen to cope with various transport systems for optimization of the accuracy of the result and control of error during the discretization process.FDM is a straightforward approach to discretizing PDEs, replacing the continuum representation of equations with a set of finite-difference equations, which is typically applied to structured grids for efficient implementation in CFD programs.
(37) However, FDM is often limited to simple geometries such as rectangular or block-shaped geometries and struggles with curved boundaries. In contrast, FEM divides the fluid domain into small finite grids or elements, approximating PDEs through a local description of physics.
(38) All elements contribute to a large, sparse matrix solver. However, FEM may not always provide accurate results for systems involving significant deformation and aggregation of particles like RBCs due to large distortion of grids.
(39) FVM evaluates PDEs following the conservation laws and discretizes the selected flow domain into small but finite size control volumes, with each grid at the center of a finite volume.
(40) The divergence theorem allows the conversion of volume integrals of PDEs with divergence terms into surface integrals of surface fluxes across cell boundaries. Due to its conservation property, FVM offers efficient outcomes when dealing with PDEs that embody mass, momentum, and energy conservation principles. Furthermore, widely accessible software packages like the OpenFOAM toolbox
(41) include a viscoelastic solver, making it an attractive option for viscoelastic fluid flow modeling.
The complexity in the blood flow simulation arises from deformability and aggregation that RBCs exhibit during their interaction with neighboring cells under different shear rate conditions induced by blood flow. Numerical models coupled with simulation programs have been applied as a groundbreaking method to predict such unique rheological behavior exhibited by RBCs and whole blood. The conventional approach of a single-phase flow simulation is often applied to blood flow simulations within large vessels possessing a moderate shear rate. However, such a method assumes the properties of plasma, RBCs and other cellular components to be evenly distributed as average density and viscosity in blood, resulting in the inability to simulate the mechanical dynamics, such as RBC aggregation under high-shear flow field, inherent in RBCs. To accurately describe the asymmetric distribution of RBC and blood flow, multiphase flow simulation, where numerical simulations of blood flows are often modeled as two immiscible phases, RBCs and blood plasma, is proposed. A common assumption is that RBCs exhibit non-Newtonian behavior while the plasma is treated as a continuous Newtonian phase.Numerous multiphase numerical models have been proposed to simulate the influence of RBCs on blood flow dynamics by different assumptions. In large-scale simulations (above the millimeter range), continuum-based methods are wildly used due to their lower computational demands.
(43) Eulerian multiphase flow simulations offer the solution of a set of conservation equations for each separate phase and couple the phases through common pressure and interphase exchange coefficients. Xu et al.
(44) utilized the combined finite-discrete element method (FDEM) to replicate the dynamic behavior and distortion of RBCs subjected to fluidic forces, utilizing the Johnson–Kendall–Roberts model
(45) to define the adhesive forces of cell-to-cell interactions. The iterative direct-forcing immersed boundary method (IBM) is commonly employed in simulations of the fluid–cell interface of blood. This method effectively captures the intricacies of the thin and flexible RBC membranes within various external flow fields.
(44) also adopts this approach to bridge the fluid dynamics and RBC deformation through IBM. Yoon and You utilized the Maxwell model to define the viscosity of the RBC membrane.
(47) It was discovered that the Maxwell model could represent the stress relaxation and unloading processes of the cell. Furthermore, the reduced flexibility of an RBC under particular situations such as infection is specified, which was unattainable by the Kelvin–Voigt model
(48) when compared to the Maxwell model in the literature. The Yeoh hyperplastic material model was also adapted to predict the nonlinear elasticity property of RBCs with FEM employed to discretize the RBC membrane using shell-type elements. Gracka et al.
(49) developed a numerical CFD model with a finite-volume parallel solver for multiphase blood flow simulation, where an updated Maxwell viscoelasticity model and a Discrete Phase Model are adopted. In the study, the adapted IBM, based on unstructured grids, simulates the flow behavior and shape change of the RBCs through fluid-structure coupling. It was found that the hybrid Euler–Lagrange (E–L) approach
(50) for the development of the multiphase model offered better results in the simulated CFL region in the microchannels.To study the dynamics of individual behaviors of RBCs and the consequent non-Newtonian blood flow, cell-shape-resolved computational models are often adapted. The use of the boundary integral method has become prevalent in minimizing computational expenses, particularly in the exclusive determination of fluid velocity on the surfaces of RBCs, incorporating the option of employing IBM or particle-based techniques. The cell-shaped-resolved method has enabled an examination of cell to cell interactions within complex ambient or pulsatile flow conditions
(51) surrounding RBC membranes. Recently, Rydquist et al.
(52) have looked to integrate statistical information from macroscale simulations to obtain a comprehensive overview of RBC behavior within the immediate proximity of the flow through introduction of respective models characterizing membrane shape definition, tension, bending stresses of RBC membranes.At a macroscopic scale, continuum models have conventionally been adapted for assessing blood flow dynamics through the application of elasticity theory and fluid dynamics. However, particle-based methods are known for their simplicity and adaptability in modeling complex multiscale fluid structures. Meshless methods, such as the boundary element method (BEM), smoothed particle hydrodynamics (SPH), and dissipative particle dynamics (DPD), are often used in particle-based characterization of RBCs and the surrounding fluid. By representing the fluid as discrete particles, meshless methods provide insights into the status and movement of the multiphase fluid. These methods allow for the investigation of cellular structures and microscopic interactions that affect blood rheology. Non-confronting mesh methods like IBM can also be used to couple a fluid solver such as FEM, FVM, or the Lattice Boltzmann Method (LBM) through membrane representation of RBCs. In comparison to conventional CFD methods, LBM has been viewed as a favorable numerical approach for solving the N–S equations and the simulation of multiphase flows. LBM exhibits the notable advantage of being amenable to high-performance parallel computing environments due to its inherently local dynamics. In contrast to DPD and SPH where RBC membranes are modeled as physically interconnected particles, LBM employs the IBM to account for the deformation dynamics of RBCs
(53,54) under shear flows in complex channel geometries.
(54,55) However, it is essential to acknowledge that the utilization of LBM in simulating RBC flows often entails a significant computational overhead, being a primary challenge in this context. Krüger et al.
(56) proposed utilizing LBM as a fluid solver, IBM to couple the fluid and FEM to compute the response of membranes to deformation under immersed fluids. This approach decouples the fluid and membranes but necessitates significant computational effort due to the requirements of both meshes and particles.Despite the accuracy of current blood flow models, simulating complex conditions remains challenging because of the high computational load and cost. Balachandran Nair et al.
(57) suggested a reduced order model of RBC under the framework of DEM, where the RBC is represented by overlapping constituent rigid spheres. The Morse potential force is adapted to account for the RBC aggregation exhibited by cell to cell interactions among RBCs at different distances. Based upon the IBM, the reduced-order RBC model is adapted to simulate blood flow transport for validation under both single and multiple RBCs with a resolved CFD-DEM solver.
(58) In the resolved CFD-DEM model, particle sizes are larger than the grid size for a more accurate computation of the surrounding flow field. A continuous forcing approach is taken to describe the momentum source of the governing equation prior to discretization, which is different from a Direct Forcing Method (DFM).
(59) As no body-conforming moving mesh is required, the continuous forcing approach offers lower complexity and reduced cost when compared to the DFM. Piquet et al.
(60) highlighted the high complexity of the DFM due to its reliance on calculating an additional immersed boundary flux for the velocity field to ensure its divergence-free condition.The fluid–structure interaction (FSI) method has been advocated to connect the dynamic interplay of RBC membranes and fluid plasma within blood flow such as the coupling of continuum–particle interactions. However, such methodology is generally adapted for anatomical configurations such as arteries
(63) where both the structural components and the fluid domain undergo substantial deformation due to the moving boundaries. Due to the scope of the Review being blood flow simulation within microchannels of LOC devices without deformable boundaries, the Review of the FSI method will not be further carried out.In general, three numerical methods are broadly used: mesh-based, particle-based, and hybrid mesh–particle techniques, based on the spatial scale and the fundamental numerical approach, mesh-based methods tend to neglect the effects of individual particles, assuming a continuum and being efficient in terms of time and cost. However, the particle-based approach highlights more of the microscopic and mesoscopic level, where the influence of individual RBCs is considered. A review from Freund et al.
(64) addressed the three numerical methodologies and their respective modeling approaches of RBC dynamics. Given the complex mechanics and the diverse levels of study concerning numerical simulations of blood and cellular flow, a broad spectrum of numerical methods for blood has been subjected to extensive review.
(65) offered an extensive review of the application of the DPD, SPH, and LBM for numerical simulations of RBC, while Rathnayaka et al.
(67) conducted a review of the particle-based numerical modeling for liquid marbles through drawing parallels to the transport of RBCs in microchannels. A comparative analysis between conventional CFD methods and particle-based approaches for cellular and blood flow dynamic simulation can be found under the review by Arabghahestani et al.
(69) offer an overview of both continuum-based models at micro/macroscales and multiscale particle-based models encompassing various length and temporal dimensions. Furthermore, these reviews deliberate upon the potential of coupling continuum-particle methods for blood plasma and RBC modeling. Arciero et al.
(70) investigated various modeling approaches encompassing cellular interactions, such as cell to cell or plasma interactions and the individual cellular phases. A concise overview of the reviews is provided in Table 2 for reference.
Table 2. List of Reviews for Numerical Approaches Employed in Blood Flow Simulation
Capillary driven (CD) flow is a pivotal mechanism in passive microfluidic flow systems
(9) such as the blood circulation system and LOC systems.
(71) CD flow is essentially the movement of a liquid to flow against drag forces, where the capillary effect exerts a force on the liquid at the borders, causing a liquid–air meniscus to flow despite gravity or other drag forces. A capillary pressure drops across the liquid–air interface with surface tension in the capillary radius and contact angle. The capillary effect depends heavily on the interaction between the different properties of surface materials. Different values of contact angles can be manipulated and obtained under varying levels of surface wettability treatments to manipulate the surface properties, resulting in different CD blood delivery rates for medical diagnostic device microchannels. CD flow techniques are appealing for many LOC devices, because they require no external energy. However, due to the passive property of liquid propulsion by capillary forces and the long-term instability of surface treatments on channel walls, the adaptability of CD flow in geometrically complex LOC devices may be limited.
3.2. Theoretical and Numerical Modeling of Capillary Driven Blood Flow
3.2.1. Theoretical Basis and Assumptions of Microfluidic Flow
The study of transport phenomena regarding either blood flow driven by capillary forces or externally applied forces under microfluid systems all demands a comprehensive recognition of the significant differences in flow dynamics between microscale and macroscale. The fundamental assumptions and principles behind fluid transport at the microscale are discussed in this section. Such a comprehension will lay the groundwork for the following analysis of the theoretical basis of capillary forces and their role in blood transport in LOC systems.
At the macroscale, fluid dynamics are often strongly influenced by gravity due to considerable fluid mass. However, the high surface to volume ratio at the microscale shifts the balance toward surface forces (e.g., surface tension and viscous forces), much larger than the inertial force. This difference gives rise to transport phenomena unique to microscale fluid transport, such as the prevalence of laminar flow due to a very low Reynolds number (generally lower than 1). Moreover, the fluid in a microfluidic system is often assumed to be incompressible due to the small flow velocity, indicating constant fluid density in both space and time.Microfluidic flow behaviors are governed by the fundamental principles of mass and momentum conservation, which are encapsulated in the continuity equation and the Navier–Stokes (N–S) equation. The continuity equation describes the conservation of mass, while the N–S equation captures the spatial and temporal variations in velocity, pressure, and other physical parameters. Under the assumption of the negligible influence of gravity in microfluidic systems, the continuity equation and the Eulerian representation of the incompressible N–S equation can be expressed as follows:
∇·𝐮⇀=0∇·�⇀=0
(7)
−∇𝑝+𝜇∇2𝐮⇀+∇·𝝉⇀−𝐅⇀=0−∇�+�∇2�⇀+∇·�⇀−�⇀=0
(8)Here, p is the pressure, u is the fluid viscosity,
𝝉⇀�⇀ represents the stress tensor, and F is the body force exerted by external forces if present.
3.2.2. Theoretical Basis and Modeling of Capillary Force in LOC Systems
The capillary force is often the major driving force to manipulate and transport blood without an externally applied force in LOC systems. Forces induced by the capillary effect impact the free surface of fluids and are represented not directly in the Navier–Stokes equations but through the pressure boundary conditions of the pressure term p. For hydrophilic surfaces, the liquid generally induces a contact angle between 0° and 30°, encouraging the spread and attraction of fluid under a positive cos θ condition. For this condition, the pressure drop becomes positive and generates a spontaneous flow forward. A hydrophobic solid surface repels the fluid, inducing minimal contact. Generally, hydrophobic solids exhibit a contact angle larger than 90°, inducing a negative value of cos θ. Such a value will result in a negative pressure drop and a flow in the opposite direction. The induced contact angle is often utilized to measure the wall exposure of various surface treatments on channel walls where different wettability gradients and surface tension effects for CD flows are established. Contact angles between different interfaces are obtainable through standard values or experimental methods for reference.
(72)For the characterization of the induced force by the capillary effect, the Young–Laplace (Y–L) equation
(73) is widely employed. In the equation, the capillary is considered a pressure boundary condition between the two interphases. Through the Y–L equation, the capillary pressure force can be determined, and subsequently, the continuity and momentum balance equations can be solved to obtain the blood filling rate. Kim et al.
(74) studied the effects of concentration and exposure time of a nonionic surfactant, Silwet L-77, on the performance of a polydimethylsiloxane (PDMS) microchannel in terms of plasma and blood self-separation. The study characterized the capillary pressure force by incorporating the Y–L equation and further evaluated the effects of the changing contact angle due to different levels of applied channel wall surface treatments. The expression of the Y–L equation utilized by Kim et al.
(9)where σ is the surface tension of the liquid and θ
b, θ
t, θ
l, and θ
r are the contact angle values between the liquid and the bottom, top, left, and right walls, respectively. A numerical simulation through Coventor software is performed to evaluate the dynamic changes in the filling rate within the microchannel. The simulation results for the blood filling rate in the microchannel are expressed at a specific time stamp, shown in Figure 2. The results portray an increasing instantaneous filling rate of blood in the microchannel following the decrease in contact angle induced by a higher concentration of the nonionic surfactant treated to the microchannel wall.
When in contact with hydrophilic or hydrophobic surfaces, blood forms a meniscus with a contact angle due to surface tension. The Lucas–Washburn (L–W) equation
(75) is one of the pioneering theoretical definitions for the position of the meniscus over time. In addition, the L–W equation provides the possibility for research to obtain the velocity of the blood formed meniscus through the derivation of the meniscus position. The L–W equation
(10)Here L(t) represents the distance of the liquid driven by the capillary forces. However, the generalized L–W equation solely assumes the constant physical properties from a Newtonian fluid rather than considering the non-Newtonian fluid behavior of blood. Cito et al.
(76) constructed an enhanced version of the L–W equation incorporating the power law to consider the RBC aggregation and the FL effect. The non-Newtonian fluid apparent viscosity under the Power Law model is defined as
𝜇=𝑘·(𝛾˙)𝑛−1�=�·(�˙)�−1
(11)where γ̇ is the strain rate tensor defined as
𝛾˙=12𝛾˙𝑖𝑗𝛾˙𝑗𝑖⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√�˙=12�˙���˙��. The stress tensor term τ is computed as τ = μγ̇
(12)where k is the flow consistency index and n is the power law index, respectively. The power law index, from the Power Law model, characterizes the extent of the non-Newtonian behavior of blood. Both the consistency and power law index rely on blood properties such as hematocrit, the appearance of the FL effect, the formation of RBC aggregates, etc. The updated L–W equation computes the location and velocity of blood flow caused by capillary forces at specified time points within the LOC devices, taking into account the effects of blood flow characteristics such as RBC aggregation and the FL effect on dynamic blood viscosity.Apart from the blood flow behaviors triggered by inherent blood properties, unique flow conditions driven by capillary forces that are portrayed under different microchannel geometries also hold crucial implications for CD blood delivery. Berthier et al.
(77) studied the spontaneous Concus–Finn condition, the condition to initiate the spontaneous capillary flow within a V-groove microchannel, as shown in Figure 3(a) both experimentally and numerically. Through experimental studies, the spontaneous Concus–Finn filament development of capillary driven blood flow is observed, as shown in Figure 3(b), while the dynamic development of blood flow is numerically simulated through CFD simulation.
Berthier et al.
(77) characterized the contact angle needed for the initiation of the capillary driving force at a zero-inlet pressure, through the half-angle (α) of the V-groove geometry layout, and its relation to the Concus–Finn filament as shown below:
(13)Three possible regimes were concluded based on the contact angle value for the initiation of flow and development of Concus–Finn filament:
𝜃>𝜃1𝜃1>𝜃>𝜃0𝜃0no SCFSCF without a Concus−Finn filamentSCF without a Concus−Finn filament{�>�1no SCF�1>�>�0SCF without a Concus−Finn filament�0SCF without a Concus−Finn filament
(14)Under Newton’s Law, the force balance with low Reynolds and Capillary numbers results in the neglect of inertial terms. The force balance between the capillary forces and the viscous force induced by the channel wall is proposed to derive the analytical fluid velocity. This relation between the two forces offers insights into the average flow velocity and the penetration distance function dependent on time. The apparent blood viscosity is defined by Berthier et al.
(23) given in eq 1. The research used the FLOW-3D program from Flow Science Inc. software, which solves transient, free-surface problems using the FDM in multiple dimensions. The Volume of Fluid (VOF) method
(79) is utilized to locate and track the dynamic extension of filament throughout the advancing interface within the channel ahead of the main flow at three progressing time stamps, as depicted in Figure 3(c).
The utilization of external forces, such as electric fields, has significantly broadened the possibility of manipulating microfluidic flow in LOC systems.
(80) Externally applied electric field forces induce a fluid flow from the movement of ions in fluid terms as the “electro-osmotic flow” (EOF).Unique transport phenomena, such as enhanced flow velocity and flow instability, induced by non-Newtonian fluids, particularly viscoelastic fluids, under EOF, have sparked considerable interest in microfluidic devices with simple or complicated geometries within channels.
(81) However, compared to the study of Newtonian fluids and even other electro-osmotic viscoelastic fluid flows, the literature focusing on the theoretical and numerical modeling of electro-osmotic blood flow is limited due to the complexity of blood properties. Consequently, to obtain a more comprehensive understanding of the complex blood flow behavior under EOF, theoretical and numerical studies of the transport phenomena in the EOF section will be based on the studies of different viscoelastic fluids under EOF rather than that of blood specifically. Despite this limitation, we believe these studies offer valuable insights that can help understand the complex behavior of blood flow under EOF.
4.1. EOF Phenomena
Electro-osmotic flow occurs at the interface between the microchannel wall and bulk phase solution. When in contact with the bulk phase, solution ions are absorbed or dissociated at the solid–liquid interface, resulting in the formation of a charge layer, as shown in Figure 4. This charged channel surface wall interacts with both negative and positive ions in the bulk sample, causing repulsion and attraction forces to create a thin layer of immobilized counterions, known as the Stern layer. The induced electric potential from the wall gradually decreases with an increase in the distance from the wall. The Stern layer potential, commonly termed the zeta potential, controls the intensity of the electrostatic interactions between mobile counterions and, consequently, the drag force from the applied electric field. Next to the Stern layer is the diffuse mobile layer, mainly composed of a mobile counterion. These two layers constitute the “electrical double layer” (EDL), the thickness of which is directly proportional to the ionic strength (concentration) of the bulk fluid. The relationship between the two parameters is characterized by a Debye length (λ
D), expressed as
𝜆𝐷=𝜖𝑘B𝑇2(𝑍𝑒)2𝑐0⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√��=��B�2(��)2�0
(15)where ϵ is the permittivity of the electrolyte solution, k
B is the Boltzmann constant, T is the electron temperature, Z is the integer valence number, e is the elementary charge, and c
0 is the ionic density.
When an electric field is applied perpendicular to the EDL, viscous drag is generated due to the movement of excess ions in the EDL. Electro-osmotic forces can be attributed to the externally applied electric potential (ϕ) and the zeta potential, the system wall induced potential by charged walls (ψ). As illustrated in Figure 4, the majority of ions in the bulk phase have a uniform velocity profile, except for a shear rate condition confined within an extremely thin Stern layer. Therefore, EOF displays a unique characteristic of a “near flat” or plug flow velocity profile, different from the parabolic flow typically induced by pressure-driven microfluidic flow (Hagen–Poiseuille flow). The plug-shaped velocity profile of the EOF possesses a high shear rate above the Stern layer.Overall, the EOF velocity magnitude is typically proportional to the Debye Length (λ
D), zeta potential, and magnitude of the externally applied electric field, while a more viscous liquid reduces the EOF velocity.
4.2. Modeling on Electro-osmotic Viscoelastic Fluid Flow
4.2.1. Theoretical Basis of EOF Mechanisms
The EOF of an incompressible viscoelastic fluid is commonly governed by the continuity and incompressible N–S equations, as shown in eqs 7 and 8, where the stress tensor and the electrostatic force term are coupled. The electro-osmotic body force term F, representing the body force exerted by the externally applied electric force, is defined as
𝐹⇀=𝑝𝐸𝐸⇀�⇀=���⇀, where ρ
E and
𝐸⇀�⇀ are the net electric charge density and the applied external electric field, respectively.Numerous models are established to theoretically study the externally applied electric potential and the system wall induced potential by charged walls. The following Laplace equation, expressed as eq 16, is generally adapted and solved to calculate the externally applied potential (ϕ).
∇2𝜙=0∇2�=0
(16)Ion diffusion under applied electric fields, together with mass transport resulting from convection and diffusion, transports ionic solutions in bulk flow under electrokinetic processes. The Nernst–Planck equation can describe these transport methods, including convection, diffusion, and electro-diffusion. Therefore, the Nernst–Planck equation is used to determine the distribution of the ions within the electrolyte. The electric potential induced by the charged channel walls follows the Poisson–Nernst–Plank (PNP) equation, which can be written as eq 17.
i are the diffusion coefficient, ionic concentration, and ionic valence of the ionic species I, respectively. However, due to the high nonlinearity and numerical stiffness introduced by different lengths and time scales from the PNP equations, the Poisson–Boltzmann (PB) model is often considered the major simplified method of the PNP equation to characterize the potential distribution of the EDL region in microchannels. In the PB model, it is assumed that the ionic species in the fluid follow the Boltzmann distribution. This model is typically valid for steady-state problems where charge transport can be considered negligible, the EDLs do not overlap with each other, and the intrinsic potentials are low. It provides a simplified representation of the potential distribution in the EDL region. The PB equation governing the EDL electric potential distribution is described as
0 is the ion bulk concentration, z is the ionic valence, and ε
0 is the electric permittivity in the vacuum. Under low electric potential conditions, an even further simplified model to illustrate the EOF phenomena is the Debye–Hückel (DH) model. The DH model is derived by obtaining a charge density term by expanding the exponential term of the Boltzmann equation in a Taylor series.
4.2.2. EOF Modeling for Viscoelastic Fluids
Many studies through numerical modeling were performed to obtain a deeper understanding of the effect exhibited by externally applied electric fields on viscoelastic flow in microchannels under various geometrical designs. Bello et al.
(83) found that methylcellulose solution, a non-Newtonian polymer solution, resulted in stronger electro-osmotic mobility in experiments when compared to the predictions by the Helmholtz–Smoluchowski equation, which is commonly used to define the velocity of EOF of a Newtonian fluid. Being one of the pioneers to identify the discrepancies between the EOF of Newtonian and non-Newtonian fluids, Bello et al. attributed such discrepancies to the presence of a very high shear rate in the EDL, resulting in a change in the orientation of the polymer molecules. Park and Lee
(84) utilized the FVM to solve the PB equation for the characterization of the electric field induced force. In the study, the concept of fractional calculus for the Oldroyd-B model was adapted to illustrate the elastic and memory effects of viscoelastic fluids in a straight microchannel They observed that fluid elasticity and increased ratio of viscoelastic fluid contribution to overall fluid viscosity had a significant impact on the volumetric flow rate and sensitivity of velocity to electric field strength compared to Newtonian fluids. Afonso et al.
(85) derived an analytical expression for EOF of viscoelastic fluid between parallel plates using the DH model to account for a zeta potential condition below 25 mV. The study established the understanding of the electro-osmotic viscoelastic fluid flow under low zeta potential conditions. Apart from the electrokinetic forces, pressure forces can also be coupled with EOF to generate a unique fluid flow behavior within the microchannel. Sousa et al.
(86) analytically studied the flow of a standard viscoelastic solution by combining the pressure gradient force with an externally applied electric force. It was found that, at a near wall skimming layer and the outer layer away from the wall, macromolecules migrating away from surface walls in viscoelastic fluids are observed. In the study, the Phan-Thien Tanner (PTT) constitutive model is utilized to characterize the viscoelastic properties of the solution. The approach is found to be valid when the EDL is much thinner than the skimming layer under an enhanced flow rate. Zhao and Yang
(87) solved the PB equation and Carreau model for the characterization of the EOF mechanism and non-Newtonian fluid respectively through the FEM. The numerical results depict that, different from the EOF of Newtonian fluids, non-Newtonian fluids led to an increase of electro-osmotic mobility for shear thinning fluids but the opposite for shear thickening fluids.Like other fluid transport driving forces, EOF within unique geometrical layouts also portrays unique transport phenomena. Pimenta and Alves
(88) utilized the FVM to perform numerical simulations of the EOF of viscoelastic fluids considering the PB equation and the Oldroyd-B model, in a cross-slot and flow-focusing microdevices. It was found that electroelastic instabilities are formed due to the development of large stresses inside the EDL with streamlined curvature at geometry corners. Bezerra et al.
(89) used the FDM to numerically analyze the vortex formation and flow instability from an electro-osmotic non-Newtonian fluid flow in a microchannel with a nozzle geometry and parallel wall geometry setting. The PNP equation is utilized to characterize the charge motion in the EOF and the PTT model for non-Newtonian flow characterization. A constriction geometry is commonly utilized in blood flow adapted in LOC systems due to the change in blood flow behavior under narrow dimensions in a microchannel. Ji et al.
(90) recently studied the EOF of viscoelastic fluid in a constriction microchannel connected by two relatively big reservoirs on both ends (as seen in Figure 5) filled with the polyacrylamide polymer solution, a viscoelastic fluid, and an incompressible monovalent binary electrolyte solution KCl.
In studying the EOF of viscoelastic fluids, the Oldroyd-B model is often utilized to characterize the polymeric stress tensor and the deformation rate of the fluid. The Oldroyd-B model is expressed as follows:
𝜏=𝜂p𝜆(𝐜−𝐈)�=�p�(�−�)
(19)where η
p, λ, c, and I represent the polymer dynamic viscosity, polymer relaxation time, symmetric conformation tensor of the polymer molecules, and the identity matrix, respectively.A log-conformation tensor approach is taken to prevent convergence difficulty induced by the viscoelastic properties. The conformation tensor (c) in the polymeric stress tensor term is redefined by a new tensor (Θ) based on the natural logarithm of the c. The new tensor is defined as
Θ=ln(𝐜)=𝐑ln(𝚲)𝐑Θ=ln(�)=�ln(�)�
(20)in which Λ is the diagonal matrix and R is the orthogonal matrix.Under the new conformation tensor, the induced EOF of a viscoelastic fluid is governed by the continuity and N–S equations adapting the Oldroyd-B model, which is expressed as
(21)where Ω and B represent the anti-symmetric matrix and the symmetric traceless matrix of the decomposition of the velocity gradient tensor ∇u, respectively. The conformation tensor can be recovered by c = exp(Θ). The PB model and Laplace equation are utilized to characterize the charged channel wall induced potential and the externally applied potential.The governing equations are numerically solved through the FVM by RheoTool,
(42) an open-source viscoelastic EOF solver on the OpenFOAM platform. A SIMPLEC (Semi-Implicit Method for Pressure Linked Equations-Consistent) algorithm was applied to solve the velocity-pressure coupling. The pressure field and velocity field were computed by the PCG (Preconditioned Conjugate Gradient) solver and the PBiCG (Preconditioned Biconjugate Gradient) solver, respectively.Ranging magnitudes of an applied electric field or fluid concentration induce both different streamlines and velocity magnitudes at various locations and times of the microchannel. In the study performed by Ji et al.,
(90) notable fluctuation of streamlines and vortex formation is formed at the upper stream entrance of the constriction as shown in Figure 6(a) and (b), respectively, due to the increase of electrokinetic effect, which is seen as a result of the increase in polymeric stress (τ
xx).
(90) The contraction geometry enhances the EOF velocity within the constriction channel under high E
app condition (600 V/cm). Such phenomena can be attributed to the dependence of electro-osmotic viscoelastic fluid flow on the system wall surface and bulk fluid properties.
As elastic normal stress exceeds the local shear stress, flow instability and vortex formation occur. The induced elastic stress under EOF not only enhances the instability of the flow but often generates an irregular secondary flow leading to strong disturbance.
(92) It is also vital to consider the effect of the constriction layout of microchannels on the alteration of the field strength within the system. The contraction geometry enhances a larger electric field strength compared with other locations of the channel outside the constriction region, resulting in a higher velocity gradient and stronger extension on the polymer within the viscoelastic solution. Following the high shear flow condition, a higher magnitude of stretch for polymer molecules in viscoelastic fluids exhibits larger elastic stresses and enhancement of vortex formation at the region.
(93)As shown in Figure 6(c), significant elastic normal stress occurs at the inlet of the constriction microchannel. Such occurrence of a polymeric flow can be attributed to the dominating elongational flow, giving rise to high deformation of the polymers within the viscoelastic fluid flow, resulting in higher elastic stress from the polymers. Such phenomena at the entrance result in the difference in velocity streamline as circled in Figure 6(d) compared to that of the Newtonian fluid at the constriction entrance in Figure 6(e).
(90) The difference between the Newtonian and polymer solution at the exit, as circled in Figure 6(d) and (e), can be attributed to the extrudate swell effect of polymers
(94) within the viscoelastic fluid flow. The extrudate swell effect illustrates that, as polymers emerge from the constriction exit, they tend to contract in the flow direction and grow in the normal direction, resulting in an extrudate diameter greater than the channel size. The deformation of polymers within the polymeric flow at both the entrance and exit of the contraction channel facilitates the change in shear stress conditions of the flow, leading to the alteration in streamlines of flows for each region.
4.3. EOF Applications in LOC Systems
4.3.1. Mixing in LOC Systems
Rather than relying on the micromixing controlled by molecular diffusion under low Reynolds number conditions, active mixers actively leverage convective instability and vortex formation induced by electro-osmotic flows from alternating current (AC) or direct current (DC) electric fields. Such adaptation is recognized as significant breakthroughs for promotion of fluid mixing in chemical and biological applications such as drug delivery, medical diagnostics, chemical synthesis, and so on.
(95)Many researchers proposed novel designs of electro-osmosis micromixers coupled with numerical simulations in conjunction with experimental findings to increase their understanding of the role of flow instability and vortex formation in the mixing process under electrokinetic phenomena. Matsubara and Narumi
(96) numerically modeled the mixing process in a microchannel with four electrodes on each side of the microchannel wall, which generated a disruption through unstable electro-osmotic vortices. It was found that particle mixing was sensitive to both the convection effect induced by the main and secondary vortex within the micromixer and the change in oscillation frequency caused by the supplied AC voltage when the Reynolds number was varied. Qaderi et al.
(97) adapted the PNP equation to numerically study the effect of the geometry and zeta potential configuration of the microchannel on the mixing process with a combined electro-osmotic pressure driven flow. It was reported that the application of heterogeneous zeta potential configuration enhances the mixing efficiency by around 23% while the height of the hurdles increases the mixing efficiency at most 48.1%. Cho et al.
(98) utilized the PB model and Laplace equation to numerically simulate the electro-osmotic non-Newtonian fluid mixing process within a wavy and block layout of microchannel walls. The Power Law model is adapted to describe the fluid rheological characteristic. It was found that shear-thinning fluids possess a higher volumetric flow rate, which could result in poorer mixing efficiency compared to that of Newtonian fluids. Numerous studies have revealed that flow instability and vortex generation, in particular secondary vortices produced by barriers or greater magnitudes of heterogeneous zeta potential distribution, enhance mixing by increasing bulk flow velocity and reducing flow distance.To better understand the mechanism of disturbance formed in the system due to externally applied forces, known as electrokinetic instability, literature often utilize the Rayleigh (Ra) number,
(22)where γ is the conductivity ratio of the two streams and can be written as
𝛾=𝜎el,H𝜎el,L�=�el,H�el,L. The Ra number characterizes the ratio between electroviscous and electro-osmotic flow. A high Ra
v value often results in good mixing. It is evident that fluid properties such as the conductivity (σ) of the two streams play a key role in the formation of disturbances to enhance mixing in microsystems. At the same time, electrokinetic parameters like the zeta potential (ζ) in the Ra number is critical in the characterization of electro-osmotic velocity and a slip boundary condition at the microchannel wall.To understand the mixing result along the channel, the concentration field can be defined and simulated under the assumption of steady state conditions and constant diffusion coefficient for each of the working fluid within the system through the convection–diffusion equation as below:
∂𝑐𝒊∂𝑡+∇⇀(𝑐𝑖𝑢⇀−𝐷𝑖∇⇀𝑐𝒊)=0∂��∂�+∇⇀(���⇀−��∇⇀��)=0
(23)where c
i is the species concentration of species i and D
i is the diffusion coefficient of the corresponding species.The standard deviation of concentration (σ
sd) can be adapted to evaluate the mixing quality of the system.
(97) The standard deviation for concentration at a specific portion of the channel may be calculated using the equation below:
m are the non-dimensional concentration profile and the mean concentration at the portion, respectively. C* is the non-dimensional concentration and can be calculated as
𝐶∗=𝐶𝐶ref�*=��ref, where C
ref is the reference concentration defined as the bulk solution concentration. The mean concentration profile can be calculated as
𝐶m=∫10(𝐶∗(𝑦∗)d𝑦∗∫10d𝑦∗�m=∫01(�*(�*)d�*∫01d�*. With the standard deviation of concentration, the mixing efficiency
sd,0 is the standard derivation of the case of no mixing. The value of the mixing efficiency is typically utilized in conjunction with the simulated flow field and concentration field to explore the effect of geometrical and electrokinetic parameters on the optimization of the mixing results.
Viscoelastic fluids such as blood flow in LOC systems are an essential topic to proceed with diagnostic analysis and research through microdevices in the biomedical and pharmaceutical industries. The complex blood flow behavior is tightly controlled by the viscoelastic characteristics of blood such as the dynamic viscosity and the elastic property of RBCs under various shear rate conditions. Furthermore, the flow behaviors under varied driving forces promote an array of microfluidic transport phenomena that are critical to the management of blood flow and other adapted viscoelastic fluids in LOC systems. This review addressed the blood flow phenomena, the complicated interplay between shear rate and blood flow behaviors, and their numerical modeling under LOC systems through the lens of the viscoelasticity characteristic. Furthermore, a theoretical understanding of capillary forces and externally applied electric forces leads to an in-depth investigation of the relationship between blood flow patterns and the key parameters of the two driving forces, the latter of which is introduced through the lens of viscoelastic fluids, coupling numerical modeling to improve the knowledge of blood flow manipulation in LOC systems. The flow disturbances triggered by the EOF of viscoelastic fluids and their impact on blood flow patterns have been deeply investigated due to their important role and applications in LOC devices. Continuous advancements of various numerical modeling methods with experimental findings through more efficient and less computationally heavy methods have served as an encouraging sign of establishing more accurate illustrations of the mechanisms for multiphase blood and other viscoelastic fluid flow transport phenomena driven by various forces. Such progress is fundamental for the manipulation of unique transport phenomena, such as the generated disturbances, to optimize functionalities offered by microdevices in LOC systems.
The following section will provide further insights into the employment of studied blood transport phenomena to improve the functionality of micro devices adapting LOC technology. A discussion of the novel roles that external driving forces play in microfluidic flow behaviors is also provided. Limitations in the computational modeling of blood flow and electrokinetic phenomena in LOC systems will also be emphasized, which may provide valuable insights for future research endeavors. These discussions aim to provide guidance and opportunities for new paths in the ongoing development of LOC devices that adapt blood flow.
5.2. Future Directions
5.2.1. Electro-osmosis Mixing in LOC Systems
Despite substantial research, mixing results through flow instability and vortex formation phenomena induced by electro-osmotic mixing still deviate from the effective mixing results offered by chaotic mixing results such as those seen in turbulent flows. However, recent discoveries of a mixing phenomenon that is generally observed under turbulent flows are found within electro-osmosis micromixers under low Reynolds number conditions. Zhao
(99) experimentally discovered a rapid mixing process in an AC applied micromixer, where the power spectrum of concentration under an applied voltage of 20 V
p-p induces a −5/3 slope within a frequency range. This value of the slope is considered as the O–C spectrum in macroflows, which is often visible under relatively high Re conditions, such as the Taylor microscale Reynolds number Re > 500 in turbulent flows.
(100) However, the Re value in the studied system is less than 1 at the specific location and applied voltage. A secondary flow is also suggested to occur close to microchannel walls, being attributed to the increase of convective instability within the system.Despite the experimental phenomenon proposed by Zhao et al.,
(99) the range of effects induced by vital parameters of an EOF mixing system on the enhanced mixing results and mechanisms of disturbance generated by the turbulent-like flow instability is not further characterized. Such a gap in knowledge may hinder the adaptability and commercialization of the discovery of micromixers. One of the parameters for further evaluation is the conductivity gradient of the fluid flow. A relatively strong conductivity gradient (5000:1) was adopted in the system due to the conductive properties of the two fluids. The high conductivity gradients may contribute to the relatively large Rayleigh number and differences in EDL layer thickness, resulting in an unusual disturbance in laminar flow conditions and enhanced mixing results. However, high conductivity gradients are not always achievable by the working fluids due to diverse fluid properties. The reliance on turbulent-like phenomena and rapid mixing results in a large conductivity gradient should be established to prevent the limited application of fluids for the mixing system. In addition, the proposed system utilizes distinct zeta potential distributions at the top and bottom walls due to their difference in material choices, which may be attributed to the flow instability phenomena. Further studies should be made on varying zeta potential magnitude and distribution to evaluate their effect on the slip boundary conditions of the flow and the large shear rate condition close to the channel wall of EOF. Such a study can potentially offer an optimized condition in zeta potential magnitude through material choices and geometrical layout of the zeta potential for better mixing results and manipulation of mixing fluid dynamics. The two vital parameters mentioned above can be varied with the aid of numerical simulation to understand the effect of parameters on the interaction between electro-osmotic forces and electroviscous forces. At the same time, the relationship of developed streamlines of the simulated velocity and concentration field, following their relationship with the mixing results, under the impact of these key parameters can foster more insight into the range of impact that the two parameters have on the proposed phenomena and the microfluidic dynamic principles of disturbances.
In addition, many of the current investigations of electrokinetic mixers commonly emphasize the fluid dynamics of mixing for Newtonian fluids, while the utilization of biofluids, primarily viscoelastic fluids such as blood, and their distinctive response under shear forces in these novel mixing processes of LOC systems are significantly less studied. To develop more compatible microdevice designs and efficient mixing outcomes for the biomedical industry, it is necessary to fill the knowledge gaps in the literature on electro-osmotic mixing for biofluids, where properties of elasticity, dynamic viscosity, and intricate relationship with shear flow from the fluid are further considered.
5.2.2. Electro-osmosis Separation in LOC Systems
Particle separation in LOC devices, particularly in biological research and diagnostics, is another area where disturbances may play a significant role in optimization.
(101) Plasma analysis in LOC systems under precise control of blood flow phenomena and blood/plasma separation procedures can detect vital information about infectious diseases from particular antibodies and foreign nucleic acids for medical treatments, diagnostics, and research,
(102) offering more efficient results and simple operating procedures compared to that of the traditional centrifugation method for blood and plasma separation. However, the adaptability of LOC devices for blood and plasma separation is often hindered by microchannel clogging, where flow velocity and plasma yield from LOC devices is reduced due to occasional RBC migration and aggregation at the filtration entrance of microdevices.
(103)It is important to note that the EOF induces flow instability close to microchannel walls, which may provide further solutions to clogging for the separation process of the LOC systems. Mohammadi et al.
(104) offered an anti-clogging effect of RBCs at the blood and plasma separating device filtration entry, adjacent to the surface wall, through RBC disaggregation under high shear rate conditions generated by a forward and reverse EOF direction.
Further theoretical and numerical research can be conducted to characterize the effect of high shear rate conditions near microchannel walls toward the detachment of binding blood cells on surfaces and the reversibility of aggregation. Through numerical modeling with varying electrokinetic parameters to induce different degrees of disturbances or shear conditions at channel walls, it may be possible to optimize and better understand the process of disrupting the forces that bind cells to surface walls and aggregated cells at filtration pores. RBCs that migrate close to microchannel walls are often attracted by the adhesion force between the RBC and the solid surface originating from the van der Waals forces. Following RBC migration and attachment by adhesive forces adjacent to the microchannel walls as shown in Figure 7, the increase in viscosity at the region causes a lower shear condition and encourages RBC aggregation (cell–cell interaction), which clogs filtering pores or microchannels and reduces flow velocity at filtration region. Both the impact that shear forces and disturbances may induce on cell binding forces with surface walls and other cells leading to aggregation may suggest further characterization. Kinetic parameters such as activation energy and the rate-determining step for cell binding composition attachment and detachment should be considered for modeling the dynamics of RBCs and blood flows under external forces in LOC separation devices.
5.2.3. Relationship between External Forces and Microfluidic Systems
In blood flow, a thicker CFL suggests a lower blood viscosity, suggesting a complex relationship between shear stress and shear rate, affecting the blood viscosity and blood flow. Despite some experimental and numerical studies on electro-osmotic non-Newtonian fluid flow, limited literature has performed an in-depth investigation of the role that applied electric forces and other external forces could play in the process of CFL formation. Additional studies on how shear rates from external forces affect CFL formation and microfluidic flow dynamics can shed light on the mechanism of the contribution induced by external driving forces to the development of a separate phase of layer, similar to CFL, close to the microchannel walls and distinct from the surrounding fluid within the system, then influencing microfluidic flow dynamics.One of the mechanisms of phenomena to be explored is the formation of the Exclusion Zone (EZ) region following a “Self-Induced Flow” (SIF) phenomenon discovered by Li and Pollack,
(106) as shown in Figure 8(a) and (b), respectively. A spontaneous sustained axial flow is observed when hydrophilic materials are immersed in water, resulting in the buildup of a negative layer of charges, defined as the EZ, after water molecules absorb infrared radiation (IR) energy and break down into H and OH
+–.
Despite the finding of such a phenomenon, the specific mechanism and role of IR energy have yet to be defined for the process of EZ development. To further develop an understanding of the role of IR energy in such phenomena, a feasible study may be seen through the lens of the relationships between external forces and microfluidic flow. In the phenomena, the increase of SIF velocity under a rise of IR radiation resonant characteristics is shown in the participation of the external electric field near the microchannel walls under electro-osmotic viscoelastic fluid flow systems. The buildup of negative charges at the hydrophilic surfaces in EZ is analogous to the mechanism of electrical double layer formation. Indeed, research has initiated the exploration of the core mechanisms for EZ formation through the lens of the electrokinetic phenomena.
(107) Such a similarity of the role of IR energy and the transport phenomena of SIF with electrokinetic phenomena paves the way for the definition of the unknown SIF phenomena and EZ formation. Furthermore, Li and Pollack
(106) suggest whether CFL formation might contribute to a SIF of blood using solely IR radiation, a commonly available source of energy in nature, as an external driving force. The proposition may be proven feasible with the presence of the CFL region next to the negatively charged hydrophilic endothelial glycocalyx layer, coating the luminal side of blood vessels.
(108) Further research can dive into the resonating characteristics between the formation of the CFL region next to the hydrophilic endothelial glycocalyx layer and that of the EZ formation close to hydrophilic microchannel walls. Indeed, an increase in IR energy is known to rapidly accelerate EZ formation and SIF velocity, depicting similarity to the increase in the magnitude of electric field forces and greater shear rates at microchannel walls affecting CFL formation and EOF velocity. Such correlation depicts a future direction in whether SIF blood flow can be observed and characterized theoretically further through the lens of the relationship between blood flow and shear forces exhibited by external energy.
The intricate link between the CFL and external forces, more specifically the externally applied electric field, can receive further attention to provide a more complete framework for the mechanisms between IR radiation and EZ formation. Such characterization may also contribute to a greater comprehension of the role IR can play in CFL formation next to the endothelial glycocalyx layer as well as its role as a driving force to propel blood flow, similar to the SIF, but without the commonly assumed pressure force from heart contraction as a source of driving force.
5.3. Challenges
Although there have been significant improvements in blood flow modeling under LOC systems over the past decade, there are still notable constraints that may require special attention for numerical simulation applications to benefit the adaptability of the designs and functionalities of LOC devices. Several points that require special attention are mentioned below:
1.
The majority of CFD models operate under the relationship between the viscoelasticity of blood and the shear rate conditions of flow. The relative effect exhibited by the presence of highly populated RBCs in whole blood and their forces amongst the cells themselves under complex flows often remains unclearly defined. Furthermore, the full range of cell populations in whole blood requires a much more computational load for numerical modeling. Therefore, a vital goal for future research is to evaluate a reduced modeling method where the impact of cell–cell interaction on the viscoelastic property of blood is considered.
2.
Current computational methods on hemodynamics rely on continuum models based upon non-Newtonian rheology at the macroscale rather than at molecular and cellular levels. Careful considerations should be made for the development of a constructive framework for the physical and temporal scales of micro/nanoscale systems to evaluate the intricate relationship between fluid driving forces, dynamic viscosity, and elasticity.
3.
Viscoelastic fluids under the impact of externally applied electric forces often deviate from the assumptions of no-slip boundary conditions due to the unique flow conditions induced by externally applied forces. Furthermore, the mechanism of vortex formation and viscoelastic flow instability at laminar flow conditions should be better defined through the lens of the microfluidic flow phenomenon to optimize the prediction of viscoelastic flow across different geometrical layouts. Mathematical models and numerical methods are needed to better predict such disturbance caused by external forces and the viscoelasticity of fluids at such a small scale.
4.
Under practical situations, zeta potential distribution at channel walls frequently deviates from the common assumption of a constant distribution because of manufacturing faults or inherent surface charges prior to the introduction of electrokinetic influence. These discrepancies frequently lead to inconsistent surface potential distribution, such as excess positive ions at relatively more negatively charged walls. Accordingly, unpredicted vortex formation and flow instability may occur. Therefore, careful consideration should be given to these discrepancies and how they could trigger the transport process and unexpected results of a microdevice.
Zhe Chen – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; Email: zaccooky@sjtu.edu.cn
Bo Ouyang – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; Email: bouy93@sjtu.edu.cn
Zheng-Hong Luo – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; https://orcid.org/0000-0001-9011-6020; Email: luozh@sjtu.edu.cn
Authors
Bin-Jie Lai – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; https://orcid.org/0009-0002-8133-5381
Li-Tao Zhu – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China; https://orcid.org/0000-0001-6514-8864
NotesThe authors declare no competing financial interest.
This work was supported by the National Natural Science Foundation of China (No. 22238005) and the Postdoctoral Research Foundation of China (No. GZC20231576).
the field of technological and scientific study that investigates fluid flow in channels with dimensions between 1 and 1000 μm
Lab-on-a-Chip Technology
the field of research and technological development aimed at integrating the micro/nanofluidic characteristics to conduct laboratory processes on handheld devices
Computational Fluid Dynamics (CFD)
the method utilizing computational abilities to predict physical fluid flow behaviors mathematically through solving the governing equations of corresponding fluid flows
Shear Rate
the rate of change in velocity where one layer of fluid moves past the adjacent layer
Viscoelasticity
the property holding both elasticity and viscosity characteristics relying on the magnitude of applied shear stress and time-dependent strain
Electro-osmosis
the flow of fluid under an applied electric field when charged solid surface is in contact with the bulk fluid
Vortex
the rotating motion of a fluid revolving an axis line
1Neethirajan, S.; Kobayashi, I.; Nakajima, M.; Wu, D.; Nandagopal, S.; Lin, F. Microfluidics for food, agriculture and biosystems industries. Lab Chip2011, 11 (9), 1574– 1586, DOI: 10.1039/c0lc00230eViewGoogle Scholar
2Whitesides, G. M. The origins and the future of microfluidics. Nature2006, 442 (7101), 368– 373, DOI: 10.1038/nature05058ViewGoogle Scholar
3Burklund, A.; Tadimety, A.; Nie, Y.; Hao, N.; Zhang, J. X. J. Chapter One – Advances in diagnostic microfluidics; Elsevier, 2020; DOI: DOI: 10.1016/bs.acc.2019.08.001 .ViewGoogle Scholar
4Abdulbari, H. A. Chapter 12 – Lab-on-a-chip for analysis of blood. In Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood; Denizli, A., Nguyen, T. A., Rajan, M., Alam, M. F., Rahman, K., Eds.; Elsevier, 2022; pp 265– 283.ViewGoogle Scholar
5Vladisavljević, G. T.; Khalid, N.; Neves, M. A.; Kuroiwa, T.; Nakajima, M.; Uemura, K.; Ichikawa, S.; Kobayashi, I. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews2013, 65 (11), 1626– 1663, DOI: 10.1016/j.addr.2013.07.017ViewGoogle Scholar
6Kersaudy-Kerhoas, M.; Dhariwal, R.; Desmulliez, M. P. Y.; Jouvet, L. Hydrodynamic blood plasma separation in microfluidic channels. Microfluid. Nanofluid.2010, 8 (1), 105– 114, DOI: 10.1007/s10404-009-0450-5ViewGoogle Scholar
7Popel, A. S.; Johnson, P. C. Microcirculation and Hemorheology. Annu. Rev. Fluid Mech.2005, 37 (1), 43– 69, DOI: 10.1146/annurev.fluid.37.042604.133933ViewGoogle Scholar
8Fedosov, D. A.; Peltomäki, M.; Gompper, G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter2014, 10 (24), 4258– 4267, DOI: 10.1039/C4SM00248BViewGoogle Scholar
9Chakraborty, S. Dynamics of capillary flow of blood into a microfluidic channel. Lab Chip2005, 5 (4), 421– 430, DOI: 10.1039/b414566fViewGoogle Scholar
10Tomaiuolo, G.; Guido, S. Start-up shape dynamics of red blood cells in microcapillary flow. Microvascular Research2011, 82 (1), 35– 41, DOI: 10.1016/j.mvr.2011.03.004ViewGoogle Scholar
11Sherwood, J. M.; Dusting, J.; Kaliviotis, E.; Balabani, S. The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel. Biomicrofluidics2012, 6 (2), 24119, DOI: 10.1063/1.4717755ViewGoogle Scholar
12Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Frontiers in Physiology2019, 10, 01329, DOI: 10.3389/fphys.2019.01329ViewGoogle Scholar
13Trejo-Soto, C.; Lázaro, G. R.; Pagonabarraga, I.; Hernández-Machado, A. Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology. Membranes2022, 12 (2), 217, DOI: 10.3390/membranes12020217ViewGoogle Scholar
14Wagner, C.; Steffen, P.; Svetina, S. Aggregation of red blood cells: From rouleaux to clot formation. Comptes Rendus Physique2013, 14 (6), 459– 469, DOI: 10.1016/j.crhy.2013.04.004ViewGoogle Scholar
15Kim, H.; Zhbanov, A.; Yang, S. Microfluidic Systems for Blood and Blood Cell Characterization. Biosensors2023, 13 (1), 13, DOI: 10.3390/bios13010013ViewGoogle Scholar
16Fåhræus, R.; Lindqvist, T. THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES. American Journal of Physiology-Legacy Content1931, 96 (3), 562– 568, DOI: 10.1152/ajplegacy.1931.96.3.562ViewGoogle Scholar
17Ascolese, M.; Farina, A.; Fasano, A. The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart?. J. Biol. Phys.2019, 45 (4), 379– 394, DOI: 10.1007/s10867-019-09534-4ViewGoogle Scholar
18Bento, D.; Fernandes, C. S.; Miranda, J. M.; Lima, R. In vitro blood flow visualizations and cell-free layer (CFL) measurements in a microchannel network. Experimental Thermal and Fluid Science2019, 109, 109847, DOI: 10.1016/j.expthermflusci.2019.109847ViewGoogle Scholar
19Namgung, B.; Ong, P. K.; Wong, Y. H.; Lim, D.; Chun, K. J.; Kim, S. A comparative study of histogram-based thresholding methods for the determination of cell-free layer width in small blood vessels. Physiological Measurement2010, 31 (9), N61, DOI: 10.1088/0967-3334/31/9/N01ViewGoogle Scholar
20Hymel, S. J.; Lan, H.; Fujioka, H.; Khismatullin, D. B. Cell trapping in Y-junction microchannels: A numerical study of the bifurcation angle effect in inertial microfluidics. Phys. Fluids (1994)2019, 31 (8), 082003, DOI: 10.1063/1.5113516ViewGoogle Scholar
21Li, X.; Popel, A. S.; Karniadakis, G. E. Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys. Biol.2012, 9 (2), 026010, DOI: 10.1088/1478-3975/9/2/026010ViewGoogle Scholar
22Yin, X.; Thomas, T.; Zhang, J. Multiple red blood cell flows through microvascular bifurcations: Cell free layer, cell trajectory, and hematocrit separation. Microvascular Research2013, 89, 47– 56, DOI: 10.1016/j.mvr.2013.05.002ViewGoogle Scholar
23Shibeshi, S. S.; Collins, W. E. The Rheology of Blood Flow in a Branched Arterial System. Appl. Rheol2005, 15 (6), 398– 405, DOI: 10.1515/arh-2005-0020ViewGoogle Scholar
24Sequeira, A.; Janela, J. An Overview of Some Mathematical Models of Blood Rheology. In A Portrait of State-of-the-Art Research at the Technical University of Lisbon; Pereira, M. S., Ed.; Springer Netherlands: Dordrecht, 2007; pp 65– 87.ViewGoogle Scholar
25Walburn, F. J.; Schneck, D. J. A constitutive equation for whole human blood. Biorheology1976, 13, 201– 210, DOI: 10.3233/BIR-1976-13307ViewGoogle Scholar
26Quemada, D. A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood. Biorheology1981, 18, 501– 516, DOI: 10.3233/BIR-1981-183-615ViewGoogle Scholar
27Varchanis, S.; Dimakopoulos, Y.; Wagner, C.; Tsamopoulos, J. How viscoelastic is human blood plasma?. Soft Matter2018, 14 (21), 4238– 4251, DOI: 10.1039/C8SM00061AViewGoogle Scholar
28Apostolidis, A. J.; Moyer, A. P.; Beris, A. N. Non-Newtonian effects in simulations of coronary arterial blood flow. J. Non-Newtonian Fluid Mech.2016, 233, 155– 165, DOI: 10.1016/j.jnnfm.2016.03.008ViewGoogle Scholar
29Luo, X. Y.; Kuang, Z. B. A study on the constitutive equation of blood. J. Biomech.1992, 25 (8), 929– 934, DOI: 10.1016/0021-9290(92)90233-QViewGoogle Scholar
30Oldroyd, J. G.; Wilson, A. H. On the formulation of rheological equations of state. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences1950, 200 (1063), 523– 541, DOI: 10.1098/rspa.1950.0035ViewGoogle Scholar
31Prado, G.; Farutin, A.; Misbah, C.; Bureau, L. Viscoelastic transient of confined red blood cells. Biophys J.2015, 108 (9), 2126– 2136, DOI: 10.1016/j.bpj.2015.03.046ViewGoogle Scholar
32Huang, C. R.; Pan, W. D.; Chen, H. Q.; Copley, A. L. Thixotropic properties of whole blood from healthy human subjects. Biorheology1987, 24 (6), 795– 801, DOI: 10.3233/BIR-1987-24630ViewGoogle Scholar
33Anand, M.; Kwack, J.; Masud, A. A new generalized Oldroyd-B model for blood flow in complex geometries. International Journal of Engineering Science2013, 72, 78– 88, DOI: 10.1016/j.ijengsci.2013.06.009ViewGoogle Scholar
34Horner, J. S.; Armstrong, M. J.; Wagner, N. J.; Beris, A. N. Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear. J. Rheol.2018, 62 (2), 577– 591, DOI: 10.1122/1.5017623ViewGoogle Scholar
35Horner, J. S.; Armstrong, M. J.; Wagner, N. J.; Beris, A. N. Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof. J. Rheol.2019, 63 (5), 799– 813, DOI: 10.1122/1.5108737ViewGoogle Scholar
36Armstrong, M.; Tussing, J. A methodology for adding thixotropy to Oldroyd-8 family of viscoelastic models for characterization of human blood. Phys. Fluids2020, 32 (9), 094111, DOI: 10.1063/5.0022501ViewGoogle Scholar
37Crank, J.; Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society1947, 43 (1), 50– 67, DOI: 10.1017/S0305004100023197ViewGoogle Scholar
38Clough, R. W. Original formulation of the finite element method. Finite Elements in Analysis and Design1990, 7 (2), 89– 101, DOI: 10.1016/0168-874X(90)90001-UViewGoogle Scholar
39Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X. S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J.Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering2006, 195 (13), 1722– 1749, DOI: 10.1016/j.cma.2005.05.049ViewGoogle Scholar
40Lopes, D.; Agujetas, R.; Puga, H.; Teixeira, J.; Lima, R.; Alejo, J. P.; Ferrera, C. Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. International Journal of Mechanical Sciences2021, 207, 106650, DOI: 10.1016/j.ijmecsci.2021.106650ViewGoogle Scholar
41Favero, J. L.; Secchi, A. R.; Cardozo, N. S. M.; Jasak, H. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J. Non-Newtonian Fluid Mech.2010, 165 (23), 1625– 1636, DOI: 10.1016/j.jnnfm.2010.08.010ViewGoogle Scholar
42Pimenta, F.; Alves, M. A. Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. J. Non-Newtonian Fluid Mech.2017, 239, 85– 104, DOI: 10.1016/j.jnnfm.2016.12.002ViewGoogle Scholar
43Chee, C. Y.; Lee, H. P.; Lu, C. Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte. Phys. Lett. A2008, 372 (9), 1357– 1362, DOI: 10.1016/j.physleta.2007.09.067ViewGoogle Scholar
44Xu, D.; Kaliviotis, E.; Munjiza, A.; Avital, E.; Ji, C.; Williams, J. Large scale simulation of red blood cell aggregation in shear flows. J. Biomech.2013, 46 (11), 1810– 1817, DOI: 10.1016/j.jbiomech.2013.05.010ViewGoogle Scholar
45Johnson, K. L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proceedings of the royal society of London. A. mathematical and physical sciences1971, 324 (1558), 301– 313, DOI: 10.1098/rspa.1971.0141ViewGoogle Scholar
46Shi, L.; Pan, T.-W.; Glowinski, R. Deformation of a single red blood cell in bounded Poiseuille flows. Phys. Rev. E2012, 85 (1), 016307, DOI: 10.1103/PhysRevE.85.016307ViewGoogle Scholar
47Yoon, D.; You, D. Continuum modeling of deformation and aggregation of red blood cells. J. Biomech.2016, 49 (11), 2267– 2279, DOI: 10.1016/j.jbiomech.2015.11.027ViewGoogle Scholar
48Mainardi, F.; Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. European Physical Journal Special Topics2011, 193 (1), 133– 160, DOI: 10.1140/epjst/e2011-01387-1ViewGoogle Scholar
49Gracka, M.; Lima, R.; Miranda, J. M.; Student, S.; Melka, B.; Ostrowski, Z. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Computer Methods and Programs in Biomedicine2022, 226, 107117, DOI: 10.1016/j.cmpb.2022.107117ViewGoogle Scholar
50Aryan, H.; Beigzadeh, B.; Siavashi, M. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation. Computer Methods and Programs in Biomedicine2022, 219, 106778, DOI: 10.1016/j.cmpb.2022.106778ViewGoogle Scholar
51Czaja, B.; Závodszky, G.; Azizi Tarksalooyeh, V.; Hoekstra, A. G. Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio. J. R Soc. Interface2018, 15 (146), 20180485, DOI: 10.1098/rsif.2018.0485ViewGoogle Scholar
52Rydquist, G.; Esmaily, M. A cell-resolved, Lagrangian solver for modeling red blood cell dynamics in macroscale flows. J. Comput. Phys.2022, 461, 111204, DOI: 10.1016/j.jcp.2022.111204ViewGoogle Scholar
53Dadvand, A.; Baghalnezhad, M.; Mirzaee, I.; Khoo, B. C.; Ghoreishi, S. An immersed boundary-lattice Boltzmann approach to study the dynamics of elastic membranes in viscous shear flows. Journal of Computational Science2014, 5 (5), 709– 718, DOI: 10.1016/j.jocs.2014.06.006ViewGoogle Scholar
54Krüger, T.; Holmes, D.; Coveney, P. V. Deformability-based red blood cell separation in deterministic lateral displacement devices─A simulation study. Biomicrofluidics2014, 8 (5), 054114, DOI: 10.1063/1.4897913ViewGoogle Scholar
55Takeishi, N.; Ito, H.; Kaneko, M.; Wada, S. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel. Micromachines2019, 10 (3), 199, DOI: 10.3390/mi10030199ViewGoogle Scholar
56Krüger, T.; Varnik, F.; Raabe, D. Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers & Mathematics with Applications2011, 61 (12), 3485– 3505, DOI: 10.1016/j.camwa.2010.03.057ViewGoogle Scholar
57Balachandran Nair, A. N.; Pirker, S.; Umundum, T.; Saeedipour, M. A reduced-order model for deformable particles with application in bio-microfluidics. Computational Particle Mechanics2020, 7 (3), 593– 601, DOI: 10.1007/s40571-019-00283-8ViewGoogle Scholar
58Balachandran Nair, A. N.; Pirker, S.; Saeedipour, M. Resolved CFD-DEM simulation of blood flow with a reduced-order RBC model. Computational Particle Mechanics2022, 9 (4), 759– 774, DOI: 10.1007/s40571-021-00441-xViewGoogle Scholar
60Piquet, A.; Roussel, O.; Hadjadj, A. A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows. Computers & Fluids2016, 136, 272– 284, DOI: 10.1016/j.compfluid.2016.06.001ViewGoogle Scholar
61Akerkouch, L.; Le, T. B. A Hybrid Continuum-Particle Approach for Fluid-Structure Interaction Simulation of Red Blood Cells in Fluid Flows. Fluids2021, 6 (4), 139, DOI: 10.3390/fluids6040139ViewGoogle Scholar
62Barker, A. T.; Cai, X.-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. J. Comput. Phys.2010, 229 (3), 642– 659, DOI: 10.1016/j.jcp.2009.10.001ViewGoogle Scholar
63Cetin, A.; Sahin, M. A monolithic fluid-structure interaction framework applied to red blood cells. International Journal for Numerical Methods in Biomedical Engineering2019, 35 (2), e3171 DOI: 10.1002/cnm.3171ViewGoogle Scholar
64Freund, J. B. Numerical Simulation of Flowing Blood Cells. Annu. Rev. Fluid Mech.2014, 46 (1), 67– 95, DOI: 10.1146/annurev-fluid-010313-141349ViewGoogle Scholar
65Ye, T.; Phan-Thien, N.; Lim, C. T. Particle-based simulations of red blood cells─A review. J. Biomech.2016, 49 (11), 2255– 2266, DOI: 10.1016/j.jbiomech.2015.11.050ViewGoogle Scholar
66Arabghahestani, M.; Poozesh, S.; Akafuah, N. K. Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review. Applied Sciences2019, 9 (19), 4041, DOI: 10.3390/app9194041ViewGoogle Scholar
67Rathnayaka, C. M.; From, C. S.; Geekiyanage, N. M.; Gu, Y. T.; Nguyen, N. T.; Sauret, E. Particle-Based Numerical Modelling of Liquid Marbles: Recent Advances and Future Perspectives. Archives of Computational Methods in Engineering2022, 29 (5), 3021– 3039, DOI: 10.1007/s11831-021-09683-7ViewGoogle Scholar
68Li, X.; Vlahovska, P. M.; Karniadakis, G. E. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter2013, 9 (1), 28– 37, DOI: 10.1039/C2SM26891DViewGoogle Scholar
69Beris, A. N.; Horner, J. S.; Jariwala, S.; Armstrong, M. J.; Wagner, N. J. Recent advances in blood rheology: a review. Soft Matter2021, 17 (47), 10591– 10613, DOI: 10.1039/D1SM01212FViewGoogle Scholar
70Arciero, J.; Causin, P.; Malgaroli, F. Mathematical methods for modeling the microcirculation. AIMS Biophysics2017, 4 (3), 362– 399, DOI: 10.3934/biophy.2017.3.362ViewGoogle Scholar
71Maria, M. S.; Chandra, T. S.; Sen, A. K. Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices. Microfluid. Nanofluid.2017, 21 (4), 72, DOI: 10.1007/s10404-017-1907-6ViewGoogle Scholar
72Huhtamäki, T.; Tian, X.; Korhonen, J. T.; Ras, R. H. A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc.2018, 13 (7), 1521– 1538, DOI: 10.1038/s41596-018-0003-zViewGoogle Scholar
73Young, T., III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London1805, 95, 65– 87, DOI: 10.1098/rstl.1805.0005ViewGoogle Scholar
74Kim, Y. C.; Kim, S.-H.; Kim, D.; Park, S.-J.; Park, J.-K. Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane). Sens. Actuators, B2010, 145 (2), 861– 868, DOI: 10.1016/j.snb.2010.01.017ViewGoogle Scholar
75Washburn, E. W. The Dynamics of Capillary Flow. Physical Review1921, 17 (3), 273– 283, DOI: 10.1103/PhysRev.17.273ViewGoogle Scholar
76Cito, S.; Ahn, Y. C.; Pallares, J.; Duarte, R. M.; Chen, Z.; Madou, M.; Katakis, I. Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography. Microfluid Nanofluidics2012, 13 (2), 227– 237, DOI: 10.1007/s10404-012-0950-6ViewGoogle Scholar
77Berthier, E.; Dostie, A. M.; Lee, U. N.; Berthier, J.; Theberge, A. B. Open Microfluidic Capillary Systems. Anal Chem.2019, 91 (14), 8739– 8750, DOI: 10.1021/acs.analchem.9b01429ViewGoogle Scholar
78Berthier, J.; Brakke, K. A.; Furlani, E. P.; Karampelas, I. H.; Poher, V.; Gosselin, D.; Cubizolles, M.; Pouteau, P. Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sens. Actuators, B2015, 206, 258– 267, DOI: 10.1016/j.snb.2014.09.040ViewGoogle Scholar
79Hirt, C. W.; Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.1981, 39 (1), 201– 225, DOI: 10.1016/0021-9991(81)90145-5ViewGoogle Scholar
80Chen, J.-L.; Shih, W.-H.; Hsieh, W.-H. AC electro-osmotic micromixer using a face-to-face, asymmetric pair of planar electrodes. Sens. Actuators, B2013, 188, 11– 21, DOI: 10.1016/j.snb.2013.07.012ViewGoogle Scholar
81Zhao, C.; Yang, C. Electrokinetics of non-Newtonian fluids: A review. Advances in Colloid and Interface Science2013, 201-202, 94– 108, DOI: 10.1016/j.cis.2013.09.001ViewGoogle Scholar
82Oh, K. W. 6 – Lab-on-chip (LOC) devices and microfluidics for biomedical applications. In MEMS for Biomedical Applications; Bhansali, S., Vasudev, A., Eds.; Woodhead Publishing, 2012; pp 150– 171.ViewGoogle Scholar
83Bello, M. S.; De Besi, P.; Rezzonico, R.; Righetti, P. G.; Casiraghi, E. Electroosmosis of polymer solutions in fused silica capillaries. ELECTROPHORESIS1994, 15 (1), 623– 626, DOI: 10.1002/elps.1150150186ViewGoogle Scholar
84Park, H. M.; Lee, W. M. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Lab Chip2008, 8 (7), 1163– 1170, DOI: 10.1039/b800185eViewGoogle Scholar
85Afonso, A. M.; Alves, M. A.; Pinho, F. T. Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newtonian Fluid Mech.2009, 159 (1), 50– 63, DOI: 10.1016/j.jnnfm.2009.01.006ViewGoogle Scholar
86Sousa, J. J.; Afonso, A. M.; Pinho, F. T.; Alves, M. A. Effect of the skimming layer on electro-osmotic─Poiseuille flows of viscoelastic fluids. Microfluid. Nanofluid.2011, 10 (1), 107– 122, DOI: 10.1007/s10404-010-0651-yViewGoogle Scholar
87Zhao, C.; Yang, C. Electro-osmotic mobility of non-Newtonian fluids. Biomicrofluidics2011, 5 (1), 014110, DOI: 10.1063/1.3571278ViewGoogle Scholar
88Pimenta, F.; Alves, M. A. Electro-elastic instabilities in cross-shaped microchannels. J. Non-Newtonian Fluid Mech.2018, 259, 61– 77, DOI: 10.1016/j.jnnfm.2018.04.004ViewGoogle Scholar
89Bezerra, W. S.; Castelo, A.; Afonso, A. M. Numerical Study of Electro-Osmotic Fluid Flow and Vortex Formation. Micromachines (Basel)2019, 10 (12), 796, DOI: 10.3390/mi10120796ViewGoogle Scholar
90Ji, J.; Qian, S.; Liu, Z. Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel. Micromachines (Basel)2021, 12 (4), 417, DOI: 10.3390/mi12040417ViewGoogle Scholar
91Zhao, C.; Yang, C. Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Applied Mathematics and Computation2009, 211 (2), 502– 509, DOI: 10.1016/j.amc.2009.01.068ViewGoogle Scholar
92Gerum, R.; Mirzahossein, E.; Eroles, M.; Elsterer, J.; Mainka, A.; Bauer, A.; Sonntag, S.; Winterl, A.; Bartl, J.; Fischer, L. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. Elife2022, 11, e78823, DOI: 10.7554/eLife.78823ViewGoogle Scholar
93Sadek, S. H.; Pinho, F. T.; Alves, M. A. Electro-elastic flow instabilities of viscoelastic fluids in contraction/expansion micro-geometries. J. Non-Newtonian Fluid Mech.2020, 283, 104293, DOI: 10.1016/j.jnnfm.2020.104293ViewGoogle Scholar
94Spanjaards, M.; Peters, G.; Hulsen, M.; Anderson, P. Numerical Study of the Effect of Thixotropy on Extrudate Swell. Polymers2021, 13 (24), 4383, DOI: 10.3390/polym13244383ViewGoogle Scholar
95Rashidi, S.; Bafekr, H.; Valipour, M. S.; Esfahani, J. A. A review on the application, simulation, and experiment of the electrokinetic mixers. Chemical Engineering and Processing – Process Intensification2018, 126, 108– 122, DOI: 10.1016/j.cep.2018.02.021ViewGoogle Scholar
96Matsubara, K.; Narumi, T. Microfluidic mixing using unsteady electroosmotic vortices produced by a staggered array of electrodes. Chemical Engineering Journal2016, 288, 638– 647, DOI: 10.1016/j.cej.2015.12.013ViewGoogle Scholar
97Qaderi, A.; Jamaati, J.; Bahiraei, M. CFD simulation of combined electroosmotic-pressure driven micro-mixing in a microchannel equipped with triangular hurdle and zeta-potential heterogeneity. Chemical Engineering Science2019, 199, 463– 477, DOI: 10.1016/j.ces.2019.01.034ViewGoogle Scholar
98Cho, C.-C.; Chen, C.-L.; Chen, C. o.-K. Mixing enhancement in crisscross micromixer using aperiodic electrokinetic perturbing flows. International Journal of Heat and Mass Transfer2012, 55 (11), 2926– 2933, DOI: 10.1016/j.ijheatmasstransfer.2012.02.006ViewGoogle Scholar
99Zhao, W.; Yang, F.; Wang, K.; Bai, J.; Wang, G. Rapid mixing by turbulent-like electrokinetic microflow. Chemical Engineering Science2017, 165, 113– 121, DOI: 10.1016/j.ces.2017.02.027ViewGoogle Scholar
100Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G. Macroscopic effects of the spectral structure in turbulent flows. Nat. Phys.2010, 6 (6), 438– 441, DOI: 10.1038/nphys1674ViewGoogle Scholar
101Toner, M.; Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed Eng.2005, 7, 77– 103, DOI: 10.1146/annurev.bioeng.7.011205.135108ViewGoogle Scholar
102Maria, M. S.; Rakesh, P. E.; Chandra, T. S.; Sen, A. K. Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection. Biomicrofluidics2016, 10 (5), 054108, DOI: 10.1063/1.4962874ViewGoogle Scholar
103Tripathi, S.; Varun Kumar, Y. V. B.; Prabhakar, A.; Joshi, S. S.; Agrawal, A. Passive blood plasma separation at the microscale: a review of design principles and microdevices. Journal of Micromechanics and Microengineering2015, 25 (8), 083001, DOI: 10.1088/0960-1317/25/8/083001ViewGoogle Scholar
104Mohammadi, M.; Madadi, H.; Casals-Terré, J. Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow. Biomicrofluidics2015, 9 (5), 054106, DOI: 10.1063/1.4930865ViewGoogle Scholar
105Kang, D. H.; Kim, K.; Kim, Y. J. An anti-clogging method for improving the performance and lifespan of blood plasma separation devices in real-time and continuous microfluidic systems. Sci. Rep2018, 8 (1), 17015, DOI: 10.1038/s41598-018-35235-4ViewGoogle Scholar
106Li, Z.; Pollack, G. H. Surface-induced flow: A natural microscopic engine using infrared energy as fuel. Science Advances2020, 6 (19), eaba0941 DOI: 10.1126/sciadv.aba0941ViewGoogle Scholar
107Mercado-Uribe, H.; Guevara-Pantoja, F. J.; García-Muñoz, W.; García-Maldonado, J. S.; Méndez-Alcaraz, J. M.; Ruiz-Suárez, J. C. On the evolution of the exclusion zone produced by hydrophilic surfaces: A contracted description. J. Chem. Phys.2021, 154 (19), 194902, DOI: 10.1063/5.0043084ViewGoogle Scholar
108Yalcin, O.; Jani, V. P.; Johnson, P. C.; Cabrales, P. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle. Front Physiol2018, 9, 168, DOI: 10.3389/fphys.2018.00168ViewGoogle Scholar
Sous la direction de : Marc Jolin, directeur de recherche Benoit Bissonnette, codirecteur de recherche
Modélisation de l’écoulement du béton frais
Abstract
현재의 기후 비상 사태와 기후 변화에 관한 다양한 과학적 보고서를 고려할 때 인간이 만든 오염을 대폭 줄이는 것은 필수적이며 심지어 중요합니다. 최신 IPCC(기후변화에 관한 정부 간 패널) 보고서(2022)는 2030년까지 배출량을 절반으로 줄여야 함을 나타내며, 지구 보존을 위해 즉각적인 조치를 취해야 한다고 강력히 강조합니다.
이러한 의미에서 콘크리트 생산 산업은 전체 인간 이산화탄소 배출량의 4~8%를 담당하고 있으므로 환경에 미치는 영향을 줄이기 위한 진화가 시급히 필요합니다.
본 연구의 주요 목적은 이미 사용 가능한 기술적 품질 관리 도구를 사용하여 생산을 최적화하고 혼합 시간을 단축하며 콘크리트 폐기물을 줄이기 위한 신뢰할 수 있고 활용 가능한 수치 모델을 개발함으로써 이러한 산업 전환에 참여하는 것입니다.
실제로, 혼합 트럭 내부의 신선한 콘크리트의 거동과 흐름 프로파일을 더 잘 이해할 수 있는 수치 시뮬레이션을 개발하면 혼합 시간과 비용을 더욱 최적화할 수 있으므로 매우 유망합니다. 이러한 복잡한 수치 도구를 활용할 수 있으려면 수치 시뮬레이션을 검증, 특성화 및 보정하기 위해 기본 신 콘크리트 흐름 모델의 구현이 필수적입니다.
이 논문에서는 세 가지 단순 유동 모델의 개발이 논의되고 얻은 결과는 신선한 콘크리트 유동의 수치적 거동을 검증하는 데 사용됩니다. 이러한 각 모델은 강점과 약점을 갖고 있으며, 신선한 콘크리트의 유변학과 유동 거동을 훨씬 더 잘 이해할 수 있는 수치 작업 환경을 만드는 데 기여합니다.
따라서 이 연구 프로젝트는 새로운 콘크리트 생산의 완전한 모델링을 위한 진정한 관문입니다.
In view of the current climate emergency and the various scientific reports on climate change, it is essential and even vital to drastically reduce man-made pollution. The latest IPCC (Intergovernmental Panel on Climate Change) report (2022) indicates that emissions must be halved by 2030 and strongly emphasizes the need to act immediately to preserve the planet. In this sense, the concrete production industry is responsible for 4-8% of total human carbon dioxide emissions and therefore urgently needs to evolve to reduce its environmental impact. The main objective of this study is to participate in this industrial transition by developing a reliable and exploitable numerical model to optimize the production, reduce mixing time and also reduce concrete waste by using technological quality control tools already available. Indeed, developing a numerical simulation allowing to better understand the behavior and flow profiles of fresh concrete inside a mixing-truck is extremely promising as it allows for further optimization of mixing times and costs. In order to be able to exploit such a complex numerical tool, the implementation of elementary fresh concrete flow models is essential to validate, characterize and calibrate the numerical simulations. In this thesis, the development of three simple flow models is discussed and the results obtained are used to validate the numerical behavior of fresh concrete flow. Each of these models has strengths and weaknesses and contributes to the creation of a numerical working environment that provides a much better understanding of the rheology and flow behavior of fresh concrete. This research project is therefore a real gateway to a full modelling of fresh concrete production.
Amziane, S., Ferraris, C. F., & Koehler, E. (2006). Feasibility of Using a Concrete Mixing Truck as a Rheometer. Anderson, J. D. (1991). Fundamentals of aerodynamics. McGraw-Hill. Balmforth, N. J., Craster, R. V., & Sassi, R. (2002). Shallow viscoplastic flow on an inclined plane. Journal of Fluid Mechanics, 470, 1-29. https://doi.org/10.1017/S0022112002001660 Banfill, P., Beaupré, D., Chapdelaine, F., de Larrard, F., Domone, P., Nachbaur, L., Sedran, T., Wallevik, O., & Wallevik, J. E. (2000). Comparison of concrete rheometers International tests at LCPC (Nantes, France) in October 2000. In NIST. Baracu T. (2012). Computational analysis of the flow around a cylinder and of the drag force. Barreto, D., & Leak, J. (2020). A guide to modeling the geotechnical behavior of soils using the discrete element method. In Modeling in Geotechnical Engineering (p. 79-100). Elsevier. https://doi.org/10.1016/B978-0-12-821205-9.00016-2 Baudez, J. C., Chabot, F., & Coussot, P. (2002). Rheological interpretation of the slump test. Applied Rheology, 12(3), 133-141. https://doi.org/10.1515/arh-2002- 0008 Beaupre, D. (2012). Mixer-mounted probe measures concrete workability. Berger, X. (2023). Proposition de recherche et préparation orale de doctorat (GCI8084). Bergeron, P. (1953). Considérations sur les facteurs influençant l’usure due au transport hydraulique de matériaux solides. Application plus particulière aux machines. https://www.persee.fr/doc/jhydr_0000-0001_1953_act_2_1_3256 Bingham, E. (1922). Fluidity and Plasticity (Digitized by the Internet Archive in 2007). http://www.archive.org/details/fluidityplasticiOObinguoft Bruschi, G., Nishioka, T., Tsang, K., & Wang, R. (2003). A comparison of analytical methods drag coefficient of a cylinder.
Caceres, E. C. (2019). Impact de la rhéologie des matériaux cimentaires sur l’aspect des parements et les procédés de mise en place. https://tel.archivesouvertes.fr/tel-01982159 Chanson, H., Jarny, ; S, & Coussot, P. (2006). Dam Break Wave of Thixotropic Fluid. https://doi.org/10.1061/ASCE0733-94292006132:3280 Chi, Z. P., Yang, H., Li, R., & Sun, Q. C. (2021). Measurements of unconfined fresh concrete flow on a slope using spatial filtering velocimetry. Powder Technology, 393, 349-356. https://doi.org/10.1016/j.powtec.2021.07.088 Cochard, S., & Ancey, C. (2009). Experimental investigation of the spreading of viscoplastic fluids on inclined planes. Journal of Non-Newtonian Fluid Mechanics, 158(1-3), 73-84. https://doi.org/10.1016/j.jnnfm.2008.08.007 Coussot, Philippe., & Ancey, C. (Christophe). (1999). Rhéophysique des pâtes et des suspensions. EDP Sciences. CSA Group. (2019). CSA A23.1:19 / CSA A23.2:19 : Concrete materials and methods of concret construction / Test methods and standard practices for concrete. Daczko, J. A. (2000). A proposal for measuring rheology of production concrete. De Larrard, F. (1999). Structures granulaires et formulation des bétons. http://www.lcpc.fr/betonlabpro De Larrard, F., Ferraris, C. F., & Sedran, T. (1998). Fresh concrete: A HerscheIBulkley material (Vol. 31). Domone P.L.J., J. J. (1999). Properties of mortar for self-compacting concrete. RILEM, 109-120. El-Reedy, M. (2009). Advanced Materials and Techniques for Reinforced Concrete Structures. Emborg M. (1999). Rheology tests for self-compacting concrete – how useful are they for the design of concrete mix for full-scale production. Fall A. (2008). Rhéophysique des fluides complexes : Ecoulement et Blocage de suspensions concentrées. https://www.researchgate.net/publication/30515545 Ferraris, C. F., Brower, L. E., Beaupré, D., Chapdelaine, F., Domone, P., Koehler, E., Shen, L., Sonebi, M., Struble, L., Tepke, D., Wallevik, O., & Wallevik, J. E.
(2003). Comparison of concrete rheometers: International tests at MB. https://doi.org/10.6028/NIST.IR.7154 Ferraris, C. F., & de Larrard, F. (1998a). Rhéologie du béton frais remanié III – L’essai au cône d’Abrams modifié. Ferraris, C. F., & de Larrard, F. (1998b, février). NISTIR 6094 Testing and modelling of fresh concrete rheology. NISTIR 6094. https://ciks.cbt.nist.gov/~garbocz/rheologyNISTIR/FR97html.htm Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye Ghana, A., Allwood, J., Baiocchi, G., Clift, R., Nenov, V., Yetano Roche Spain, M., Roy, J., Abdel-Aziz, A., Acquaye, A., Allwood, J. M., Ceron, J., Geng, Y., Kheshgi, H., Lanza, A., Perczyk, D., Price, L., … Minx, J. (2014). Climate Change 2014. Fox R., & McDonald A. (2004). Introduction to fluid mechanics. Franco Correa I.-D. (2019). Étude tribologique à hautes températures de matériaux céramiques structurés à différentes échelles. GIEC. (2022). Climate Change 2022 : Mitigation of Climate Change. www.ipcc.ch Gouvernement du Canada. (2021, mai 31). Déclaration commune : L’industrie canadienne du ciment et le gouvernement du Canada annoncent un partenariat. https://www.ic.gc.ca/eic/site/icgc.nsf/fra/07730.html Grenier, M. (1998). Microstructure et résistance à l’usure de revêtements crées par fusion laser avec gaz réactifs sur du titane. Herschel, W. H., & Bulkley, R. (1926). Konsistenzmessungen von GummiBenzollösungen. Kolloid-Zeitschrift, 39(4), 291-300. https://doi.org/10.1007/BF01432034 Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5 Hoornahad, H., & Koenders, E. A. B. (2012). Simulation of the slump test based on the discrete element method (DEM). Advanced Materials Research, 446-449, 3766-3773. https://doi.org/10.4028/www.scientific.net/AMR.446-449.3766
Hu, C., de Larrard, F., Sedran, T., Boulay, C., Bosd, F., & Deflorenne, F. (1996). Validation of BTRHEOM, the new rheometer for soft-to-fluid concrete. In Materials and Structures/Mat~riaux et Constructions (Vol. 29). Jeong, S. W., Locat, J., Leroueil, S., & Malet, J. P. (2007). Rheological properties of fine-grained sediments in modeling submarine mass movements: The role of texture. Submarine Mass Movements and Their Consequences, 3rd International Symposium, 191-198. https://doi.org/10.1007/978-1-4020-6512- 5_20 Kabagire, K. D. (2018). Modélisation expérimentale et analytique des propriétés rhéologiques des bétons autoplaçants. Katopodes, N. D. (2019). Volume of Fluid Method. In Free-Surface Flow (p. 766-802). Elsevier. https://doi.org/10.1016/b978-0-12-815485-4.00018-8 Khayat. (2008). Personnal Communication. Kosmatka, S. (2011). Dosage et contrôle des mélanges de béton (8ème édition). Li, H., Wu, A., & Cheng, H. (2022). Generalized models of slump and spread in combination for higher precision in yield stress determination. Cement and Concrete Research, 159. https://doi.org/10.1016/j.cemconres.2022.106863 Massey, B., & Smith, J. (2012). Mechanics of fluids 9ème édition. Mokéddem, S. (2014). Contrôle de la rhéologie d’un béton et de son évolution lors du malaxage par des mesures en ligne à l’aide de la sonde Viscoprobe. https://tel.archives-ouvertes.fr/tel-00993153 Munson, B. R., & Young, D. R. (2006). Fundamental of Fluid Mechanics (5th éd.). Munson, M., Young, M. , & Okiishi, M. (2020). Mécanique des fluides (8ème édition). Murata, J., & Kikukawa, H. (1992). Viscosity Equation for Fresh Concrete. Nakayama, Y., & Boucher, R. F. (2000). Introduction to fluid mechanics. ButterworthHeinemann. Němeček, J. (2021). Numerical simulation of slump flow test of cement paste composites. Acta Polytechnica CTU Proceedings, 30, 58-62. https://doi.org/10.14311/APP.2021.30.0058 Nikitin, K. D., Olshanskii, M. A., Terekhov, K. M., & Vassilevski, Y. V. (2011). A numerical method for the simulation of free surface flows of viscoplastic fluid in
3D. Journal of Computational Mathematics, 29(6), 605-622. https://doi.org/10.4208/jcm.1109-m11si01 Noh, W. F., & Woodward, P. (1976). SLIC (Simple Line Interface Calculation). Odabas, D. (2018). Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy. IOP Conference Series: Materials Science and Engineering, 295(1). https://doi.org/10.1088/1757-899X/295/1/012008 Pintaude, G. (s. d.). Characteristics of Abrasive Particles and Their Implications on Wear. www.intechopen.com Poullain, P. (2003). Étude comparative de l’écoulement d’un fluide viscoplastique dans une maquette de malaxeur pour béton. R. J. Cattolica. (2003). Experiment F2: Water Tunnel. In MAE171A/175A Mechanical Engineering Laboratory Manual (Winter Quarter). Raper, R. M. (1966). Drag force and pressure distribution on cylindrical protuberances immersed in a turbulent channel flow. RMCAO. (2013). CSA A23.2-5C: Concrete Basics Slump Test. Roques, A., & School, H. (2006). High resolution seismic imaging applied to the geometrical characterization of very high voltage electric pylons. https://www.researchgate.net/publication/281566156 Roussel, N. (2006). Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results. Materials and Structures/Materiaux et Constructions, 39(4), 501-509. https://doi.org/10.1617/s11527-005-9035-2 Roussel, N., & Coussot, P. (2005). “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow. Journal of Rheology, 49(3), 705-718. https://doi.org/10.1122/1.1879041 Roussel, N., Geiker, M. R., Dufour, F., Thrane, L. N., & Szabo, P. (2007). Computational modeling of concrete flow: General overview. Cement and Concrete Research, 37(9), 1298-1307. https://doi.org/10.1016/j.cemconres.2007.06.007 Schaer, N. (2019). Modélisation des écoulements à surface libre de fluides nonnewtoniens. https://theses.hal.science/tel-02166968
Schowalter, W. R., & Christensen, G. (1998). Toward a rationalization of the slump test for fresh concrete: Comparisons of calculations and experiments. Journal of Rheology, 42(4), 865-870. https://doi.org/10.1122/1.550905 Sofiane Amziane, Chiara F. Ferraris, & Eric P. Koehler. (2005). Measurement of Workability of Fresh Concrete Using a Mixing Truck. Journal of Research of the National Institute of Standards Technology, 55-56. Sooraj, P., Agrawal, A., & Sharma, A. (2018). Measurement of Drag Coefficient for an Elliptical Cylinder. Journal of Energy and Environmental Sustainability, 5, 1-7. https://doi.org/10.47469/jees.2018.v05.100050 Stachowiak G. (2006). Wear – Materials, Mechanisms and Pratice. Stachowiak G.W. (1993). Tribology Series (Vol. 24, p. 557-612). Elsevier. Tattersall, G., & Banfill, P. F. G. (1983). The rheology of fresh concrete. The European Guidelines for Self-Compacting Concrete Specification, Production and Use « The European Guidelines for Self Compacting Concrete ». (2005). www.efnarc.org University College London. (2010). Pressure around a cylinder and cylinder drag. Van Oudheusden, B. W., Scarano, F., Roosenboom, E. W. M., Casimiri, E. W. F., & Souverein, L. J. (2007). Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Experiments in Fluids, 43(2-3), 153-162. https://doi.org/10.1007/s00348-007- 0261-y Vasilic, K., Gram, A., & Wallevik, J. E. (2019). Numerical simulation of fresh concrete flow: Insight and challenges. RILEM Technical Letters, 4, 57-66. https://doi.org/10.21809/rilemtechlett.2019.92 Viccione, G., Ferlisi, S., & Marra, E. (2010). A numerical investigation of the interaction between debris flows and defense barriers. http://www.unisa.it/docenti/giacomoviccione/en/index Wallevik J. (2006). Relation between the Bingham parameters and slump. Wallevik, J. E. (2006). Relationship between the Bingham parameters and slump. Cement and Concrete Research, 36(7), 1214-1221. https://doi.org/10.1016/j.cemconres.2006.03.001
Wallevik, J. E., & Wallevik, O. H. (2020). Concrete mixing truck as a rheometer. Cement and Concrete Research, 127. https://doi.org/10.1016/j.cemconres.2019.105930
Using an improved Carreau constitutive model, a numerical simulation of the casting process of a type of solid propellant slurry vacuum plate casting was carried out using the Flow3D software. Through the flow process in the orifice flow channel and the combustion chamber, the flow velocity of the slurry passing through the plate flow channel was quantitatively analyzed, and the viscosity, shear rate, and leveling characteristics of the slurry in the combustion chamber were qualitatively analyzed and predicted. The pouring time, pouring quality, and flow state predicted by the numerical simulation were verified using a visual tester consisting of a vacuum plate casting system in which a pouring experiment was carried out. Studies have shown that HTPB three-component propellant slurry is a typical yielding pseudoplastic fluid. When the slurry flows through the flower plate and the airfoil, the fluid shear rate reaches its maximum value and the viscosity of the slurry decreases. The visual pouring platform was built and the experiment was controlled according to the numerically-calculated parameters, ensuring the same casting speed. The comparison between the predicted casting quality and the one obtained in the verification test resulted in an error less than 10 %. Moreover, the error between the simulated casting completion time and the process verification test result was also no more than 10 %. Last, the flow state of the slurry during the simulation was consistent with the one during the experimental test. The overall leveling of the slurry in the combustion chamber was adequate and no relatively large holes and flaws developed during the pouring process.
개선된 Carreau 구성 모델을 사용하여 FLOW-3D 소프트웨어를 사용하여 고체 추진제 슬러리 진공판 유형의 Casting Process에 대한 수치 시뮬레이션을 수행했습니다. 오리피스 유로와 연소실에서의 유동과정을 통해 판 유로를 통과하는 슬러리의 유속을 정량적으로 분석하고, 연소실에서 슬러리의 점도, 전단율, 레벨링 특성을 정성적으로 분석하하고, 예측하였습니다.
타설시간, 타설품질, 수치해석으로 예측된 유동상태는 타설실험을 수행한 진공판주조시스템으로 구성된 비주얼 테스터를 이용하여 검증하였습니다.
연구에 따르면 HTPB 3성분 추진제 슬러리는 전형적인 생성 가소성 유체입니다. 슬러리가 플라워 플레이트와 에어포일을 통과할 때 유체 전단율이 최대값에 도달하고 슬러리의 점도가 감소합니다.
시각적 주입 플랫폼이 구축되었고 동일한 주조 속도를 보장하기 위해 수치적으로 계산된 매개변수에 따라 실험이 제어되었습니다. 예측된 casting 품질과 검증 테스트에서 얻은 품질을 비교한 결과 10 % 미만의 오류가 발생했습니다.
또한 모의 casting 완료시간과 공정검증시험 결과의 오차도 10 % 이하로 나타났습니다.
마지막으로 시뮬레이션 중 슬러리의 흐름 상태는 실험 테스트 시와 일치하였다. 연소실에서 슬러리의 전체 레벨링은 적절했으며 주입 과정에서 상대적으로 큰 구멍과 결함이 발생하지 않았습니다.
References
[1] B. M. Bandgar, V. N. Krishnamurthy, T. Mukundan, K. C. Sharma, Mathematical Modeling of Rheological Properties of HydroxylTerminated Polybutadiene Binder and Dioctyl Adipate Plasticizer, J. Appl. Polym. Sci. 2002, 85, 1002–1007. [2] B. Thiyyarkandy, M. Jain, G. S. Dombe, M. Mehilal, P. P. Singh, B. Bhattacharya, Numerical Studies on Flow Behavior of Composite Propellant Slurry during Vacuum Casting, J.Aerosp.Technol. Manage. 2012, 4, 197–203. [3] T. Shimada, H. Habu, Y. Seike, S. Ooya, H. Miyachi, M. Ishikawa, X-Ray Visualization Measurement of Slurry Flow in Solid Propellant Casting, Flow Meas. Instrum. 2007, 18, 235–240. [4] Y. Damianou, G. C. Georgiou, On Poiseuille Flows of a Bingham Plastic with Pressure-Dependent Rheological Parameters, J. Non-Newtonian Fluid Mech. 2017, 250, 1–7. [5] S. Sadasivan, S. K. Arumugam, M. Aggarwal, Numerical Simulation of Diffuser of a Gas Turbine using the Actuator Disc Model, J.Appl. Fluid Mech. 2019, 12, 77–84. [6] M. Acosta, V. L. Wiesner, C. J. Martinez, R. W. Trice, J. P. Youngblood, Effect of Polyvinylpyrrolidone Additions on the Rheology of Aqueous, Highly Loaded Alumina Suspensions, J. Am. Ceram. Soc. 2013, 96, 1372–1382. [7] Y. Wu, Numerical Simulation and Experiment Study of Flower Plate Pouring System for Solid Propellant, Chin. J. Expl. Propell. 2017, 41, 506–511. [8] T. M. G. Chu, J. W. Halloran, High-Temperature Flow Behavior of Ceramic Suspensions, J. Am. Ceram. Soc. 2004, 83, 2189– 2195. [9] T. Kaully, A. Siegmann, D. Shacham, Rheology of Highly Filled Natural CaCO3 Composites. I. Effects of Solid Loading and Particle Size Distribution on Capillary Rheometry, Polym. Compos. 2007, 28, 512–523. [10] M. M. Rueda, M.-C. Auscher, R. Fulchiron, T. Périé, G. Martin, P. Sonntag, P. Cassagnau, Rheology and Applications of Highly Filled Polymers: A Review of Current Understanding, Prog. Polym. Sci. 2017, 66, 22–53. [11] F. Soltani, Ü. Yilmazer, Slip Velocity and Slip Layer Thickness in Flow of Concentrated Suspensions, J. Appl. Polym. Sci. 1998, 70, 515–522.
[12] E. Landsem, T. L. Jensen, F. K. Hansen. E. Unneberg, T. E. Kristensen, Neutral Polymeric Bonding Agents (NPBA) and Their Use in Smokeless Composite Rocket Propellants Based on HMX-GAP-BuNENA. Propellants, Explos., Pyrotech.. 2012, 37, 581–589. [13] J. Mewis, N. J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, 2011. [14] D. M. Kalyon, An Overview of the Rheological Behavior and Characterization of Energetic Formulations: Ramifications on Safety and Product Quality, J. Energ. Mater. 2006, 24, 213–245. [15] H. Ohshima, Effective Viscosity of a Concentrated Suspension of Uncharged Spherical Soft Particles, Langmuir 2010, 26, 6287–6294.
During the industrial process of semi-solid forming (or thixoforming) of alloy slurries, typically the operation of die filling takes around 0.1s. During this time period the alloy slug is transformed from a solid-like structure capable of maintaining its shape, into a liquid-like slurry able to fill a complex die cavity: this involves a decrease in viscosity of some 6 orders of magnitUde. Many attempts to measure thixotropic breakdown experimentally in alloy slurries have relied on the use of concentric cylindrical viscometers in which viscosity changes have been followed after shear rate changes over times above 1s to in excess of 1000 s, which have little relevance to actual processing conditions and therefore to modelling of flow in industrial practice. The present paper is an attempt to abstract thixotropic breakdown rates from rapid compression tests between parallel plates moving together at velocities of around 1mis, similar to industrial conditions. From this analysis, a model of slurry flow has been developed in which rapid thixotropic breakdown of the slurry occurs at high shear rates.
합금 슬러리의 반고체 성형 (또는 틱소 성형)의 산업 공정 동안, 일반적으로 다이 충진 작업은 약 0.1 초가 걸립니다. 이 기간 동안 합금 슬러그는 모양을 유지할 수있는 고체와 같은 구조에서 액체와 같은 슬러리로 변형됩니다. 복잡한 다이 캐비티를 채우기 위해 : 이것은 약 6 차의 마그 니트 점도 감소를 포함합니다. 합금 슬러리에서 실험적으로 요 변성 파괴를 측정하려는 많은 시도는 전단 속도가 1 초 이상에서 1000 초 이상으로 변화 한 후 점도 변화가 뒤 따르는 동심원 원통형 점도계의 사용에 의존하여 실제 가공 조건과는 거의 관련이 없습니다. 따라서 산업 현장에서 흐름 모델링에. 본 논문은 산업 조건과 유사하게 약 1mis의 속도로 함께 이동하는 평행 판 사이의 빠른 압축 테스트에서 요 변성 파괴 율을 추상화하려는 시도입니다. 이 분석으로부터 슬러리의 급속한 요 변성 분해가 높은 전단 속도에서 발생하는 슬러리 흐름 모델이 개발되었습니다.
Introduction
기존의 다이캐스팅을 위한 다이 설계는 과거에 예비 테스트 및 조정과 함께 축적 된 실무 경험의 문제였으며, 단기 실행, 랩, 다공성 등과 같은 결함을 제거하기 위해 다이 캐스트 제품을 검사했습니다. 이것은 모두 비용이 많이 드는 절차입니다.
시간과 비용, 그리고 프로세스의 컴퓨터 모델링은 이를 줄이거 나 없애기 위해 많은 운영자에 의해 개발되었습니다. 반고체 가공 (thixoforming)에서는 반고체 합금 슬러리의 전단이 내부 구조를 파괴하여 충전 작업 중 시간이 지남에 따라 점도가 낮아짐으로 발생하는 비 뉴턴 점도로 인해 모델링 문제가 더욱 어려워집니다.
시스템 전체에서 균일하지 않습니다. 충전 중에 발생하는 추가 응고로 인해 문제가 더욱 복잡해집니다. 빠른 충전으로 인해 이 단계에서 매우 작은 것으로 간주되기 때문에 현재 분석에서는 무시되었습니다.
우리 모델의 또 다른 한계는 슬러리가 균질한 물질로 거동 한다는 가정이며, 이는 어느 지점에서나 단일 점도로 설명될 수 있습니다. 이것은 빠른 전단의 고려 사항과 정상적인 요 변형성 조건 내에서 0.6 미만의 고형분을 분별하는 것으로 제한합니다.
<중략>……
Conclusions
y에서 전단 된 반고체 슬러리의 틱소 트로픽 분해에 대한 속도 방정식은 다음과 같은 형식으로 제안됩니다. T = l / (a + uym), 여기서 T는 급속 분해 또는 유사 정상 상태 구조에 대한 특성 시간이며, 밴드 m은 상수입니다. 이 관계는 제한된 범위의 전단 속도에서 Sn-Pb 합금의 전단 속도 점프에 의해 실험적으로 확인되었습니다.
이 파괴율 방정식은 AI-Si 합금의 반고체 슬러그에 대한 빠른 압축 테스트에서 실험적으로 얻은 힘-변위 곡선을 시뮬레이션하기 위해 FLOW-3D® (버전 8.2 : FlowScience Inc.)에 도입되었습니다. 담금 시간과 다른 압축 속도에서. 이 분석의 결과는 모든 경우에 요 변성 거동이 관련되어 있음을 나타내지만, 5 분 동안 담근 후 (산업 관행에서와 같이) 구조가 크게 분해되었으며 초기에는 낮은 전단 속도 영역에서 흐름이 뉴턴에 가깝습니다.
파괴율은 100 S-I 이상의 전단율에서 극적으로 증가하는 것으로 가정 됩니다. 이 예측은 높은 전단 속도에서 더 세심한 작업에 의해 테스트되어야 하지만 평균 전단 속도가 1300 sol까지 생성된 드롭 단조 실험에 의해 뒷받침되는 것으로 보입니다 [7].
References
[I] T.Y Liu, H.Y. Atkinson, PJ. Ward, D.H. Kirkwood: Metall.Mater.TransA, 34A (2003), 409/17. [2] A. Zavaliangos and A. Lawley: J. Mater. Eng. Perfonn., 4 (1995),40/47. [3] M.R. Barkhudarov, e.L. Bronisz, e.w. Hirt: ProcAth Int. Conf. onSemi-solid Processing of Alloys and Composites,1996, Sheffield,p.llO. [4] W.R.Loue, M.Suery, J.L.Querbes: Proc.2ndInt.Conf.on Semi-solidProcessing of Alloys and Composites,1992, Cambridge MA , pp266-75. [5] P.Kapranos, D.H.Kirkwood, M.R. Barkhudarov: Proc.5th Int. Conf.on Semi-solid Processing of Alloys and Composites, Golden, Colorado,1998. pp.II-19. [6] T.Y. Liu, H.Y. Atkinson, P. Kapranos, D.H. Kirkwood, S.G. Hogg:Metall. Mater. Trans A, 34A (2003), 1545/54. [7] J.A. Yurko and M.e. Flemings: Metall. Mater. Trans A, 33A (2002),2737/46. [8] M. Modigell and J. Koke: Mechanics of Time Dependent Materials, 3(1999), 15/30. [9] Y. Laxmanan and M.e. Flemings: Metall. Trans. A, IIA( 1980),1927/36. [IO]A.R.A Mclelland, N.G. Henderson, H.Y. Atkinson, D.H. Kirkwood:Mater. Sci. Eng., A232 (1997), 110/18. [II] H.A. Barnes: 1. Non-Newtonian Fluid Mech., 81 (1999),133n8. [12]A.N. Alexandrou, E. Due , Y. Entov: 1. Non-Newtonian Fluid Mech.,96 (2001), 383/403. [13]C.L. Martin, P. Kumar and S. Brown: Acta Mat. Mater., 42 (1994),3603/14. [14]C. Quaak, L. Katgennan and W.H. Kool: Proc. 4th Conf. on Semi-solid Processing of Alloys and Composites, 1996, Sheffield, pp.35/39. [15]D.C-H. Cheng: Int. Journal Cosmetic Science, 9 (1987), pp.151/91. [16]An Introduction to Rheology: H.A. Barnes, J.F. Hutton and K Walters,Elsevier, Amsterdam, 1989. [17]A.M. de Figueredo, A. Kato and M.e. Flemings: Proc.6th Int. Conf.on Semi-solid Processing of Alloys and Composites, 2000, Turin,477/82. [18]1.y’ Chen and Z. Fan: Mater. Sci. Tech., 18 (2002), 237/42. [19]Z. Fan: Int. Mater. Rev., 47 (2002), No.2, 49/85. [20]D.H. Kirkwood and P.J. Ward: Proc. 8th Int. Conf. on Semi-solid Processing of Alloys and Composites, 2004, Cyprus. To be published.
CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.
“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아 주 피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .
흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!
예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.
Giving Mixing Its Due
“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .
이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.
“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.
이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.
동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.
CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.
컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .
그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.
반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.
“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.
시뮬레이션 비디오 갤러리에서 FLOW-3D 제품군으로 모델링 할 수 있는 다양한 가능성을 살펴보십시오 .
적층 제조 시뮬레이션 갤러리
FLOW-3D AM 은 레이저 파우더 베드 융합, 바인더 제트 및 직접 에너지 증착과 같은 적층 제조 공정을 시뮬레이션하고 분석합니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다.
Multi-material Laser Powder Bed Fusion | FLOW-3D AM
Micro and meso scale simulations using FLOW-3D AM help us understand the mixing of different materials in the melt pool and the formation of potential defects such as lack of fusion and porosity. In this simulation, the stainless steel and aluminum powders have independently-defined temperature dependent material properties that FLOW-3D AM tracks to accurately capture the melt pool dynamics. Learn more about FLOW-3D AM’s mutiphysics simulation capabilities at https://www.flow3d.com/products/flow3…
FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어로 다공성, 열 영향 영역을 최소화하고 미세 구조 진화를 제어 할 수 있습니다. 레이저 용접 공정을 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화를 특징으로 합니다.
FLOW-3D는 물고기 통로, 댐 파손, 배수로, 눈사태, 수력 발전 및 기타 수자원 및 환경 공학 과제 모델링을 포함하여 유압 산업에 대한 많은 응용 분야를 가지고 있습니다. 엔지니어는 수력 발전소의 기존 인프라 용량을 늘리고, 어류 통로, 수두 손실을 최소화하는 흡입구, 포 이베이 설계 및 테일 레이스 흐름을위한 개선 된 설계를 개발하고, 수세 및 퇴적 및 공기 유입을 분석 할 수 있습니다.
FLOW-3D CAST 에는 캐스팅을 위해 특별히 설계된 광범위하고 강력한 물리적 모델이 포함되어 있습니다. 이러한 특수 모델에는 lost foam casting, non-Newtonian fluids, and die cycling에 대한 알고리즘이 포함됩니다. FLOW-3D CAST 의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계주기를 단축하고 비용을 절감 할 수 있는 통찰력을 제공합니다.
HPDC |Comparison of slow shot profiles and entrained air during a filling simulation |FLOW-3D CAST
Shown is a video comparing two slow shot profiles. The graphs highlight the shot profiles through time and the difference in entrained air between the slow shots. Note the lack of air entrained in shot sleeve with calculated shot profile which yields a much better controlled flow within the shot sleeve.
FLOW-3D는 선박 설계, 슬로싱 다이내믹스, 파동 충격 및 환기 등 연안 및 해양 애플리케이션에 이상적인 소프트웨어입니다. 연안 애플리케이션의 경우 FLOW-3D는 연안 구조물에 심각한 폭풍과 쓰나미 파장의 세부 정보를 정확하게 예측하고 플래시 홍수 및 중요 구조물 홍수 및 손상 분석에 사용됩니다.
혈액, 케첩, 치약, 샴푸, 페인트 및 로션과 같은 비 뉴턴 유체는 점도가 다양한 복잡한 유변학을 가지고 있습니다. FLOW-3D는 변형 및 온도에 따라 달라지는 비 뉴턴 점도를 가진 유체를 모델링합니다. 전단 및 온도 의존 점도는 Carreau, 거듭 제곱 법칙 함수 또는 단순히 표 형식 입력을 통해 설명됩니다. 일부 폴리머, 세라믹 및 반고체 금속의 특성인 시간 의존적 또는 요 변성 거동(thixotropic behavior)도 시뮬레이션 할 수 있습니다.
Hand Lotion Pump
핸드 로션 펌프는 종종 몇 가지 설계 문제와 관련이 있습니다. 펌프가 공극을 막지 않고 효과적으로 작동하고 로션을 연속적으로 생성하는 것이 중요합니다. 좋은 디자인은 노력을 덜 필요로하며 이상적으로는 로션을 원하는 위치로 향하게합니다. FLOW-3D의 움직이는 물체 모델은 노즐이 아래로 밀리는 것을 시뮬레이션하여 저장소의 로션을 가압하는 데 사용됩니다. 로션의 압력과 로션을 추출하는 데 필요한 힘을 연구 할 수 있습니다. 동일한 고정 구조화 된 메시 내에서 여러 설계 변수를 쉽게 분석 할 수 있습니다.
FLOW-3D’s TruVOF method accurately captures the pulsating lotion as the ball regulates the frequency of dispensing lotion.
식품 가공 산업은 분사 장비를 최적으로 설계 및 제조하기 위해 일반적으로 뉴턴이 아닌 유체, 슬러리, 고형물과 유체의 혼합물 등 복잡한 유체를 관리하기 위한 다양한 요구사항을 가지고 있습니다. 이는 상업용 등급 장비의 일관성 및 내구성과 품질에 필수적입니다. 또한, 포장 디자인의 혁신은 한 제품을 다른 제품과 명확하게 구별할 수 있습니다. 예를 들어, 꿀, 케첩 또는 크리머(creamer)를 깨끗하고 정확하게 분사하는 것은 소비자가 상점에서 선택하는 것일 수 있습니다. 운송 및 보관 요구 사항은 모양을 보다 효율적으로 엔지니어링하고 컨테이너 자재를 더 많이 선택해야 합니다. 1.5리터의 물 또는 세탁 세제를 이동 또는 떨어뜨리는 동안 유체 하중은 업스트림 설계의 중요한 부분이 될 수 있습니다.
꿀, 옥수수 시럽, 치약과 같은 점성 액체는 보통 단단한 표면에 접촉할 때 코일을 형성하는 경향을 보입니다. 이러한 효과는 관찰하기에 흥미롭고 재미있지만, 제품 안에 공기가 들어가 포장을 어렵게 만들 수 있는 포장 공정에서는 달갑지 않을 수 있습니다.
코일링이 발생하는 조건은 유체의 점성, 유체가 떨어지는 거리 및 유체의 속도에 따라 달라집니다. FLOW-3D는 다양한 물리적 프로세스 매개변수를 연구하기 위한 정확한 도구를 제공하여 효율적인 프로세스를 설계하는 데 도움이 됩니다.
산사태와 눈사태는 파편들이나 육지의 영향으로 인해 저수지에 엄청난 홍수파를 일으킬 가능성이 있습니다. FLOW-3D 는 산사태 현상 자체와 홍수파의 전파 모두 모델링 할 수 있습니다. Moving Objects Model 은 지형위의 물체 처럼 강체 방식으로 미끄러지는 지평면으로 고려한다. Granular flow 모델은 산사태 현상을 좀 더 상세하게 시뮬레이션 할 수 있다. 두 경우 모두, 관련된 홍수파와 함께 질량의 지표면 전파와 영향을 볼 수 있습니다. 산사태는 수역 전체에 걸쳐 일어나지 않습니다. 예를 들어 tailings 같은 경우에 FLOW-3D의 non-newtonian fluid 모델을 이용하여 개개인의 요구에 맞춘 구조적 관계를 쉽게 구현할 수 있습니다.