Figure 1. Experimental setup and materials. (a) Schematic of the DED process, where three types of base materials were adopted—B1 (IN718), B2 (IN625), and B3 (SS316L), and two types of powder materials were adopted—P1 (IN718) and P2 (SS316L). (b) In situ high-speed imaging of powder flow and the SEM images of IN718 and SS316L powder particle. (c) Powder size statistics, and (d) element composition of powder IN718 (P1) and SS316L (P2).

Printability disparities in heterogeneous materialcombinations via laser directed energy deposition:a comparative stud

Jinsheng Ning1,6, Lida Zhu1,6,∗, Shuhao Wang2, Zhichao Yang1, Peihua Xu1,Pengsheng Xue3, Hao Lu1, Miao Yu1, Yunhang Zhao1, Jiachen Li4, Susmita Bose5 and Amit Bandyopadhyay5,∗


적층 제조는 바이메탈 및 다중 재료 구조의 제작 가능성을 제공합니다. 그러나 재료 호환성과 접착성은 부품의 성형성과 최종 품질에 직접적인 영향을 미칩니다. 적합한 프로세스를 기반으로 다양한 재료 조합의 기본 인쇄 가능성을 이해하는 것이 중요합니다.

여기에서는 두 가지 일반적이고 매력적인 재료 조합(니켈 및 철 기반 합금)의 인쇄 적성 차이가 레이저 지향 에너지 증착(DED)을 통해 거시적 및 미시적 수준에서 평가됩니다.

증착 프로세스는 현장 고속 이미징을 사용하여 캡처되었으며, 용융 풀 특징 및 트랙 형태의 차이점은 특정 프로세스 창 내에서 정량적으로 조사되었습니다. 더욱이, 다양한 재료 쌍으로 처리된 트랙과 블록의 미세 구조 다양성이 비교적 정교해졌고, 유익한 다중 물리 모델링을 통해 이종 재료 쌍 사이에 제시된 기계적 특성(미세 경도)의 불균일성이 합리화되었습니다.

재료 쌍의 서로 다른 열물리적 특성에 의해 유발된 용융 흐름의 차이와 응고 중 결과적인 요소 혼합 및 국부적인 재합금은 재료 조합 간의 인쇄 적성에 나타난 차이점을 지배합니다.

이 작업은 서로 다른 재료의 증착에서 현상학적 차이에 대한 심층적인 이해를 제공하고 바이메탈 부품의 보다 안정적인 DED 성형을 안내하는 것을 목표로 합니다.

Additive manufacturing provides achievability for the fabrication of bimetallic and
multi-material structures; however, the material compatibility and bondability directly affect the
parts’ formability and final quality. It is essential to understand the underlying printability of
different material combinations based on an adapted process. Here, the printability disparities of
two common and attractive material combinations (nickel- and iron-based alloys) are evaluated
at the macro and micro levels via laser directed energy deposition (DED). The deposition
processes were captured using in situ high-speed imaging, and the dissimilarities in melt pool
features and track morphology were quantitatively investigated within specific process
windows. Moreover, the microstructure diversity of the tracks and blocks processed with varied
material pairs was comparatively elaborated and, complemented with the informative
multi-physics modeling, the presented non-uniformity in mechanical properties (microhardness)
among the heterogeneous material pairs was rationalized. The differences in melt flow induced
by the unlike thermophysical properties of the material pairs and the resulting element
intermixing and localized re-alloying during solidification dominate the presented dissimilarity
in printability among the material combinations. This work provides an in-depth understanding
of the phenomenological differences in the deposition of dissimilar materials and aims to guide
more reliable DED forming of bimetallic parts.

Figure 1. Experimental setup and materials. (a) Schematic of the DED process, where three types of base materials were adopted—B1
(IN718), B2 (IN625), and B3 (SS316L), and two types of powder materials were adopted—P1 (IN718) and P2 (SS316L). (b) In situ
high-speed imaging of powder flow and the SEM images of IN718 and SS316L powder particle. (c) Powder size statistics, and (d) element
composition of powder IN718 (P1) and SS316L (P2).
Figure 1. Experimental setup and materials. (a) Schematic of the DED process, where three types of base materials were adopted—B1 (IN718), B2 (IN625), and B3 (SS316L), and two types of powder materials were adopted—P1 (IN718) and P2 (SS316L). (b) In situ high-speed imaging of powder flow and the SEM images of IN718 and SS316L powder particle. (c) Powder size statistics, and (d) element composition of powder IN718 (P1) and SS316L (P2).
Figure 2. Deposition process and the track morphology. (a)–(c) Display the in situ captured tableaux of melt propagation and some physical
features during depositing for P1B1, P1B2, and P1B3, respectively. (d) The profiles of the melt pool at a frame of (t0 + 1) ms, and the flow
streamlines in the molten pool of each case. (e) The outer surface of the formed tracks, in which the colored arrows mark the scanning
direction. (f) Cross-section of the tracks. The parameter set used for in situ imaging was P-1000 W, S-600 mm·min–1, F-18 g·min–1. All the
scale bars are 2 mm.
Figure 2. Deposition process and the track morphology. (a)–(c) Display the in situ captured tableaux of melt propagation and some physical features during depositing for P1B1, P1B2, and P1B3, respectively. (d) The profiles of the melt pool at a frame of (t0 + 1) ms, and the flow streamlines in the molten pool of each case. (e) The outer surface of the formed tracks, in which the colored arrows mark the scanning direction. (f) Cross-section of the tracks. The parameter set used for in situ imaging was P-1000 W, S-600 mm·min–1, F-18 g·min–1. All the scale bars are 2 mm.


[1] Tan C L, Weng F, Sui S, Chew Y and Bi G J 2021 Progress and perspectives in laser additive manufacturing of key aeroengine materials Int. J. Mach. Tools Manuf. 170 103804
[2] Bandyopadhyay A, Traxel K D, Lang M, Juhasz M, Eliaz N and Bose S 2022 Alloy design via additive manufacturing: advantages, challenges, applications and perspectives Mater. Today 52 207–24
[3] Sui S, Chew Y, Weng F, Tan C L, Du Z L and Bi G J 2022 Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti–6Al–4V Int. J. Extrem. Manuf. 4 035102
[4] Xue P S, Zhu L D, Xu P H, Ren Y, Xin B, Meng G R, Yang Z C and Liu Z 2021 Research on process optimization and microstructure of CrCoNi medium-entropy alloy formed by laser metal deposition Opt. Laser Technol. 142 107167
[5] Bandyopadhyay A, Traxel K D and Bose S 2021 Nature-inspired materials and structures using 3D printing Mater. Sci. Eng. R 145 100609
[6] Zuback J S, Palmer T A and DebRoy T 2019 Additive manufacturing of functionally graded transition joints between ferritic and austenitic alloys J. Alloys Compd. 770 995–1003
[7] Feenstra D R, Banerjee R, Fraser H L, Huang A, Molotnikov A and Birbilis N 2021 Critical review of the state of the art in multi-material fabrication via directed energy deposition Curr. Opin. Solid State Mater. Sci. 25 100924
[8] Wei C, Zhang Z Z, Cheng D X, Sun Z, Zhu M H and Li L 2021 An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales Int. J. Extrem. Manuf. 3 012003
[9] Gu D D, Shi X Y, Poprawe R, Bourell D L, Setchi R and Zhu J H 2021 Material-structure-performance integrated laser-metal additive manufacturing Science 372 eabg1487
[10] Bandyopadhyay A and Heer B 2018 Additive manufacturing of multi-material structures Mater. Sci. Eng. R 129 1–16
[11] Tammas-Williams S and Todd I 2017 Design for additive manufacturing with site-specific properties in metals and alloys Scr. Mater. 135 105–10
[12] Chen W, Gu D D, Yang J K, Yang Q, Chen J and Shen X F 2022 Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion Int. J. Extrem. Manuf. 4 045002
[13] Svetlizky D, Das M, Zheng B L, Vyatskikh A L, Bose S, Bandyopadhyay A, Schoenung J M, Lavernia E J and Eliaz N 2021 Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications Mater. Today 49 271–95
[14] Panwisawas C, Tang Y T and Reed R C 2020 Metal 3D printing as a disruptive technology for superalloys Nat. Commun. 11 2327
[15] Wang S H, Ning J S, Zhu L D, Yang Z C, Yan W T, Dun Y C, Xue P S, Xu P H, Bose S and Bandyopadhyay A 2022 Role of porosity defects in metal 3D printing: formation mechanisms, impacts on properties and mitigation strategies Mater. Today 59 133–60
[16] DebRoy T, Mukherjee T, Milewski J O, Elmer J W, Ribic B, Blecher J J and Zhang W 2019 Scientific, technological and economic issues in metal printing and their solutions Nat. Mater. 18 1026–32
[17] Afrouzian A, Groden C J, Field D P, Bose S and Bandyopadhyay A 2022 Additive manufacturing of Ti-Ni bimetallic structures Mater. Des. 215 110461
[18] Bandyopadhyay A, Zhang Y N and Onuike B 2022 Additive manufacturing of bimetallic structures Virtual Phys. Prototyp. 17 256–94
[19] Onuike B, Heer B and Bandyopadhyay A 2018 Additive manufacturing of Inconel 718—copper alloy bimetallic structure using laser engineered net shaping (LENSTM) Addit. Manuf. 21 133–40
[20] Sahasrabudhe H, Harrison R, Carpenter C and Bandyopadhyay A 2015 Stainless steel to titanium bimetallic structure using LENSTM Addit. Manuf. 5 1–8
[21] Li B Y, Han C J, Lim C W J and Zhou K 2022 Interface formation and deformation behaviors of an additively manufactured nickel-aluminum-bronze/15-5 PH multimaterial via laser-powder directed energy deposition Mater. Sci. Eng. A 829 142101
[22] Zhang X C, Pan T, Chen Y T, Li L, Zhang Y L and Liou F 2021 Additive manufacturing of copper-stainless steel hybrid components using laser-aided directed energy deposition J. Mater. Sci. Technol. 80 100–16
[23] Shinjo J and Panwisawas C 2022 Chemical species mixing during direct energy deposition of bimetallic systems using titanium and dissimilar refractory metals for repair and biomedical applications Addit. Manuf. 51 102654
[24] Wang D et al 2022 Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion Virtual Phys. Prototyp. 17 329–65
[25] Lin X, Yue T M, Yang H O and Huang W D 2005 Laser rapid forming of SS316L/Rene88DT graded material Mater. Sci. Eng. A 391 325–36
[26] Melzer D, Dˇzugan J, Koukolíková M, Rzepa S and Vavˇrík J 2021 Structural integrity and mechanical properties of the functionally graded material based on 316L/IN718 processed by DED technology Mater. Sci. Eng. A 811 141038
[27] Melzer D, Dˇzugan J, Koukolíková M, Rzepa S, Dlouh´y J, Brázda M and Bucki T 2022 Fracture characterisation of vertically build functionally graded 316L stainless steel with Inconel 718 deposited by directed energy deposition process Virtual Phys. Prototyp. 17 821–40
[28] Zhang Y N and Bandyopadhyay A 2018 Direct fabrication of compositionally graded Ti-Al2O3 multi-material structures using laser engineered net shaping Addit. Manuf. 21 104–11
[29] Ben-Artzy A, Reichardt A, Borgonia P J, Dillon R P, McEnerney B, Shapiro A A and Hosemann P 2021 Compositionally graded SS316 to C300 maraging steel using additive manufacturing Mater. Des. 201 109500
[30] Tan C L, Liu Y C, Weng F, Ng F L, Su J L, Xu Z K, Ngai X D and Chew Y 2022 Additive manufacturing of voxelized heterostructured materials with hierarchical phases Addit. Manuf. 54 102775
[31] Chen J, Yang Y Q, Song C H, Zhang M K, Wu S B and Wang D 2019 Interfacial microstructure and mechanical properties of 316L/CuSn10 multi-material bimetallic structure fabricated by selective laser melting Mater. Sci. Eng. A 752 75–85
[32] Wei C, Gu H, Gu Y C, Liu L C, Huang Y H, Cheng D X, Li Z Q and Li L 2022 Abnormal interfacial bonding mechanisms of multi-material additive-manufactured tungsten–stainless steel sandwich structure Int. J. Extrem. Manuf. 4 025002
[33] Zhang Y N and Bandyopadhyay A 2021 Influence of compositionally graded interface on microstructure and compressive deformation of 316L stainless steel to Al12Si aluminum alloy bimetallic structures ACS Appl. Mater. Interfaces 13 9174–85
[34] Wei C et al 2022 Cu10Sn to Ti6Al4V bonding mechanisms in laser-based powder bed fusion multiple material additive 15 Int. J. Extrem. Manuf. 6 (2024) 025001 J Ning et al manufacturing with different build strategies Addit. Manuf. 51 102588
[35] Li W, Karnati S, Kriewall C, Liou F, Newkirk J, Brown Taminger K M and Seufzer W J 2017 Fabrication and characterization of a functionally graded material from Ti-6Al-4V to SS316 by laser metal deposition Addit. Manuf. 14 95–104
[36] Shi Q M, Zhong G Y, Sun Y, Politis C and Yang S F 2021 Effects of laser melting+remelting on interfacial macrosegregation and resulting microstructure and microhardness of laser additive manufactured H13/IN625 bimetals J. Manuf. Process. 71 345–55
[37] Zhang W X, Hou W Y, Deike L and Arnold C 2022 Understanding the Rayleigh instability in humping phenomenon during laser powder bed fusion process Int. J. Extrem. Manuf. 4 015201
[38] Chen Y W, Zhang X, Li M M, Xu R Q, Zhao C and Sun T 2020 Laser powder bed fusion of Inconel 718 on 316 stainless steel Addit. Manuf. 36 101500
[39] Yang Z C, Wang S H, Zhu L D, Ning J S, Xin B, Dun Y C and Yan W T 2022 Manipulating molten pool dynamics during metal 3D printing by ultrasound Appl. Phys. Rev. 9 021416
[40] Hofmann D C, Roberts S, Otis R, Kolodziejska J, Dillon R P, Suh J O, Shapiro A A, Liu Z K and Borgonia J P 2014 Developing gradient metal alloys through radial deposition additive manufacturing Sci. Rep. 4 5357
[41] Tumkur T U et al 2021 Nondiffractive beam shaping for enhanced optothermal control in metal additive manufacturing Sci. Adv. 7 eabg9358
[42] Scipioni Bertoli U, Guss G, Wu S, Matthews M J and Schoenung J M 2017 In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing Mater. Des. 135 385–96
[43] Siva Prasad H, Brueckner F and Kaplan A F H 2020 Powder incorporation and spatter formation in high deposition rate blown powder directed energy deposition Addit. Manuf. 35 101413
[44] Ebrahimi A, Kleijn C R and Richardson I M 2021 Numerical study of molten metal melt pool behaviour during conduction-mode laser spot melting J. Appl. Phys. 54 105304
[45] Mumtaz K A and Hopkinson N 2010 Selective laser melting of thin wall parts using pulse shaping J. Mater. Process. Technol. 210 279–87
[46] Sikandar Iquebal A, Yadav A, Botcha B, Krishna Gorthi R and Bukkapatnam S 2022 Tracking and quantifying spatter characteristics in a laser directed energy deposition process using Kalman filter Manuf. Lett. 33 692–700
[47] Criales L E, Arısoy Y M, Lane B, Moylan S, Donmez A and Özel T 2017 Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis Int. J. Mach. Tools Manuf. 121 22–36
[48] Coen V, Goossens L and van Hooreweder B 2022 Methodology and experimental validation of analytical melt pool models for laser powder bed fusion J. Mater. Process. Technol. 304 117547
[49] Zhao C, Shi B, Chen S L, Du D, Sun T, Simonds B J, Fezzaa K and Rollett A D 2022 Laser melting modes in metal powder bed fusion additive manufacturing Rev. Mod. Phys. 94 045002
[50] Wang J H, Han F Z, Chen S F and Ying W S 2019 A novel model of laser energy attenuation by powder particles for laser solid forming Int. J. Mach. Tools Manuf. 145 103440
[51] Haley J C, Schoenung J M and Lavernia E J 2018 Observations of particle-melt pool impact events in directed energy deposition Addit. Manuf. 22 368–74
[52] Chen Y H et al 2021 Correlative synchrotron x-ray imaging and diffraction of directed energy deposition additive manufacturing Acta Mater. 209 116777
[53] Khorasani M, Ghasemi A, Leary M, Cordova L, Sharabian E, Farabi E, Gibson I, Brandt M and Rolfe B 2022 A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718 Int. J. Adv. Manuf. Technol. 120 2345–62
[54] Shamsaei N, Yadollahi A, Bian L and Thompson S M 2015 An overview of direct laser deposition for additive manufacturing; part II: mechanical behavior, process parameter optimization and control Addit. Manuf. 8 12–35
[55] Ghanavati R, Naffakh-Moosavy H, Moradi M and Eshraghi M 2022 Printability and microstructure of directed energy deposited SS316l-IN718 multi-material: numerical modeling and experimental analysis Sci. Rep. 12 16600
[56] Galbusera F, Demir A G, Platl J, Turk C, Schnitzer R and Previtali B 2022 Processability and cracking behaviour of novel high-alloyed tool steels processed by laser powder bed fusion J. Mater. Process. Technol. 302 117435
[57] Wang A et al 2023 Effects of processing parameters on pore defects in blue laser directed energy deposition of aluminum by in and ex situ observation J. Mater. Process. Technol. 319 118068
[58] Hinojos A, Mireles J, Reichardt A, Frigola P, Hosemann P, Murr L E and Wicker R B 2016 Joining of Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology Mater. Des. 94 17–27
[59] Yang Z C, Zhu L D, Wang S H, Ning J S, Dun Y C, Meng G R, Xue P S, Xu P H and Xin B 2021 Effects of ultrasound on multilayer forming mechanism of Inconel 718 in directed energy deposition Addit. Manuf. 48 102462
[60] Yao L M, Huang S, Ramamurty U and Xiao Z M 2021 On the formation of “Fish-scale” morphology with curved grain interfacial microstructures during selective laser melting of dissimilar alloys Acta Mater. 220 117331
[61] Ghanavati R, Naffakh-Moosavy H and Moradi M 2021 Additive manufacturing of thin-walled SS316L-IN718 functionally graded materials by direct laser metal deposition J. Mater. Res. Technol. 15 2673–85
[62] Chen N N, Khan H A, Wan Z X, Lippert J, Sun H, Shang S L, Liu Z K and Li J J 2020 Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625 Addit. Manuf. 32 101037
[63] Xiao Y H, Wan Z X, Liu P W, Wang Z, Li J J and Chen L 2022 Quantitative simulations of grain nucleation and growth at additively manufactured bimetallic interfaces of SS316L and IN625 J. Mater. Process. Technol. 302 117506
[64] Mukherjee T, DebRoy T, Lienert T J, Maloy S A and Hosemann P 2021 Spatial and temporal variation of hardness of a printed steel part Acta Mater. 209 116775
[65] Dinda G P, Dasgupta A K and Mazumder J 2021 Texture control during laser deposition of nickel-based superalloy Scr. Mater. 67 503–6
[66] Tan Z E, Pang J H L, Kaminski J and Pepin H 2019 Characterisation of porosity, density, and microstructure of directed energy deposited stainless steel AISI 316L Addit. Manuf. 25 286–96
[67] Wolff S J, Gan Z T, Lin S, Bennett J L, Yan W T, Hyatt G, Ehmann K F, Wagner G J, Liu W K and Cao J 2019 Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel Addit. Manuf. 27 540–51 16 Int. J. Extrem. Manuf. 6 (2024) 025001 J Ning et al
[68] Zhang L, Wen M, Imade M, Fukuyama S and Yokogawa K 2008 Effect of nickel equivalent on hydrogen gas embrittlement of austenitic stainless steels based on type 316 at low temperatures Acta Mater. 56 3414–21
[69] Zuback J S and DebRoy T 2018 The hardness of additively manufactured alloys Materials 11 2070
[70] Adomako N K, Lewandowski J J, Arkhurst B M, Choi H, Chang H J and Kim J H 2022 Microstructures and mechanical properties of multi-layered materials composed of Ti-6Al-4V, vanadium, and 17–4PH stainless steel produced by directed energy deposition Addit. Manuf. 59 103174

Predicting solid-state phase transformations during metal additive manufacturing: A case study on electron-beam powder bed fusion of Inconel-738

Predicting solid-state phase transformations during metal additive manufacturing: A case study on electron-beam powder bed fusion of Inconel-738

금속 적층 제조 중 고체 상 변형 예측: Inconel-738의 전자빔 분말층 융합에 대한 사례 연구

Nana Kwabena Adomako a, Nima Haghdadi a, James F.L. Dingle bc, Ernst Kozeschnik d, Xiaozhou Liao bc, Simon P. Ringer bc, Sophie Primig a


Metal additive manufacturing (AM) has now become the perhaps most desirable technique for producing complex shaped engineering parts. However, to truly take advantage of its capabilities, advanced control of AM microstructures and properties is required, and this is often enabled via modeling. The current work presents a computational modeling approach to studying the solid-state phase transformation kinetics and the microstructural evolution during AM. Our approach combines thermal and thermo-kinetic modelling. A semi-analytical heat transfer model is employed to simulate the thermal history throughout AM builds. Thermal profiles of individual layers are then used as input for the MatCalc thermo-kinetic software. The microstructural evolution (e.g., fractions, morphology, and composition of individual phases) for any region of interest throughout the build is predicted by MatCalc. The simulation is applied to an IN738 part produced by electron beam powder bed fusion to provide insights into how γ′ precipitates evolve during thermal cycling. Our simulations show qualitative agreement with our experimental results in predicting the size distribution of γ′ along the build height, its multimodal size character, as well as the volume fraction of MC carbides. Our findings indicate that our method is suitable for a range of AM processes and alloys, to predict and engineer their microstructures and properties.

Graphical Abstract



Additive manufacturing, Simulation, Thermal cycles, γ′ phase, IN738

1. Introduction

Additive manufacturing (AM) is an advanced manufacturing method that enables engineering parts with intricate shapes to be fabricated with high efficiency and minimal materials waste. AM involves building up 3D components layer-by-layer from feedstocks such as powder [1]. Various alloys, including steel, Ti, Al, and Ni-based superalloys, have been produced using different AM techniques. These techniques include directed energy deposition (DED), electron- and laser powder bed fusion (E-PBF and L-PBF), and have found applications in a variety of industries such as aerospace and power generation [2][3][4]. Despite the growing interest, certain challenges limit broader applications of AM fabricated components in these industries and others. One of such limitations is obtaining a suitable and reproducible microstructure that offers the desired mechanical properties consistently. In fact, the AM as-built microstructure is highly complex and considerably distinctive from its conventionally processed counterparts owing to the complicated thermal cycles arising from the deposition of several layers upon each other [5][6].

Several studies have reported that the solid-state phases and solidification microstructure of AM processed alloys such as CMSX-4, CoCr [7][8], Ti-6Al-4V [9][10][11]IN738 [6]304L stainless steel [12], and IN718 [13][14] exhibit considerable variations along the build direction. For instance, references [9][10] have reported that there is a variation in the distribution of α and β phases along the build direction in Ti-alloys. Similarly, the microstructure of an L-PBF fabricated martensitic steel exhibits variations in the fraction of martensite [15]. Furthermore, some of the present authors and others [6][16][17][18][19][20] have recently reviewed and reported that there is a difference in the morphology and fraction of nanoscale precipitates as a function of build height in Ni-based superalloys. These non-uniformities in the as-built microstructure result in an undesired heterogeneity in mechanical and other important properties such as corrosion and oxidation [19][21][22][23]. To obtain the desired microstructure and properties, additional processing treatments are utilized, but this incurs extra costs and may lead to precipitation of detrimental phases and grain coarsening. Therefore, a through-process understanding of the microstructure evolution under repeated heating and cooling is now needed to further advance 3D printed microstructure and property control.

It is now commonly understood that the microstructure evolution during printing is complex, and most AM studies concentrate on the microstructure and mechanical properties of the final build only. Post-printing studies of microstructure characteristics at room temperature miss crucial information on how they evolve. In-situ measurements and modelling approaches are required to better understand the complex microstructural evolution under repeated heating and cooling. Most in-situ measurements in AM focus on monitoring the microstructural changes, such as phase transformations and melt pool dynamics during fabrication using X-ray scattering and high-speed X-ray imaging [24][25][26][27]. For example, Zhao et al. [25] measured the rate of solidification and described the α/β phase transformation during L-PBF of Ti-6Al-4V in-situ. Also, Wahlmann et al. [21] recently used an L-PBF machine coupled with X-ray scattering to investigate the changes in CMSX-4 phase during successive melting processes. Although these techniques provide significant understanding of the basic principles of AM, they are not widely accessible. This is due to the great cost of the instrument, competitive application process, and complexities in terms of the experimental set-up, data collection, and analysis [26][28].

Computational modeling techniques are promising and more widely accessible tools that enable advanced understanding, prediction, and engineering of microstructures and properties during AM. So far, the majority of computational studies have concentrated on physics based process models for metal AM, with the goal of predicting the temperature profile, heat transfer, powder dynamics, and defect formation (e.g., porosity) [29][30]. In recent times, there have been efforts in modeling of the AM microstructure evolution using approaches such as phase-field [31], Monte Carlo (MC) [32], and cellular automata (CA) [33], coupled with finite element simulations for temperature profiles. However, these techniques are often restricted to simulating the evolution of solidification microstructures (e.g., grain and dendrite structure) and defects (e.g., porosity). For example, Zinovieva et al. [33] predicted the grain structure of L-PBF Ti-6Al-4V using finite difference and cellular automata methods. However, studies on the computational modelling of the solid-state phase transformations, which largely determine the resulting properties, remain limited. This can be attributed to the multi-component and multi-phase nature of most engineering alloys in AM, along with the complex transformation kinetics during thermal cycling. This kind of research involves predictions of the thermal cycle in AM builds, and connecting it to essential thermodynamic and kinetic data as inputs for the model. Based on the information provided, the thermokinetic model predicts the history of solid-state phase microstructure evolution during deposition as output. For example, a multi-phase, multi-component mean-field model has been developed to simulate the intermetallic precipitation kinetics in IN718 [34] and IN625 [35] during AM. Also, Basoalto et al. [36] employed a computational framework to examine the contrasting distributions of process-induced microvoids and precipitates in two Ni-based superalloys, namely IN718 and CM247LC. Furthermore, McNamara et al. [37] established a computational model based on the Johnson-Mehl-Avrami model for non-isothermal conditions to predict solid-state phase transformation kinetics in L-PBF IN718 and DED Ti-6Al-4V. These models successfully predicted the size and volume fraction of individual phases and captured the repeated nucleation and dissolution of precipitates that occur during AM.

In the current study, we propose a modeling approach with appreciably short computational time to investigate the detailed microstructural evolution during metal AM. This may include obtaining more detailed information on the morphologies of phases, such as size distribution, phase fraction, dissolution and nucleation kinetics, as well as chemistry during thermal cycling and final cooling to room temperature. We utilize the combination of the MatCalc thermo-kinetic simulator and a semi-analytical heat conduction model. MatCalc is a software suite for simulation of phase transformations, microstructure evolution and certain mechanical properties in engineering alloys. It has successfully been employed to simulate solid-state phase transformations in Ni-based superalloys [38][39], steels [40], and Al alloys [41] during complex thermo-mechanical processes. MatCalc uses the classical nucleation theory as well as the so-called Svoboda-Fischer-Fratzl-Kozeschnik (SFFK) growth model as the basis for simulating precipitation kinetics [42]. Although MatCalc was originally developed for conventional thermo-mechanical processes, we will show that it is also applicable for AM if the detailed time-temperature profile of the AM build is known. The semi-analytical heat transfer code developed by Stump and Plotkowski [43] is used to simulate these profile throughout the AM build.

1.1. Application to IN738

Inconel-738 (IN738) is a precipitation hardening Ni-based superalloy mainly employed in high-temperature components, e.g. in gas turbines and aero-engines owing to its exceptional mechanical properties at temperatures up to 980 °C, coupled with high resistance to oxidation and corrosion [44]. Its superior high-temperature strength (∼1090 MPa tensile strength) is provided by the L12 ordered Ni3(Al,Ti) γ′ phase that precipitates in a face-centered cubic (FCC) γ matrix [45][46]. Despite offering great properties, IN738, like most superalloys with high γ′ fractions, is challenging to process owing to its propensity to hot cracking [47][48]. Further, machining of such alloys is challenging because of their high strength and work-hardening rates. It is therefore difficult to fabricate complex INC738 parts using traditional manufacturing techniques like casting, welding, and forging.

The emergence of AM has now made it possible to fabricate such parts from IN738 and other superalloys. Some of the current authors’ recent research successfully applied E-PBF to fabricate defect-free IN738 containing γ′ throughout the build [16][17]. The precipitated γ′ were heterogeneously distributed. In particular, Haghdadi et al. [16] studied the origin of the multimodal size distribution of γ′, while Lim et al. [17] investigated the gradient in γ′ character with build height and its correlation to mechanical properties. Based on these results, the present study aims to extend the understanding of the complex and site-specific microstructural evolution in E-PBF IN738 by using a computational modelling approach. New experimental evidence (e.g., micrographs not published previously) is presented here to support the computational results.

2. Materials and Methods

2.1. Materials preparation

IN738 Ni-based superalloy (59.61Ni-8.48Co-7.00Al-17.47Cr-3.96Ti-1.01Mo-0.81W-0.56Ta-0.49Nb-0.47C-0.09Zr-0.05B, at%) gas-atomized powder was used as feedstock. The powders, with average size of 60 ± 7 µm, were manufactured by Praxair and distributed by Astro Alloys Inc. An Arcam Q10 machine by GE Additive with an acceleration voltage of 60 kV was used to fabricate a 15 × 15 × 25 mm3 block (XYZ, Z: build direction) on a 316 stainless steel substrate. The block was 3D-printed using a ‘random’ spot melt pattern. The random spot melt pattern involves randomly selecting points in any given layer, with an equal chance of each point being melted. Each spot melt experienced a dwell time of 0.3 ms, and the layer thickness was 50 µm. Some of the current authors have previously characterized the microstructure of the very same and similar builds in more detail [16][17]. A preheat temperature of ∼1000 °C was set and kept during printing to reduce temperature gradients and, in turn, thermal stresses [49][50][51]. Following printing, the build was separated from the substrate through electrical discharge machining. It should be noted that this sample was simultaneously printed with the one used in [17] during the same build process and on the same build plate, under identical conditions.

2.2. Microstructural characterization

The printed sample was longitudinally cut in the direction of the build using a Struers Accutom-50, ground, and then polished to 0.25 µm suspension via standard techniques. The polished x-z surface was electropolished and etched using Struers A2 solution (perchloric acid in ethanol). Specimens for image analysis were polished using a 0.06 µm colloidal silica. Microstructure analyses were carried out across the height of the build using optical microscopy (OM) and scanning electron microscopy (SEM) with focus on the microstructure evolution (γ′ precipitates) in individual layers. The position of each layer being analyzed was determined by multiplying the layer number by the layer thickness (50 µm). It should be noted that the position of the first layer starts where the thermal profile is tracked (in this case, 2 mm from the bottom). SEM images were acquired using a JEOL 7001 field emission microscope. The brightness and contrast settings, acceleration voltage of 15 kV, working distance of 10 mm, and other SEM imaging parameters were all held constant for analysis of the entire build. The ImageJ software was used for automated image analysis to determine the phase fraction and size of γ′ precipitates and carbides. A 2-pixel radius Gaussian blur, following a greyscale thresholding and watershed segmentation was used [52]. Primary γ′ sizes (>50 nm), were measured using equivalent spherical diameters. The phase fractions were considered equal to the measured area fraction. Secondary γ′ particles (<50 nm) were not considered here. The γ′ size in the following refers to the diameter of a precipitate.

2.3. Hardness testing

A Struers DuraScan tester was utilized for Vickers hardness mapping on a polished x-z surface, from top to bottom under a maximum load of 100 mN and 10 s dwell time. 30 micro-indentations were performed per row. According to the ASTM standard [53], the indentations were sufficiently distant (∼500 µm) to assure that strain-hardened areas did not interfere with one another.

2.4. Computational simulation of E-PBF IN738 build

2.4.1. Thermal profile modeling

The thermal history was generated using the semi-analytical heat transfer code (also known as the 3DThesis code) developed by Stump and Plotkowski [43]. This code is an open-source C++ program which provides a way to quickly simulate the conductive heat transfer found in welding and AM. The key use case for the code is the simulation of larger domains than is practicable with Computational Fluid Dynamics/Finite Element Analysis programs like FLOW-3D AM. Although simulating conductive heat transfer will not be an appropriate simplification for some investigations (for example the modelling of keyholding or pore formation), the 3DThesis code does provide fast estimates of temperature, thermal gradient, and solidification rate which can be useful for elucidating microstructure formation across entire layers of an AM build. The mathematics involved in the code is as follows:

In transient thermal conduction during welding and AM, with uniform and constant thermophysical properties and without considering fluid convection and latent heat effects, energy conservation can be expressed as:(1)��∂�∂�=�∇2�+�̇where � is density, � specific heat, � temperature, � time, � thermal conductivity, and �̇ a volumetric heat source. By assuming a semi-infinite domain, Eq. 1 can be analytically solved. The solution for temperature at a given time (t) using a volumetric Gaussian heat source is presented as:(2)��,�,�,�−�0=33�����32∫0�1������exp−3�′�′2��+�′�′2��+�′�′2����′(3)and��=12��−�′+��2for�=�,�,�(4)and�′�′=�−���′Where � is the vector �,�,� and �� is the location of the heat source.

The numerical integration scheme used is an adaptive Gaussian quadrature method based on the following nondimensionalization:(5)�=��xy2�,�′=��xy2�′,�=��xy,�=��xy,�=��xy,�=���xy

A more detailed explanation of the mathematics can be found in reference [43].

The main source of the thermal cycling present within a powder-bed fusion process is the fusion of subsequent layers. Therefore, regions near the top of a build are expected to undergo fewer thermal cycles than those closer to the bottom. For this purpose, data from the single scan’s thermal influence on multiple layers was spliced to represent the thermal cycles experienced at a single location caused by multiple subsequent layers being fused.

The cross-sectional area simulated by this model was kept constant at 1 × 1 mm2, and the depth was dependent on the build location modelled with MatCalc. For a build location 2 mm from the bottom, the maximum number of layers to simulate is 460. Fig. 1a shows a stitched overview OM image of the entire build indicating the region where this thermal cycle is simulated and tracked. To increase similarity with the conditions of the physical build, each thermal history was constructed from the results of two simulations generated with different versions of a random scan path. The parameters used for these thermal simulations can be found in Table 1. It should be noted that the main purpose of the thermal profile modelling was to demonstrate how the conditions at different locations of the build change relative to each other. Accurately predicting the absolute temperature during the build would require validation via a temperature sensor measurement during the build process which is beyond the scope of the study. Nonetheless, to establish the viability of the heat source as a suitable approximation for this study, an additional sensitivity analysis was conducted. This analysis focused on the influence of energy input on γ′ precipitation behavior, the central aim of this paper. This was achieved by employing varying beam absorption energies (0.76, 0.82 – the values utilized in the simulation, and 0.9). The direct impact of beam absorption efficiency on energy input into the material was investigated. Specifically, the initial 20 layers of the build were simulated and subsequently compared to experimental data derived from SEM. While phase fractions were found to be consistent across all conditions, disparities emerged in the mean size of γ′ precipitates. An absorption efficiency of 0.76 yielded a mean size of approximately 70 nm. Conversely, absorption efficiencies of 0.82 and 0.9 exhibited remarkably similar mean sizes of around 130 nm, aligning closely with the outcomes of the experiments.

Fig. 1

Table 1. A list of parameters used in thermal simulation of E-PBF.

Spatial resolution5 µm
Time step0.5 s
Beam diameter200 µm
Beam penetration depth1 µm
Beam power1200 W
Beam absorption efficiency0.82
Thermal conductivity25.37 W/(m⋅K)
Chamber temperature1000 °C
Specific heat711.756 J/(kg⋅K)
Density8110 kg/m3

2.4.2. Thermo-kinetic simulation

The numerical analyses of the evolution of precipitates was performed using MatCalc version 6.04 (rel 0.011). The thermodynamic (‘mc_ni.tdb’, version 2.034) and diffusion (‘mc_ni.ddb’, version 2.007) databases were used. MatCalc’s basic principles are elaborated as follows:

The nucleation kinetics of precipitates are computed using a computational technique based on a classical nucleation theory [54] that has been modified for systems with multiple components [42][55]. Accordingly, the transient nucleation rate (�), which expresses the rate at which nuclei are formed per unit volume and time, is calculated as:(6)�=�0��*∙�xp−�*�∙�∙exp−��where �0 denotes the number of active nucleation sites, �* the rate of atomic attachment, � the Boltzmann constant, � the temperature, �* the critical energy for nucleus formation, τ the incubation time, and t the time. � (Zeldovich factor) takes into consideration that thermal excitation destabilizes the nucleus as opposed to its inactive state [54]. Z is defined as follows:(7)�=−12�kT∂2∆�∂�2�*12where ∆� is the overall change in free energy due to the formation of a nucleus and n is the nucleus’ number of atoms. ∆�’s derivative is evaluated at n* (critical nucleus size). �* accounts for the long-range diffusion of atoms required for nucleation, provided that the matrix’ and precipitates’ composition differ. Svoboda et al. [42] developed an appropriate multi-component equation for �*, which is given by:(8)�*=4��*2�4�∑�=1��ki−�0�2�0��0�−1where �* denotes the critical radius for nucleation, � represents atomic distance, and � is the molar volume. �ki and �0� represent the concentration of elements in the precipitate and matrix, respectively. The parameter �0� denotes the rate of diffusion of the ith element within the matrix. The expression for the incubation time � is expressed as [54]:(9)�=12�*�2

and �*, which represents the critical energy for nucleation:(10)�*=16�3�3∆�vol2where � is the interfacial energy, and ∆Gvol the change in the volume free energy. The critical nucleus’ composition is similar to the γ′ phase’s equilibrium composition at the same temperature. � is computed based on the precipitate and matrix compositions, using a generalized nearest neighbor broken bond model, with the assumption of interfaces being planar, sharp, and coherent [56][57][58].

In Eq. 7, it is worth noting that �* represents the fundamental variable in the nucleation theory. It contains �3/∆�vol2 and is in the exponent of the nucleation rate. Therefore, even small variations in γ and/or ∆�vol can result in notable changes in �, especially if �* is in the order of �∙�. This is demonstrated in [38] for UDIMET 720 Li during continuous cooling, where these quantities change steadily during precipitation due to their dependence on matrix’ and precipitate’s temperature and composition. In the current work, these changes will be even more significant as the system is exposed to multiple cycles of rapid cooling and heating.

Once nucleated, the growth of a precipitate is assessed using the radius and composition evolution equations developed by Svoboda et al. [42] with a mean-field method that employs the thermodynamic extremal principle. The expression for the total Gibbs free energy of a thermodynamic system G, which consists of n components and m precipitates, is given as follows:(11)�=∑���0��0�+∑�=1�4���33��+∑�=1��ki�ki+∑�=1�4���2��.

The chemical potential of component � in the matrix is denoted as �0�(�=1,…,�), while the chemical potential of component � in the precipitate is represented by �ki(�=1,…,�,�=1,…,�). These chemical potentials are defined as functions of the concentrations �ki(�=1,…,�,�=1,…,�). The interface energy density is denoted as �, and �� incorporates the effects of elastic energy and plastic work resulting from the volume change of each precipitate.

Eq. (12) establishes that the total free energy of the system in its current state relies on the independent state variables: the sizes (radii) of the precipitates �� and the concentrations of each component �ki. The remaining variables can be determined by applying the law of mass conservation to each component �. This can be represented by the equation:(12)��=�0�+∑�=1�4���33�ki,

Furthermore, the global mass conservation can be expressed by equation:(13)�=∑�=1���When a thermodynamic system transitions to a more stable state, the energy difference between the initial and final stages is dissipated. This model considers three distinct forms of dissipation effects [42]. These include dissipations caused by the movement of interfaces, diffusion within the precipitate and diffusion within the matrix.

Consequently, �̇� (growth rate) and �̇ki (chemical composition’s rate of change) of the precipitate with index � are derived from the linear system of equation system:(14)�ij��=��where �� symbolizes the rates �̇� and �̇ki [42]. Index i contains variables for precipitate radius, chemical composition, and stoichiometric boundary conditions suggested by the precipitate’s crystal structure. Eq. (10) is computed separately for every precipitate �. For a more detailed description of the formulae for the coefficients �ij and �� employed in this work please refer to [59].

The MatCalc software was used to perform the numerical time integration of �̇� and �̇ki of precipitates based on the classical numerical method by Kampmann and Wagner [60]. Detailed information on this method can be found in [61]. Using this computational method, calculations for E-PBF thermal cycles (cyclic heating and cooling) were computed and compared to experimental data. The simulation took approximately 2–4 hrs to complete on a standard laptop.

3. Results

3.1. Microstructure

Fig. 1 displays a stitched overview image and selected SEM micrographs of various γ′ morphologies and carbides after observations of the X-Z surface of the build from the top to 2 mm above the bottom. Fig. 2 depicts a graph that charts the average size and phase fraction of the primary γ′, as it changes with distance from the top to the bottom of the build. The SEM micrographs show widespread primary γ′ precipitation throughout the entire build, with the size increasing in the top to bottom direction. Particularly, at the topmost height, representing the 460th layer (Z = 22.95 mm), as seen in Fig. 1b, the average size of γ′ is 110 ± 4 nm, exhibiting spherical shapes. This is representative of the microstructure after it solidifies and cools to room temperature, without experiencing additional thermal cycles. The γ′ size slightly increases to 147 ± 6 nm below this layer and remains constant until 0.4 mm (∼453rd layer) from the top. At this position, the microstructure still closely resembles that of the 460th layer. After the 453rd layer, the γ′ size grows rapidly to ∼503 ± 19 nm until reaching the 437th layer (1.2 mm from top). The γ′ particles here have a cuboidal shape, and a small fraction is coarser than 600 nm. γ′ continue to grow steadily from this position to the bottom (23 mm from the top). A small fraction of γ′ is > 800 nm.

Fig. 2

Besides primary γ′, secondary γ′ with sizes ranging from 5 to 50 nm were also found. These secondary γ′ precipitates, as seen in Fig. 1f, were present only in the bottom and middle regions. A detailed analysis of the multimodal size distribution of γ′ can be found in [16]. There is no significant variation in the phase fraction of the γ′ along the build. The phase fraction is ∼ 52%, as displayed in Fig. 2. It is worth mentioning that the total phase fraction of γ′ was estimated based on the primary γ′ phase fraction because of the small size of secondary γ′. Spherical MC carbides with sizes ranging from 50 to 400 nm and a phase fraction of 0.8% were also observed throughout the build. The carbides are the light grey precipitates in Fig. 1g. The light grey shade of carbides in the SEM images is due to their composition and crystal structure [52]. These carbides are not visible in Fig. 1b-e because they were dissolved during electro-etching carried out after electropolishing. In Fig. 1g, however, the sample was examined directly after electropolishing, without electro-etching.

Table 2 shows the nominal and measured composition of γ′ precipitates throughout the build by atom probe microscopy as determined in our previous study [17]. No build height-dependent composition difference was observed in either of the γ′ precipitate populations. However, there was a slight disparity between the composition of primary and secondary γ′. Among the main γ′ forming elements, the primary γ′ has a high Ti concentration while secondary γ′ has a high Al concentration. A detailed description of the atom distribution maps and the proxigrams of the constituent elements of γ′ throughout the build can be found in [17].

Table 2. Bulk IN738 composition determined using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Compositions of γ, primary γ′, and secondary γ′ at various locations in the build measured by APT. This information is reproduced from data in Ref. [17] with permission.

γ matrix
Primary γ′
Secondary γ′

3.2. Hardness

Fig. 3a shows the Vickers hardness mapping performed along the entire X-Z surface, while Fig. 3b shows the plot of average hardness at different build heights. This hardness distribution is consistent with the γ′ precipitate size gradient across the build direction in Fig. 1Fig. 2. The maximum hardness of ∼530 HV1 is found at ∼0.5 mm away from the top surface (Z = 22.5), where γ′ particles exhibit the smallest observed size in Fig. 2b. Further down the build (∼ 2 mm from the top), the hardness drops to the 440–490 HV1 range. This represents the region where γ′ begins to coarsen. The hardness drops further to 380–430 HV1 at the bottom of the build.

Fig. 3

3.3. Modeling of the microstructural evolution during E-PBF

3.3.1. Thermal profile modeling

Fig. 4 shows the simulated thermal profile of the E-PBF build at a location of 23 mm from the top of the build, using a semi-analytical heat conduction model. This profile consists of the time taken to deposit 460 layers until final cooling, as shown in Fig. 4a. Fig. 4b-d show the magnified regions of Fig. 4a and reveal the first 20 layers from the top, a single layer (first layer from the top), and the time taken for the build to cool after the last layer deposition, respectively.

Fig. 4

The peak temperatures experienced by previous layers decrease progressively as the number of layers increases but never fall below the build preheat temperature (1000 °C). Our simulated thermal cycle may not completely capture the complexity of the actual thermal cycle utilized in the E-PBF build. For instance, the top layer (Fig. 4c), also representing the first deposit’s thermal profile without additional cycles (from powder heating, melting, to solidification), recorded the highest peak temperature of 1390 °C. Although this temperature is above the melting range of the alloy (1230–1360 °C) [62], we believe a much higher temperature was produced by the electron beam to melt the powder. Nevertheless, the solidification temperature and dynamics are outside the scope of this study as our focus is on the solid-state phase transformations during deposition. It takes ∼25 s for each layer to be deposited and cooled to the build temperature. The interlayer dwell time is 125 s. The time taken for the build to cool to room temperature (RT) after final layer deposition is ∼4.7 hrs (17,000 s).

3.3.2. MatCalc simulation

During the MatCalc simulation, the matrix phase is defined as γ. γ′, and MC carbide are included as possible precipitates. The domain of these precipitates is set to be the matrix (γ), and nucleation is assumed to be homogenous. In homogeneous nucleation, all atoms of the unit volume are assumed to be potential nucleation sitesTable 3 shows the computational parameters used in the simulation. All other parameters were set at default values as recommended in the version 6.04.0011 of MatCalc. The values for the interfacial energies are automatically calculated according to the generalized nearest neighbor broken bond model and is one of the most outstanding features in MatCalc [56][57][58]. It should be noted that the elastic misfit strain was not included in the calculation. The output of MatCalc includes phase fraction, size, nucleation rate, and composition of the precipitates. The phase fraction in MatCalc is the volume fraction. Although the experimental phase fraction is the measured area fraction, it is relatively similar to the volume fraction. This is because of the generally larger precipitate size and similar morphology at the various locations along the build [63]. A reliable phase fraction comparison between experiment and simulation can therefore be made.

Table 3. Computational parameters used in the simulation.

Precipitation domainγ
Nucleation site γ′Bulk (homogenous)
Nucleation site MC carbideBulk (Homogenous)
Precipitates class size250
Regular solution critical temperature γ′2500 K[64]
Calculated interfacial energyγ′ = 0.080–0.140 J/m2 and MC carbide = 0.410–0.430 J/m2 Precipitate phase fraction

Fig. 5a shows the simulated phase fraction of γ′ and MC carbide during thermal cycling. Fig. 5b is a magnified view of 5a showing the simulated phase fraction at the center points of the top 70 layers, whereas Fig. 5c corresponds to the first two layers from the top. As mentioned earlier, the top layer (460th layer) represents the microstructure after solidification. The microstructure of the layers below is determined by the number of thermal cycles, which increases with distance to the top. For example, layers 459, 458, 457, up to layer 1 (region of interest) experience 1, 2, 3 and 459 thermal cycles, respectively. In the top layer in Fig. 5c, the volume fraction of γ′ and carbides increases with temperature. For γ′, it decreases to zero when the temperature is above the solvus temperature after a few seconds. Carbides, however, remain constant in their volume fraction reaching equilibrium (phase fraction ∼ 0.9%) in a short time. The topmost layer can be compared to the first deposit, and the peak in temperature symbolizes the stage where the electron beam heats the powder until melting. This means γ′ and carbide precipitation might have started in the powder particles during heating from the build temperature and electron beam until the onset of melting, where γ′ dissolves, but carbides remain stable [28].

Fig. 5

During cooling after deposition, γ′ reprecipitates at a temperature of 1085 °C, which is below its solvus temperature. As cooling progresses, the phase fraction increases steadily to ∼27% and remains constant at 1000 °C (elevated build temperature). The calculated equilibrium fraction of phases by MatCalc is used to show the complex precipitation characteristics in this alloy. Fig. 6 shows that MC carbides form during solidification at 1320 °C, followed by γ′, which precipitate when the solidified layer cools to 1140 °C. This indicates that all deposited layers might contain a negligible amount of these precipitates before subsequent layer deposition, while being at the 1000 °C build temperature or during cooling to RT. The phase diagram also shows that the equilibrium fraction of the γ′ increases as temperature decreases. For instance, at 1000, 900, and 800 °C, the phase fractions are ∼30%, 38%, and 42%, respectively.

Fig. 6

Deposition of subsequent layers causes previous layers to undergo phase transformations as they are exposed to several thermal cycles with different peak temperatures. In Fig. 5c, as the subsequent layer is being deposited, γ′ in the previous layer (459th layer) begins to dissolve as the temperature crosses the solvus temperature. This is witnessed by the reduction of the γ′ phase fraction. This graph also shows how this phase dissolves during heating. However, the phase fraction of MC carbide remains stable at high temperatures and no dissolution is seen during thermal cycling. Upon cooling, the γ′ that was dissolved during heating reprecipitates with a surge in the phase fraction until 1000 °C, after which it remains constant. This microstructure is similar to the solidification microstructure (layer 460), with a similar γ′ phase fraction (∼27%).

The complete dissolution and reprecipitation of γ′ continue for several cycles until the 50th layer from the top (layer 411), where the phase fraction does not reach zero during heating to the peak temperature (see Fig. 5d). This indicates the ‘partial’ dissolution of γ′, which continues progressively with additional layers. It should be noted that the peak temperatures for layers that underwent complete dissolution were much higher (1170–1300 °C) than the γ′ solvus.

The dissolution and reprecipitation of γ′ during thermal cycling are further confirmed in Fig. 7, which summarizes the nucleation rate, phase fraction, and concentration of major elements that form γ′ in the matrix. Fig. 7b magnifies a single layer (3rd layer from top) within the full dissolution region in Fig. 7a to help identify the nucleation and growth mechanisms. From Fig. 7b, γ′ nucleation begins during cooling whereby the nucleation rate increases to reach a maximum value of approximately 1 × 1020 m−3s−1. This fast kinetics implies that some rearrangement of atoms is required for γ′ precipitates to form in the matrix [65][66]. The matrix at this stage is in a non-equilibrium condition. Its composition is similar to the nominal composition and remains unchanged. The phase fraction remains insignificant at this stage although nucleation has started. The nucleation rate starts declining upon reaching the peak value. Simultaneously, diffusion-controlled growth of existing nuclei occurs, depleting the matrix of γ′ forming elements (Al and Ti). Thus, from (7)(11), ∆�vol continuously decreases until nucleation ceases. The growth of nuclei is witnessed by the increase in phase fraction until a constant level is reached at 27% upon cooling to and holding at build temperature. This nucleation event is repeated several times.

Fig. 7

At the onset of partial dissolution, the nucleation rate jumps to 1 × 1021 m−3s−1, and then reduces sharply at the middle stage of partial dissolution. The nucleation rate reaches 0 at a later stage. Supplementary Fig. S1 shows a magnified view of the nucleation rate, phase fraction, and thermal profile, underpinning this trend. The jump in nucleation rate at the onset is followed by a progressive reduction in the solute content of the matrix. The peak temperatures (∼1130–1160 °C) are lower than those in complete dissolution regions but still above or close to the γ′ solvus. The maximum phase fraction (∼27%) is similar to that of the complete dissolution regions. At the middle stage, the reduction in nucleation rate is accompanied by a sharp drop in the matrix composition. The γ′ fraction drops to ∼24%, where the peak temperatures of the layers are just below or at γ′ solvus. The phase fraction then increases progressively through the later stage of partial dissolution to ∼30% towards the end of thermal cycling. The matrix solute content continues to drop although no nucleation event is seen. The peak temperatures are then far below the γ′ solvus. It should be noted that the matrix concentration after complete dissolution remains constant. Upon cooling to RT after final layer deposition, the nucleation rate increases again, indicating new nucleation events. The phase fraction reaches ∼40%, with a further depletion of the matrix in major γ′ forming elements. γ′ size distribution

Fig. 8 shows histograms of the γ′ precipitate size distributions (PSD) along the build height during deposition. These PSDs are predicted at the end of each layer of interest just before final cooling to room temperature, to separate the role of thermal cycles from final cooling on the evolution of γ′. The PSD for the top layer (layer 460) is shown in Fig. 8a (last solidified region with solidification microstructure). The γ′ size ranges from 120 to 230 nm and is similar to the 44 layers below (2.2 mm from the top).

Fig. 8

Further down the build, γ′ begins to coarsen after layer 417 (44th layer from top). Fig. 8c shows the PSD after the 44th layer, where the γ′ size exhibits two peaks at ∼120–230 and ∼300 nm, with most of the population being in the former range. This is the onset of partial dissolution where simultaneously with the reprecipitation and growth of fresh γ′, the undissolved γ′ grows rapidly through diffusive transport of atoms to the precipitates. This is shown in Fig. 8c, where the precipitate class sizes between 250 and 350 represent the growth of undissolved γ′. Although this continues in the 416th layer, the phase fractions plot indicates that the onset of partial dissolution begins after the 411th layer. This implies that partial dissolution started early, but the fraction of undissolved γ′ was too low to impact the phase fraction. The reprecipitated γ′ are mostly in the 100–220 nm class range and similar to those observed during full dissolution.

As the number of layers increases, coarsening intensifies with continued growth of more undissolved γ′, and reprecipitation and growth of partially dissolved ones. Fig. 8d, e, and f show this sequence. Further down the build, coarsening progresses rapidly, as shown in Figs. 8d, 8e, and 8f. The γ′ size ranges from 120 to 1100 nm, with the peaks at 160, 180, and 220 nm in Figs. 8d, 8e, and 8f, respectively. Coarsening continues until nucleation ends during dissolution, where only the already formed γ′ precipitates continue to grow during further thermal cycling. The γ′ size at this point is much larger, as observed in layers 361 and 261, and continues to increase steadily towards the bottom (layer 1). Two populations in the ranges of ∼380–700 and ∼750–1100 nm, respectively, can be seen. The steady growth of γ′ towards the bottom is confirmed by the gradual decrease in the concentration of solute elements in the matrix (Fig. 7a). It should be noted that for each layer, the γ′ class with the largest size originates from continuous growth of the earliest set of the undissolved precipitates.

Fig. 9Fig. 10 and supplementary Figs. S2 and S3 show the γ′ size evolution during heating and cooling of a single layer in the full dissolution region, and early, middle stages, and later stages of partial dissolution, respectively. In all, the size of γ′ reduces during layer heating. Depending on the peak temperature of the layer which varies with build height, γ′ are either fully or partially dissolved as mentioned earlier. Upon cooling, the dissolved γ′ reprecipitate.

Fig. 9
Fig. 10

In Fig. 9, those layers that underwent complete dissolution (top layers) were held above γ′ solvus temperature for longer. In Fig. 10, layers at the early stage of partial dissolution spend less time in the γ′ solvus temperature region during heating, leading to incomplete dissolution. In such conditions, smaller precipitates are fully dissolved while larger ones shrink [67]. Layers in the middle stages of partial dissolution have peak temperatures just below or at γ′ solvus, not sufficient to achieve significant γ′ dissolution. As seen in supplementary Fig. S2, only a few smaller γ′ are dissolved back into the matrix during heating, i.e., growth of precipitates is more significant than dissolution. This explains the sharp decrease in concentration of Al and Ti in the matrix in this layer.

The previous sections indicate various phenomena such as an increase in phase fraction, further depletion of matrix composition, and new nucleation bursts during cooling. Analysis of the PSD after the final cooling of the build to room temperature allows a direct comparison to post-printing microstructural characterization. Fig. 11 shows the γ′ size distribution of layer 1 (460th layer from the top) after final cooling to room temperature. Precipitation of secondary γ′ is observed, leading to the multimodal size distribution of secondary and primary γ′. The secondary γ′ size falls within the 10–80 nm range. As expected, a further growth of the existing primary γ′ is also observed during cooling.

Fig. 11 γ′ chemistry after deposition

Fig. 12 shows the concentration of the major elements that form γ′ (Al, Ti, and Ni) in the primary and secondary γ′ at the bottom of the build, as calculated by MatCalc. The secondary γ′ has a higher Al content (13.5–14.5 at% Al), compared to 13 at% Al in the primary γ′. Additionally, within the secondary γ′, the smallest particles (∼10 nm) have higher Al contents than larger ones (∼70 nm). In contrast, for the primary γ′, there is no significant variation in the Al content as a function of their size. The Ni concentration in secondary γ′ (71.1–72 at%) is also higher in comparison to the primary γ′ (70 at%). The smallest secondary γ′ (∼10 nm) have higher Ni contents than larger ones (∼70 nm), whereas there is no substantial change in the Ni content of primary γ′, based on their size. As expected, Ti shows an opposite size-dependent variation. It ranges from ∼ 7.7–8.7 at% Ti in secondary γ′ to ∼9.2 at% in primary γ′. Similarly, within the secondary γ′, the smallest (∼10 nm) have lower Al contents than the larger ones (∼70 nm). No significant variation is observed for Ti content in primary γ′.

Fig. 12

4. Discussion

A combined modelling method is utilized to study the microstructural evolution during E-PBF of IN738. The presented results are discussed by examining the precipitation and dissolution mechanism of γ′ during thermal cycling. This is followed by a discussion on the phase fraction and size evolution of γ′ during thermal cycling and after final cooling. A brief discussion on carbide morphology is also made. Finally, a comparison is made between the simulation and experimental results to assess their agreement.

4.1. γ′ morphology as a function of build height

4.1.1. Nucleation of γ′

The fast precipitation kinetics of the γ′ phase enables formation of γ′ upon quenching from higher temperatures (above solvus) during thermal cycling [66]. In Fig. 7b, for a single layer in the full dissolution region, during cooling, the initial increase in nucleation rate signifies the first formation of nuclei. The slight increase in nucleation rate during partial dissolution, despite a decrease in the concentration of γ′ forming elements, may be explained by the nucleation kinetics. During partial dissolution and as the precipitates shrink, it is assumed that the regions at the vicinity of partially dissolved precipitates are enriched in γ′ forming elements [68][69]. This differs from the full dissolution region, in which case the chemical composition is evenly distributed in the matrix. Several authors have attributed the solute supersaturation of the matrix around primary γ′ to partial dissolution during isothermal ageing [69][70][71][72]. The enhanced supersaturation in the regions close to the precipitates results in a much higher driving force for nucleation, leading to a higher nucleation rate upon cooling. This phenomenon can be closely related to the several nucleation bursts upon continuous cooling of Ni-based superalloys, where second nucleation bursts exhibit higher nucleation rates [38][68][73][74].

At middle stages of partial dissolution, the reduction in the nucleation rate indicates that the existing composition and low supersaturation did not trigger nucleation as the matrix was closer to the equilibrium state. The end of a nucleation burst means that the supersaturation of Al and Ti has reached a low level, incapable of providing sufficient driving force during cooling to or holding at 1000 °C for further nucleation [73]. Earlier studies on Ni-based superalloys have reported the same phenomenon during ageing or continuous cooling from the solvus temperature to RT [38][73][74].

4.1.2. Dissolution of γ′ during thermal cycling

γ′ dissolution kinetics during heating are fast when compared to nucleation due to exponential increase in phase transformation and diffusion activities with temperature [65]. As shown in Fig. 9Fig. 10, and supplementary Figs. S2 and S3, the reduction in γ′ phase fraction and size during heating indicates γ′ dissolution. This is also revealed in Fig. 5 where phase fraction decreases upon heating. The extent of γ′ dissolution mostly depends on the temperature, time spent above γ′ solvus, and precipitate size [75][76][77]. Smaller γ′ precipitates are first to be dissolved [67][77][78]. This is mainly because more solute elements need to be transported away from large γ′ precipitates than from smaller ones [79]. Also, a high temperature above γ′ solvus temperature leads to a faster dissolution rate [80]. The equilibrium solvus temperature of γ′ in IN738 in our MatCalc simulation (Fig. 6) and as reported by Ojo et al. [47] is 1140 °C and 1130–1180 °C, respectively. This means the peak temperature experienced by previous layers decreases progressively from γ′ supersolvus to subsolvus, near-solvus, and far from solvus as the number of subsequent layers increases. Based on the above, it can be inferred that the degree of dissolution of γ′ contributes to the gradient in precipitate distribution.

Although the peak temperatures during later stages of partial dissolution are much lower than the equilibrium γ′ solvus, γ′ dissolution still occurs but at a significantly lower rate (supplementary Fig. S3). Wahlmann et al. [28] also reported a similar case where they observed the rapid dissolution of γ′ in CMSX-4 during fast heating and cooling cycles at temperatures below the γ′ solvus. They attributed this to the γ′ phase transformation process taking place in conditions far from the equilibrium. While the same reasoning may be valid for our study, we further believe that the greater surface area to volume ratio of the small γ′ precipitates contributed to this. This ratio means a larger area is available for solute atoms to diffuse into the matrix even at temperatures much below the solvus [81].

4.2. γ′ phase fraction and size evolution

4.2.1. During thermal cycling

In the first layer, the steep increase in γ′ phase fraction during heating (Fig. 5), which also represents γ′ precipitation in the powder before melting, has qualitatively been validated in [28]. The maximum phase fraction of 27% during the first few layers of thermal cycling indicates that IN738 theoretically could reach the equilibrium state (∼30%), but the short interlayer time at the build temperature counteracts this. The drop in phase fraction at middle stages of partial dissolution is due to the low number of γ′ nucleation sites [73]. It has been reported that a reduction of γ′ nucleation sites leads to a delay in obtaining the final volume fraction as more time is required for γ′ precipitates to grow and reach equilibrium [82]. This explains why even upon holding for 150 s before subsequent layer deposition, the phase fraction does not increase to those values that were observed in the previous full γ′ dissolution regions. Towards the end of deposition, the increase in phase fraction to the equilibrium value of 30% is as a result of the longer holding at build temperature or close to it [83].

During thermal cycling, γ′ particles begin to grow immediately after they first precipitate upon cooling. This is reflected in the rapid increase in phase fraction and size during cooling in Fig. 5 and supplementary Fig. S2, respectively. The rapid growth is due to the fast diffusion of solute elements at high temperatures [84]. The similar size of γ′ for the first 44 layers from the top can be attributed to the fact that all layers underwent complete dissolution and hence, experienced the same nucleation event and growth during deposition. This corresponds with the findings by Balikci et al. [85], who reported that the degree of γ′ precipitation in IN738LC does not change when a solution heat treatment is conducted above a certain critical temperature.

The increase in coarsening rate (Fig. 8) during thermal cycling can first be ascribed to the high peak temperature of the layers [86]. The coarsening rate of γ′ is known to increase rapidly with temperature due to the exponential growth of diffusion activity. Also, the simultaneous dissolution with coarsening could be another reason for the high coarsening rate, as γ′ coarsening is a diffusion-driven process where large particles grow by consuming smaller ones [78][84][86][87]. The steady growth of γ′ towards the bottom of the build is due to the much lower layer peak temperature, which is almost close to the build temperature, and reduced dissolution activity, as is seen in the much lower solute concentration in γ′ compared to those in the full and partial dissolution regions.

4.2.2. During cooling

The much higher phase fraction of ∼40% upon cooling signifies the tendency of γ′ to reach equilibrium at lower temperatures (Fig. 4). This is due to the precipitation of secondary γ′ and a further increase in the size of existing primary γ′, which leads to a multimodal size distribution of γ′ after cooling [38][73][88][89][90]. The reason for secondary γ′ formation during cooling is as follows: As cooling progresses, it becomes increasingly challenging to redistribute solute elements in the matrix owing to their lower mobility [38][73]. A higher supersaturation level in regions away from or free of the existing γ′ precipitates is achieved, making them suitable sites for additional nucleation bursts. More cooling leads to the growth of these secondary γ′ precipitates, but as the temperature and in turn, the solute diffusivity is low, growth remains slow.

4.3. Carbides

MC carbides in IN738 are known to have a significant impact on the high-temperature strength. They can also act as effective hardening particles and improve the creep resistance [91]. Precipitation of MC carbides in IN738 and several other superalloys is known to occur during solidification or thermal treatments (e.g., hot isostatic pressing) [92]. In our case, this means that the MC carbides within the E-PBF build formed because of the thermal exposure from the E-PBF thermal cycle in addition to initial solidification. Our simulation confirms this as MC carbides appear during layer heating (Fig. 5). The constant and stable phase fraction of MC carbides during thermal cycling can be attributed to their high melting point (∼1360 °C) and the short holding time at peak temperatures [75][93][94]. The solvus temperature for most MC carbides exceeds most of the peak temperatures observed in our simulation, and carbide dissolution kinetics at temperatures above the solvus are known to be comparably slow [95]. The stable phase fraction and random distribution of MC carbides signifies the slight influence on the gradient in hardness.

4.4. Comparison of simulations and experiments

4.4.1. Precipitate phase fraction and morphology as a function of build height

A qualitative agreement is observed for the phase fraction of carbides, i.e. ∼0.8% in the experiment and ∼0.9% in the simulation. The phase fraction of γ′ differs, with the experiment reporting a value of ∼51% and the simulation, 40%. Despite this, the size distribution of primary γ′ along the build shows remarkable consistency between experimental and computational analyses. It is worth noting that the primary γ′ morphology in the experimental analysis is observed in the as-fabricated state, whereas the simulation (Fig. 8) captures it during deposition process. The primary γ′ size in the experiment is expected to experience additional growth during the cooling phase. Regardless, both show similar trends in primary γ′ size increments from the top to the bottom of the build. The larger primary γ’ size in the simulation versus the experiment can be attributed to the fact that experimental and simulation results are based on 2D and 3D data, respectively. The absence of stereological considerations [96] in our analysis could have led to an underestimation of the precipitate sizes from SEM measurements. The early starts of coarsening (8th layer) in the experiment compared to the simulation (45th layer) can be attributed to a higher actual γ′ solvus temperature than considered in our simulation [47]. The solvus temperature of γ′ in a Ni-based superalloy is mainly determined by the detailed composition. A high amount of Cr and Co are known to reduce the solvus temperature, whereas Ta and Mo will increase it [97][98][99]. The elemental composition from our experimental work was used for the simulation except for Ta. It should be noted that Ta is not included in the thermodynamic database in MatCalc used, and this may have reduced the solvus temperature. This could also explain the relatively higher γ′ phase fraction in the experiment than in simulation, as a higher γ′ solvus temperature will cause more γ′ to precipitate and grow early during cooling [99][100].

Another possible cause of this deviation can be attributed to the extent of γ′ dissolution, which is mainly determined by the peak temperature. It can be speculated that individual peak temperatures at different layers in the simulation may have been over-predicted. However, one needs to consider that the true thermal profile is likely more complicated in the actual E-PBF process [101]. For example, the current model assumes that the thermophysical properties of the material are temperature-independent, which is not realistic. Many materials, including IN738, exhibit temperature-dependent properties such as thermal conductivityspecific heat capacity, and density [102]. This means that heat transfer simulations may underestimate or overestimate the temperature gradients and cooling rates within the powder bed and the solidified part. Additionally, the model does not account for the reduced thermal diffusivity through unmelted powder, where gas separating the powder acts as insulation, impeding the heat flow [1]. In E-PBF, the unmelted powder regions with trapped gas have lower thermal diffusivity compared to the fully melted regions, leading to localized temperature variations, and altered solidification behavior. These limitations can impact the predictions, particularly in relation to the carbide dissolution, as the peak temperatures may be underestimated.

While acknowledging these limitations, it is worth emphasizing that achieving a detailed and accurate representation of each layer’s heat source would impose tough computational challenges. Given the substantial layer count in E-PBF, our decision to employ a semi-analytical approximation strikes a balance between computational feasibility and the capture of essential trends in thermal profiles across diverse build layers. In future work, a dual-calibration strategy is proposed to further reduce simulation-experiment disparities. By refining temperature-independent thermophysical property approximations and absorptivity in the heat source model, and by optimizing interfacial energy descriptions in the kinetic model, the predictive precision could be enhanced. Further refining the simulation controls, such as adjusting the precipitate class size may enhance quantitative comparisons between modeling outcomes and experimental data in future work.

4.4.2. Multimodal size distribution of γ′ and concentration

Another interesting feature that sees qualitative agreement between the simulation and the experiment is the multimodal size distribution of γ′. The formation of secondary γ′ particles in the experiment and most E-PBF Ni-based superalloys is suggested to occur at low temperatures, during final cooling to RT [16][73][90]. However, so far, this conclusion has been based on findings from various continuous cooling experiments, as the study of the evolution during AM would require an in-situ approach. Our simulation unambiguously confirms this in an AM context by providing evidence for secondary γ′ precipitation during slow cooling to RT. Additionally, it is possible to speculate that the chemical segregation occurring during solidification, due to the preferential partitioning of certain elements between the solid and liquid phases, can contribute to the multimodal size distribution during deposition [51]. This is because chemical segregation can result in variations in the local composition of superalloys, which subsequently affects the nucleation and growth of γ′. Regions with higher concentrations of alloying elements will encourage the formation of larger γ′ particles, while regions with lower concentrations may favor the nucleation of smaller precipitates. However, it is important to acknowledge that the elevated temperature during the E-PBF process will largely homogenize these compositional differences [103][104].

A good correlation is also shown in the composition of major γ′ forming elements (Al and Ti) in primary and secondary γ′. Both experiment and simulation show an increasing trend for Al content and a decreasing trend for Ti content from primary to secondary γ′. The slight composition differences between primary and secondary γ′ particles are due to the different diffusivity of γ′ stabilizers at different thermal conditions [105][106]. As the formation of multimodal γ′ particles with different sizes occurs over a broad temperature range, the phase chemistry of γ′ will be highly size dependent. The changes in the chemistry of various γ′ (primary, secondary, and tertiary) have received significant attention since they have a direct influence on the performance [68][105][107][108][109]. Chen et al. [108][109], reported a high Al content in the smallest γ′ precipitates compared to the largest, while Ti showed an opposite trend during continuous cooling in a RR1000 Ni-based superalloy. This was attributed to the temperature and cooling rate at which the γ′ precipitates were formed. The smallest precipitates formed last, at the lowest temperature and cooling rate. A comparable observation is evident in the present investigation, where the secondary γ′ forms at a low temperature and cooling rate in comparison to the primary. The temperature dependence of γ′ chemical composition is further evidenced in supplementary Fig. S4, which shows the equilibrium chemical composition of γ′ as a function of temperature.

5. Conclusions

A correlative modelling approach capable of predicting solid-state phase transformations kinetics in metal AM was developed. This approach involves computational simulations with a semi-analytical heat transfer model and the MatCalc thermo-kinetic software. The method was used to predict the phase transformation kinetics and detailed morphology and chemistry of γ′ and MC during E-PBF of IN738 Ni-based superalloy. The main conclusions are:

  • 1.The computational simulations are in qualitative agreement with the experimental observations. This is particularly true for the γ′ size distribution along the build height, the multimodal size distribution of particles, and the phase fraction of MC carbides.
  • 2.The deviations between simulation and experiment in terms of γ′ phase fraction and location in the build are most likely attributed to a higher γ′ solvus temperature during the experiment than in the simulation, which is argued to be related to the absence of Ta in the MatCalc database.
  • 3.The dissolution and precipitation of γ′ occur fast and under non-equilibrium conditions. The level of γ′ dissolution determines the gradient in γ′ size distribution along the build. After thermal cycling, the final cooling to room temperature has further significant impacts on the final γ′ size, morphology, and distribution.
  • 4.A negligible amount of γ′ forms in the first deposited layer before subsequent layer deposition, and a small amount of γ′ may also form in the powder induced by the 1000 °C elevated build temperature before melting.

Our findings confirm the suitability of MatCalc to predict the microstructural evolution at various positions throughout a build in a Ni-based superalloy during E-PBF. It also showcases the suitability of a tool which was originally developed for traditional thermo-mechanical processing of alloys to the new additive manufacturing context. Our simulation capabilities are likely extendable to other alloy systems that undergo solid-state phase transformations implemented in MatCalc (various steels, Ni-based superalloys, and Al-alloys amongst others) as well as other AM processes such as L-DED and L-PBF which have different thermal cycle characteristics. New tools to predict the microstructural evolution and properties during metal AM are important as they provide new insights into the complexities of AM. This will enable control and design of AM microstructures towards advanced materials properties and performances.

CRediT authorship contribution statement

Primig Sophie: Writing – review & editing, Supervision, Resources, Project administration, Funding acquisition, Conceptualization. Adomako Nana Kwabena: Writing – original draft, Writing – review & editing, Visualization, Software, Investigation, Formal analysis, Conceptualization. Haghdadi Nima: Writing – review & editing, Supervision, Project administration, Methodology, Conceptualization. Dingle James F.L.: Methodology, Conceptualization, Software, Writing – review & editing, Visualization. Kozeschnik Ernst: Writing – review & editing, Software, Methodology. Liao Xiaozhou: Writing – review & editing, Project administration, Funding acquisition. Ringer Simon P: Writing – review & editing, Project administration, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.


This research was sponsored by the Department of Industry, Innovation, and Science under the auspices of the AUSMURI program – which is a part of the Commonwealth’s Next Generation Technologies Fund. The authors acknowledge the facilities and the scientific and technical assistance at the Electron Microscope Unit (EMU) within the Mark Wainwright Analytical Centre (MWAC) at UNSW Sydney and Microscopy Australia. Nana Adomako is supported by a UNSW Scientia PhD scholarship. Michael Haines’ (UNSW Sydney) contribution to the revised version of the original manuscript is thankfully acknowledged.

Appendix A. Supplementary material

Download : Download Word document (462KB)

Supplementary material.

Data Availability

Data will be made available on request.


Fig. 1 Multi-physics phenomena in the laser-material interaction zone


316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

*Corresponding author
1Technical University of Denmark (DTU), 2800, Kgs, Lyngby, Denmark


L-PBF(Laser Powder Bed Fusion)는 금속 적층 제조(MAM) 기술로, 기존 제조 공정에 비해 부품 설계 자유도, 조립품 통합, 부품 맞춤화 및 낮은 툴링 비용과 같은 여러 이점을 산업에 제공합니다.

전기 코일 및 열 관리 장치는 일반적으로 높은 전기 및 열 전도성 특성으로 인해 순수 구리로 제조됩니다. 따라서 순동의 L-PBF가 가능하다면 기하학적으로 최적화된 방열판과 자유형 전자코일을 제작할 수 있습니다.

그러나 L-PBF로 조밀한 순동 부품을 생산하는 것은 적외선에 대한 낮은 광 흡수율과 높은 열전도율로 인해 어렵습니다. 기존의 L-PBF 시스템에서 조밀한 구리 부품을 생산하려면 적외선 레이저의 출력을 500W 이상으로 높이거나 구리의 광흡수율이 높은 녹색 레이저를 사용해야 합니다.

적외선 레이저 출력을 높이면 후면 반사로 인해 레이저 시스템의 광학 구성 요소가 손상되고 렌즈의 열 광학 현상으로 인해 공정이 불안정해질 수 있습니다. 이 작업에서 FVM(Finite Volume Method)에 기반한 다중 물리학 중간 규모 수치 모델은 Flow-3D에서 개발되어 용융 풀 역학과 궁극적으로 부품 품질을 제어하는 ​​물리적 현상 상호 작용을 조사합니다.

녹색 레이저 열원과 적외선 레이저 열원은 기판 위의 순수 구리 분말 베드에 단일 트랙 증착을 생성하기 위해 개별적으로 사용됩니다.

용융 풀 역학에 대한 레이저 열원의 유사하지 않은 광학 흡수 특성의 영향이 탐구됩니다. 수치 모델을 검증하기 위해 단일 트랙이 구리 분말 베드에 증착되고 시뮬레이션된 용융 풀 모양과 크기가 비교되는 실험이 수행되었습니다.

녹색 레이저는 광흡수율이 높아 전도 및 키홀 모드 용융이 가능하고 적외선 레이저는 흡수율이 낮아 키홀 모드 용융만 가능하다. 레이저 파장에 대한 용융 모드의 변화는 궁극적으로 기계적, 전기적 및 열적 특성에 영향을 미치는 열 구배 및 냉각 속도에 대한 결과를 가져옵니다.

Laser Powder Bed Fusion (L-PBF) is a Metal Additive Manufacturing (MAM) technology which offers several advantages to industries such as part design freedom, consolidation of assemblies, part customization and low tooling cost over conventional manufacturing processes. Electric coils and thermal management devices are generally manufactured from pure copper due to its high electrical and thermal conductivity properties. Therefore, if L-PBF of pure copper is feasible, geometrically optimized heat sinks and free-form electromagnetic coils can be manufactured. However, producing dense pure copper parts by L-PBF is difficult due to low optical absorptivity to infrared radiation and high thermal conductivity. To produce dense copper parts in a conventional L-PBF system either the power of the infrared laser must be increased above 500W, or a green laser should be used for which copper has a high optical absorptivity. Increasing the infrared laser power can damage the optical components of the laser systems due to back reflections and create instabilities in the process due to thermal-optical phenomenon of the lenses. In this work, a multi-physics meso-scale numerical model based on Finite Volume Method (FVM) is developed in Flow-3D to investigate the physical phenomena interaction which governs the melt pool dynamics and ultimately the part quality. A green laser heat source and an infrared laser heat source are used individually to create single track deposition on pure copper powder bed above a substrate. The effect of the dissimilar optical absorptivity property of laser heat sources on the melt pool dynamics is explored. To validate the numerical model, experiments were conducted wherein single tracks are deposited on a copper powder bed and the simulated melt pool shape and size are compared. As the green laser has a high optical absorptivity, a conduction and keyhole mode melting is possible while for the infrared laser only keyhole mode melting is possible due to low absorptivity. The variation in melting modes with respect to the laser wavelength has an outcome on thermal gradient and cooling rates which ultimately affect the mechanical, electrical, and thermal properties.


Pure Copper, Laser Powder Bed Fusion, Finite Volume Method, multi-physics

Fig. 1 Multi-physics phenomena in the laser-material interaction zone
Fig. 1 Multi-physics phenomena in the laser-material interaction zone
Fig. 2 Framework for single laser track simulation model including powder bed and substrate (a) computational domain with boundaries (b) discretization of the domain with uniform quad mesh.
Fig. 2 Framework for single laser track simulation model including powder bed and substrate (a) computational domain with boundaries (b) discretization of the domain with uniform quad mesh.
Fig. 3 2D melt pool contours from the numerical model compared to experiments [16] for (a) VED = 65 J/mm3 at 7 mm from the beginning of the single track (b) VED = 103 J/mm3 at 3 mm from the beginning of the single track (c) VED = 103 J/mm3 at 7 mm from the beginning of the single track. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
Fig. 3 2D melt pool contours from the numerical model compared to experiments [16] for (a) VED = 65 J/mm3 at 7 mm from the beginning of the single track (b) VED = 103 J/mm3 at 3 mm from the beginning of the single track (c) VED = 103 J/mm3 at 7 mm from the beginning of the single track. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
Fig. 4 3D temperature contour plots of during single track L-PBF process at time1.8 µs when (a) VED = 65 J/mm3 (b) VED = 103 J/mm3 along with 2D melt pool contours at 5 mm from the laser initial position. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
Fig. 4 3D temperature contour plots of during single track L-PBF process at time1.8 µs when (a) VED = 65 J/mm3 (b) VED = 103 J/mm3 along with 2D melt pool contours at 5 mm from the laser initial position. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.


[1] L. Jyothish Kumar, P. M. Pandey, and D. I. Wimpenny, 3D printing and additive
manufacturing technologies. Springer Singapore, 2018. doi: 10.1007/978-981-13-0305-0.
[2] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure
and properties,” Progress in Materials Science, vol. 92, pp. 112–224, 2018, doi:
[3] C. S. Lefky, B. Zucker, D. Wright, A. R. Nassar, T. W. Simpson, and O. J. Hildreth,
“Dissolvable Supports in Powder Bed Fusion-Printed Stainless Steel,” 3D Printing and
Additive Manufacturing, vol. 4, no. 1, pp. 3–11, 2017, doi: 10.1089/3dp.2016.0043.
[4] J. L. Bartlett and X. Li, “An overview of residual stresses in metal powder bed fusion,”
Additive Manufacturing, vol. 27, no. January, pp. 131–149, 2019, doi:
[5] I. H. Ahn, “Determination of a process window with consideration of effective layer
thickness in SLM process,” International Journal of Advanced Manufacturing
Technology, vol. 105, no. 10, pp. 4181–4191, 2019, doi: 10.1007/s00170-019-04402-w.

[6] R. McCann et al., “In-situ sensing, process monitoring and machine control in Laser
Powder Bed Fusion: A review,” Additive Manufacturing, vol. 45, no. May, 2021, doi:
[7] M. Bayat et al., “Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF)
of Ti6Al4V: High-fidelity modelling and experimental validation,” Additive
Manufacturing, vol. 30, no. August, p. 100835, 2019, doi: 10.1016/j.addma.2019.100835.
[8] M. Bayat, S. Mohanty, and J. H. Hattel, “Multiphysics modelling of lack-of-fusion voids
formation and evolution in IN718 made by multi-track/multi-layer L-PBF,” International
Journal of Heat and Mass Transfer, vol. 139, pp. 95–114, 2019, doi:
[9] S. D. Jadhav, L. R. Goossens, Y. Kinds, B. van Hooreweder, and K. Vanmeensel, “Laserbased powder bed fusion additive manufacturing of pure copper,” Additive Manufacturing,
vol. 42, no. March, 2021, doi: 10.1016/j.addma.2021.101990.
[10] S. D. Jadhav, S. Dadbakhsh, L. Goossens, J. P. Kruth, J. van Humbeeck, and K.
Vanmeensel, “Influence of selective laser melting process parameters on texture evolution
in pure copper,” Journal of Materials Processing Technology, vol. 270, no. January, pp.
47–58, 2019, doi: 10.1016/j.jmatprotec.2019.02.022.
[11] H. Siva Prasad, F. Brueckner, J. Volpp, and A. F. H. Kaplan, “Laser metal deposition of
copper on diverse metals using green laser sources,” International Journal of Advanced
Manufacturing Technology, vol. 107, no. 3–4, pp. 1559–1568, 2020, doi: 10.1007/s00170-
[12] L. R. Goossens, Y. Kinds, J. P. Kruth, and B. van Hooreweder, “On the influence of
thermal lensing during selective laser melting,” Solid Freeform Fabrication 2018:
Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An
Additive Manufacturing Conference, SFF 2018, no. December, pp. 2267–2274, 2020.
[13] M. Bayat, V. K. Nadimpalli, D. B. Pedersen, and J. H. Hattel, “A fundamental investigation
of thermo-capillarity in laser powder bed fusion of metals and alloys,” International
Journal of Heat and Mass Transfer, vol. 166, p. 120766, 2021, doi:
[14] H. Chen, Q. Wei, Y. Zhang, F. Chen, Y. Shi, and W. Yan, “Powder-spreading mechanisms
in powder-bed-based additive manufacturing: Experiments and computational modeling,”
Acta Materialia, vol. 179, pp. 158–171, 2019, doi: 10.1016/j.actamat.2019.08.030.
[15] S. K. Nayak, S. K. Mishra, C. P. Paul, A. N. Jinoop, and K. S. Bindra, “Effect of energy
density on laser powder bed fusion built single tracks and thin wall structures with 100 µm
preplaced powder layer thickness,” Optics and Laser Technology, vol. 125, May 2020, doi:
[16] G. Nordet et al., “Absorptivity measurements during laser powder bed fusion of pure
copper with a 1 kW cw green laser,” Optics & Laser Technology, vol. 147, no. April 2021,
p. 107612, 2022, doi: 10.1016/j.optlastec.2021.107612.
[17] M. Hummel, C. Schöler, A. Häusler, A. Gillner, and R. Poprawe, “New approaches on
laser micro welding of copper by using a laser beam source with a wavelength of 450 nm,”
Journal of Advanced Joining Processes, vol. 1, no. February, p. 100012, 2020, doi:
[18] M. Hummel, M. Külkens, C. Schöler, W. Schulz, and A. Gillner, “In situ X-ray
tomography investigations on laser welding of copper with 515 and 1030 nm laser beam
sources,” Journal of Manufacturing Processes, vol. 67, no. April, pp. 170–176, 2021, doi:
[19] L. Gargalis et al., “Determining processing behaviour of pure Cu in laser powder bed
fusion using direct micro-calorimetry,” Journal of Materials Processing Technology, vol.
294, no. March, p. 117130, 2021, doi: 10.1016/j.jmatprotec.2021.117130.
[20] A. Mondal, D. Agrawal, and A. Upadhyaya, “Microwave heating of pure copper powder
with varying particle size and porosity,” Journal of Microwave Power and
Electromagnetic Energy, vol. 43, no. 1, pp. 4315–43110, 2009, doi:

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

Xiang WangLin-Jie ZhangJie Ning, and Suck-Joo Na
Published Online:8 Apr 2022


A 3D numerical model of heat transfer and fluid flow of molten pool in the process of laser wire deposition was presented by computational fluid dynamics technique. The simulation results of the deposition morphology were also compared with the experimental results under the condition of liquid bridge transfer mode. Moreover, they showed a good agreement. Considering the effect of recoil pressure, the morphology of the deposit metal obtained by the simulation was similar to the experiment result. Molten metal at the wire tip was peeled off and flowed into the molten pool, and then spread to both sides of the deposition layer under the recoil pressure. In addition, the results of simulation and high-speed charge-coupled device presented that a wedge transition zone, with a length of ∼6 mm, was formed behind the keyhole in the liquid bridge transfer process, where the height of deposited metal decreased gradually. After solidification, metal in the transition zone retained the original melt morphology, resulting in a decrease in the height of the tail of the deposition layer.


LWD, CFD, liquid bridge transfer, fluid dynamics, wedge transition zone

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition


1. Matthews MJ, Guss G, Khairallah SA, et al. Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 2016;114:33–42. CrossrefGoogle Scholar

2. Ge WJ, Han SW, Fang YC, et al. Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns. Appl Surf Sci 2017;419:150–158. CrossrefGoogle Scholar

3. Bai XW, Colegrove P, Ding JL, et al. Numerical analyswas of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 2018;124:504–516. CrossrefGoogle Scholar

4. Torkamany MJ, Kaplan AFH, Ghaini FM. Wire deposition by a laser-induced boiling front. Opt Laser Technol 2015;69:104–112. CrossrefGoogle Scholar

5. Yu Y, Huang W, Wang G. Investigation of melting dynamics of filler wire during wire feed laser welding. J Mec Sci Technol 2013;27:1097–1108. CrossrefGoogle Scholar

6. Ma G, Li L, Chen Y. Effects of beam confgurations on wire melting and transfer behaviors in dual beam laser welding with fller wire. Opt Laser Technol 2017;91:138–148. CrossrefGoogle Scholar

7. Abioye TE, Folkes J, Clare AT. A parametric study of Inconel 625 wire laser deposition. J Mater Process Tech 2013;213:2145–2151. CrossrefGoogle Scholar

8. Wei S, Wang G, Shin YC, et al. Comprehensive modeling of transport phenomena in laser hot-wire deposition process. Int J Heat Mass Transf 2018;125:1356–1368. CrossrefGoogle Scholar

9. Gu H, Li L. Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space. Int J Heat Mass Transf 2019;140:51–65. CrossrefGoogle Scholar

10. Hu R, Luo M, Liu T, et al. Thermal fluid dynamics of liquid bridge transfer in laser wire deposition 3D printing. Sci Technolf Weld Join 2019;24:1–11. Google Scholar

11. Chatterjee D, Chakraborty S. A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow. Phys Lett A 2006;351:359–367. CrossrefGoogle Scholar

12. Wu L, Cheon J, Kiran DV, et al. CFD simulations of GMA welding of horizontal fillet joints based on coordinate rotation of arc models. J Mater Process Tech 2016;231:221–238. CrossrefGoogle Scholar

13. Gerhard W, Boyer RR, Collings EW. Materials Properties Handbook: Titanium Alloys. ASM International: Almere, The Netherlands, 1994. Google Scholar

14. Colegrove P, Simiand PE, Varughese A, et al. Evaluation of a drilling model approach to represent laser spot microwelding. In: ASM Proceedings of the international conference: trends in welding research; 2009. Google Scholar

15. Boivineau M, Cagran C, Doytier D, et al. Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy. Int J Thermophys 2006;27:507–529. CrossrefGoogle Scholar

16. Shejndlin AE, Kenisarin MM, Chekhovskoj VY. Melting point of yttrium oxide. AN SSSR 1974;216:582–584. Google Scholar

17. Cho JH, Na SJ. Teflection and Fresnel absorption of laser beam in keyhole. J Phys D Appl Phys 2006;39:5372–5378. CrossrefGoogle Scholar

18. Han SW, Ahn J, Na SJ. A study on ray tracing method for CFD simulations of laser keyhole welding: Progressive search method. Weld World 2016;60:247–258. CrossrefGoogle Scholar

19. Allmen MV. Laser-Beam Interactions with Materials. Springer, Berlin-Heidelberg, 1995. Google Scholar

20. Dobson PJ. Absorption and scattering of light by small particles. Phys Bull 1984;35:104. CrossrefGoogle Scholar

21. Greses J, Hilton PA, Barlow CY. Plume attenuation under high power Nd:yttritium aluminum garnet laser welding. J Laser Appl 2004;16:9–15. CrossrefGoogle Scholar

22. Shcheglov PY, Uspenskiy SA, Gumenyuk AV, et al. Plume attenuation of laser radiation during high power fiber laser welding. Laser Phys Lett 2011;8:475–480. CrossrefGoogle Scholar

23. Yang P, Liou KN. Effective refractive index for determining ray propagation in an absorbing dielectric particle. J Quant Spectrosc Radiat Transf 2009;110:300–306. CrossrefGoogle Scholar

24. Barber PW. Absorption and scattering of light by small particles. J Colloid Interface Sci 1984;98:290–291. Google Scholar

25. Hu ZR, Chen X, Yang G, et al. Metal transfer in wire feeding-based electron beam 3D printing: Modes, dynamics, and transition criterion. Int J Heat Mass Transf 2018;126:877–887. CrossrefGoogle Scholar

26. David SA, Babu SS, Vitek JM. Welding: Solidification and microstructure. JOM 2013;55:14–20. CrossrefGoogle Scholar

27. Zhong ML, Liu W. Laser surface cladding: The state of the art and challenges. Proc Inst Mech Eng Part C J Mech Eng Sci 2010;224:1041–1060. CrossrefGoogle Scholar

28. Kobryn PA, Semiatin S. Microstructure and texture evolution during solidification processing of Ti-6Al-4V. J Mater Process Technol 2003;135:330–339. CrossrefGoogle Scholar

29. Debroy T, David S. Physical processes in fusion welding. Rev Mod Phys 1995;67:85–112. CrossrefGoogle Scholar

30. Lee YS, Nordin M, Babu SS, et al. Effect of fluid convection on dendrite arm spacing in laser deposition. Metall Trans B 2014;45:1520–1528. CrossrefGoogle Scholar

31. Rappaz M, David SA, Vitek JM, et al. Development of microstructures in Fe15Ni15Cr single crystal electron beam welds. Metall Trans A 1989;20:1125–1138. CrossrefGoogle Scholar

Forming characteristics and control method of weld bead for GMAW on curved surface

곡면에 GMAW용 용접 비드의 형성 특성 및 제어 방법

Forming characteristics and control method of weld bead for GMAW on curved surface

The International Journal of Advanced Manufacturing Technology (2021)Cite this article


곡면에서 GMAW 기반 적층 가공의 용접 성형 특성은 중력의 영향을 크게 받습니다. 성형면의 경사각이 크면 혹 비드(hump bead)와 같은 심각한 결함이 발생합니다.

본 논문에서는 양생면에서 용접 비드 형성의 형성 특성과 제어 방법을 연구하기 위해 용접 용융 풀 유동 역학의 전산 모델을 수립하고 제안된 모델을 검증하기 위해 증착 실험을 수행하였습니다.

결과는 용접 비드 경사각(α)이 증가함에 따라 역류의 속도가 증가하고 상향 용접의 경우 α > 60°일 때 불규칙한 험프 결함이 나타나는 것으로 나타났습니다.

상부 과잉 액체의 하향 압착력과 하부 상향 유동의 반동력과 표면장력 사이의 상호작용은 용접 혹 형성의 주요 요인이었다. 하향 용접의 경우 양호한 형태를 얻을 수 있었으며, 용접 비드 경사각이 증가함에 따라 용접 높이는 감소하고 용접 폭은 증가하였습니다.

하향 및 상향 용접을 위한 곡면의 용융 거동 및 성형 특성을 기반으로 험프 결함을 제어하기 위해 위브 용접을 통한 증착 방법을 제안하였습니다.

성형 궤적의 변화로 인해 용접 방향의 중력 성분이 크게 감소하여 용융 풀 흐름의 안정성이 향상되었으며 복잡한 표면에서 안정적이고 일관된 용접 비드를 얻는 데 유리했습니다.

하향 용접과 상향 용접 사이의 단일 비드의 치수 편차는 7% 이내였으며 하향 및 상향 혼합 혼합 비드 중첩 증착에서 비드의 변동 편차는 0.45로 GMAW 기반 적층 제조 공정에서 허용될 수 있었습니다.

이러한 발견은 GMAW를 기반으로 하는 곡선 적층 적층 제조의 용접 비드 형성 제어에 기여했습니다.

The weld forming characteristics of GMAW-based additive manufacturing on curved surface are dramatically influenced by gravity. Large inclined angle of the forming surface would lead to severe defects such as hump bead. In this paper, a computational model of welding molten pool flow dynamics was established to research the forming characteristic and control method of weld bead forming on cured surface, and deposition experiments were conducted to verify the proposed model. Results indicated that the velocity of backward flows increased with the increase of weld bead tilt angle (α) and irregular hump defects appeared when α > 60° for upward welding. The interaction between the downward squeezing force of the excess liquid at the top and the recoil force of the upward flow at the bottom and the surface tension were primary factors for welding hump formation. For downward welding, a good morphology shape could be obtained, and the weld height decreased and the weld width increased with the increase of weld bead tilt angle. Based on the molten behaviors and forming characteristics on curved surface for downward and upward welding, the method of deposition with weave welding was proposed to control hump defects. Gravity component in the welding direction was significantly reduced due to the change of forming trajectory, which improved the stability of the molten pool flow and was beneficial to obtain stable and consistent weld bead on complex surface. The dimensional deviations of the single bead between downward and upward welding were within 7% and the fluctuation deviation of the bead in multi-bead overlapping deposition with mixing downward and upward welding was 0.45, which could be acceptable in GMAW-based additive manufacturing process. These findings contributed to the weld bead forming control of curve layered additive manufacturing based on GMAW.


  • Molten pool behaviors
  • GMAW-based WAAM
  • Deposition with weave welding
  • Welding on curved surface
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10
  • Fig. 11extended data figure 11
  • Fig. 12extended data figure 12
  • Fig. 13extended data figure 13
  • Fig. 14extended data figure 14
  • Fig. 15extended data figure 15
  • Fig. 16extended data figure 16
  • Fig. 17extended data figure 17
  • Fig. 18extended data figure 18
  • Fig. 19extended data figure 19
  • Fig. 20extended data figure 20
  • Fig. 21extended data figure 21
  • Fig. 22extended data figure 22
  • Fig. 23extended data figure 23
  • Fig. 24extended data figure 24
  • Fig. 25extended data figure 25
  • Fig. 26extended data figure 26
  • Fig. 27extended data figure 27
  • Fig. 28extended data figure 28
  • Fig. 29extended data figure 29
  • Fig. 30extended data figure 30
  • Fig. 31extended data figure 31
  • Fig. 32extended data figure 32
  • Fig. 33extended data figure 33
  • Fig. 34extended data figure 34
  • Fig. 35extended data figure 35
  • Fig. 36extended data figure 36
  • Fig. 37extended data figure 37
  • Fig. 38extended data figure 38


  1. 1.Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P (2016) Wire + arc additive manufacturing. Mater Sci Technol (United Kingdom) 32:641–647. Google Scholar 
  2. 2.Pan ZX, Ding DH, Wu BT, Cuiuri D, Li HJ, Norrish J (2018) Arc welding processes for additive manufacturing: a review. In: Transactions on intelligent welding manufacturing. Springer Singapore, pp 3–24.
  3. 3.Panchagnula JS, Simhambhatla S (2018) Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing. Robot Comput Integr Manuf 49:194–203. Google Scholar 
  4. 4.Lu S, Zhou J, Zhang JS (2015) Optimization of welding thickness on casting-steel surface for production of forging die. Int J Adv Manuf Technol 76:1411–1419. Google Scholar 
  5. 5.Huang B, Singamneni SB (2015) Curved layer adaptive slicing (CLAS) for fused deposition modelling. Rapid Prototyp J 21:354–367. Google Scholar 
  6. 6.Jin Y, Du J, He Y, Fu GQ (2017) Modeling and process planning for curved layer fused deposition. Int J Adv Manuf Technol 91:273–285. Google Scholar 
  7. 7.Xie FB, Chen LF, Li ZY, Tang K (2020) Path smoothing and feed rate planning for robotic curved layer additive manufacturing. Robot Comput Integr Manuf 65.
  8. 8.Ding YY, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 44:67–76. Google Scholar 
  9. 9.Cho DW, Na SJ (2015) Molten pool behaviors for second pass V-groove GMAW. Int J Heat Mass Transf 88:945–956. Google Scholar 
  10. 10.Cho DW, Na SJ, Cho MH, Lee JS (2013) A study on V-groove GMAW for various welding positions. J Mater Process Technol 213:1640–1652. Google Scholar 
  11. 11.Hejripour F, Valentine DT, Aidun DK (2018) Study of mass transport in cold wire deposition for wire arc additive manufacturing. Int J Heat Mass Transf 125:471–484. Google Scholar 
  12. 12.Yuan L, Pan ZX, Ding DH, He FY, Duin SV, Li HJ, Li WH (2020) Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robot Comput Integr Manuf 63.
  13. 13.Nguyen MC, Medale M, Asserin O, Gounand S, Gilles P (2017) Sensitivity to welding positions and parameters in GTA welding with a 3D multiphysics numerical model. Numer Heat Transf Part A Appl 71:233–249. Google Scholar 
  14. 14.Gu H, Li L (2019) Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space. Int J Heat Mass Transf 140:51–65. Google Scholar 
  15. 15.Cho MH, Farson DF (2007) Understanding bead hump formation in gas metal arc welding using a numerical simulation. Metall Mater Trans B Process Metall Mater Process Sci 38:305–319. Google Scholar 
  16. 16.Nguyen TC, Weckman DC, Johnson DA, Kerr HW (2005) The humping phenomenon during high speed gas metal arc welding. Sci Technol Weld Join 10:447–459. Google Scholar 
  17. 17.Philip Y, Xu ZY, Wang Y, Wang R, Ye X (2019) Investigation of humping defect formation in a lap joint at a high-speed hybrid laser-GMA welding. Results Phys 13.
  18. 18.Hu ZQ, Qin XP, Shao T, Liu HM (2018) Understanding and overcoming of abnormity at start and end of the weld bead in additive manufacturing with GMAW. Int J Adv Manuf Technol 95:2357–2368. Google Scholar 
  19. 19.Tang SY, Wang GL, Huang C, Li RS, Zhou SY, Zhang HO (2020) Investigation, modeling and optimization of abnormal areas of weld beads in wire and arc additive manufacturing. Rapid Prototyp J 26:1183–1195. Google Scholar 
  20. 20.Bai X, Colegrove P, Ding J, Zhou XM, Diao CL, Bridgeman P, Honnige JR, Zhang HO, Williams S (2018) Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 124:504–516. Google Scholar 
  21. 21.Siewert E, Schein J, Forster G (2013) Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon-iron. J Phys D Appl Phys 46.
  22. 22.Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15:299–305. Google Scholar 
  23. 23.Fachinotti VD, Cardona A (2008) Semi-analytical solution of the thermal field induced by a moving double-ellipsoidal welding heat source in a semi-infinite body. Mec Comput XXVII:1519–1530
  24. 24.Nguyen NT, Mai YW, Simpson S, Ohta A (2004) Analytical approximate solution for double ellipsoidal heat source in finite thick plate. Weld J 83:82–93Google Scholar 
  25. 25.Goldak J, Chakravarti A, Bibby M (1985) A double ellipsoid finite element model for welding heat sources. IIW Doc. No. 212-603-85
  26. 26.Gu Y, Li YD, Yong Y, Xu FL, Su LF (2019) Determination of parameters of double-ellipsoidal heat source model based on optimization method. Weld World 63:365–376. Google Scholar 
  27. 27.Wu CS, Tsao KC (1990) Modelling the three-dimensional fluid flow and heat transfer in a moving weld pool. Eng Comput 7:241–248. Google Scholar 
  28. 28.Zhan XH, Liu XB, Wei YH, Chen JC, Chen J, Liu HB (2017) Microstructure and property characteristics of thick Invar alloy plate joints using weave bead welding. J Mater Process Technol 244:97–105. Google Scholar 
  29. 29.Zhan XH, Zhang D, Liu XB, Chen J, Wei YH, Liu RP (2017) Comparison between weave bead welding and multi-layer multi-pass welding for thick plate Invar steel. Int J Adv Manuf Technol 88:2211–2225. Google Scholar 
  30. 30.Xu GX, Li L, Wang JY, Zhu J, Li PF (2018) Study of weld formation in swing arc narrow gap vertical GMA welding by numerical modeling and experiment. Int J Adv Manuf Technol 96:1905–1917. Google Scholar 
  31. 31.Li YZ, Sun YF, Han QL, Zhang GJ, Horvath I (2018) Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts. J Mater Process Technol 252:838–848. Google Scholar 
Review on the evolution and technology of State-of-the-Art metal additive manufacturing processes

Review on the evolution and technology of State-of-the-Art metal additive manufacturing processes

최첨단 금속 적층 제조 공정의 진화 및 기술 검토

S.Pratheesh Kumar


Nowadays, the requirements of customers undergo dynamic changes and industries are heading towards the manufacturing of customized end-user products, making market fluctuations extremely unpredictable. This demands the production industries to shift towards instantaneous product development strategies that can deliver products on the shortest lead time without compromise in the quality and accuracy. Direct metal deposition is one such evolving additive manufacturing (AM) technique that has found its application from rapid prototyping to production of real-time industrial components. In addition, the process is ideal for just-in-time manufacturing, producing parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. The evolution of this advanced manufacturing technique had drastically reduced the manufacturing constraints and greatly improved the product versatility. This review provides insight into the evolution, current status, and challenges of metal additive manufacturing (MAM) techniques, starting from powder bed fusion and direct metal deposition. In addition to this, the review explores the variants of metal additive manufacturing with its process mechanism, merits, demerits, and applications. The efficiency of the processes is finally analysed using a time–cost triangle and the mechanical properties are comprehensively compared. The review will enhance the basic understanding of MAM and thus broaden the scope of research and development.

오늘날 고객의 요구 사항은 역동적 인 변화를 겪고 있으며 산업은 맞춤형 최종 사용자 제품의 제조로 향하고있어 시장 변동을 예측할 수 없게 만듭니다. 따라서 생산 산업은 품질과 정확성을 타협하지 않고 최단 리드 타임에 제품을 제공 할 수있는 즉각적인 제품 개발 전략으로 전환해야합니다. 직접 금속 증착은 쾌속 프로토 타이핑에서 실시간 산업 부품 생산에 이르기까지 응용 분야를 발견 한 진화하는 적층 제조 (AM) 기술 중 하나입니다. 또한이 프로세스는 적시 제조에 이상적이며 주문형 부품을 생산하는 동시에 비용, 에너지 소비 및 탄소 발자국을 줄일 수있는 잠재력을 제공합니다. 이 고급 제조 기술의 발전으로 제조 제약이 크게 줄어들고 제품의 다양성이 크게 향상되었습니다. 이 리뷰는 분말 베드 융합 및 직접 금속 증착에서 시작하여 금속 적층 제조 (MAM) 기술의 발전, 현재 상태 및 과제에 대한 통찰력을 제공합니다. 이 외에도이 리뷰에서는 프로세스 메커니즘, 장점, 단점 및 응용 프로그램과 함께 금속 적층 제조의 변형을 탐색합니다. 프로세스의 효율성은 마지막으로 시간-비용 삼각형을 사용하여 분석되고 기계적 특성이 포괄적으로 비교됩니다. 검토는 MAM에 대한 기본적인 이해를 높이고 연구 개발 범위를 넓힐 것입니다.

Keywords: Metal additive manufacturing, 3D Printing, Direct energy deposition, Electron beam meltingRapid prototyping

Figure 5.6 Experimental set-up equipped with high-speed camera system


전산 유체 역학 레이저 첨가제 모델링 제조 공정 및 중력의 영향

A thesis submitted to
The University of Manchester
For the degree of
Doctor of Philosophy (PhD)
In the Faculty of Science and Engineering
Heng Gu
School of Mechanical, Aerospace and Civil

레이저 적층 제조 (LAM)는 재료를 층별로 선택적으로 추가하여 하나 또는 여러 개의 레이저 빔을 사용하여 재료를 융합하거나 응고시키는 3D 부품을 형성하는 것을 기반으로 합니다.

LAM 공정을 조사하는 데 상당한 양의 작업을 할 수 있지만 다른 재료 성장 방향에서 중력 및 동적 유체 흐름 특성의 영향에 대해서는 알려진 바가 거의 없습니다.

레이저 제조 기술의 발전과 함께 LAM은 실린더 본체, 터빈 블레이드의 표면 클래딩, 해양 드릴링 헤드, 다양한 증착 방향이 일반적으로 필요한 슬리브 및 몰드의 측벽을 비롯한 다양한 환경에서 점점 더 많이 사용되고 있습니다. 또한 공간 적층 제조의 경우 운영 환경이 매우 낮거나 무중력을 경험하게 됩니다.

LAM 프로세스를 모델링하기 위한 수치적 방법 개발에 대한 이전 연구에서 많은 노력을 기울였습니다. 그러나 이전 모델링 작업의 대부분은 자유 표면 형성을 고려하지 않고 용융 풀 역학 개발에 초점을 맞추었습니다. 몇 가지 조사에만 동적 유동 용융 풀에 대한 재료 추가 분석이 포함됩니다.

다양한 재료 증착 방향 및 무중력 효과에서 수행 할 때 모든 복잡한 기능을 사용하여 증착 프로세스를 시뮬레이션하고 중력 효과를 고려할 수 있는 모델을 개발하는 작업은 발견되지 않았습니다.

이 연구에서는 재료 추가, 표면 장력, 용융 및 응고, 중력, 온도 의존 재료 속성, 자유 표면 형성 및 이동을 포함한 복합 공정 요인을 고려한 LAM 공정을 위해 3 차원 과도 전산 유체 역학 모델이 ​​구축되었습니다. 열원. 레이저 금속 증착 공정에 대한 더 나은 이해는 수치적으로 그리고 실험적으로 이루어졌습니다.

이 연구는 단일 레이어의 증착, 여러 인접 패스 및 돌출 된 피쳐가 있는 완전한 3 차원 형상을 다루었습니다. 증착 공정 중 다양한 증착 방향과 무중력 및 매우 낮은 중력에 대한 중력의 영향을 조사하고 그 영향을 최소화하기 위해 공정 매개 변수를 최적화 했습니다.

이 연구는 또한 층별 재료 추가를 기반으로 레이저 좁은 갭 용접 공정의 기본 현상과 용접 공정이 다른 방향으로 수행 될 때 중력이 홈 내부의 용융 풀 형성에 미치는 영향을 이해하는 데까지 확장되었습니다.

용융 풀 개발 이력 및 온도 분포를 분석하여 공정 중에 표면 장력 계수의 영향을 논의했습니다. 현재 모델의 도움으로 증착 불균일성, 증착 양단의 돌출부, 경사, 융착 부족, 계단 효과, 표면 파형, 중력 변화로 인한 붕괴 등 다양한 결함을 설명 하였습니다.

이러한 모든 결함을 제거하기 위한 해당 솔루션이 제시되었습니다. 무중력 레이저 적층 제조에 대한 연구는 이전에 보고되지 않았던 몇 가지 새로운 현상을 발견하여 우주에서 미래의 레이저 3D 프린팅을 위한 길을 닦았습니다.

Figure 1.1 Diagram for thesis structure
Figure 1.1 Diagram for thesis structure
Figure 2.1 Basic construction of a laser system [8]
Figure 2.1 Basic construction of a laser system [8]
Figure 2.3 Schematic of a diode laser system [12]
Figure 2.3 Schematic of a diode laser system [12]
Figure 2.4 Principle of a cladding pumped fibre laser [13]
Figure 2.4 Principle of a cladding pumped fibre laser [13]
Figure 2.5 Concept of a thin disk laser [14]
Figure 2.5 Concept of a thin disk laser [14]
Figure 2.7 Lateral powder injection [12]
Figure 2.7 Lateral powder injection [12]
Figure 2.9 Laser additive manufacturing using wire, (a) front feeding, (b) rear feeding,  wire placed at (c) leading edge, (d) centre and (e) trailing edge of melt pool [23, 24]
Figure 2.9 Laser additive manufacturing using wire, (a) front feeding, (b) rear feeding, wire placed at (c) leading edge, (d) centre and (e) trailing edge of melt pool [23, 24]
Figure 2.20 Bead geometry at the beginning of the deposition with different surface  tension gradient (a) Negative, (b) positive, (c) Mixed [85]
Figure 2.20 Bead geometry at the beginning of the deposition with different surface tension gradient (a) Negative, (b) positive, (c) Mixed [85]
Figure 2.22 Simulation of humping effect in high-speed gas tungsten arc welding [91]
Figure 2.22 Simulation of humping effect in high-speed gas tungsten arc welding [91]
Figure 2.25 (a) Melt pool shape formed by Marangoni stress only, (b) Melt pool shape  formed by gravity force only, (c) Melt shape formed by the combination of those two  forces together [122]
Figure 2.25 (a) Melt pool shape formed by Marangoni stress only, (b) Melt pool shape formed by gravity force only, (c) Melt shape formed by the combination of those two forces together [122]
Figure 2.27 Growth rate and temperature gradient on solidification boundary with  different melt pool shape [120]
Figure 2.27 Growth rate and temperature gradient on solidification boundary with different melt pool shape [120]
Figure 2.29 Two different methods to produce overhang structures[136]
Figure 2.29 Two different methods to produce overhang structures[136]
Figure 2.30 Contact angle of a water droplet adhering on a glass window [142]
Figure 2.30 Contact angle of a water droplet adhering on a glass window [142]
Figure 2.31 Stress components of a single track laser deposition (a) x-direction, (b) ydirection, (c) z-direction, (d) von Mises equivalent stress [151]
Figure 2.31 Stress components of a single track laser deposition (a) x-direction, (b) ydirection, (c) z-direction, (d) von Mises equivalent stress [151]
Figure 2.32 Phase fraction of martensite during laser metal deposition [160]
Figure 2.32 Phase fraction of martensite during laser metal deposition [160]
Figure 4.15 Development of melt pool and velocity field 0.588 s, 1.2 s, 1.896 s, 2.4 s
Figure 4.15 Development of melt pool and velocity field 0.588 s, 1.2 s, 1.896 s, 2.4 s
Figure 4.33 Two methods to print C, (A) raster (B) offset out
Figure 4.33 Two methods to print C, (A) raster (B) offset out
Figure 5.4(a) Cavitar laser illumination system (b) High-speed camera in horizontal  position
Figure 5.4(a) Cavitar laser illumination system (b) High-speed camera in horizontal position
Figure 5.5 Schematic diagrams of wire laser deposition process (a) flat (b) vertical
Figure 5.5 Schematic diagrams of wire laser deposition process (a) flat (b) vertical
Figure 5.6 Experimental set-up equipped with high-speed camera system
Figure 5.6 Experimental set-up equipped with high-speed camera system
Figure 5.7 2-layer deposition result and cross-section (a) top view, (b) experimental  cross section, (c) cross-section of modelling result
Figure 5.7 2-layer deposition result and cross-section (a) top view, (b) experimental cross section, (c) cross-section of modelling result
Figure 5.13 Temperature and melt pool-velocity field history for case 8, (a&f:0.36 s,  b&g:1.44 s, c&h:1.80 s, d&i:1.908 s, e&j:2.196 s)
Figure 5.13 Temperature and melt pool-velocity field history for case 8, (a&f:0.36 s, b&g:1.44 s, c&h:1.80 s, d&i:1.908 s, e&j:2.196 s)
Figure 5.16 Comparison of melt pool evolution for cases with big and small spot size
Figure 5.16 Comparison of melt pool evolution for cases with big and small spot size
Figure 6.27 (a,b,c) before re-melting, (d,e,f) after re-melting
Figure 6.27 (a,b,c) before re-melting, (d,e,f) after re-melting

6.5 Conclusion

좁은 갭 용접 공정의 다양한 측면을 다루는 3 차원 모델이 구축되었습니다. 용접 비드와 측벽 사이의 융합 현상이 없는 것은 필러 재료와 측벽을 녹일 수 있는 충분한 에너지를 제공 할 수 없는 낮은 열 입력으로 인한 것일 수 있습니다.

증가된 레이저 출력을 적용하거나 재 용융 패스를 수행 한 후 더 나은 표면 품질을 얻을 수 있고 측벽과의 융합 부족을 제거 할 수 있습니다. 용접 비드의 모양이 볼록한 모양에서 오목한 모양으로 바뀌고 측면 벽과의 좋은 젖음이 실현 될 수 있습니다.

다양한 위치에서 좁은 틈새 용접에 대한 중력의 영향을 조사했습니다. 용융 풀 전면의 경사 모양은 중력의 영향으로 다르게 나타납니다.

반면, 홈이 없는 기판의 증착 공정과 비교할 때 대부분의 열을 전달하는데 도움이 되는 측벽의 존재로 인해 중력의 영향이 감소했습니다.

마지막 패스 중에 중력은 일부 평평하지 않은 위치에서 심각한 낙하 및 붕괴 문제를 일으킬 수 있습니다. 이것은 표면에 더 큰 용융 풀이 형성되어 중력과 표면 장력 사이의 균형이 깨졌기 때문입니다. 수직 업 위치에서 좁은 간격 용접 공정 동안 다른 중력 수준이 적용되었습니다.

용접 비드와 측벽 사이의 융합 부족은 중력 수준이 증가함에 따라 관찰 될 수 있습니다. 중력이 증가하면 용융 풀의 뒤쪽 영역으로 더 많은 액체 재료가 이동하여 더 심각한 물방울과 볼록한 모양의 용접 비드가 발생합니다.

용융 풀 개발 이력의 도움으로 용접 비드가 더 이상 그루브에 있지 않거나 측벽과의 직접적인 접촉이 적을 때 전도를 통해 더 적은 열이 방출 될 수 있기 때문에 용융 풀 부피가 크게 증가한다는 것을 알 수 있습니다.

좁은 간격 용접 공정에 대한 표면 장력 계수의 영향을 조사했습니다. 양의 표면 장력 계수를 적용하면 용접 비드가 홈 내부에서 덜 오목한 것처럼 보였고 측벽의 습윤 조건이 음의 ∂γ / ∂T 조건의 경우만큼 좋지 않았습니다.

측벽이 없으면 용접 비드는 표면의 마지막 패스 동안 음의 계수와 양의 계수 케이스 사이에 더 많은 차이를 보여줍니다. 표면 장력 계수는 홈 내부의 측벽과의 융합 상태를 결정하는 데 중요한 역할을 했습니다.

두꺼운 부분의 좁은 틈새 용접 중에 여러 번 통과하는 용접 비드 개발이 조사되었습니다. 비드 모양은 열 축적으로 인해 더 많은 패스가 증착 될수록 더 오목 해집니다. 패스 간의 융합 부족은 때때로 다음 패스의 재 용융 공정을 통해 제거 될 수 있습니다. 이종 재료를 사용한 좁은 틈새 용접 프로세스가 성공적으로 시뮬레이션되었습니다.

중심선을 따라 용융 풀과 용접 비드의 비대칭 형성은 재료 열 특성의 차이에 기인 할 수 있으며, 결과적으로 측벽과의 융합 부족을 유발할 수 있습니다.

비드 비대칭 문제는 수평 위치에서 용접 공정을 수행하거나 총 열 입력을 증가시켜 열전도율이 높은 측벽을 녹이는 방식으로 피할 수 있습니다. 재 용융 공정은 표면 품질을 향상시키고 모재와의 융착 문제를 제거하기 위해 용접된 표면에 적용 할 때 유용한 것으로 밝혀졌습니다.

CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)

FLOW-3D WELD 용접 사례

FLOW-3D WELD를 이용한 용접 해석 사례를 소개합니다.

  1. 열전도 형 용접 (레이저)
      두께가 다른 모재 맞대기
  2. 하이브리드
      레이저 / 아크 하이브리드
  3. 깊이 용해 형 (키 홀)
      알루미늄 평판에 의한 용해 깊이, 형상 확인
  4. 레이저 고기 모듬
      파우더 공급 및 용해
  5. 아크 용접
      오버레이 피팅 관통 평가
  6. 레이저 용접 (무릎 관절)
      무릎 관절의 실험과의 비교
  7. Selective Laser Sintering (3D printing)
      3 차원 프린터에의 응용

레이저 용접의 특징

에너지 밀도가 높고, 다른 재료도 시간 차이없이 녹아구슬 폭이 좁은비접촉 표면 성상 및 품질이 좋은제어 성이 우수전기 ⇒ 광 변환 효율이 나쁘다반사율이 높은 흡수율이 떨어진다weld_example1

열전도 형 용접


열전도 형 용접 결과



강판의 레이저 / 아크 하이브리드 용접의 분석을 실시했습니다.

분석 조건

weld_example5CO2 레이저 출력 : 3.5kw디 포커스 값 : 0 mm레이저 스폿 지름 : 0.3mm아크 전류 : 180A아크 전압 : 26V용접 속도 : 1m / min열원 사이의 거리 : 3mm금속 : 900 MPa high strength steel



해석과 실험과의 비교

온도의 단위는 [K]입니다.


깊이 용해형 (키 홀)

해석 모델weld_example83D 온도 표시weld_example9

레이저 금속 침전 Laser Metal Deposition (LMD)

파우더 공급 레이저에 의한 용해

해석 모델weld_example103D 온도 표시weld_example11

아크 용접

TIG (Tungsten Inert Gas)방전 전극으로 텅스텐을 사용불활성 (Inert) 가스를 사용 (아르곤, 헬륨 등)목적에 따라 필러 금속을 첨가 (와이어 or 필러 봉)공업 적으로 사용되는 대부분의 금속에 대응weld_example12

분석 조건


분석 결과 : 온도 등고선 [K]

TIG (Tungsten Inert Gas)모재 온도가 상승하고 조금 늦게 용융 풀이 확대표면 장력에 의해 용융 풀 바닥은 녹아 떨어지지 않는 weld_example14

분석 결과 : 용융 부의 교반

TIG (Tungsten Inert Gas)상하 모재를 분류하고 교반의 모습을 확인weld_example15

분석 결과 : 용융 부 교반 유속 벡터

TIG (Tungsten Inert Gas)아크 압력 차폐 가스에 의한 함몰표면 장력에 의한 계면 위치의 회복계면의 진동weld_example16

분석 결과 : 구슬 모양

TIG (Tungsten Inert Gas)상하면 구슬 폭용접 시작부터 정상까지의 과도적인 변화weld_example17

분석 결과 : 고출력의 경우 온도 등고선 [K]

TIG (Tungsten Inert Gas)고출력 의해 함몰이 커진다용융 풀의 두께가 얇아지고 관통하는weld_example18

레이저 용접 (무릎 관절)


분석 결과와 실제의 단면 비교


Selective Laser Sintering (3D printing)


선택적 레이저 용융 분석


Laser Metal Deposition and Fluid Particles

Laser Metal Deposition and Fluid Particles

FLOW-3D는 신규 모듈을 개발 하면서, 입자 모델의 새로운 입자 클래스 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링(아래의 애니메이션)에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도로 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 지정할 수 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일한 입자 생성을 선택하고 입자가 소스에서 방출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 미세한 금속 분말을 함께 융합하여 3차원 금속 부품을 제작하는 3D printing 공정입니다. 레이저 금속 증착은 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 분야에 적용됩니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 강도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융/응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 적층 제조 공정으로 만듭니다.

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 내부 및 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 것을 알고 있습니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계가 간단하고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다.

이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 기판이 5초마다 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.

Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착된 층의 형태에 큰 영향을 주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가 있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 추가합니다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 변경할 때마다 입자 빔 모션이 일시적으로 중지됩니다. 또한 층이 증착됨에 따라 다공성 열원에서 각 층에 불균등 한 열이 추가되어 새로운 층의 모양이 변경됩니다.  각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수인 분말 강도 분포를 정확하게 재현합니다. 입자 모델에 대한 이러한 수준의 제어 및 정교함은 적층 제조 분야의 사용자와 공급자 모두가 제조 공정을 미세 조정하는 데 도움이 될 것으로 기대합니다.

Laser Welding and Additive Manufacturing

Melt Pool Modeling: Innovation in Laser Welding & Additive Manufacturing

Melt Pool Modeling - Innovation in Laser Welding & Additive Manufacturing Webinar

Additive Manufacturing 기술이 새로운 제조 방식을 계속 발전시키면서 CFD 모델링은 공정 개발 및 최적화와, 재료의 변화를 이해하고, 설계 및 연구를 수행하는 매우 유용한 도구가 되었습니다. 이 웨비나에서는 최첨단 CFD 소프트웨어 FLOW-3D AM이 레이저 파우더 베드 융합 및 직접 에너지 증착 공정에서 용융 풀 역학을 모델링하는데 어떻게 사용되는지 살펴볼 것입니다. 그런 다음 유용한 정보를 얻기 위해 모델 데이터의 추출 및 분석에 집중하고 FLOW-3D AM에서 최근에 구현된 기능에 대해 논의합니다. 마지막으로 레이저 용접 및 적층 제조 응용 분야 모두에 적용할 수 있는 관련 산업 사례 연구를 검토하여 산업 응용 분야에 소프트웨어 사용을 보여줍니다.

Laser Metal Deposition Simulation | FLOW-3D AM | Facebook
Laser Metal Deposition Simulation | FLOW-3D AM | Facebook
FLOW-3D - We'll be presenting and exhibiting at the 2021
FLOW-3D – We’ll be presenting and exhibiting at the 2021

등록 링크
산지 표준시(미국 및 캐나다)의 2021년 5월 5일 11:00 오전 (현지 시간)
이벤트 주최: FLOW-3D


photo of Paree Allu

Paree AlluSenior CFD Engineer @Flow Science, Inc.Paree Allu is a Senior CFD Engineer with Flow Science, where he leads the technical and business strategy for Flow Science’s additive manufacturing and laser welding software solutions. Paree holds a Master’s Degree in Mechanical Engineering from The Ohio State University.

photo of Allyce Jackman

Allyce JackmanCFD Engineer @Flow Science, Inc.Allyce Jackman is a CFD Engineer with Flow Science, where she specializes in laser welding, coating, and complex multiphysics applications. Allyce holds a Bachelor’s Degree in Mechanical Engineering from the University of New Mexico.

Wire Based Laser Metal Deposition (LMD)

와이어 기반 레이저 금속 증착

  • 레이저 클래딩 기술을 기반으로 한 용접 공정
  • 부품은 레이저 빔을 사용해 와이어를 녹여 만들어지며 near-net-shape의 공정을 거침
  • 레이저 파워, 와이어 속도 및 와이어 피드 방향의 최적화를 통해 공정 안정성을 달성 할 수 있음

FLOW-3D를 이용한 와이어 기반 레이저 금속 증착 시뮬레이션

와이어 기반 레이저 금속 증착

  • 레이저 클래딩 기술을 기반으로 한 용접 공정
  • 부품은 레이저 빔을 사용해 와이어를 녹여 만들어지며 near-net-shape의 공정을 거침
  • 레이저 파워, 와이어 속도 및 와이어 피드 방향의 최적화를 통해 공정 안정성을 달성 할 수 있음

FLOW-3D를 이용한 와이어 기반 레이저 금속 증착 시뮬레이션

와이어 기반 레이저 금속 증착

  • 레이저 클래딩 기술을 기반으로 한 용접 공정
  • 부품은 레이저 빔을 사용해 와이어를 녹여 만들어지며 near-net-shape의 공정을 거침
  • 레이저 파워, 와이어 속도 및 와이어 피드 방향의 최적화를 통해 공정 안정성을 달성 할 수 있음

FLOW-3D를 이용한 와이어 기반 레이저 금속 증착 시뮬레이션

Powder Based Laser Metal Deposition (LMD)

분말 기반 레이저 금속 증착

  • 복잡한 형상이면서 기능성 재료를 제작하는데 적합
  • 다양한 분말을 사전 혼합하여 맞춤형 합금을 만들 수 있음
  • 부품의 높은 치수 정확도가 가능
  • 시뮬레이션은 분말 분사 속도 및 레이저 매개 변수의 공정 최적화를 도움

FLOW-3D를 이용한 분말 기반 레이저 금속 증착 시뮬레이션