Schematic diagram of HP-LPBF melting process.

Modeling and numerical studies of high-precision laser powder bed fusion

Yi Wei ;Genyu Chen;Nengru Tao;Wei Zhou
https://doi.org/10.1063/5.0191504

In order to comprehensively reveal the evolutionary dynamics of the molten pool and the state of motion of the fluid during the high-precision laser powder bed fusion (HP-LPBF) process, this study aims to deeply investigate the specific manifestations of the multiphase flow, solidification phenomena, and heat transfer during the process by means of numerical simulation methods. Numerical simulation models of SS316L single-layer HP-LPBF formation with single and double tracks were constructed using the discrete element method and the computational fluid dynamics method. The effects of various factors such as Marangoni convection, surface tension, vapor recoil, gravity, thermal convection, thermal radiation, and evaporative heat dissipation on the heat and mass transfer in the molten pool have been paid attention to during the model construction process. The results show that the molten pool exhibits a “comet” shape, in which the temperature gradient at the front end of the pool is significantly larger than that at the tail end, with the highest temperature gradient up to 1.69 × 108 K/s. It is also found that the depth of the second track is larger than that of the first one, and the process parameter window has been determined preliminarily. In addition, the application of HP-LPBF technology helps to reduce the surface roughness and minimize the forming size.

Topics

Heat transferNonequilibrium thermodynamicsSolidification processComputer simulationDiscrete element methodLasersMass transferFluid mechanicsComputational fluid dynamicsMultiphase flows

I. INTRODUCTION

Laser powder bed fusion (LPBF) has become a research hotspot in the field of additive manufacturing of metals due to its advantages of high-dimensional accuracy, good surface quality, high density, and high material utilization.1,2 With the rapid development of electronics, medical, automotive, biotechnology, energy, communication, and optics, the demand for microfabrication technology is increasing day by day.3 High-precision laser powder bed fusion (HP-LPBF) is one of the key manufacturing technologies for tiny parts in the fields of electronics, medical, automotive, biotechnology, energy, communication, and optics because of its process characteristics such as small focal spot diameter, small powder particle size, and thin powder layup layer thickness.4–13 Compared with LPBF, HP-LPBF has the significant advantages of smaller focal spot diameter, smaller powder particle size, and thinner layer thickness. These advantages make HP-LPBF perform better in producing micro-fine parts, high surface quality, and parts with excellent mechanical properties.

HP-LPBF is in the exploratory stage, and researchers have already done some exploratory studies on the focal spot diameter, the amount of defocusing, and the powder particle size. In order to explore the influence of changing the laser focal spot diameter on the LPBF process characteristics of the law, Wildman et al.14 studied five groups of different focal spot diameter LPBF forming 316L stainless steel (SS316L) processing effect, the smallest focal spot diameter of 26 μm, and the results confirm that changing the focal spot diameter can be achieved to achieve the energy control, so as to control the quality of forming. Subsequently, Mclouth et al.15 proposed the laser out-of-focus amount (focal spot diameter) parameter, which characterizes the distance between the forming plane and the laser focal plane. The laser energy density was controlled by varying the defocusing amount while keeping the laser parameters constant. Sample preparation at different focal positions was investigated, and their microstructures were characterized. The results show that the samples at the focal plane have finer microstructure than those away from the focal plane, which is the effect of higher power density and smaller focal spot diameter. In order to explore the influence of changing the powder particle size on the characteristics of the LPBF process, Qian et al.16 carried out single-track scanning simulations on powder beds with average powder particle sizes of 70 and 40 μm, respectively, and the results showed that the melt tracks sizes were close to each other under the same process parameters for the two particle-size distributions and that the molten pool of powder beds with small particles was more elongated and the edges of the melt tracks were relatively flat. In order to explore the superiority of HP-LPBF technology, Xu et al.17 conducted a comparative analysis of HP-LPBF and conventional LPBF of SS316L. The results showed that the average surface roughness of the top surface after forming by HP-LPBF could reach 3.40 μm. Once again, it was verified that HP-LPBF had higher forming quality than conventional LPBF. On this basis, Wei et al.6 comparatively analyzed the effects of different laser focal spot diameters on different powder particle sizes formed by LPBF. The results showed that the smaller the laser focal spot diameter, the fewer the defects on the top and side surfaces. The above research results confirm that reducing the laser focal spot diameter can obtain higher energy density and thus better forming quality.

LPBF involves a variety of complex systems and mechanisms, and the final quality of the part is influenced by a large number of process parameters.18–24 Some research results have shown that there are more than 50 factors affecting the quality of the specimen. The influencing factors are mainly categorized into three main groups: (1) laser parameters, (2) powder parameters, and (3) equipment parameters, which interact with each other to determine the final specimen quality. With the continuous development of technologies such as computational materials science and computational fluid dynamics (CFD), the method of studying the influence of different factors on the forming quality of LPBF forming process has been shifted from time-consuming and laborious experimental characterization to the use of numerical simulation methods. As a result, more and more researchers are adopting this approach for their studies. Currently, numerical simulation studies on LPBF are mainly focused on the exploration of molten pool, temperature distribution, and residual stresses.

  1. Finite element simulation based on continuum mechanics and free surface fluid flow modeling based on fluid dynamics are two common approaches to study the behavior of LPBF molten pool.25–28 Finite element simulation focuses on the temperature and thermal stress fields, treats the powder bed as a continuum, and determines the molten pool size by plotting the elemental temperature above the melting point. In contrast, fluid dynamics modeling can simulate the 2D or 3D morphology of the metal powder pile and obtain the powder size and distribution by certain algorithms.29 The flow in the molten pool is mainly affected by recoil pressure and the Marangoni effect. By simulating the molten pool formation, it is possible to predict defects, molten pool shape, and flow characteristics, as well as the effect of process parameters on the molten pool geometry.30–34 In addition, other researchers have been conducted to optimize the laser processing parameters through different simulation methods and experimental data.35–46 Crystal growth during solidification is studied to further understand the effect of laser parameters on dendritic morphology and solute segregation.47–54 A multi-scale system has been developed to describe the fused deposition process during 3D printing, which is combined with the conductive heat transfer model and the dendritic solidification model.55,56
  2. Relevant scholars have adopted various different methods for simulation, such as sequential coupling theory,57 Lagrangian and Eulerian thermal models,58 birth–death element method,25 and finite element method,59 in order to reveal the physical phenomena of the laser melting process and optimize the process parameters. Luo et al.60 compared the LPBF temperature field and molten pool under double ellipsoidal and Gaussian heat sources by ANSYS APDL and found that the diffusion of the laser energy in the powder significantly affects the molten pool size and the temperature field.
  3. The thermal stresses obtained from the simulation correlate with the actual cracks,61 and local preheating can effectively reduce the residual stresses.62 A three-dimensional thermodynamic finite element model investigated the temperature and stress variations during laser-assisted fabrication and found that powder-to-solid conversion increases the temperature gradient, stresses, and warpage.63 Other scholars have predicted residual stresses and part deflection for LPBF specimens and investigated the effects of deposition pattern, heat, laser power, and scanning strategy on residual stresses, noting that high-temperature gradients lead to higher residual stresses.64–67 

In short, the process of LPBF forming SS316L is extremely complex and usually involves drastic multi-scale physicochemical changes that will only take place on a very small scale. Existing literature employs DEM-based mesoscopic-scale numerical simulations to investigate the effects of process parameters on the molten pool dynamics of LPBF-formed SS316L. However, a few studies have been reported on the key mechanisms of heating and solidification, spatter, and convective behavior of the molten pool of HP-LPBF-formed SS316L with small laser focal spot diameters. In this paper, the geometrical properties of coarse and fine powder particles under three-dimensional conditions were first calculated using DEM. Then, numerical simulation models for single-track and double-track cases in the single-layer HP-LPBF forming SS316L process were developed at mesoscopic scale using the CFD method. The flow genesis of the melt in the single-track and double-track molten pools is discussed, and their 3D morphology and dimensional characteristics are discussed. In addition, the effects of laser process parameters, powder particle size, and laser focal spot diameter on the temperature field, characterization information, and defects in the molten pool are discussed.

II. MODELING

A. 3D powder bed modeling

HP-LPBF is an advanced processing technique for preparing target parts layer by layer stacking, the process of which involves repetitive spreading and melting of powders. In this process, both the powder spreading and the morphology of the powder bed are closely related to the results of the subsequent melting process, while the melted surface also affects the uniform distribution of the next layer of powder. For this reason, this chapter focuses on the modeling of the physical action during the powder spreading process and the theory of DEM to establish the numerical model of the powder bed, so as to lay a solid foundation for the accuracy of volume of fluid (VOF) and CFD.

1. DEM

DEM is a numerical technique for calculating the interaction of a large number of particles, which calculates the forces and motions of the spheres by considering each powder sphere as an independent unit. The motion of the powder particles follows the laws of classical Newtonian mechanics, including translational and rotational,38,68–70 which are expressed as follows:����¨=���+∑��ij,

(1)����¨=∑�(�ij×�ij),

(2)

where �� is the mass of unit particle i in kg, ��¨ is the advective acceleration in m/s2, And g is the gravitational acceleration in m/s2. �ij is the force in contact with the neighboring particle � in N. �� is the rotational inertia of the unit particle � in kg · m2. ��¨ is the unit particle � angular acceleration in rad/s2. �ij is the vector pointing from unit particle � to the contact point of neighboring particle �⁠.

Equations (1) and (2) can be used to calculate the velocity and angular velocity variations of powder particles to determine their positions and velocities. A three-dimensional powder bed model of SS316L was developed using DEM. The powder particles are assumed to be perfect spheres, and the substrate and walls are assumed to be rigid. To describe the contact between the powder particles and between the particles and the substrate, a non-slip Hertz–Mindlin nonlinear spring-damping model71 was used with the following expression:�hz=��������+��[(�����ij−�eff����)−(�����+�eff����)],

(3)

where �hz is the force calculated using the Hertzian in M. �� and �� are the radius of unit particles � and � in m, respectively. �� is the overlap size of the two powder particles in m. ��⁠, �� are the elastic constants in the normal and tangential directions, respectively. �ij is the unit vector connecting the centerlines of the two powder particles. �eff is the effective mass of the two powder particles in kg. �� and �� are the viscoelastic damping constants in the normal and tangential directions, respectively. �� and �� are the components of the relative velocities of the two powder particles. ��� is the displacement vector between two spherical particles. The schematic diagram of overlapping powder particles is shown in Fig. 1.

FIG. 1.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of overlapping powder particles.

Because the particle size of the powder used for HP-LPBF is much smaller than 100 μm, the effect of van der Waals forces must be considered. Therefore, the cohesive force �jkr of the Hertz–Mindlin model was used instead of van der Waals forces,72 with the following expression:�jkr=−4��0�*�1.5+4�*3�*�3,

(4)1�*=(1−��2)��+(1−��2)��,

(5)1�*=1��+1��,

(6)

where �* is the equivalent Young’s modulus in GPa; �* is the equivalent particle radius in m; �0 is the surface energy of the powder particles in J/m2; α is the contact radius in m; �� and �� are the Young’s modulus of the unit particles � and �⁠, respectively, in GPa; and �� and �� are the Poisson’s ratio of the unit particles � and �⁠, respectively.

2. Model building

Figure 2 shows a 3D powder bed model generated using DEM with a coarse powder geometry of 1000 × 400 × 30 μm3. The powder layer thickness is 30 μm, and the powder bed porosity is 40%. The average particle size of this spherical powder is 31.7 μm and is normally distributed in the range of 15–53 μm. The geometry of the fine powder was 1000 × 400 × 20 μm3, with a layer thickness of 20 μm, and the powder bed porosity of 40%. The average particle size of this spherical powder is 11.5 μm and is normally distributed in the range of 5–25 μm. After the 3D powder bed model is generated, it needs to be imported into the CFD simulation software for calculation, and the imported geometric model is shown in Fig. 3. This geometric model is mainly composed of three parts: protective gas, powder bed, and substrate. Under the premise of ensuring the accuracy of the calculation, the mesh size is set to 3 μm, and the total number of coarse powder meshes is 1 704 940. The total number of fine powder meshes is 3 982 250.

FIG. 2.

VIEW LARGEDOWNLOAD SLIDE

Three-dimensional powder bed model: (a) coarse powder, (b) fine powder.

FIG. 3.

VIEW LARGEDOWNLOAD SLIDE

Geometric modeling of the powder bed computational domain: (a) coarse powder, (b) fine powder.

B. Modeling of fluid mechanics simulation

In order to solve the flow, melting, and solidification problems involved in HP-LPBF molten pool, the study must follow the three governing equations of conservation of mass, conservation of energy, and conservation of momentum.73 The VOF method, which is the most widely used in fluid dynamics, is used to solve the molten pool dynamics model.

1. VOF

VOF is a method for tracking the free interface between the gas and liquid phases on the molten pool surface. The core idea of the method is to define a volume fraction function F within each grid, indicating the proportion of the grid space occupied by the material, 0 ≤ F ≤ 1 in Fig. 4. Specifically, when F = 0, the grid is empty and belongs to the gas-phase region; when F = 1, the grid is completely filled with material and belongs to the liquid-phase region; and when 0 < F < 1, the grid contains free surfaces and belongs to the mixed region. The direction normal to the free surface is the direction of the fastest change in the volume fraction F (the direction of the gradient of the volume fraction), and the direction of the gradient of the volume fraction can be calculated from the values of the volume fractions in the neighboring grids.74 The equations controlling the VOF are expressed as follows:𝛻����+�⋅(��→)=0,

(7)

where t is the time in s and �→ is the liquid velocity in m/s.

FIG. 4.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of VOF.

The material parameters of the mixing zone are altered due to the inclusion of both the gas and liquid phases. Therefore, in order to represent the density of the mixing zone, the average density �¯ is used, which is expressed as follows:72�¯=(1−�1)�gas+�1�metal,

(8)

where �1 is the proportion of liquid phase, �gas is the density of protective gas in kg/m3, and �metal is the density of metal in kg/m3.

2. Control equations and boundary conditions

Figure 5 is a schematic diagram of the HP-LPBF melting process. First, the laser light strikes a localized area of the material and rapidly heats up the area. Next, the energy absorbed in the region is diffused through a variety of pathways (heat conduction, heat convection, and surface radiation), and this process triggers complex phase transition phenomena (melting, evaporation, and solidification). In metals undergoing melting, the driving forces include surface tension and the Marangoni effect, recoil due to evaporation, and buoyancy due to gravity and uneven density. The above physical phenomena interact with each other and do not occur independently.

FIG. 5.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of HP-LPBF melting process.

  1. Laser heat sourceThe Gaussian surface heat source model is used as the laser heat source model with the following expression:�=2�0����2exp(−2�12��2),(9)where � is the heat flow density in W/m2, �0 is the absorption rate of SS316L, �� is the radius of the laser focal spot in m, and �1 is the radial distance from the center of the laser focal spot in m. The laser focal spot can be used for a wide range of applications.
  2. Energy absorptionThe formula for calculating the laser absorption �0 of SS316L is as follows:�0=0.365(�0[1+�0(�−20)]/�)0.5,(10)where �0 is the direct current resistivity of SS316L at 20 °C in Ω m, �0 is the resistance temperature coefficient in ppm/°C, � is the temperature in °C, and � is the laser wavelength in m.
  3. Heat transferThe basic principle of heat transfer is conservation of energy, which is expressed as follows:𝛻𝛻𝛻�(��)��+�·(��→�)=�·(�0����)+��,(11)where � is the density of liquid phase SS316L in kg/m3, �� is the specific heat capacity of SS316L in J/(kg K), 𝛻� is the gradient operator, t is the time in s, T is the temperature in K, 𝛻�� is the temperature gradient, �→ is the velocity vector, �0 is the coefficient of thermal conduction of SS316L in W/(m K), and  �� is the thermal energy dissipation term in the molten pool.
  4. Molten pool flowThe following three conditions need to be satisfied for the molten pool to flow:
    • Conservation of mass with the following expression:𝛻�·(��→)=0.(12)
    • Conservation of momentum (Navier–Stokes equation) with the following expression:𝛻𝛻𝛻𝛻���→��+�(�→·�)�→=�·[−pI+�(��→+(��→)�)]+�,(13)where � is the pressure in Pa exerted on the liquid phase SS316L microelement, � is the unit matrix, � is the fluid viscosity in N s/m2, and � is the volumetric force (gravity, atmospheric pressure, surface tension, vapor recoil, and the Marangoni effect).
    • Conservation of energy, see Eq. (11)
  5. Surface tension and the Marangoni effectThe effect of temperature on the surface tension coefficient is considered and set as a linear relationship with the following expression:�=�0−��dT(�−��),(14)where � is the surface tension of the molten pool at temperature T in N/m, �� is the melting temperature of SS316L in K, �0 is the surface tension of the molten pool at temperature �� in Pa, and σdσ/ dT is the surface tension temperature coefficient in N/(m K).In general, surface tension decreases with increasing temperature. A temperature gradient causes a gradient in surface tension that drives the liquid to flow, known as the Marangoni effect.
  6. Metal vapor recoilAt higher input energy densities, the maximum temperature of the molten pool surface reaches the evaporation temperature of the material, and a gasification recoil pressure occurs vertically downward toward the molten pool surface, which will be the dominant driving force for the molten pool flow.75 The expression is as follows:��=0.54�� exp ���−���0���,(15)where �� is the gasification recoil pressure in Pa, �� is the ambient pressure in kPa, �� is the latent heat of evaporation in J/kg, �0 is the gas constant in J/(mol K), T is the surface temperature of the molten pool in K, and Te is the evaporation temperature in K.
  7. Solid–liquid–gas phase transitionWhen the laser hits the powder layer, the powder goes through three stages: heating, melting, and solidification. During the solidification phase, mutual transformations between solid, liquid, and gaseous states occur. At this point, the latent heat of phase transition absorbed or released during the phase transition needs to be considered.68 The phase transition is represented based on the relationship between energy and temperature with the following expression:�=�����,(�<��),�(��)+�−����−����,(��<�<��)�(��)+(�−��)����,(��<�),,(16)where �� and �� are solid and liquid phase density, respectively, of SS316L in kg/m3. �� and �� unit volume of solid and liquid phase-specific heat capacity, respectively, of SS316L in J/(kg K). �� and ��⁠, respectively, are the solidification temperature and melting temperature of SS316L in K. �� is the latent heat of the phase transition of SS316L melting in J/kg.

3. Assumptions

The CFD model was computed using the commercial software package FLOW-3D.76 In order to simplify the calculation and solution process while ensuring the accuracy of the results, the model makes the following assumptions:

  1. It is assumed that the effects of thermal stress and material solid-phase thermal expansion on the calculation results are negligible.
  2. The molten pool flow is assumed to be a Newtonian incompressible laminar flow, while the effects of liquid thermal expansion and density on the results are neglected.
  3. It is assumed that the surface tension can be simplified to an equivalent pressure acting on the free surface of the molten pool, and the effect of chemical composition on the results is negligible.
  4. Neglecting the effect of the gas flow field on the molten pool.
  5. The mass loss due to evaporation of the liquid metal is not considered.
  6. The influence of the plasma effect of the molten metal on the calculation results is neglected.

It is worth noting that the formulation of assumptions requires a trade-off between accuracy and computational efficiency. In the above models, some physical phenomena that have a small effect or high difficulty on the calculation results are simplified or ignored. Such simplifications make numerical simulations more efficient and computationally tractable, while still yielding accurate results.

4. Initial conditions

The preheating temperature of the substrate was set to 393 K, at which time all materials were in the solid state and the flow rate was zero.

5. Material parameters

The material used is SS316L and the relevant parameters required for numerical simulations are shown in Table I.46,77,78

TABLE I.

SS316L-related parameters.

PropertySymbolValue
Density of solid metal (kg/m3�metal 7980 
Solid phase line temperature (K) �� 1658 
Liquid phase line temperature (K) �� 1723 
Vaporization temperature (K) �� 3090 
Latent heat of melting (⁠ J/kg⁠) �� 2.60×105 
Latent heat of evaporation (⁠ J/kg⁠) �� 7.45×106 
Surface tension of liquid phase (N /m⁠) � 1.60 
Liquid metal viscosity (kg/m s) �� 6×10−3 
Gaseous metal viscosity (kg/m s) �gas 1.85×10−5 
Temperature coefficient of surface tension (N/m K) ��/�T 0.80×10−3 
Molar mass (⁠ kg/mol⁠) 0.05 593 
Emissivity � 0.26 
Laser absorption �0 0.35 
Ambient pressure (kPa) �� 101 325 
Ambient temperature (K) �0 300 
Stefan–Boltzmann constant (W/m2 K4� 5.67×10−8 
Thermal conductivity of metals (⁠ W/m K⁠) � 24.55 
Density of protective gas (kg/m3�gas 1.25 
Coefficient of thermal expansion (/K) �� 16×10−6 
Generalized gas constant (⁠ J/mol K⁠) 8.314 

III. RESULTS AND DISCUSSION

With the objective of studying in depth the evolutionary patterns of single-track and double-track molten pool development, detailed observations were made for certain specific locations in the model, as shown in Fig. 6. In this figure, P1 and P2 represent the longitudinal tangents to the centers of the two melt tracks in the XZ plane, while L1 is the transverse profile in the YZ plane. The scanning direction is positive and negative along the X axis. Points A and B are the locations of the centers of the molten pool of the first and second melt tracks, respectively (x = 1.995 × 10−4, y = 5 × 10−7, and z = −4.85 × 10−5).

FIG. 6.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of observation position.

A. Single-track simulation

A series of single-track molten pool simulation experiments were carried out in order to investigate the influence law of laser power as well as scanning speed on the HP-LPBF process. Figure 7 demonstrates the evolution of the 3D morphology and temperature field of the single-track molten pool in the time period of 50–500 μs under a laser power of 100 W and a scanning speed of 800 mm/s. The powder bed is in the natural cooling state. When t = 50 μs, the powder is heated by the laser heat and rapidly melts and settles to form the initial molten pool. This process is accompanied by partial melting of the substrate and solidification together with the melted powder. The molten pool rapidly expands with increasing width, depth, length, and temperature, as shown in Fig. 7(a). When t = 150 μs, the molten pool expands more obviously, and the temperature starts to transfer to the surrounding area, forming a heat-affected zone. At this point, the width of the molten pool tends to stabilize, and the temperature in the center of the molten pool has reached its peak and remains largely stable. However, the phenomenon of molten pool spatter was also observed in this process, as shown in Fig. 7(b). As time advances, when t = 300 μs, solidification begins to occur at the tail of the molten pool, and tiny ripples are produced on the solidified surface. This is due to the fact that the melt flows toward the region with large temperature gradient under the influence of Marangoni convection and solidifies together with the melt at the end of the bath. At this point, the temperature gradient at the front of the bath is significantly larger than at the end. While the width of the molten pool was gradually reduced, the shape of the molten pool was gradually changed to a “comet” shape. In addition, a slight depression was observed at the top of the bath because the peak temperature at the surface of the bath reached the evaporation temperature, which resulted in a recoil pressure perpendicular to the surface of the bath downward, creating a depressed region. As the laser focal spot moves and is paired with the Marangoni convection of the melt, these recessed areas will be filled in as shown in Fig. 7(c). It has been shown that the depressed regions are the result of the coupled effect of Marangoni convection, recoil pressure, and surface tension.79 By t = 500 μs, the width and height of the molten pool stabilize and show a “comet” shape in Fig. 7(d).

FIG. 7.

VIEW LARGEDOWNLOAD SLIDE

Single-track molten pool process: (a) t = 50  ��⁠, (b) t = 150  ��⁠, (c) t = 300  ��⁠, (d) t = 500  ��⁠.

Figure 8 depicts the velocity vector diagram of the P1 profile in a single-track molten pool, the length of the arrows represents the magnitude of the velocity, and the maximum velocity is about 2.36 m/s. When t = 50 μs, the molten pool takes shape, and the velocities at the two ends of the pool are the largest. The variation of the velocities at the front end is especially more significant in Fig. 8(a). As the time advances to t = 150 μs, the molten pool expands rapidly, in which the velocity at the tail increases and changes more significantly, while the velocity at the front is relatively small. At this stage, the melt moves backward from the center of the molten pool, which in turn expands the molten pool area. The melt at the back end of the molten pool center flows backward along the edge of the molten pool surface and then converges along the edge of the molten pool to the bottom center, rising to form a closed loop. Similarly, a similar closed loop is formed at the front end of the center of the bath, but with a shorter path. However, a large portion of the melt in the center of the closed loop formed at the front end of the bath is in a nearly stationary state. The main cause of this melt flow phenomenon is the effect of temperature gradient and surface tension (the Marangoni effect), as shown in Figs. 8(b) and 8(e). This dynamic behavior of the melt tends to form an “elliptical” pool. At t = 300 μs, the tendency of the above two melt flows to close the loop is more prominent and faster in Fig. 8(c). When t = 500 μs, the velocity vector of the molten pool shows a stable trend, and the closed loop of melt flow also remains stable. With the gradual laser focal spot movement, the melt is gradually solidified at its tail, and finally, a continuous and stable single track is formed in Fig. 8(d).

FIG. 8.

VIEW LARGEDOWNLOAD SLIDE

Vector plot of single-track molten pool velocity in XZ longitudinal section: (a) t = 50  ��⁠, (b) t = 150  ��⁠, (c) t = 300  ��⁠, (d) t = 500  ��⁠, (e) molten pool flow.

In order to explore in depth the transient evolution of the molten pool, the evolution of the single-track temperature field and the melt flow was monitored in the YZ cross section. Figure 9(a) shows the state of the powder bed at the initial moment. When t = 250 μs, the laser focal spot acts on the powder bed and the powder starts to melt and gradually collects in the molten pool. At this time, the substrate will also start to melt, and the melt flow mainly moves in the downward and outward directions and the velocity is maximum at the edges in Fig. 9(b). When t = 300 μs, the width and depth of the molten pool increase due to the recoil pressure. At this time, the melt flows more slowly at the center, but the direction of motion is still downward in Fig. 9(c). When t = 350 μs, the width and depth of the molten pool further increase, at which time the intensity of the melt flow reaches its peak and the direction of motion remains the same in Fig. 9(d). When t = 400 μs, the melt starts to move upward, and the surrounding powder or molten material gradually fills up, causing the surface of the molten pool to begin to flatten. At this time, the maximum velocity of the melt is at the center of the bath, while the velocity at the edge is close to zero, and the edge of the melt starts to solidify in Fig. 9(e). When t = 450 μs, the melt continues to move upward, forming a convex surface of the melt track. However, the melt movement slows down, as shown in Fig. 9(f). When t = 500 μs, the melt further moves upward and its speed gradually becomes smaller. At the same time, the melt solidifies further, as shown in Fig. 9(g). When t = 550 μs, the melt track is basically formed into a single track with a similar “mountain” shape. At this stage, the velocity is close to zero only at the center of the molten pool, and the flow behavior of the melt is poor in Fig. 9(h). At t = 600 μs, the melt stops moving and solidification is rapidly completed. Up to this point, a single track is formed in Fig. 9(i). During the laser action on the powder bed, the substrate melts and combines with the molten state powder. The powder-to-powder fusion is like the convergence of water droplets, which are rapidly fused by surface tension. However, the fusion between the molten state powder and the substrate occurs driven by surface tension, and the molten powder around the molten pool is pulled toward the substrate (a wetting effect occurs), which ultimately results in the formation of a monolithic whole.38,80,81

FIG. 9.

VIEW LARGEDOWNLOAD SLIDE

Evolution of single-track molten pool temperature and melt flow in the YZ cross section: (a) t = 0  ��⁠, (b) t = 250  ��⁠, (c) t = 300  ��⁠, (d) t = 350  ��⁠, (e) t = 400  ��⁠, (f) t = 450  ��⁠, (g) t = 500  ��⁠, (h) t = 550  ��⁠, (i) t = 600  ��⁠.

The wetting ability between the liquid metal and the solid substrate in the molten pool directly affects the degree of balling of the melt,82,83 and the wetting ability can be measured by the contact angle of a single track in Fig. 10. A smaller value of contact angle represents better wettability. The contact angle α can be calculated by�=�1−�22,

(17)

where �1 and �2 are the contact angles of the left and right regions, respectively.

FIG. 10.

VIEW LARGEDOWNLOAD SLIDE

Schematic of contact angle.

Relevant studies have confirmed that the wettability is better at a contact angle α around or below 40°.84 After measurement, a single-track contact angle α of about 33° was obtained under this process parameter, which further confirms the good wettability.

B. Double-track simulation

In order to deeply investigate the influence of hatch spacing on the characteristics of the HP-LPBF process, a series of double-track molten pool simulation experiments were systematically carried out. Figure 11 shows in detail the dynamic changes of the 3D morphology and temperature field of the double-track molten pool in the time period of 2050–2500 μs under the conditions of laser power of 100 W, scanning speed of 800 mm/s, and hatch spacing of 0.06 mm. By comparing the study with Fig. 7, it is observed that the basic characteristics of the 3D morphology and temperature field of the second track are similar to those of the first track. However, there are subtle differences between them. The first track exhibits a basically symmetric shape, but the second track morphology shows a slight deviation influenced by the difference in thermal diffusion rate between the solidified metal and the powder. Otherwise, the other characteristic information is almost the same as that of the first track. Figure 12 shows the velocity vector plot of the P2 profile in the double-track molten pool, with a maximum velocity of about 2.63 m/s. The melt dynamics at both ends of the pool are more stable at t = 2050 μs, where the maximum rate of the second track is only 1/3 of that of the first one. Other than that, the rest of the information is almost no significant difference from the characteristic information of the first track. Figure 13 demonstrates a detailed observation of the double-track temperature field and melts flow in the YZ cross section, and a comparative study with Fig. 9 reveals that the width of the second track is slightly wider. In addition, after the melt direction shifts from bottom to top, the first track undergoes four time periods (50 μs) to reach full solidification, while the second track takes five time periods. This is due to the presence of significant heat buildup in the powder bed after the forming of the first track, resulting in a longer dynamic time of the melt and an increased molten pool lifetime. In conclusion, the level of specimen forming can be significantly optimized by adjusting the laser power and hatch spacing.

FIG. 11.

VIEW LARGEDOWNLOAD SLIDE

Double-track molten pool process: (a) t = 2050  ��⁠, (b) t = 2150  ��⁠, (c) t = 2300  ��⁠, (d) t = 2500  ��⁠.

FIG. 12.

VIEW LARGEDOWNLOAD SLIDE

Vector plot of double-track molten pool velocity in XZ longitudinal section: (a) t = 2050  ��⁠, (b) t = 2150  ��⁠, (c) t = 2300  ��⁠, (d) t = 2500  ��⁠.

FIG. 13.

VIEW LARGEDOWNLOAD SLIDE

Evolution of double-track molten pool temperature and melt flow in the YZ cross section: (a) t = 2250  ��⁠, (b) t = 2300  ��⁠, (c) t = 2350  ��⁠, (d) t = 2400  ��⁠, (e) t = 2450  ��⁠, (f) t = 2500  ��⁠, (g) t = 2550  ��⁠, (h) t = 2600  ��⁠, (i) t = 2650  ��⁠.

In order to quantitatively detect the molten pool dimensions as well as the remolten region dimensions, the molten pool characterization information in Fig. 14 is constructed by drawing the boundary on the YZ cross section based on the isothermal surface of the liquid phase line. It can be observed that the heights of the first track and second track are basically the same, but the depth of the second track increases relative to the first track. The molten pool width is mainly positively correlated with the laser power as well as the scanning speed (the laser line energy density �⁠). However, the remelted zone width is negatively correlated with the hatch spacing (the overlapping ratio). Overall, the forming quality of the specimens can be directly influenced by adjusting the laser power, scanning speed, and hatch spacing.

FIG. 14.

VIEW LARGEDOWNLOAD SLIDE

Double-track molten pool characterization information on YZ cross section.

In order to study the variation rule of the temperature in the center of the molten pool with time, Fig. 15 demonstrates the temperature variation curves with time for two reference points, A and B. Among them, the red dotted line indicates the liquid phase line temperature of SS316L. From the figure, it can be seen that the maximum temperature at the center of the molten pool in the first track is lower than that in the second track, which is mainly due to the heat accumulation generated after passing through the first track. The maximum temperature gradient was calculated to be 1.69 × 108 K/s. When the laser scanned the first track, the temperature in the center of the molten pool of the second track increased slightly. Similarly, when the laser scanned the second track, a similar situation existed in the first track. Since the temperature gradient in the second track is larger than that in the first track, the residence time of the liquid phase in the molten pool of the first track is longer than that of the second track.

FIG. 15.

VIEW LARGEDOWNLOAD SLIDE

Temperature profiles as a function of time for two reference points A and B.

C. Simulation analysis of molten pool under different process parameters

In order to deeply investigate the effects of various process parameters on the mesoscopic-scale temperature field, molten pool characteristic information and defects of HP-LPBF, numerical simulation experiments on mesoscopic-scale laser power, scanning speed, and hatch spacing of double-track molten pools were carried out.

1. Laser power

Figure 16 shows the effects of different laser power on the morphology and temperature field of the double-track molten pool at a scanning speed of 800 mm/s and a hatch spacing of 0.06 mm. When P = 50 W, a smaller molten pool is formed due to the lower heat generated by the Gaussian light source per unit time. This leads to a smaller track width, which results in adjacent track not lapping properly and the presence of a large number of unmelted powder particles, resulting in an increase in the number of defects, such as pores in the specimen. The surface of the track is relatively flat, and the depth is small. In addition, the temperature gradient before and after the molten pool was large, and the depression location appeared at the biased front end in Fig. 16(a). When P = 100 W, the surface of the track is flat and smooth with excellent lap. Due to the Marangoni effect, the velocity field of the molten pool is in the form of “vortex,” and the melt has good fluidity, and the maximum velocity reaches 2.15 m/s in Fig. 16(b). When P = 200 W, the heat generated by the Gaussian light source per unit time is too large, resulting in the melt rapidly reaching the evaporation temperature, generating a huge recoil pressure, forming a large molten pool, and the surface of the track is obviously raised. The melt movement is intense, especially the closed loop at the center end of the molten pool. At this time, the depth and width of the molten pool are large, leading to the expansion of the remolten region and the increased chance of the appearance of porosity defects in Fig. 16(c). The results show that at low laser power, the surface tension in the molten pool is dominant. At high laser power, recoil pressure is its main role.

FIG. 16.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different laser powers: (a) P = 50 W, (b) P = 100 W, (c) P = 200 W.

Table II shows the effect of different laser powers on the characteristic information of the double-track molten pool at a scanning speed of 800 mm/s and a hatch spacing of 0.06 mm. The negative overlapping ratio in the table indicates that the melt tracks are not lapped, and 26/29 indicates the melt depth of the first track/second track. It can be seen that with the increase in laser power, the melt depth, melt width, melt height, and remelted zone show a gradual increase. At the same time, the overlapping ratio also increases. Especially in the process of laser power from 50 to 200 W, the melting depth and melting width increased the most, which increased nearly 2 and 1.5 times, respectively. Meanwhile, the overlapping ratio also increases with the increase in laser power, which indicates that the melting and fusion of materials are better at high laser power. On the other hand, the dimensions of the molten pool did not change uniformly with the change of laser power. Specifically, the depth-to-width ratio of the molten pool increased from about 0.30 to 0.39 during the increase from 50 to 120 W, which further indicates that the effective heat transfer in the vertical direction is greater than that in the horizontal direction with the increase in laser power. This dimensional response to laser power is mainly affected by the recoil pressure and also by the difference in the densification degree between the powder layer and the metal substrate. In addition, according to the experimental results, the contact angle shows a tendency to increase and then decrease during the process of laser power increase, and always stays within the range of less than 33°. Therefore, in practical applications, it is necessary to select the appropriate laser power according to the specific needs in order to achieve the best processing results.

TABLE II.

Double-track molten pool characterization information at different laser powers.

Laser power (W)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
50 16 54 11 −10 23 
100 26/29 74 14 18 23.33 33 
200 37/45 116 21 52 93.33 28 

2. Scanning speed

Figure 17 demonstrates the effect of different scanning speeds on the morphology and temperature field of the double-track molten pool at a laser power of 100 W and a hatch spacing of 0.06 mm. With the gradual increase in scanning speed, the surface morphology of the molten pool evolves from circular to elliptical. When � = 200 mm/s, the slow scanning speed causes the material to absorb too much heat, which is very easy to trigger the overburning phenomenon. At this point, the molten pool is larger and the surface morphology is uneven. This situation is consistent with the previously discussed scenario with high laser power in Fig. 17(a). However, when � = 1600 mm/s, the scanning speed is too fast, resulting in the material not being able to absorb sufficient heat, which triggers the powder particles that fail to melt completely to have a direct effect on the bonding of the melt to the substrate. At this time, the molten pool volume is relatively small and the neighboring melt track cannot lap properly. This result is consistent with the previously discussed case of low laser power in Fig. 17(b). Overall, the ratio of the laser power to the scanning speed (the line energy density �⁠) has a direct effect on the temperature field and surface morphology of the molten pool.

FIG. 17.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different scanning speed: (a)  � = 200 mm/s, (b)  � = 1600 mm/s.

Table III shows the effects of different scanning speed on the characteristic information of the double-track molten pool under the condition of laser power of 100 W and hatch spacing of 0.06 mm. It can be seen that the scanning speed has a significant effect on the melt depth, melt width, melt height, remolten region, and overlapping ratio. With the increase in scanning speed, the melt depth, melt width, melt height, remelted zone, and overlapping ratio show a gradual decreasing trend. Among them, the melt depth and melt width decreased faster, while the melt height and remolten region decreased relatively slowly. In addition, when the scanning speed was increased from 200 to 800 mm/s, the decreasing speeds of melt depth and melt width were significantly accelerated, while the decreasing speeds of overlapping ratio were relatively slow. When the scanning speed was further increased to 1600 mm/s, the decreasing speeds of melt depth and melt width were further accelerated, and the un-lapped condition of the melt channel also appeared. In addition, the contact angle increases and then decreases with the scanning speed, and both are lower than 33°. Therefore, when selecting the scanning speed, it is necessary to make reasonable trade-offs according to the specific situation, and take into account the factors of melt depth, melt width, melt height, remolten region, and overlapping ratio, in order to achieve the best processing results.

TABLE III.

Double-track molten pool characterization information at different scanning speeds.

Scanning speed (mm/s)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
200 55/68 182 19/32 124 203.33 22 
1600 13 50 11 −16.67 31 

3. Hatch spacing

Figure 18 shows the effect of different hatch spacing on the morphology and temperature field of the double-track molten pool under the condition of laser power of 100 W and scanning speed of 800 mm/s. The surface morphology and temperature field of the first track and second track are basically the same, but slightly different. The first track shows a basically symmetric morphology along the scanning direction, while the second track shows a slight offset due to the difference in the heat transfer rate between the solidified material and the powder particles. When the hatch spacing is too small, the overlapping ratio increases and the probability of defects caused by remelting phenomenon grows. When the hatch spacing is too large, the neighboring melt track cannot overlap properly, and the powder particles are not completely melted, leading to an increase in the number of holes. In conclusion, the ratio of the line energy density � to the hatch spacing (the volume energy density E) has a significant effect on the temperature field and surface morphology of the molten pool.

FIG. 18.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different hatch spacings: (a) H = 0.03 mm, (b) H = 0.12 mm.

Table IV shows the effects of different hatch spacing on the characteristic information of the double-track molten pool under the condition of laser power of 100 W and scanning speed of 800 mm/s. It can be seen that the hatch spacing has little effect on the melt depth, melt width, and melt height, but has some effect on the remolten region. With the gradual expansion of hatch spacing, the remolten region shows a gradual decrease. At the same time, the overlapping ratio also decreased with the increase in hatch spacing. In addition, it is observed that the contact angle shows a tendency to increase and then remain stable when the hatch spacing increases, which has a more limited effect on it. Therefore, trade-offs and decisions need to be made on a case-by-case basis when selecting the hatch spacing.

TABLE IV.

Double-track molten pool characterization information at different hatch spacings.

Hatch spacing (mm)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
0.03 25/27 82 14 59 173.33 30 
0.12 26 78 14 −35 33 

In summary, the laser power, scanning speed, and hatch spacing have a significant effect on the formation of the molten pool, and the correct selection of these three process parameters is crucial to ensure the forming quality. In addition, the melt depth of the second track is slightly larger than that of the first track at higher line energy density � and volume energy density E. This is mainly due to the fact that a large amount of heat accumulation is generated after the first track, forming a larger molten pool volume, which leads to an increase in the melt depth.

D. Simulation analysis of molten pool with powder particle size and laser focal spot diameter

Figure 19 demonstrates the effect of different powder particle sizes and laser focal spot diameters on the morphology and temperature field of the double-track molten pool under a laser power of 100 W, a scanning speed of 800 mm/s, and a hatch spacing of 0.06 mm. In the process of melting coarse powder with small laser focal spot diameter, the laser energy cannot completely melt the larger powder particles, resulting in their partial melting and further generating excessive pore defects. The larger powder particles tend to generate zigzag molten pool edges, which cause an increase in the roughness of the melt track surface. In addition, the molten pool is also prone to generate the present spatter phenomenon, which can directly affect the quality of forming. The volume of the formed molten pool is relatively small, while the melt depth, melt width, and melt height are all smaller relative to the fine powder in Fig. 19(a). In the process of melting fine powders with a large laser focal spot diameter, the laser energy is able to melt the fine powder particles sufficiently, even to the point of overmelting. This results in a large number of fine spatters being generated at the edge of the molten pool, which causes porosity defects in the melt track in Fig. 19(b). In addition, the maximum velocity of the molten pool is larger for large powder particle sizes compared to small powder particle sizes, which indicates that the temperature gradient in the molten pool is larger for large powder particle sizes and the melt motion is more intense. However, the size of the laser focal spot diameter has a relatively small effect on the melt motion. However, a larger focal spot diameter induces a larger melt volume with greater depth, width, and height. In conclusion, a small powder size helps to reduce the surface roughness of the specimen, and a small laser spot diameter reduces the minimum forming size of a single track.

FIG. 19.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool with different powder particle size and laser focal spot diameter: (a) focal spot = 25 μm, coarse powder, (b) focal spot = 80 μm, fine powder.

Table V shows the maximum temperature gradient at the reference point for different powder sizes and laser focal spot diameters. As can be seen from the table, the maximum temperature gradient is lower than that of HP-LPBF for both coarse powders with a small laser spot diameter and fine powders with a large spot diameter, a phenomenon that leads to an increase in the heat transfer rate of HP-LPBF, which in turn leads to a corresponding increase in the cooling rate and, ultimately, to the formation of finer microstructures.

TABLE V.

Maximum temperature gradient at the reference point for different powder particle sizes and laser focal spot diameters.

Laser power (W)Scanning speed (mm/s)Hatch spacing (mm)Average powder size (μm)Laser focal spot diameter (μm)Maximum temperature gradient (×107 K/s)
100 800 0.06 31.7 25 7.89 
11.5 80 7.11 

IV. CONCLUSIONS

In this study, the geometrical characteristics of 3D coarse and fine powder particles were first calculated using DEM and then numerical simulations of single track and double track in the process of forming SS316L from monolayer HP-LPBF at mesoscopic scale were developed using CFD method. The effects of Marangoni convection, surface tension, recoil pressure, gravity, thermal convection, thermal radiation, and evaporative heat dissipation on the heat and mass transfer in the molten pool were considered in this model. The effects of laser power, scanning speed, and hatch spacing on the dynamics of the single-track and double-track molten pools, as well as on other characteristic information, were investigated. The effects of the powder particle size on the molten pool were investigated comparatively with the laser focal spot diameter. The main conclusions are as follows:

  1. The results show that the temperature gradient at the front of the molten pool is significantly larger than that at the tail, and the molten pool exhibits a “comet” morphology. At the top of the molten pool, there is a slightly concave region, which is the result of the coupling of Marangoni convection, recoil pressure, and surface tension. The melt flow forms two closed loops, which are mainly influenced by temperature gradients and surface tension. This special dynamic behavior of the melt tends to form an “elliptical” molten pool and an almost “mountain” shape in single-track forming.
  2. The basic characteristics of the three-dimensional morphology and temperature field of the second track are similar to those of the first track, but there are subtle differences. The first track exhibits a basically symmetrical shape; however, due to the difference in thermal diffusion rates between the solidified metal and the powder, a slight asymmetry in the molten pool morphology of the second track occurs. After forming through the first track, there is a significant heat buildup in the powder bed, resulting in a longer dynamic time of the melt, which increases the life of the molten pool. The heights of the first track and second track remained essentially the same, but the depth of the second track was greater relative to the first track. In addition, the maximum temperature gradient was 1.69 × 108 K/s during HP-LPBF forming.
  3. At low laser power, the surface tension in the molten pool plays a dominant role. At high laser power, recoil pressure becomes the main influencing factor. With the increase of laser power, the effective heat transfer in the vertical direction is superior to that in the horizontal direction. With the gradual increase of scanning speed, the surface morphology of the molten pool evolves from circular to elliptical. In addition, the scanning speed has a significant effect on the melt depth, melt width, melt height, remolten region, and overlapping ratio. Too large or too small hatch spacing will lead to remelting or non-lap phenomenon, which in turn causes the formation of defects.
  4. When using a small laser focal spot diameter, it is difficult to completely melt large powder particle sizes, resulting in partial melting and excessive porosity generation. At the same time, large powder particles produce curved edges of the molten pool, resulting in increased surface roughness of the melt track. In addition, spatter occurs, which directly affects the forming quality. At small focal spot diameters, the molten pool volume is relatively small, and the melt depth, the melt width, and the melt height are correspondingly small. Taken together, the small powder particle size helps to reduce surface roughness, while the small spot diameter reduces the forming size.

REFERENCES

  1. S. L. Sing and W. Y. Yeong , “ Laser powder bed fusion for metal additive manufacturing: Perspectives on recent developments,” Virtual Phys. Prototyping. 15, 359–370 (2020).https://doi.org/10.1080/17452759.2020.1779999
    Google ScholarCrossref
  2. A. M. Khorasani , I. G. Jithin , J. K. Veetil , and A. H. Ghasemi , “ A review of technological improvements in laser-based powder bed fusion of metal printers,” Int. J. Adv. Manuf. Technol. 108, 191–209 (2020).https://doi.org/10.1007/s00170-020-05361-3
    Google ScholarCrossref
  3. Y. Qin , A. Brockett , Y. Ma , A. Razali , J. Zhao , C. Harrison , W. Pan , X. Dai , and D. Loziak , “ Micro-manufacturing: Research, technology outcomes and development issues,” Int. J. Adv. Manuf. Technol. 47, 821–837 (2010).https://doi.org/10.1007/s00170-009-2411-2
    Google ScholarCrossref
  4. B. Nagarajan , Z. Hu , X. Song , W. Zhai , and J. Wei , “ Development of micro selective laser melting: The state of the art and future perspectives,” Engineering. 5, 702–720 (2019).https://doi.org/10.1016/j.eng.2019.07.002
    Google ScholarCrossref
  5. Y. Wei , G. Chen , W. Li , Y. Zhou , Z. Nie , J. Xu , and W. Zhou , “ Micro selective laser melting of SS316L: Single tracks, defects, microstructures and thermal/mechanical properties,” Opt. Laser Technol. 145, 107469 (2022).https://doi.org/10.1016/j.optlastec.2021.107469
    Google ScholarCrossref
  6. Y. Wei , G. Chen , W. Li , M. Li , Y. Zhou , Z. Nie , and J. Xu , “ Process optimization of micro selective laser melting and comparison of different laser diameter for forming different powder,” Opt. Laser Technol. 150, 107953 (2022).https://doi.org/10.1016/j.optlastec.2022.107953
    Google ScholarCrossref
  7. H. Zhiheng , B. Nagarajan , X. Song , R. Huang , W. Zhai , and J. Wei , “ Formation of SS316L single tracks in micro selective laser melting: Surface, geometry, and defects,” Adv. Mater. Sci. Eng. 2019, 9451406.https://doi.org/10.1155/2019/9451406
    Crossref
  8. B. Nagarajan , Z. Hu , S. Gao , X. Song , R. Huang , M. Seita , and J. Wei , “ Effect of in-situ laser remelting on the microstructure of SS316L fabricated by micro selective laser melting,” in Advanced Surface Enhancement, edited by Sho Itoh and Shashwat Shukla , Lecture Notes in Mechanical Engineering ( Springer Singapore, Singapore, 2020), pp. 330–336.
    Google ScholarCrossref
  9. H. Zhiheng , B. Nagarajan , X. Song , R. Huang , W. Zhai , and J. Wei , “ Tailoring surface roughness of micro selective laser melted SS316L by in-situ laser remelting,” in Advanced Surface Enhancement, edited by Sho Itoh and Shashwat Shukla , Lecture Notes in Mechanical Engineering ( Springer Singapore, Singapore, 2020), pp. 337–343.
    Google Scholar
  10. J. Fu , Z. Hu , X. Song , W. Zhai , Y. Long , H. Li , and M. Fu , “ Micro selective laser melting of NiTi shape memory alloy: Defects, microstructures and thermal/mechanical properties,” Opt. Laser Technol. 131, 106374 (2020).https://doi.org/10.1016/j.optlastec.2020.106374
    Google ScholarCrossref
  11. E. Abele and M. Kniepkamp , “ Analysis and optimisation of vertical surface roughness in micro selective laser melting,” Surf. Topogr.: Metrol. Prop. 3, 034007 (2015).https://doi.org/10.1088/2051-672X/3/3/034007
    Google ScholarCrossref
  12. S. Qu , J. Ding , J. Fu , M. Fu , B. Zhang , and X. Song , “ High-precision laser powder bed fusion processing of pure copper,” Addit. Manuf. 48, 102417 (2021).https://doi.org/10.1016/j.addma.2021.102417
    Google ScholarCrossref
  13. Y. Wei , G. Chen , M. Li , W. Li , Y. Zhou , J. Xu , and Z. wei , “ High-precision laser powder bed fusion of 18Ni300 maraging steel and its SiC reinforcement composite materials,” J. Manuf. Process. 84, 750–763 (2022).https://doi.org/10.1016/j.jmapro.2022.10.049
    Google ScholarCrossref
  14. B. Liu , R. Wildman , T. Christopher , I. Ashcroft , and H. Richard , “ Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process,” in 2011 International Solid Freeform Fabrication Symposium ( University of Texas at Austin, 2011).
    Google Scholar
  15. T. D. McLouth , G. E. Bean , D. B. Witkin , S. D. Sitzman , P. M. Adams , D. N. Patel , W. Park , J.-M. Yang , and R. J. Zaldivar , “ The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting,” Mater. Des. 149, 205–213 (2018).https://doi.org/10.1016/j.matdes.2018.04.019
    Google ScholarCrossref
  16. Y. Qian , Y. Wentao , and L. Feng , “ Mesoscopic simulations of powder bed fusion: Research progresses and conditions,” Electromachining Mould 06, 46–52 (2017).https://doi.org/10.3969/j.issn.1009-279X.2017.06.012
    Google Scholar
  17. J. Fu , S. Qu , J. Ding , X. Song , and M. W. Fu , “ Comparison of the microstructure, mechanical properties and distortion of stainless Steel 316L fabricated by micro and conventional laser powder bed fusion,” Addit. Manuf. 44, 102067 (2021).https://doi.org/10.1016/j.addma.2021.102067
    Google ScholarCrossref
  18. N. T. Aboulkhair , I. Maskery , C. Tuck , I. Ashcroft , and N. M. Everitt , “ The microstructure and mechanical properties of selectively laser Melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng. A 667, 139–146 (2016).https://doi.org/10.1016/j.msea.2016.04.092
    Google ScholarCrossref
  19. S. Y. Chen , J. C. Huang , C. T. Pan , C. H. Lin , T. L. Yang , Y. S. Huang , C. H. Ou , L. Y. Chen , D. Y. Lin , H. K. Lin , T. H. Li , J. S. C. Jang , and C. C. Yang , “ Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting,” J. Alloys Compd. 713, 248–254 (2017).https://doi.org/10.1016/j.jallcom.2017.04.190
    Google ScholarCrossref
  20. Y. Bai , Y. Yang , D. Wang , and M. Zhang , “ Influence mechanism of parameters process and mechanical properties evolution mechanism of Maraging steel 300 by selective laser melting,” Mater. Sci. Eng. A 703, 116–123 (2017).https://doi.org/10.1016/j.msea.2017.06.033
    Google ScholarCrossref
  21. Y. Bai , Y. Yang , Z. Xiao , M. Zhang , and D. Wang , “ Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting,” Mater. Des. 140, 257–266 (2018).https://doi.org/10.1016/j.matdes.2017.11.045
    Google ScholarCrossref
  22. Y. Liu , M. Zhang , W. Shi , Y. Ma , and J. Yang , “ Study on performance optimization of 316L stainless steel parts by high-efficiency selective laser melting,” Opt. Laser Technol. 138, 106872 (2021).https://doi.org/10.1016/j.optlastec.2020.106872
    Google ScholarCrossref
  23. D. Gu , Y.-C. Hagedorn , W. Meiners , G. Meng , R. J. S. Batista , K. Wissenbach , and R. Poprawe , “ Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium,” Acta Mater. 60, 3849–3860 (2012).https://doi.org/10.1016/j.actamat.2012.04.006
    Google ScholarCrossref
  24. N. Read , W. Wang , K. Essa , and M. M. Attallah , “ Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des. 65, 417–424 (2015).https://doi.org/10.1016/j.matdes.2014.09.044
    Google ScholarCrossref
  25. I. A. Roberts , C. J. Wang , R. Esterlein , M. Stanford , and D. J. Mynors , “ A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing,” Int. J. Mach. Tools Manuf. 49(12–13), 916–923 (2009).https://doi.org/10.1016/j.ijmachtools.2009.07.004
    Google ScholarCrossref
  26. K. Dai and L. Shaw , “ Finite element analysis of the effect of volume shrinkage during laser densification,” Acta Mater. 53(18), 4743–4754 (2005).https://doi.org/10.1016/j.actamat.2005.06.014
    Google ScholarCrossref
  27. K. Carolin , E. Attar , and P. Heinl , “ Mesoscopic simulation of selective beam melting processes,” J. Mater. Process. Technol. 211(6), 978–987 (2011).https://doi.org/10.1016/j.jmatprotec.2010.12.016
    Google ScholarCrossref
  28. F.-J. Gürtler , M. Karg , K.-H. Leitz , and M. Schmidt , “ Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method,” Phys. Procedia 41, 881–886 (2013).https://doi.org/10.1016/j.phpro.2013.03.162
    Google ScholarCrossref
  29. P. Meakin and R. Jullien , “ Restructuring effects in the rain model for random deposition,” J. Phys. France 48(10), 1651–1662 (1987).https://doi.org/10.1051/jphys:0198700480100165100
    Google ScholarCrossref
  30. J-m Wang , G-h Liu , Y-l Fang , and W-k Li , “ Marangoni effect in nonequilibrium multiphase system of material processing,” Rev. Chem. Eng. 32(5), 551–585 (2016).https://doi.org/10.1515/revce-2015-0067
    Google ScholarCrossref
  31. W. Ye , S. Zhang , L. L. Mendez , M. Farias , J. Li , B. Xu , P. Li , and Y. Zhang , “ Numerical simulation of the melting and alloying processes of elemental titanium and boron powders using selective laser alloying,” J. Manuf. Process. 64, 1235–1247 (2021).https://doi.org/10.1016/j.jmapro.2021.02.044
    Google ScholarCrossref
  32. U. S. Bertoli , A. J. Wolfer , M. J. Matthews , J.-P. R. Delplanque , and J. M. Schoenung , “ On the limitations of volumetric energy density as a design parameter for selective laser melting,” Mater. Des. 113, 331–340 (2017).https://doi.org/10.1016/j.matdes.2016.10.037
    Google ScholarCrossref
  33. W. E. King , H. D. Barth , V. M. Castillo , G. F. Gallegos , J. W. Gibbs , D. E. Hahn , C. Kamath , and A. M. Rubenchik , “ Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” J. Mater. Process. Technol. 214(12), 2915–2925 (2014).https://doi.org/10.1016/j.jmatprotec.2014.06.005
    Google ScholarCrossref
  34. L. Cao , “ Numerical simulation of the impact of laying powder on selective laser melting single-pass formation,” Int. J. Heat Mass Transfer 141, 1036–1048 (2019).https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.053
    Google ScholarCrossref
  35. L. Huang , X. Hua , D. Wu , and F. Li , “ Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel,” J. Mater. Process. Technol. 252, 421–431 (2018).https://doi.org/10.1016/j.jmatprotec.2017.10.011
    Google ScholarCrossref
  36. K. Q. Le , C. Tang , and C. H. Wong , “ On the study of keyhole-mode melting in selective laser melting process,” Int. J. Therm. Sci. 145, 105992 (2019).https://doi.org/10.1016/j.ijthermalsci.2019.105992
    Google ScholarCrossref
  37. J.-H. Cho and S.-J. Na , “ Theoretical analysis of keyhole dynamics in polarized laser drilling,” J. Phys. D: Appl. Phys. 40(24), 7638 (2007).https://doi.org/10.1088/0022-3727/40/24/007
    Google ScholarCrossref
  38. W. Ye , “ Mechanism analysis of selective laser melting and metallurgy process based on base element powder of titanium and boron,” Ph.D. dissertation ( Nanchang University, 2021).
    Google Scholar
  39. R. Ammer , M. Markl , U. Ljungblad , C. Körner , and U. Rüde , “ Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method,” Comput. Math. Appl. 67(2), 318–330 (2014).https://doi.org/10.1016/j.camwa.2013.10.001
    Google ScholarCrossref
  40. H. Chen , Q. Wei , S. Wen , Z. Li , and Y. Shi , “ Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method,” Int. J. Mach. Tools Manuf. 123, 146–159 (2017).https://doi.org/10.1016/j.ijmachtools.2017.08.004
    Google ScholarCrossref
  41. F. Verhaeghe , T. Craeghs , J. Heulens , and L. Pandelaers , “ A pragmatic model for selective laser melting with evaporation,” Acta Mater. 57(20), 6006–6012 (2009).https://doi.org/10.1016/j.actamat.2009.08.027
    Google ScholarCrossref
  42. C. H. Fu and Y. B. Guo , “ Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V,” J. Manuf. Sci. Eng. 136(6), 061004 (2014).https://doi.org/10.1115/1.4028539
    Google ScholarCrossref
  43. Y. Xiang , Z. Shuzhe , L. Junfeng , W. Zhengying , Y. Lixiang , and J. Lihao , “ Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V,” J. Zhejiang Univ. (Eng. Sci.) 53(11), 2102–2109 + 2117 (2019).https://doi.org/10.3785/j.issn.1008-973X.2019.11.007
    Google Scholar
  44. Q. He , H. Xia , J. Liu , X. Ao , and S. Lin , “ Modeling and numerical studies of selective laser melting: Multiphase flow, solidification and heat transfer,” Mater. Des. 196, 109115 (2020).https://doi.org/10.1016/j.matdes.2020.109115
    Google ScholarCrossref
  45. L. Cao , “ Mesoscopic-scale numerical simulation including the influence of process parameters on SLM single-layer multi-pass formation,” Metall. Mater. Trans. A 51, 4130–4145 (2020).https://doi.org/10.1007/s11661-020-05831-z
    Google ScholarCrossref
  46. L. Cao , “ Mesoscopic-scale numerical investigation including the influence of process parameters on LPBF multi-layer multi-path formation,” Comput. Model. Eng. Sci. 126(1), 5–23 (2021).https://doi.org/10.32604/cmes.2021.014693
    Google ScholarCrossref
  47. H. Yin and S. D. Felicelli , “ Dendrite growth simulation during solidification in the LENS process,” Acta Mater. 58(4), 1455–1465 (2010).https://doi.org/10.1016/j.actamat.2009.10.053
    Google ScholarCrossref
  48. P. Nie , O. A. Ojo , and Z. Li , “ Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy,” Acta Mater. 77, 85–95 (2014).https://doi.org/10.1016/j.actamat.2014.05.039
    Google ScholarCrossref
  49. Z. Liu and H. Qi , “ Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy,” Acta Mater. 87, 248–258 (2015).https://doi.org/10.1016/j.actamat.2014.12.046
    Google ScholarCrossref
  50. L. Wei , L. Xin , W. Meng , and H. Weidong , “ Cellular automaton simulation of the molten pool of laser solid forming process,” Acta Phys. Sin. 64(01), 018103–018363 (2015).https://doi.org/10.7498/aps.64.018103
    Google ScholarCrossref
  51. R. Acharya , J. A. Sharon , and A. Staroselsky , “ Prediction of microstructure in laser powder bed fusion process,” Acta Mater. 124, 360–371 (2017).https://doi.org/10.1016/j.actamat.2016.11.018
    Google ScholarCrossref
  52. M. R. Rolchigo and R. LeSar , “ Modeling of binary alloy solidification under conditions representative of additive manufacturing,” Comput. Mater. Sci. 150, 535–545 (2018).https://doi.org/10.1016/j.commatsci.2018.04.004
    Google ScholarCrossref
  53. S. Geng , P. Jiang , L. Guo , X. Gao , and G. Mi , “ Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys,” Int. J. Heat Mass Transfer 149, 119252 (2020).https://doi.org/10.1016/j.ijheatmasstransfer.2019.119252
    Google ScholarCrossref
  54. W. L. Wang , W. Q. Liu , X. Yang , R. R. Xu , and Q. Y. Dai , “ Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy,” J. Mater. Sci. Technol. 119, 11–24 (2022).https://doi.org/10.1016/j.jmst.2021.12.029
    Google ScholarCrossref
  55. Q. Xia , J. Yang , and Y. Li , “ On the conservative phase-field method with the N-component incompressible flows,” Phys. Fluids 35, 012120 (2023).https://doi.org/10.1063/5.0135490
    Google ScholarCrossref
  56. Q. Xia , G. Sun , J. Kim , and Y. Li , “ Multi-scale modeling and simulation of additive manufacturing based on fused deposition technique,” Phys. Fluids 35, 034116 (2023).https://doi.org/10.1063/5.0141316
    Google ScholarCrossref
  57. A. Hussein , L. Hao , C. Yan , and R. Everson , “ Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting,” Mater. Des. 52, 638–647 (2013).https://doi.org/10.1016/j.matdes.2013.05.070
    Google ScholarCrossref
  58. J. Ding , P. Colegrove , J. Mehnen , S. Ganguly , P. M. Sequeira Almeida , F. Wang , and S. Williams , “ Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts,” Comput. Mater. Sci. 50(12), 3315–3322 (2011).https://doi.org/10.1016/j.commatsci.2011.06.023
    Google ScholarCrossref
  59. Y. Du , X. You , F. Qiao , L. Guo , and Z. Liu , “ A model for predicting the temperature field during selective laser melting,” Results Phys. 12, 52–60 (2019).https://doi.org/10.1016/j.rinp.2018.11.031
    Google ScholarCrossref
  60. X. Luo , M. Liu , L. Zhenhua , H. Li , and J. Shen , “ Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300,” Chin. J. Lasers 48(14), 1402005–1402062 (2021).https://doi.org/10.3788/CJL202148.1402005
    Google ScholarCrossref
  61. J. F. Li , L. Li , and F. H. Stott , “ Thermal stresses and their implication on cracking during laser melting of ceramic materials,” Acta Mater. 52(14), 4385–4398 (2004).https://doi.org/10.1016/j.actamat.2004.06.005
    Google ScholarCrossref
  62. P. Aggarangsi and J. L. Beuth , “ Localized preheating approaches for reducing residual stress in additive manufacturing,” paper presented at the 2006 International Solid Freeform Fabrication Symposium, The University of Texas in Austin on August 14–16, 2006.
  63. K. Dai and L. Shaw , “ Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders,” Acta Mater. 52(1), 69–80 (2004).https://doi.org/10.1016/j.actamat.2003.08.028
    Google ScholarCrossref
  64. A. H. Nickel , D. M. Barnett , and F. B. Prinz , “ Thermal stresses and deposition patterns in layered manufacturing,” Mater. Sci. Eng. A 317(1–2), 59–64 (2001).https://doi.org/10.1016/S0921-5093(01)01179-0
    Google ScholarCrossref
  65. M. F. Zaeh and G. Branner , “ Investigations on residual stresses and deformations in selective laser melting,” Prod. Eng. 4(1), 35–45 (2010).https://doi.org/10.1007/s11740-009-0192-y
    Google ScholarCrossref
  66. P. Bian , J. Shi , Y. Liu , and Y. Xie , “ Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel,” Opt. Laser Technol. 132, 106477 (2020).https://doi.org/10.1016/j.optlastec.2020.106477
    Google ScholarCrossref
  67. B. M. Marques , C. M. Andrade , D. M. Neto , M. C. Oliveira , J. L. Alves , and L. F. Menezes , “ Numerical analysis of residual stresses in parts produced by selective laser melting process,” Procedia Manuf. 47, 1170–1177 (2020).https://doi.org/10.1016/j.promfg.2020.04.167
    Google ScholarCrossref
  68. W. Mu , “ Numerical simulation of SLM forming process and research and prediction of forming properties,” MA thesis ( Anhui Jianzhu University, 2022).
    Google Scholar
  69. Y. Zhang , “ Multi-scale multi-physics modeling of laser powder bed fusion process of metallic materials with experiment validation,” Ph.D. dissertation ( Purdue University, 2018).
    Google Scholar
  70. Y. Qian , “ Mesoscopic simulation studies of key processing issues for powder bed fusion technology,” Ph.D. dissertation ( Tsinghua University, 2019).
    Google Scholar
  71. N. V. Brilliantov , S. Frank , J.-M. Hertzsch , and T. Pöschel , “ Model for collisions in granular gases,” Phys. Rev. E 53(5), 5382–5392 (1996).https://doi.org/10.1103/PhysRevE.53.5382
    Google ScholarCrossref
  72. Z. Xiao , “ Research on microscale selective laser melting process of high strength pure copper specimens,” MA thesis ( Hunan University, 2022).
    Google Scholar
  73. Z. Li , K. Mukai , M. Zeze , and K. C. Mills , “ Determination of the surface tension of liquid stainless steel,” J. Mater. Sci. 40(9–10), 2191–2195 (2005).https://doi.org/10.1007/s10853-005-1931-x
    Google ScholarCrossref
  74. R. Scardovelli and S. Zaleski , “ Analytical relations connecting linear interfaces and volume fractions in rectangular grids,” J. Comput. Phys. 164(1), 228–237 (2000).https://doi.org/10.1006/jcph.2000.6567
    Google ScholarCrossref
  75. D.-W. Cho , W.-I. Cho , and S.-J. Na , “ Modeling and simulation of arc: Laser and hybrid welding process,” J. Manuf. Process. 16(1), 26–55 (2014).https://doi.org/10.1016/j.jmapro.2013.06.012
    Google ScholarCrossref
    76.Flow3D. Version 11.1.0: User Manual ( FlowScience, Santa Fe, NM, USA, 2015).
  76. Y. Tian , L. Yang , D. Zhao , Y. Huang , and J. Pan , “ Numerical analysis of powder bed generation and single track forming for selective laser melting of ss316l stainless steel,” J. Manuf. Process. 58, 964–974 (2020).https://doi.org/10.1016/j.jmapro.2020.09.002
    Google ScholarCrossref
  77. C. Tang , K. Q. Le , and C. H. Wong , “ Physics of humping formation in laser powder bed fusion,” Int. J. Heat Mass Transfer 149, 119172 (2020).https://doi.org/10.1016/j.ijheatmasstransfer.2019.119172
    Google ScholarCrossref
  78. L. Cao , “ Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process,” Comput. Mater. Sci. 179, 109686 (2020).https://doi.org/10.1016/j.commatsci.2020.109686
    Google ScholarCrossref
  79. R. Li , J. Liu , Y. Shi , W. Li , and W. Jiang , “ Balling behavior of stainless steel and nickel powder during selective laser melting process,” Int. J. Adv. Manuf. Technol. 59(9–12), 1025–1035 (2012).https://doi.org/10.1007/s00170-011-3566-1
    Google ScholarCrossref
  80. S. A. Khairallah and A. Anderson , “ Mesoscopic simulation model of selective laser melting of stainless steel powder,” J. Mater. Process. Technol. 214(11), 2627–2636 (2014).https://doi.org/10.1016/j.jmatprotec.2014.06.001
    Google ScholarCrossref
  81. J. Liu , D. Gu , H. Chen , D. Dai , and H. Zhang , “ Influence of substrate surface morphology on wetting behavior of tracks during selective laser melting of aluminum-based alloys,” J. Zhejiang Univ. Sci. A 19(2), 111–121 (2018).https://doi.org/10.1631/jzus.A1700599
    Google ScholarCrossref
  82. L. Li , J. Li , and T. Fan , “ Phase-field modeling of wetting and balling dynamics in powder bed fusion process,” Phys. Fluids 33, 042116 (2021).https://doi.org/10.1063/5.0046771
    Google ScholarCrossref
  83. X. Nie , Z. Hu , H. Zhu , Z. Hu , L. Ke , and X. Zeng , “ Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples,” J. Mater. Process. Technol. 256, 69–77 (2018).https://doi.org/10.1016/j.jmatprotec.2018.01.030
    Google ScholarCrossref
Fig. 9 From: An Investigation on Hydraulic Aspects of Rectangular Labyrinth Pool and Weir Fishway Using FLOW-3D

An Investigation on Hydraulic Aspects of Rectangular Labyrinth Pool and Weir Fishway Using FLOW-3D

Abstract

웨어의 두 가지 서로 다른 배열(즉, 직선형 웨어와 직사각형 미로 웨어)을 사용하여 웨어 모양, 웨어 간격, 웨어의 오리피스 존재, 흐름 영역에 대한 바닥 경사와 같은 기하학적 매개변수의 영향을 평가했습니다.

유량과 수심의 관계, 수심 평균 속도의 변화와 분포, 난류 특성, 어도에서의 에너지 소산. 흐름 조건에 미치는 영향을 조사하기 위해 FLOW-3D® 소프트웨어를 사용하여 전산 유체 역학 시뮬레이션을 수행했습니다.

수치 모델은 계산된 표면 프로파일과 속도를 문헌의 실험적으로 측정된 값과 비교하여 검증되었습니다. 수치 모델과 실험 데이터의 결과, 급락유동의 표면 프로파일과 표준화된 속도 프로파일에 대한 평균 제곱근 오차와 평균 절대 백분율 오차가 각각 0.014m와 3.11%로 나타나 수치 모델의 능력을 확인했습니다.

수영장과 둑의 흐름 특성을 예측합니다. 각 모델에 대해 L/B = 1.83(L: 웨어 거리, B: 수로 폭) 값에서 급락 흐름이 발생할 수 있고 L/B = 0.61에서 스트리밍 흐름이 발생할 수 있습니다. 직사각형 미로보 모델은 기존 모델보다 무차원 방류량(Q+)이 더 큽니다.

수중 흐름의 기존 보와 직사각형 미로 보의 경우 Q는 각각 1.56과 1.47h에 비례합니다(h: 보 위 수심). 기존 웨어의 풀 내 평균 깊이 속도는 직사각형 미로 웨어의 평균 깊이 속도보다 높습니다.

그러나 주어진 방류량, 바닥 경사 및 웨어 간격에 대해 난류 운동 에너지(TKE) 및 난류 강도(TI) 값은 기존 웨어에 비해 직사각형 미로 웨어에서 더 높습니다. 기존의 웨어는 직사각형 미로 웨어보다 에너지 소산이 더 낮습니다.

더 낮은 TKE 및 TI 값은 미로 웨어 상단, 웨어 하류 벽 모서리, 웨어 측벽과 채널 벽 사이에서 관찰되었습니다. 보와 바닥 경사면 사이의 거리가 증가함에 따라 평균 깊이 속도, 난류 운동 에너지의 평균값 및 난류 강도가 증가하고 수영장의 체적 에너지 소산이 감소했습니다.

둑에 개구부가 있으면 평균 깊이 속도와 TI 값이 증가하고 풀 내에서 가장 높은 TKE 범위가 감소하여 두 모델 모두에서 물고기를 위한 휴식 공간이 더 넓어지고(TKE가 낮아짐) 에너지 소산율이 감소했습니다.

Two different arrangements of the weir (i.e., straight weir and rectangular labyrinth weir) were used to evaluate the effects of geometric parameters such as weir shape, weir spacing, presence of an orifice at the weir, and bed slope on the flow regime and the relationship between discharge and depth, variation and distribution of depth-averaged velocity, turbulence characteristics, and energy dissipation at the fishway. Computational fluid dynamics simulations were performed using FLOW-3D® software to examine the effects on flow conditions. The numerical model was validated by comparing the calculated surface profiles and velocities with experimentally measured values from the literature. The results of the numerical model and experimental data showed that the root-mean-square error and mean absolute percentage error for the surface profiles and normalized velocity profiles of plunging flows were 0.014 m and 3.11%, respectively, confirming the ability of the numerical model to predict the flow characteristics of the pool and weir. A plunging flow can occur at values of L/B = 1.83 (L: distance of the weir, B: width of the channel) and streaming flow at L/B = 0.61 for each model. The rectangular labyrinth weir model has larger dimensionless discharge values (Q+) than the conventional model. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q is proportional to 1.56 and 1.47h, respectively (h: the water depth above the weir). The average depth velocity in the pool of a conventional weir is higher than that of a rectangular labyrinth weir. However, for a given discharge, bed slope, and weir spacing, the turbulent kinetic energy (TKE) and turbulence intensity (TI) values are higher for a rectangular labyrinth weir compared to conventional weir. The conventional weir has lower energy dissipation than the rectangular labyrinth weir. Lower TKE and TI values were observed at the top of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall. As the distance between the weirs and the bottom slope increased, the average depth velocity, the average value of turbulent kinetic energy and the turbulence intensity increased, and the volumetric energy dissipation in the pool decreased. The presence of an opening in the weir increased the average depth velocity and TI values and decreased the range of highest TKE within the pool, resulted in larger resting areas for fish (lower TKE), and decreased the energy dissipation rates in both models.

1 Introduction

Artificial barriers such as detour dams, weirs, and culverts in lakes and rivers prevent fish from migrating and completing the upstream and downstream movement cycle. This chain is related to the life stage of the fish, its location, and the type of migration. Several riverine fish species instinctively migrate upstream for spawning and other needs. Conversely, downstream migration is a characteristic of early life stages [1]. A fish ladder is a waterway that allows one or more fish species to cross a specific obstacle. These structures are constructed near detour dams and other transverse structures that have prevented such migration by allowing fish to overcome obstacles [2]. The flow pattern in fish ladders influences safe and comfortable passage for ascending fish. The flow’s strong turbulence can reduce the fish’s speed, injure them, and delay or prevent them from exiting the fish ladder. In adult fish, spawning migrations are usually complex, and delays are critical to reproductive success [3].

Various fish ladders/fishways include vertical slots, denil, rock ramps, and pool weirs [1]. The choice of fish ladder usually depends on many factors, including water elevation, space available for construction, and fish species. Pool and weir structures are among the most important fish ladders that help fish overcome obstacles in streams or rivers and swim upstream [1]. Because they are easy to construct and maintain, this type of fish ladder has received considerable attention from researchers and practitioners. Such a fish ladder consists of a sloping-floor channel with series of pools directly separated by a series of weirs [4]. These fish ladders, with or without underwater openings, are generally well-suited for slopes of 10% or less [12]. Within these pools, flow velocities are low and provide resting areas for fish after they enter the fish ladder. After resting in the pools, fish overcome these weirs by blasting or jumping over them [2]. There may also be an opening in the flooded portion of the weir through which the fish can swim instead of jumping over the weir. Design parameters such as the length of the pool, the height of the weir, the slope of the bottom, and the water discharge are the most important factors in determining the hydraulic structure of this type of fish ladder [3]. The flow over the weir depends on the flow depth at a given slope S0 and the pool length, either “plunging” or “streaming.” In plunging flow, the water column h over each weir creates a water jet that releases energy through turbulent mixing and diffusion mechanisms [5]. The dimensionless discharges for plunging (Q+) and streaming (Q*) flows are shown in Fig. 1, where Q is the total discharge, B is the width of the channel, w is the weir height, S0 is the slope of the bottom, h is the water depth above the weir, d is the flow depth, and g is the acceleration due to gravity. The maximum velocity occurs near the top of the weir for plunging flow. At the water’s surface, it drops to about half [6].

figure 1
Fig. 1

Extensive experimental studies have been conducted to investigate flow patterns for various physical geometries (i.e., bed slope, pool length, and weir height) [2]. Guiny et al. [7] modified the standard design by adding vertical slots, orifices, and weirs in fishways. The efficiency of the orifices and vertical slots was related to the velocities at their entrances. In the laboratory experiments of Yagci [8], the three-dimensional (3D) mean flow and turbulence structure of a pool weir fishway combined with an orifice and a slot is investigated. It is shown that the energy dissipation per unit volume and the discharge have a linear relationship.

Considering the beneficial characteristics reported in the limited studies of researchers on the labyrinth weir in the pool-weir-type fishway, and knowing that the characteristics of flow in pool-weir-type fishways are highly dependent on the geometry of the weir, an alternative design of the rectangular labyrinth weir instead of the straight weirs in the pool-weir-type fishway is investigated in this study [79]. Kim [10] conducted experiments to compare the hydraulic characteristics of three different weir types in a pool-weir-type fishway. The results show that a straight, rectangular weir with a notch is preferable to a zigzag or trapezoidal weir. Studies on natural fish passes show that pass ability can be improved by lengthening the weir’s crest [7]. Zhong et al. [11] investigated the semi-rigid weir’s hydraulic performance in the fishway’s flow field with a pool weir. The results showed that this type of fishway performed better with a lower invert slope and a smaller radius ratio but with a larger pool spacing.

Considering that an alternative method to study the flow characteristics in a fishway with a pool weir is based on numerical methods and modeling from computational fluid dynamics (CFD), which can easily change the geometry of the fishway for different flow fields, this study uses the powerful package CFD and the software FLOW-3D to evaluate the proposed weir design and compare it with the conventional one to extend the application of the fishway. The main objective of this study was to evaluate the hydraulic performance of the rectangular labyrinth pool and the weir with submerged openings in different hydraulic configurations. The primary objective of creating a new weir configuration for suitable flow patterns is evaluated based on the swimming capabilities of different fish species. Specifically, the following questions will be answered: (a) How do the various hydraulic and geometric parameters relate to the effects of water velocity and turbulence, expressed as turbulent kinetic energy (TKE) and turbulence intensity (TI) within the fishway, i.e., are conventional weirs more affected by hydraulics than rectangular labyrinth weirs? (b) Which weir configurations have the greatest effect on fish performance in the fishway? (c) In the presence of an orifice plate, does the performance of each weir configuration differ with different weir spacing, bed gradients, and flow regimes from that without an orifice plate?

2 Materials and Methods

2.1 Physical Model Configuration

This paper focuses on Ead et al. [6]’s laboratory experiments as a reference, testing ten pool weirs (Fig. 2). The experimental flume was 6 m long, 0.56 m wide, and 0.6 m high, with a bottom slope of 10%. Field measurements were made at steady flow with a maximum flow rate of 0.165 m3/s. Discharge was measured with magnetic flow meters in the inlets and water level with point meters (see Ead et al. [6]. for more details). Table 1 summarizes the experimental conditions considered for model calibration in this study.

figure 2
Fig. 2

Table 1 Experimental conditions considered for calibration

Full size table

2.2 Numerical Models

Computational fluid dynamics (CFD) simulations were performed using FLOW-3D® v11.2 to validate a series of experimental liner pool weirs by Ead et al. [6] and to investigate the effects of the rectangular labyrinth pool weir with an orifice. The dimensions of the channel and data collection areas in the numerical models are the same as those of the laboratory model. Two types of pool weirs were considered: conventional and labyrinth. The proposed rectangular labyrinth pool weirs have a symmetrical cross section and are sized to fit within the experimental channel. The conventional pool weir model had a pool length of l = 0.685 and 0.342 m, a weir height of w = 0.141 m, a weir width of B = 0.56 m, and a channel slope of S0 = 5 and 10%. The rectangular labyrinth weirs have the same front width as the offset, i.e., a = b = c = 0.186 m. A square underwater opening with a width of 0.05 m and a depth of 0.05 m was created in the middle of the weir. The weir configuration considered in the present study is shown in Fig. 3.

figure 3
Fig. 3

2.3 Governing Equations

FLOW-3D® software solves the Navier–Stokes–Reynolds equations for three-dimensional analysis of incompressible flows using the fluid-volume method on a gridded domain. FLOW -3D® uses an advanced free surface flow tracking algorithm (TruVOF) developed by Hirt and Nichols [12], where fluid configurations are defined in terms of a VOF function F (xyzt). In this case, F (fluid fraction) represents the volume fraction occupied by the fluid: F = 1 in cells filled with fluid and F = 0 in cells without fluid (empty areas) [413]. The free surface area is at an intermediate value of F. (Typically, F = 0.5, but the user can specify a different intermediate value.) The equations in Cartesian coordinates (xyz) applicable to the model are as follows:

�f∂�∂�+∂(���x)∂�+∂(���y)∂�+∂(���z)∂�=�SOR

(1)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�x+�x

(2)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�y+�y

(3)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�z+�z

(4)

where (uvw) are the velocity components, (AxAyAz) are the flow area components, (Gx, Gy, Gz) are the mass accelerations, and (fxfyfz) are the viscous accelerations in the directions (xyz), ρ is the fluid density, RSOR is the spring term, Vf is the volume fraction associated with the flow, and P is the pressure. The kε turbulence model (RNG) was used in this study to solve the turbulence of the flow field. This model is a modified version of the standard kε model that improves performance. The model is a two-equation model; the first equation (Eq. 5) expresses the turbulence’s energy, called turbulent kinetic energy (k) [14]. The second equation (Eq. 6) is the turbulent dissipation rate (ε), which determines the rate of dissipation of kinetic energy [15]. These equations are expressed as follows Dasineh et al. [4]:

∂(��)∂�+∂(����)∂��=∂∂��[������∂�∂��]+��−�ε

(5)

∂(�ε)∂�+∂(�ε��)∂��=∂∂��[�ε�eff∂ε∂��]+�1εε��k−�2ε�ε2�

(6)

In these equations, k is the turbulent kinetic energy, ε is the turbulent energy consumption rate, Gk is the generation of turbulent kinetic energy by the average velocity gradient, with empirical constants αε = αk = 1.39, C1ε = 1.42, and C2ε = 1.68, eff is the effective viscosity, μeff = μ + μt [15]. Here, μ is the hydrodynamic density coefficient, and μt is the turbulent density of the fluid.

2.4 Meshing and the Boundary Conditions in the Model Setup

The numerical area is divided into three mesh blocks in the X-direction. The meshes are divided into different sizes, a containing mesh block for the entire spatial domain and a nested block with refined cells for the domain of interest. Three different sizes were selected for each of the grid blocks. By comparing the accuracy of their results based on the experimental data, the reasonable mesh for the solution domain was finally selected. The convergence index method (GCI) evaluated the mesh sensitivity analysis. Based on this method, many researchers, such as Ahmadi et al. [16] and Ahmadi et al. [15], have studied the independence of numerical results from mesh size. Three different mesh sizes with a refinement ratio (r) of 1.33 were used to perform the convergence index method. The refinement ratio is the ratio between the larger and smaller mesh sizes (r = Gcoarse/Gfine). According to the recommendation of Celik et al. [17], the recommended number for the refinement ratio is 1.3, which gives acceptable results. Table 2 shows the characteristics of the three mesh sizes selected for mesh sensitivity analysis.Table 2 Characteristics of the meshes tested in the convergence analysis

Full size table

The results of u1 = umax (u1 = velocity component along the x1 axis and umax = maximum velocity of u1 in a section perpendicular to the invert of the fishway) at Q = 0.035 m3/s, × 1/l = 0.66, and Y1/b = 0 in the pool of conventional weir No. 4, obtained from the output results of the software, were used to evaluate the accuracy of the calculation range. As shown in Fig. 4x1 = the distance from a given weir in the x-direction, Y1 = the water depth measured in the y-direction, Y0 = the vertical distance in the Cartesian coordinate system, h = the water column at the crest, b = the distance between the two points of maximum velocity umax and zero velocity, and l = the pool length.

figure 4
Fig. 4

The apparent index of convergence (p) in the GCI method is calculated as follows:

�=ln⁡(�3−�2)(�2−�1)/ln⁡(�)

(7)

f1f2, and f3 are the hydraulic parameters obtained from the numerical simulation (f1 corresponds to the small mesh), and r is the refinement ratio. The following equation defines the convergence index of the fine mesh:

GCIfine=1.25|ε|��−1

(8)

Here, ε = (f2 − f1)/f1 is the relative error, and f2 and f3 are the values of hydraulic parameters considered for medium and small grids, respectively. GCI12 and GCI23 dimensionless indices can be calculated as:

GCI12=1.25|�2−�1�1|��−1

(9)

Then, the independence of the network is preserved. The convergence index of the network parameters obtained by Eqs. (7)–(9) for all three network variables is shown in Table 3. Since the GCI values for the smaller grid (GCI12) are lower compared to coarse grid (GCI23), it can be concluded that the independence of the grid is almost achieved. No further change in the grid size of the solution domain is required. The calculated values (GCI23/rpGCI12) are close to 1, which shows that the numerical results obtained are within the convergence range. As a result, the meshing of the solution domain consisting of a block mesh with a mesh size of 0.012 m and a block mesh within a larger block mesh with a mesh size of 0.009 m was selected as the optimal mesh (Fig. 5).Table 3 GCI calculation

Full size table

figure 5
Fig. 5

The boundary conditions applied to the area are shown in Fig. 6. The boundary condition of specific flow rate (volume flow rate-Q) was used for the inlet of the flow. For the downstream boundary, the flow output (outflow-O) condition did not affect the flow in the solution area. For the Zmax boundary, the specified pressure boundary condition was used along with the fluid fraction = 0 (P). This type of boundary condition considers free surface or atmospheric pressure conditions (Ghaderi et al. [19]). The wall boundary condition is defined for the bottom of the channel, which acts like a virtual wall without friction (W). The boundary between mesh blocks and walls were considered a symmetrical condition (S).

figure 6
Fig. 6

The convergence of the steady-state solutions was controlled during the simulations by monitoring the changes in discharge at the inlet boundary conditions. Figure 7 shows the time series plots of the discharge obtained from the Model A for the three main discharges from the numerical results. The 8 s to reach the flow equilibrium is suitable for the case of the fish ladder with pool and weir. Almost all discharge fluctuations in the models are insignificant in time, and the flow has reached relative stability. The computation time for the simulations was between 6 and 8 h using a personal computer with eight cores of a CPU (Intel Core i7-7700K @ 4.20 GHz and 16 GB RAM).

figure 7
Fig. 7

3 Results

3.1 Verification of Numerical Results

Quantitative outcomes, including free surface and normalized velocity profiles obtained using FLOW-3D software, were reviewed and compared with the results of Ead et al. [6]. The fourth pool was selected to present the results and compare the experiment and simulation. For each quantity, the percentage of mean absolute error (MAPE (%)) and root-mean-square error (RMSE) are calculated. Equations (10) and (11) show the method used to calculate the errors.

MAPE(%)100×1�∑1�|�exp−�num�exp|

(10)

RMSE(−)1�∑1�(�exp−�num)2

(11)

Here, Xexp is the value of the laboratory data, Xnum is the numerical data value, and n is the amount of data. As shown in Fig. 8, let x1 = distance from a given weir in the x-direction and Y1 = water depth in the y-direction from the bottom. The trend of the surface profiles for each of the numerical results is the same as that of the laboratory results. The surface profiles of the plunging flows drop after the flow enters and then rises to approach the next weir. The RMSE and MAPE error values for Model A are 0.014 m and 3.11%, respectively, indicating acceptable agreement between numerical and laboratory results. Figure 9 shows the velocity vectors and plunging flow from the numerical results, where x and y are horizontal and vertical to the flow direction, respectively. It can be seen that the jet in the fish ladder pool has a relatively high velocity. The two vortices, i.e., the enclosed vortex rotating clockwise behind the weir and the surface vortex rotating counterclockwise above the jet, are observed for the regime of incident flow. The point where the jet meets the fish passage bed is shown in the figure. The normalized velocity profiles upstream and downstream of the impact points are shown in Fig. 10. The figure shows that the numerical results agree well with the experimental data of Ead et al. [6].

figure 8
Fig. 8
figure 9
Fig. 9
figure 10
Fig. 10

3.2 Flow Regime and Discharge-Depth Relationship

Depending on the geometric shape of the fishway, including the distance of the weir, the slope of the bottom, the height of the weir, and the flow conditions, the flow regime in the fishway is divided into three categories: dipping, transitional, and flow regimes [4]. In the plunging flow regime, the flow enters the pool through the weir, impacts the bottom of the fishway, and forms a hydraulic jump causing two eddies [220]. In the streamwise flow regime, the surface of the flow passing over the weir is almost parallel to the bottom of the channel. The transitional regime has intermediate flow characteristics between the submerged and flow regimes. To predict the flow regime created in the fishway, Ead et al. [6] proposed two dimensionless parameters, Qt* and L/w, where Qt* is the dimensionless discharge, L is the distance between weirs, and w is the height of the weir:

��∗=���0���

(12)

Q is the total discharge, B is the width of the channel, S0 is the slope of the bed, and g is the gravity acceleration. Figure 11 shows different ranges for each flow regime based on the slope of the bed and the distance between the pools in this study. The results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22] were used for this comparison. The distance between the pools affects the changes in the regime of the fish ladder. So, if you decrease the distance between weirs, the flow regime more likely becomes. This study determined all three flow regimes in a fish ladder. When the corresponding range of Qt* is less than 0.6, the flow regime can dip at values of L/B = 1.83. If the corresponding range of Qt* is greater than 0.5, transitional flow may occur at L/B = 1.22. On the other hand, when Qt* is greater than 1, streamwise flow can occur at values of L/B = 0.61. These observations agree well with the results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22].

figure 11
Fig. 11

For plunging flows, another dimensionless discharge (Q+) versus h/w given by Ead et al. [6] was used for further evaluation:

�+=��ℎ�ℎ=23�d�

(13)

where h is the water depth above the weir, and Cd is the discharge coefficient. Figure 12a compares the numerical and experimental results of Ead et al. [6]. In this figure, Rehbock’s empirical equation is used to estimate the discharge coefficient of Ead et al. [6].

�d=0.57+0.075ℎ�

(14)

figure 12
Fig. 12

The numerical results for the conventional weir (Model A) and the rectangular labyrinth weir (Model B) of this study agree well with the laboratory results of Ead et al. [6]. When comparing models A and B, it is also found that a rectangular labyrinth weir has larger Q + values than the conventional weir as the length of the weir crest increases for a given channel width and fixed headwater elevation. In Fig. 12b, Models A and B’s flow depth plot shows the plunging flow regime. The power trend lines drawn through the data are the best-fit lines. The data shown in Fig. 12b are for different bed slopes and weir geometries. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q can be assumed to be proportional to 1.56 and 1.47h, respectively. In the results of Ead et al. [6], Q is proportional to 1.5h. If we assume that the flow through the orifice is Qo and the total outflow is Q, the change in the ratio of Qo/Q to total outflow for models A and B can be shown in Fig. 13. For both models, the flow through the orifice decreases as the total flow increases. A logarithmic trend line was also found between the total outflow and the dimensionless ratio Qo/Q.

figure 13
Fig. 13

3.3 Depth-Averaged Velocity Distributions

To ensure that the target fish species can pass the fish ladder with maximum efficiency, the average velocity in the fish ladder should be low enough [4]. Therefore, the average velocity in depth should be as much as possible below the critical swimming velocities of the target fishes at a constant flow depth in the pool [20]. The contour plot of depth-averaged velocity was used instead of another direction, such as longitudinal velocity because fish are more sensitive to depth-averaged flow velocity than to its direction under different hydraulic conditions. Figure 14 shows the distribution of depth-averaged velocity in the pool for Models A and B in two cases with and without orifice plates. Model A’s velocity within the pool differs slightly in the spanwise direction. However, no significant variation in velocity was observed. The flow is gradually directed to the sides as it passes through the rectangular labyrinth weir. This increases the velocity at the sides of the channel. Therefore, the high-velocity zone is located at the sides. The low velocity is in the downstream apex of the weir. This area may be suitable for swimming target fish. The presence of an opening in the weir increases the flow velocity at the opening and in the pool’s center, especially in Model A. The flow velocity increase caused by the models’ opening varied from 7.7 to 12.48%. Figure 15 illustrates the effect of the inverted slope on the averaged depth velocity distribution in the pool at low and high discharge. At constant discharge, flow velocity increases with increasing bed slope. In general, high flow velocity was found in the weir toe sidewall and the weir and channel sidewalls.

figure 14
Fig. 14
figure 15
Fig. 15

On the other hand, for a constant bed slope, the high-velocity area of the pool increases due to the increase in runoff. For both bed slopes and different discharges, the most appropriate path for fish to travel from upstream to downstream is through the middle of the cross section and along the top of the rectangular labyrinth weirs. The maximum dominant velocities for Model B at S0 = 5% were 0.83 and 1.01 m/s; at S0 = 10%, they were 1.12 and 1.61 m/s at low and high flows, respectively. The low mean velocities for the same distance and S0 = 5 and 10% were 0.17 and 0.26 m/s, respectively.

Figure 16 shows the contour of the averaged depth velocity for various distances from the weir at low and high discharge. The contour plot shows a large variation in velocity within short distances from the weir. At L/B = 0.61, velocities are low upstream and downstream of the top of the weir. The high velocities occur in the side walls of the weir and the channel. At L/B = 1.22, the low-velocity zone displaces the higher velocity in most of the pool. Higher velocities were found only on the sides of the channel. As the discharge increases, the velocity zone in the pool becomes wider. At L/B = 1.83, there is an area of higher velocities only upstream of the crest and on the sides of the weir. At high discharge, the prevailing maximum velocities for L/B = 0.61, 1.22, and 1.83 were 1.46, 1.65, and 1.84 m/s, respectively. As the distance between weirs increases, the range of maximum velocity increases.

figure 16
Fig. 16

On the other hand, the low mean velocity for these distances was 0.27, 0.44, and 0.72 m/s, respectively. Thus, the low-velocity zone decreases with increasing distance between weirs. Figure 17 shows the pattern distribution of streamlines along with the velocity contour at various distances from the weir for Q = 0.05 m3/s. A stream-like flow is generally formed in the pool at a small distance between weirs (L/B = 0.61). The rotation cell under the jet forms clockwise between the two weirs. At the distances between the spillways (L/B = 1.22), the transition regime of the flow is formed. The transition regime occurs when or shortly after the weir is flooded. The rotation cell under the jet is clockwise smaller than the flow regime and larger than the submergence regime. At a distance L/B = 1.83, a plunging flow is formed so that the plunging jet dips into the pool and extends downstream to the center of the pool. The clockwise rotation of the cell is bounded by the dipping jet of the weir and is located between the bottom and the side walls of the weir and the channel.

figure 17
Fig. 17

Figure 18 shows the average depth velocity bar graph for each weir at different bed slopes and with and without orifice plates. As the distance between weirs increases, all models’ average depth velocity increases. As the slope of the bottom increases and an orifice plate is present, the average depth velocity in the pool increases. In addition, the average pool depth velocity increases as the discharge increases. Among the models, Model A’s average depth velocity is higher than Model B’s. The variation in velocity ranged from 8.11 to 12.24% for the models without an orifice plate and from 10.26 to 16.87% for the models with an orifice plate.

figure 18
Fig. 18

3.4 Turbulence Characteristics

The turbulent kinetic energy is one of the important parameters reflecting the turbulent properties of the flow field [23]. When the k value is high, more energy and a longer transit time are required to migrate the target species. The turbulent kinetic energy is defined as follows:

�=12(�x′2+�y′2+�z′2)

(15)

where uxuy, and uz are fluctuating velocities in the xy, and z directions, respectively. An illustration of the TKE and the effects of the geometric arrangement of the weir and the presence of an opening in the weir is shown in Fig. 19. For a given bed slope, in Model A, the highest TKE values are uniformly distributed in the weir’s upstream portion in the channel’s cross section. In contrast, for the rectangular labyrinth weir (Model B), the highest TKE values are concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value in Models A and B is 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%). In the downstream portion of the conventional weir and within the crest of the weir and the walls of the rectangular labyrinth, there was a much lower TKE value that provided the best conditions for fish to recover in the pool between the weirs. The average of the lowest TKE for bottom slopes of 5 and 10% in Model A is 0.041 and 0.056 J/kg, and for Model B, is 0.047 and 0.064 J/kg. The presence of an opening in the weirs reduces the area of the highest TKE within the pool. It also increases the resting areas for fish (lower TKE). The highest TKE at the highest bottom slope in Models A and B with an orifice is 0.208 and 0.191 J/kg, respectively.

figure 19
Fig. 19

Figure 20 shows the effect of slope on the longitudinal distribution of TKE in the pools. TKE values significantly increase for a given discharge with an increasing bottom slope. Thus, for a low bed slope (S0 = 5%), a large pool area has expanded with average values of 0.131 and 0.168 J/kg for low and high discharge, respectively. For a bed slope of S0 = 10%, the average TKE values are 0.176 and 0.234 J/kg. Furthermore, as the discharge increases, the area with high TKE values within the pool increases. Lower TKE values are observed at the apex of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall for both bottom slopes. The effect of distance between weirs on TKE is shown in Fig. 21. Low TKE values were observed at low discharge and short distances between weirs. Low TKE values are located at the top of the rectangular labyrinth weir and the downstream corner of the weir wall. There is a maximum value of TKE at the large distances between weirs, L/B = 1.83, along the center line of the pool, where the dip jet meets the bottom of the bed. At high discharge, the maximum TKE value for the distance L/B = 0.61, 1.22, and 1.83 was 0.246, 0.322, and 0.417 J/kg, respectively. In addition, the maximum TKE range increases with the distance between weirs.

figure 20
Fig. 20
figure 21
Fig. 21

For TKE size, the average value (TKEave) is plotted against q in Fig. 22. For all models, the TKE values increase with increasing q. For example, in models A and B with L/B = 0.61 and a slope of 10%, the TKE value increases by 41.66 and 86.95%, respectively, as q increases from 0.1 to 0.27 m2/s. The TKE values in Model B are higher than Model A for a given discharge, bed slope, and weir distance. The TKEave in Model B is higher compared to Model A, ranging from 31.46 to 57.94%. The presence of an orifice in the weir reduces the TKE values in both weirs. The intensity of the reduction is greater in Model B. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, an orifice reduces TKEave values by 60.35 and 19.04%, respectively. For each model, increasing the bed slope increases the TKEave values in the pool. For example, for Model B with q = 0.18 m2/s, increasing the bed slope from 5 to 10% increases the TKEave value by 14.34%. Increasing the distance between weirs increases the TKEave values in the pool. For example, in Model B with S0 = 10% and q = 0.3 m2/s, the TKEave in the pool increases by 34.22% if you increase the distance between weirs from L/B = 0.61 to L/B = 0.183.

figure 22
Fig. 22

Cotel et al. [24] suggested that turbulence intensity (TI) is a suitable parameter for studying fish swimming performance. Figure 23 shows the plot of TI and the effects of the geometric arrangement of the weir and the presence of an orifice. In Model A, the highest TI values are found upstream of the weirs and are evenly distributed across the cross section of the channel. The TI values increase as you move upstream to downstream in the pool. For the rectangular labyrinth weir, the highest TI values were concentrated on the sides of the pool, between the top of the weir and the side wall of the channel, and along the top of the weir. Downstream of the conventional weir, within the apex of the weir, and at the corners of the walls of the rectangular labyrinth weir, the percentage of TI was low. At the highest discharge, the average range of TI in Models A and B was 24–45% and 15–62%, respectively. The diversity of TI is greater in the rectangular labyrinth weir than the conventional weir. Fish swimming performance is reduced due to higher turbulence intensity. However, fish species may prefer different disturbance intensities depending on their swimming abilities; for example, Salmo trutta prefers a disturbance intensity of 18–53% [25]. Kupferschmidt and Zhu [26] found a higher range of TI for fishways, such as natural rock weirs, of 40–60%. The presence of an orifice in the weir increases TI values within the pool, especially along the middle portion of the cross section of the fishway. With an orifice in the weir, the average range of TI in Models A and B was 28–59% and 22–73%, respectively.

figure 23
Fig. 23

The effect of bed slope on TI variation is shown in Fig. 24. TI increases in different pool areas as the bed slope increases for a given discharge. For a low bed slope (S0 = 5%), a large pool area has increased from 38 to 63% and from 56 to 71% for low and high discharge, respectively. For a bed slope of S0 = 10%, the average values of TI are 45–67% and 61–73% for low and high discharge, respectively. Therefore, as runoff increases, the area with high TI values within the pool increases. A lower TI is observed for both bottom slopes in the corner of the wall, downstream of the crest walls, and between the side walls in the weir and channel. Figure 25 compares weir spacing with the distribution of TI values within the pool. The TI values are low at low flows and short distances between weirs. A maximum value of TI occurs at long spacing and where the plunging stream impinges on the bed and the area around the bed. TI ranges from 36 to 57%, 58–72%, and 47–76% for the highest flow in a wide pool area for L/B = 0.61, 1.22, and 1.83, respectively.

figure 24
Fig. 24
figure 25
Fig. 25

The average value of turbulence intensity (TIave) is plotted against q in Fig. 26. The increase in TI values with the increase in q values is seen in all models. For example, the average values of TI for Models A and B at L/B = 0.61 and slope of 10% increased from 23.9 to 33.5% and from 42 to 51.8%, respectively, with the increase in q from 0.1 to 0.27 m2/s. For a given discharge, a given gradient, and a given spacing of weirs, the TIave is higher in Model B than Model A. The presence of an orifice in the weirs increases the TI values in both types. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, the presence of an orifice increases TIave from 23.9 to 37.1% and from 42 to 48.8%, respectively. For each model, TIave in the pool increases with increasing bed slope. For Model B with q = 0.18 m2/s, TIave increases from 37.5 to 45.8% when you increase the invert slope from 5 to 10%. Increasing the distance between weirs increases the TIave in the pool. In Model B with S0 = 10% and q = 0.3 m2/s, the TIave in the pool increases from 51.8 to 63.7% as the distance between weirs increases from L/B = 0.61 to L/B = 0.183.

figure 26
Fig. 26

3.5 Energy Dissipation

To facilitate the passage of various target species through the pool of fishways, it is necessary to pay attention to the energy dissipation of the flow and to keep the flow velocity in the pool slow. The average volumetric energy dissipation (k) in the pool is calculated using the following basic formula:

�=����0��

(16)

where ρ is the water density, and H is the average water depth of the pool. The change in k versus Q for all models at two bottom slopes, S0 = 5%, and S0 = 10%, is shown in Fig. 27. Like the results of Yagci [8] and Kupferschmidt and Zhu [26], at a constant bottom slope, the energy dissipation in the pool increases with increasing discharge. The trend of change in k as a function of Q from the present study at a bottom gradient of S0 = 5% is also consistent with the results of Kupferschmidt and Zhu [26] for the fishway with rock weir. The only difference between the results is the geometry of the fishway and the combination of boulders instead of a solid wall. Comparison of the models shows that the conventional model has lower energy dissipation than the rectangular labyrinth for a given discharge. Also, increasing the distance between weirs decreases the volumetric energy dissipation for each model with the same bed slope. Increasing the slope of the bottom leads to an increase in volumetric energy dissipation, and an opening in the weir leads to a decrease in volumetric energy dissipation for both models. Therefore, as a guideline for volumetric energy dissipation, if the value within the pool is too high, the increased distance of the weir, the decreased slope of the bed, or the creation of an opening in the weir would decrease the volumetric dissipation rate.

figure 27
Fig. 27

To evaluate the energy dissipation inside the pool, the general method of energy difference in two sections can use:

ε=�1−�2�1

(17)

where ε is the energy dissipation rate, and E1 and E2 are the specific energies in Sects. 1 and 2, respectively. The distance between Sects. 1 and 2 is the same. (L is the distance between two upstream and downstream weirs.) Figure 28 shows the changes in ε relative to q (flow per unit width). The rectangular labyrinth weir (Model B) has a higher energy dissipation rate than the conventional weir (Model A) at a constant bottom gradient. For example, at S0 = 5%, L/B = 0.61, and q = 0.08 m3/s.m, the energy dissipation rate in Model A (conventional weir) was 0.261. In Model B (rectangular labyrinth weir), however, it was 0.338 (22.75% increase). For each model, the energy dissipation rate within the pool increases as the slope of the bottom increases. For Model B with L/B = 1.83 and q = 0.178 m3/s.m, the energy dissipation rate at S0 = 5% and 10% is 0.305 and 0.358, respectively (14.8% increase). Figure 29 shows an orifice’s effect on the pools’ energy dissipation rate. With an orifice in the weir, both models’ energy dissipation rates decreased. Thus, the reduction in energy dissipation rate varied from 7.32 to 9.48% for Model A and from 8.46 to 10.57 for Model B.

figure 28
Fig. 28
figure 29
Fig. 29

4 Discussion

This study consisted of entirely of numerical analysis. Although this study was limited to two weirs, the hydraulic performance and flow characteristics in a pooled fishway are highlighted by the rectangular labyrinth weir and its comparison with the conventional straight weir. The study compared the numerical simulations with laboratory experiments in terms of surface profiles, velocity vectors, and flow characteristics in a fish ladder pool. The results indicate agreement between the numerical and laboratory data, supporting the reliability of the numerical model in capturing the observed phenomena.

When the configuration of the weir changes to a rectangular labyrinth weir, the flow characteristics, the maximum and minimum area, and even the location of each hydraulic parameter change compared to a conventional weir. In the rectangular labyrinth weir, the flow is gradually directed to the sides as it passes the weir. This increases the velocity at the sides of the channel [21]. Therefore, the high-velocity area is located on the sides. In the downstream apex of the weir, the flow velocity is low, and this area may be suitable for swimming target fish. However, no significant change in velocity was observed at the conventional weir within the fish ladder. This resulted in an average increase in TKE of 32% and an average increase in TI of about 17% compared to conventional weirs.

In addition, there is a slight difference in the flow regime for both weir configurations. In addition, the rectangular labyrinth weir has a higher energy dissipation rate for a given discharge and constant bottom slope than the conventional weir. By reducing the distance between the weirs, this becomes even more intense. Finally, the presence of an orifice in both configurations of the weir increased the flow velocity at the orifice and in the middle of the pool, reducing the highest TKE value and increasing the values of TI within the pool of the fish ladder. This resulted in a reduction in volumetric energy dissipation for both weir configurations.

The results of this study will help the reader understand the direct effects of the governing geometric parameters on the hydraulic characteristics of a fishway with a pool and weir. However, due to the limited configurations of the study, further investigation is needed to evaluate the position of the weir’s crest on the flow direction and the difference in flow characteristics when combining boulders instead of a solid wall for this type of labyrinth weir [26]. In addition, hydraulic engineers and biologists must work together to design an effective fishway with rectangular labyrinth configurations. The migration habits of the target species should be considered when designing the most appropriate design [27]. Parametric studies and field observations are recommended to determine the perfect design criteria.

The current study focused on comparing a rectangular labyrinth weir with a conventional straight weir. Further research can explore other weir configurations, such as variations in crest position, different shapes of labyrinth weirs, or the use of boulders instead of solid walls. This would help understand the influence of different geometric parameters on hydraulic characteristics.

5 Conclusions

A new layout of the weir was evaluated, namely a rectangular labyrinth weir compared to a straight weir in a pool and weir system. The differences between the weirs were highlighted, particularly how variations in the geometry of the structures, such as the shape of the weir, the spacing of the weir, the presence of an opening at the weir, and the slope of the bottom, affect the hydraulics within the structures. The main findings of this study are as follows:

  • The calculated dimensionless discharge (Qt*) confirmed three different flow regimes: when the corresponding range of Qt* is smaller than 0.6, the regime of plunging flow occurs for values of L/B = 1.83. (L: distance of the weir; B: channel width). When the corresponding range of Qt* is greater than 0.5, transitional flow occurs at L/B = 1.22. On the other hand, if Qt* is greater than 1, the streaming flow is at values of L/B = 0.61.
  • For the conventional weir and the rectangular labyrinth weir with the plunging flow, it can be assumed that the discharge (Q) is proportional to 1.56 and 1.47h, respectively (h: water depth above the weir). This information is useful for estimating the discharge based on water depth in practical applications.
  • In the rectangular labyrinth weir, the high-velocity zone is located on the side walls between the top of the weir and the channel wall. A high-velocity variation within short distances of the weir. Low velocity occurs within the downstream apex of the weir. This area may be suitable for swimming target fish.
  • As the distance between weirs increased, the zone of maximum velocity increased. However, the zone of low speed decreased. The prevailing maximum velocity for a rectangular labyrinth weir at L/B = 0.61, 1.22, and 1.83 was 1.46, 1.65, and 1.84 m/s, respectively. The low mean velocities for these distances were 0.27, 0.44, and 0.72 m/s, respectively. This finding highlights the importance of weir spacing in determining the flow characteristics within the fishway.
  • The presence of an orifice in the weir increased the flow velocity at the orifice and in the middle of the pool, especially in a conventional weir. The increase ranged from 7.7 to 12.48%.
  • For a given bottom slope, in a conventional weir, the highest values of turbulent kinetic energy (TKE) are uniformly distributed in the upstream part of the weir in the cross section of the channel. In contrast, for the rectangular labyrinth weir, the highest TKE values were concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value for the conventional and the rectangular labyrinth weir was 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%).
  • For a given discharge, bottom slope, and weir spacing, the average values of TI are higher for the rectangular labyrinth weir than for the conventional weir. At the highest discharge, the average range of turbulence intensity (TI) for the conventional and rectangular labyrinth weirs was between 24 and 45% and 15% and 62%, respectively. This reveals that the rectangular labyrinth weir may generate more turbulent flow conditions within the fishway.
  • For a given discharge and constant bottom slope, the rectangular labyrinth weir has a higher energy dissipation rate than the conventional weir (22.75 and 34.86%).
  • Increasing the distance between weirs decreased volumetric energy dissipation. However, increasing the gradient increased volumetric energy dissipation. The presence of an opening in the weir resulted in a decrease in volumetric energy dissipation for both model types.

Availability of data and materials

Data is contained within the article.

References

  1. Katopodis C (1992) Introduction to fishway design, working document. Freshwater Institute, Central Arctic Region
  2. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C.: Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 63, 88–101 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.010Article Google Scholar 
  3. Dasineh, M.; Ghaderi, A.; Bagherzadeh, M.; Ahmadi, M.; Kuriqi, A.: Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics 9, 3135 (2021)Article Google Scholar 
  4. Silva, A.T.; Bermúdez, M.; Santos, J.M.; Rabuñal, J.R.; Puertas, J.: Pool-type fishway design for a potamodromous cyprinid in the Iberian Peninsula: the Iberian barbel—synthesis and future directions. Sustainability 12, 3387 (2020). https://doi.org/10.3390/su12083387Article Google Scholar 
  5. Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A.: Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: effect of boulder density and fishway discharge. Ecol. Eng. 73, 335–344 (2014). https://doi.org/10.1016/j.ecoleng.2014.09.065Article Google Scholar 
  6. Ead, S.; Katopodis, C.; Sikora, G.; Rajaratnam, N.J.J.: Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 3, 379–390 (2004)Article Google Scholar 
  7. Guiny, E.; Ervine, D.A.; Armstrong, J.D.: Hydraulic and biological aspects of fish passes for Atlantic salmon. J. Hydraul. Eng. 131, 542–553 (2005)Article Google Scholar 
  8. Yagci, O.: Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 36, 36–46 (2010). https://doi.org/10.1016/j.ecoleng.2009.09.007Article Google Scholar 
  9. Dizabadi, S.; Hakim, S.S.; Azimi, A.H.: Discharge characteristics and structure of flow in labyrinth weirs with a downstream pool. Flow Meas. Instrum. 71, 101683 (2020). https://doi.org/10.1016/j.flowmeasinst.2019.101683Article Google Scholar 
  10. Kim, J.H.: Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 16, 425–433 (2001). https://doi.org/10.1016/S0925-8574(00)00125-7Article Google Scholar 
  11. Zhong, Z.; Ruan, T.; Hu, Y.; Liu, J.; Liu, B.; Xu, W.: Experimental and numerical assessment of hydraulic characteristic of a new semi-frustum weir in the pool-weir fishway. Ecol. Eng. 170, 106362 (2021). https://doi.org/10.1016/j.ecoleng.2021.106362Article Google Scholar 
  12. Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5Article Google Scholar 
  13. Roache, P.J.: Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 1994(116), 405–413 (1994)Article Google Scholar 
  14. Guo, S.; Chen, S.; Huang, X.; Zhang, Y.; Jin, S.: CFD and experimental investigations of drag force on spherical leak detector in pipe flows at high Reynolds number. Comput. Model. Eng. Sci. 101(1), 59–80 (2014)Google Scholar 
  15. Ahmadi, M.; Kuriqi, A.; Nezhad, H.M.; Ghaderi, A.; Mohammadi, M.: Innovative configuration of vertical slot fishway to enhance fish swimming conditions. J. Hydrodyn. 34, 917–933 (2022). https://doi.org/10.1007/s42241-022-0071-yArticle Google Scholar 
  16. Ahmadi, M.; Ghaderi, A.; MohammadNezhad, H.; Kuriqi, A.; Di Francesco, S.J.W.: Numerical investigation of hydraulics in a vertical slot fishway with upgraded configurations. Water 13, 2711 (2021)Article Google Scholar 
  17. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME (2008). https://doi.org/10.1115/1.2960953Article Google Scholar 
  18. Li, S.; Yang, J.; Ansell, A.: Evaluation of pool-type fish passage with labyrinth weirs. Sustainability (2022). https://doi.org/10.3390/su14031098Article Google Scholar 
  19. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)Article Google Scholar 
  20. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T.: Pool-type fishways: two different morpho-ecological cyprinid species facing plunging and streaming flows. PLoS ONE 8, e65089 (2013). https://doi.org/10.1371/journal.pone.0065089Article Google Scholar 
  21. Baki, A.B.M.; Zhu, D.Z.; Harwood, A.; Lewis, A.; Healey, K.: Rock-weir fishway I: flow regimes and hydraulic characteristics. J. Ecohydraulics 2, 122–141 (2017). https://doi.org/10.1080/24705357.2017.1369182Article Google Scholar 
  22. Dizabadi, S.; Azimi, A.H.: Hydraulic and turbulence structure of triangular labyrinth weir-pool fishways. River Res. Appl. 36, 280–295 (2020). https://doi.org/10.1002/rra.3581Article Google Scholar 
  23. Faizal, W.M.; Ghazali, N.N.N.; Khor, C.Y.; Zainon, M.Z.; Ibrahim, N.B.; Razif, R.M.: Turbulent kinetic energy of flow during inhale and exhale to characterize the severity of obstructive sleep apnea patient. Comput. Model. Eng. Sci. 136(1), 43–61 (2023)Google Scholar 
  24. Cotel, A.J.; Webb, P.W.; Tritico, H.: Do brown trout choose locations with reduced turbulence? Trans. Am. Fish. Soc. 135, 610–619 (2006). https://doi.org/10.1577/T04-196.1Article Google Scholar 
  25. Hargreaves, D.M.; Wright, N.G.: On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 95, 355–369 (2007). https://doi.org/10.1016/j.jweia.2006.08.002Article Google Scholar 
  26. Kupferschmidt, C.; Zhu, D.Z.: Physical modelling of pool and weir fishways with rock weirs. River Res. Appl. 33, 1130–1142 (2017). https://doi.org/10.1002/rra.3157Article Google Scholar 
  27. Romão, F.; Quaresma, A.L.; Santos, J.M.; Amaral, S.D.; Branco, P.; Pinheiro, A.N.: Multislot fishway improves entrance performance and fish transit time over vertical slots. Water (2021). https://doi.org/10.3390/w13030275Article Google Scholar 

Download references

Figure 2-15: Système expérimental du plan incliné

새로운 콘크리트의 유체 흐름 모델링

Sous la direction de :
Marc Jolin, directeur de recherche
Benoit Bissonnette, codirecteur de recherche

Modélisation de l’écoulement du béton frais

Abstract

현재의 기후 비상 사태와 기후 변화에 관한 다양한 과학적 보고서를 고려할 때 인간이 만든 오염을 대폭 줄이는 것은 필수적이며 심지어 중요합니다. 최신 IPCC(기후변화에 관한 정부 간 패널) 보고서(2022)는 2030년까지 배출량을 절반으로 줄여야 함을 나타내며, 지구 보존을 위해 즉각적인 조치를 취해야 한다고 강력히 강조합니다.

이러한 의미에서 콘크리트 생산 산업은 전체 인간 이산화탄소 배출량의 4~8%를 담당하고 있으므로 환경에 미치는 영향을 줄이기 위한 진화가 시급히 필요합니다.

본 연구의 주요 목적은 이미 사용 가능한 기술적 품질 관리 도구를 사용하여 생산을 최적화하고 혼합 시간을 단축하며 콘크리트 폐기물을 줄이기 위한 신뢰할 수 있고 활용 가능한 수치 모델을 개발함으로써 이러한 산업 전환에 참여하는 것입니다.

실제로, 혼합 트럭 내부의 신선한 콘크리트의 거동과 흐름 프로파일을 더 잘 이해할 수 있는 수치 시뮬레이션을 개발하면 혼합 시간과 비용을 더욱 최적화할 수 있으므로 매우 유망합니다. 이러한 복잡한 수치 도구를 활용할 수 있으려면 수치 시뮬레이션을 검증, 특성화 및 보정하기 위해 기본 신 콘크리트 흐름 모델의 구현이 필수적입니다.

이 논문에서는 세 가지 단순 유동 모델의 개발이 논의되고 얻은 결과는 신선한 콘크리트 유동의 수치적 거동을 검증하는 데 사용됩니다. 이러한 각 모델은 강점과 약점을 갖고 있으며, 신선한 콘크리트의 유변학과 유동 거동을 훨씬 더 잘 이해할 수 있는 수치 작업 환경을 만드는 데 기여합니다.

따라서 이 연구 프로젝트는 새로운 콘크리트 생산의 완전한 모델링을 위한 진정한 관문입니다.

In view of the current climate emergency and the various scientific reports on climate change, it is essential and even vital to drastically reduce man-made pollution. The latest IPCC (Intergovernmental Panel on Climate Change) report (2022) indicates that emissions must be halved by 2030 and strongly emphasizes the need to act immediately to preserve the planet. In this sense, the concrete production industry is responsible for 4-8% of total human carbon dioxide emissions and therefore urgently needs to evolve to reduce its environmental impact. The main objective of this study is to participate in this industrial transition by developing a reliable and exploitable numerical model to optimize the production, reduce mixing time and also reduce concrete waste by using technological quality control tools already available. Indeed, developing a numerical simulation allowing to better understand the behavior and flow profiles of fresh concrete inside a mixing-truck is extremely promising as it allows for further optimization of mixing times and costs. In order to be able to exploit such a complex numerical tool, the implementation of elementary fresh concrete flow models is essential to validate, characterize and calibrate the numerical simulations. In this thesis, the development of three simple flow models is discussed and the results obtained are used to validate the numerical behavior of fresh concrete flow. Each of these models has strengths and weaknesses and contributes to the creation of a numerical working environment that provides a much better understanding of the rheology and flow behavior of fresh concrete. This research project is therefore a real gateway to a full modelling of fresh concrete production.


Key words

fresh concrete, rheology, numerical simulation, mixer-truck, rheological probe.

Figure 2-15: Système expérimental du plan incliné
Figure 2-15: Système expérimental du plan incliné
Figure 2-19: Essai d'affaissement au cône d'Abrams
Figure 2-19: Essai d’affaissement au cône d’Abrams

Reference

Amziane, S., Ferraris, C. F., & Koehler, E. (2006). Feasibility of Using a Concrete
Mixing Truck as a Rheometer.
Anderson, J. D. (1991). Fundamentals of aerodynamics. McGraw-Hill.
Balmforth, N. J., Craster, R. V., & Sassi, R. (2002). Shallow viscoplastic flow on an
inclined plane. Journal of Fluid Mechanics, 470, 1-29.
https://doi.org/10.1017/S0022112002001660
Banfill, P., Beaupré, D., Chapdelaine, F., de Larrard, F., Domone, P., Nachbaur, L.,
Sedran, T., Wallevik, O., & Wallevik, J. E. (2000). Comparison of concrete
rheometers International tests at LCPC (Nantes, France) in October 2000. In
NIST.
Baracu T. (2012). Computational analysis of the flow around a cylinder and of the
drag force.
Barreto, D., & Leak, J. (2020). A guide to modeling the geotechnical behavior of soils
using the discrete element method. In Modeling in Geotechnical Engineering (p.
79-100). Elsevier. https://doi.org/10.1016/B978-0-12-821205-9.00016-2
Baudez, J. C., Chabot, F., & Coussot, P. (2002). Rheological interpretation of the
slump test. Applied Rheology, 12(3), 133-141. https://doi.org/10.1515/arh-2002-
0008
Beaupre, D. (2012). Mixer-mounted probe measures concrete workability.
Berger, X. (2023). Proposition de recherche et préparation orale de doctorat (GCI8084).
Bergeron, P. (1953). Considérations sur les facteurs influençant l’usure due au
transport hydraulique de matériaux solides. Application plus particulière aux
machines. https://www.persee.fr/doc/jhydr_0000-0001_1953_act_2_1_3256
Bingham, E. (1922). Fluidity and Plasticity (Digitized by the Internet Archive in 2007).
http://www.archive.org/details/fluidityplasticiOObinguoft
Bruschi, G., Nishioka, T., Tsang, K., & Wang, R. (2003). A comparison of analytical
methods drag coefficient of a cylinder.

Caceres, E. C. (2019). Impact de la rhéologie des matériaux cimentaires sur l’aspect
des parements et les procédés de mise en place. https://tel.archivesouvertes.fr/tel-01982159
Chanson, H., Jarny, ; S, & Coussot, P. (2006). Dam Break Wave of Thixotropic Fluid.
https://doi.org/10.1061/ASCE0733-94292006132:3280
Chi, Z. P., Yang, H., Li, R., & Sun, Q. C. (2021). Measurements of unconfined fresh
concrete flow on a slope using spatial filtering velocimetry. Powder Technology,
393, 349-356. https://doi.org/10.1016/j.powtec.2021.07.088
Cochard, S., & Ancey, C. (2009). Experimental investigation of the spreading of
viscoplastic fluids on inclined planes. Journal of Non-Newtonian Fluid
Mechanics, 158(1-3), 73-84. https://doi.org/10.1016/j.jnnfm.2008.08.007
Coussot, Philippe., & Ancey, C. (Christophe). (1999). Rhéophysique des pâtes et
des suspensions. EDP Sciences.
CSA Group. (2019). CSA A23.1:19 / CSA A23.2:19 : Concrete materials and
methods of concret construction / Test methods and standard practices for
concrete.
Daczko, J. A. (2000). A proposal for measuring rheology of production concrete.
De Larrard, F. (1999). Structures granulaires et formulation des bétons.
http://www.lcpc.fr/betonlabpro
De Larrard, F., Ferraris, C. F., & Sedran, T. (1998). Fresh concrete: A HerscheIBulkley material (Vol. 31).
Domone P.L.J., J. J. (1999). Properties of mortar for self-compacting concrete.
RILEM, 109-120.
El-Reedy, M. (2009). Advanced Materials and Techniques for Reinforced Concrete
Structures.
Emborg M. (1999). Rheology tests for self-compacting concrete – how useful are
they for the design of concrete mix for full-scale production.
Fall A. (2008). Rhéophysique des fluides complexes : Ecoulement et Blocage de
suspensions concentrées. https://www.researchgate.net/publication/30515545
Ferraris, C. F., Brower, L. E., Beaupré, D., Chapdelaine, F., Domone, P., Koehler,
E., Shen, L., Sonebi, M., Struble, L., Tepke, D., Wallevik, O., & Wallevik, J. E.

(2003). Comparison of concrete rheometers: International tests at MB.
https://doi.org/10.6028/NIST.IR.7154
Ferraris, C. F., & de Larrard, F. (1998a). Rhéologie du béton frais remanié III – L’essai
au cône d’Abrams modifié.
Ferraris, C. F., & de Larrard, F. (1998b, février). NISTIR 6094 Testing and modelling
of fresh concrete rheology. NISTIR 6094.
https://ciks.cbt.nist.gov/~garbocz/rheologyNISTIR/FR97html.htm
Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye Ghana, A., Allwood, J., Baiocchi,
G., Clift, R., Nenov, V., Yetano Roche Spain, M., Roy, J., Abdel-Aziz, A.,
Acquaye, A., Allwood, J. M., Ceron, J., Geng, Y., Kheshgi, H., Lanza, A.,
Perczyk, D., Price, L., … Minx, J. (2014). Climate Change 2014.
Fox R., & McDonald A. (2004). Introduction to fluid mechanics.
Franco Correa I.-D. (2019). Étude tribologique à hautes températures de matériaux
céramiques structurés à différentes échelles.
GIEC. (2022). Climate Change 2022 : Mitigation of Climate Change. www.ipcc.ch
Gouvernement du Canada. (2021, mai 31). Déclaration commune : L’industrie
canadienne du ciment et le gouvernement du Canada annoncent un partenariat.
https://www.ic.gc.ca/eic/site/icgc.nsf/fra/07730.html
Grenier, M. (1998). Microstructure et résistance à l’usure de revêtements crées par
fusion laser avec gaz réactifs sur du titane.
Herschel, W. H., & Bulkley, R. (1926). Konsistenzmessungen von GummiBenzollösungen. Kolloid-Zeitschrift, 39(4), 291-300.
https://doi.org/10.1007/BF01432034
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics
of free boundaries. Journal of Computational Physics, 39(1), 201-225.
https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
Hoornahad, H., & Koenders, E. A. B. (2012). Simulation of the slump test based on
the discrete element method (DEM). Advanced Materials Research, 446-449,
3766-3773. https://doi.org/10.4028/www.scientific.net/AMR.446-449.3766

Hu, C., de Larrard, F., Sedran, T., Boulay, C., Bosd, F., & Deflorenne, F. (1996).
Validation of BTRHEOM, the new rheometer for soft-to-fluid concrete. In
Materials and Structures/Mat~riaux et Constructions (Vol. 29).
Jeong, S. W., Locat, J., Leroueil, S., & Malet, J. P. (2007). Rheological properties of
fine-grained sediments in modeling submarine mass movements: The role of
texture. Submarine Mass Movements and Their Consequences, 3rd
International Symposium, 191-198. https://doi.org/10.1007/978-1-4020-6512-
5_20
Kabagire, K. D. (2018). Modélisation expérimentale et analytique des propriétés
rhéologiques des bétons autoplaçants.
Katopodes, N. D. (2019). Volume of Fluid Method. In Free-Surface Flow (p.
766-802). Elsevier. https://doi.org/10.1016/b978-0-12-815485-4.00018-8
Khayat. (2008). Personnal Communication.
Kosmatka, S. (2011). Dosage et contrôle des mélanges de béton (8ème édition).
Li, H., Wu, A., & Cheng, H. (2022). Generalized models of slump and spread in
combination for higher precision in yield stress determination. Cement and
Concrete Research, 159. https://doi.org/10.1016/j.cemconres.2022.106863
Massey, B., & Smith, J. (2012). Mechanics of fluids 9ème édition.
Mokéddem, S. (2014). Contrôle de la rhéologie d’un béton et de son évolution lors
du malaxage par des mesures en ligne à l’aide de la sonde Viscoprobe.
https://tel.archives-ouvertes.fr/tel-00993153
Munson, B. R., & Young, D. R. (2006). Fundamental of Fluid Mechanics (5th éd.).
Munson, M., Young, M. , & Okiishi, M. (2020). Mécanique des fluides (8ème édition).
Murata, J., & Kikukawa, H. (1992). Viscosity Equation for Fresh Concrete.
Nakayama, Y., & Boucher, R. F. (2000). Introduction to fluid mechanics. ButterworthHeinemann.
Němeček, J. (2021). Numerical simulation of slump flow test of cement paste
composites. Acta Polytechnica CTU Proceedings, 30, 58-62.
https://doi.org/10.14311/APP.2021.30.0058
Nikitin, K. D., Olshanskii, M. A., Terekhov, K. M., & Vassilevski, Y. V. (2011). A
numerical method for the simulation of free surface flows of viscoplastic fluid in

3D. Journal of Computational Mathematics, 29(6), 605-622.
https://doi.org/10.4208/jcm.1109-m11si01
Noh, W. F., & Woodward, P. (1976). SLIC (Simple Line Interface Calculation).
Odabas, D. (2018). Effects of Load and Speed on Wear Rate of Abrasive Wear for
2014 Al Alloy. IOP Conference Series: Materials Science and Engineering,
295(1). https://doi.org/10.1088/1757-899X/295/1/012008
Pintaude, G. (s. d.). Characteristics of Abrasive Particles and Their Implications on
Wear. www.intechopen.com
Poullain, P. (2003). Étude comparative de l’écoulement d’un fluide viscoplastique
dans une maquette de malaxeur pour béton.
R. J. Cattolica. (2003). Experiment F2: Water Tunnel. In MAE171A/175A Mechanical
Engineering Laboratory Manual (Winter Quarter).
Raper, R. M. (1966). Drag force and pressure distribution on cylindrical
protuberances immersed in a turbulent channel flow.
RMCAO. (2013). CSA A23.2-5C: Concrete Basics Slump Test.
Roques, A., & School, H. (2006). High resolution seismic imaging applied to the
geometrical characterization of very high voltage electric pylons.
https://www.researchgate.net/publication/281566156
Roussel, N. (2006). Correlation between yield stress and slump: Comparison
between numerical simulations and concrete rheometers results. Materials and
Structures/Materiaux et Constructions, 39(4), 501-509.
https://doi.org/10.1617/s11527-005-9035-2
Roussel, N., & Coussot, P. (2005). “Fifty-cent rheometer” for yield stress
measurements: From slump to spreading flow. Journal of Rheology, 49(3),
705-718. https://doi.org/10.1122/1.1879041
Roussel, N., Geiker, M. R., Dufour, F., Thrane, L. N., & Szabo, P. (2007).
Computational modeling of concrete flow: General overview. Cement and
Concrete Research, 37(9), 1298-1307.
https://doi.org/10.1016/j.cemconres.2007.06.007
Schaer, N. (2019). Modélisation des écoulements à surface libre de fluides nonnewtoniens. https://theses.hal.science/tel-02166968

Schowalter, W. R., & Christensen, G. (1998). Toward a rationalization of the slump
test for fresh concrete: Comparisons of calculations and experiments. Journal
of Rheology, 42(4), 865-870. https://doi.org/10.1122/1.550905
Sofiane Amziane, Chiara F. Ferraris, & Eric P. Koehler. (2005). Measurement of
Workability of Fresh Concrete Using a Mixing Truck. Journal of Research of the
National Institute of Standards Technology, 55-56.
Sooraj, P., Agrawal, A., & Sharma, A. (2018). Measurement of Drag Coefficient for
an Elliptical Cylinder. Journal of Energy and Environmental Sustainability, 5,
1-7. https://doi.org/10.47469/jees.2018.v05.100050
Stachowiak G. (2006). Wear – Materials, Mechanisms and Pratice.
Stachowiak G.W. (1993). Tribology Series (Vol. 24, p. 557-612). Elsevier.
Tattersall, G., & Banfill, P. F. G. (1983). The rheology of fresh concrete.
The European Guidelines for Self-Compacting Concrete Specification, Production
and Use « The European Guidelines for Self Compacting Concrete ». (2005).
www.efnarc.org
University College London. (2010). Pressure around a cylinder and cylinder drag.
Van Oudheusden, B. W., Scarano, F., Roosenboom, E. W. M., Casimiri, E. W. F., &
Souverein, L. J. (2007). Evaluation of integral forces and pressure fields from
planar velocimetry data for incompressible and compressible flows.
Experiments in Fluids, 43(2-3), 153-162. https://doi.org/10.1007/s00348-007-
0261-y
Vasilic, K., Gram, A., & Wallevik, J. E. (2019). Numerical simulation of fresh concrete
flow: Insight and challenges. RILEM Technical Letters, 4, 57-66.
https://doi.org/10.21809/rilemtechlett.2019.92
Viccione, G., Ferlisi, S., & Marra, E. (2010). A numerical investigation of the
interaction between debris flows and defense barriers.
http://www.unisa.it/docenti/giacomoviccione/en/index
Wallevik J. (2006). Relation between the Bingham parameters and slump.
Wallevik, J. E. (2006). Relationship between the Bingham parameters and slump.
Cement and Concrete Research, 36(7), 1214-1221.
https://doi.org/10.1016/j.cemconres.2006.03.001

Wallevik, J. E., & Wallevik, O. H. (2020). Concrete mixing truck as a rheometer.
Cement and Concrete Research, 127.
https://doi.org/10.1016/j.cemconres.2019.105930

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Numerical investigation of flow characteristics over stepped spillways

Güven, Aytaç
Mahmood, Ahmed Hussein
Water Supply (2021) 21 (3): 1344–1355.
https://doi.org/10.2166/ws.2020.283Article history

Abstract

Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

HIGHLIGHTS

ListenReadSpeaker webReader: Listen

  • A numerical model was developed for stepped spillways.
  • The turbulent flow was simulated by the Renormalized Group (RNG) model.
  • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

Keyword

CFDnumerical modellingslope changestepped spillwayturbulent flow

INTRODUCTION

댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

METHODOLOGY

ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

formula

(1)

formula

(2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

formula

(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

formula

(4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

formula

(5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

formula

(6)where ⁠: the turbulent length scale.

VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

formula

(7)

formula

(8)

formula

(9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

Case study

ListenReadSpeaker webReader: Listen

In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1

Location of pressure sensors on horizontal step faces

Θ(°)L(m)x/l (–)
50.0 0.050 0.35 0.64 – – – 
30.0 0.104 0.17 0.50 0.84 – – 
18.6 0.178 0.10 0.30 0.50 0.7 0.88 
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Numerical model set-up

ListenReadSpeaker webReader: Listen

A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2

Variables used in test runs

Test no.Θ1 (°)Θ2 (°)h(m)d0q (m3s1)dc/h (–)
50 18.6 0.06 0.045 0.1 2.6 
50 18.6 0.06 0.082 0.235 4.6 
50 30.0 0.06 0.045 0.1 2.6 
50 30.0 0.06 0.082 0.235 4.6 
Table 2 Variables used in test runs

For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.

The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.

Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Figure 3VIEW LARGEDOWNLOAD SLIDE

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.

There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).

The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.

RESULTS AND DISCUSSION

ListenReadSpeaker webReader: Listen

The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.

Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure 4VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 5VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 6VIEW LARGEDOWNLOAD SLIDE

Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

Figure 7VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.

The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.

Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.

Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 8VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.

Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.

Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.

Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

CONCLUSION

ListenReadSpeaker webReader: Listen

In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.

Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.

The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.

이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.

Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.

Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.

DATA AVAILABILITY STATEMENT

ListenReadSpeaker webReader: Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Boes R. M. Hager W. H. 2003a Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
Google Scholar
Boes R. M. Hager W. H. 2003b Two-Phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering 129 (9), 661–670.
Google Scholar
Chanson H. 1994 Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research 32 (3), 445–460.
Google Scholar
Chanson H. 1997 Air Bubble Entrainment in Free Surface Turbulent Shear Flows. Academic Press, London.
Google Scholar
Chanson H. 2002 The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands.
Google Scholar
Felder S. Chanson H. 2011 Energy dissipation down a stepped spillway with nonuniform step heights. Journal of Hydraulic Engineering 137 (11), 1543–1548.
Google Scholar
Flow Science, Inc. 2012 FLOW-3D v10-1 User Manual. Flow Science, Inc., Santa Fe, CA.
Ghaderi A. Daneshfaraz R. Torabi M. Abraham J. Azamathulla H. M. 2020a Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply 20 (5), 1988–1998.
Google Scholar
Ghaderi A. Abbasi S. Abraham J. Azamathulla H. M. 2020b Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation 72, 101711.
Google Scholar
Gonzalez C. A. Chanson H. 2008 Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research 46 (1), 65–72.
Google Scholar
Gunal M. 1996 Numerical and Experimental Investigation of Hydraulic Jumps. PhD Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK.
Hirt C. W. Nichols B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1), 201–225.
Google Scholar
Matos J. 2000 Hydraulic design of stepped spillways over RCC dams. In: Intl Workshop on Hydraulics of Stepped Spillways (H.-E. Minor & W. Hager, eds). Balkema Publ, Zurich, pp. 187–194.
Google Scholar
Mohammad Rezapour Tabari M. Tavakoli S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 41 (4), 1215–1224.
Google Scholar
Ostad Mirza M. J. 2016 Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics Over Stepped Spillways. Communications du Laboratoire de Constructions Hydrauliques, No. 64 (A. J. Schleiss, ed.). Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Roshan R. Azamathulla H. M. Marosi M. Sarkardeh H. Pahlavan H. Ab Ghani A. 2010 Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs 20 (3), 131–136.
Google Scholar
Shahheydari H. Nodoshan E. J. Barati R. Moghadam M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
Google Scholar
Takahashi M. Ohtsu I. 2012 Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research 50 (4), 427–434.
Google Scholar
Versteeg H. K. Malalasekera W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow.
Google Scholar
© 2021 The Authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Immersed Boundary Method

Immersed Boundary Method

이 기사에서 개발자인 Zongxian Liane박사는 곧 출시될 FLOW-3D v11.3에서 사용할 수 있는 새로운 Immersed Boundary Method에 대해 설명합니다.

힘과 에너지 손실에 대한 정확한 예측은 오리피스 판에서의 배출, 장애물을 지나가는 흐름 및 갑작스런 수축 관에서의 흐름과 같은 많은 엔지니어링 문제를 분석하는데 중요합니다. 셀 면적 및 부피 Method인 FAVORTM은 30년 전에 도입된 이래로 FLOW-3D의 표준 솔버로 적용되었으며 벽 근처의 운동량 fluxes를 근사화하는 간단한 방법을 사용했습니다 (Hirt and Sicilian 1985). 벽이나 자유 표면 근처에서 운동 이류항을 계산할 때 솔리드 또는 보이드 영역 내에 위치한 속도 값은  경계층의 모양을 제거하기 위해 0으로 설정됩니다. 물리적 관점에서 이 방법은 벽의 돌출부에 자유 미끄러짐(비침투)경계 조건을 적용하여 인공 경계층(Hirt1993)을 억제한다.

운동량 방정식에서 플럭스의 손실은 압력에 의해 보상됩니다. 특정 상황에서는 플럭스손실을 보상하는 압력의 비율이 시간에 따라 증가하며, 단일 유전물질로 표현되는 “세속적 불안정성”이라고 하는 수치적 불안정성을 야기할 수 있습니다. 속도의 증가 이러한 불안정성의 전개를 방지하기 위해, 경험적 기법을 사용하여 불안정성이 발생할 수 있는 위치에서 플럭스를 “보정” 했습니다. 그러나 이 방법은 선원으로부터의 플럭스 손실을 해결하지 못하며, 때때로 압력 변동과 같은 용액의 비정치적인 동작을 초래할 수 있습니다.

ghost – 내접 경계법 (Mittal et al., 2008)에 기초한 이류 항을 근사화하는 기법은 FLOW-3D v11.3을 위해 개발되었다. 이 내접 경계 방법 기술은 근본적으로이 문제를 해결하고보다 정확한 압력과 힘 예측을 제공합니다. ghost – 내접 경계법은 복잡한 형상을 포함하는 문제에서 전통적인 데카르트 그리드 근사법에서 강화 된 경계 처리로서 최근에 출현했다. 이 방법은 경계를 처리하는 수단 일 뿐이므로 기존의 해석기 구조가 비교적 적게 변경되어 기존의 FLOW-3D 해석기에 모델로 쉽게 추가 될 수 있으며 FLOW-3D의 다른 물리적 모델과 호환됩니다. 다양한 보간 방법과 함께 가중치 평균 프로브 기술을 사용하여 다른 지오메트리 구성을 처리합니다. 새 모델은 3D 메쉬 블록 또는 하이브리드 3D / 얕은 워터 메쉬 블록이있는 플로우에는 작동하지만 얕은 워터 메쉬에는 적합하지 않습니다.

Immersed Boundary Method Results

새로 도입된 경계 방법 모델의 간단한 예는 직경 1m의 원형 오리피스에서 물이 방출되는 것입니다. 물 용기의 길이는 10m, 폭은 10m, 오리피스 중앙부까지의 수위는 6m이다. 애니메이션에 표시된 것처럼 오리피스 Q에서 표고, h및 볼륨 유량의 강하는 각각 2차 곡선과 선형 곡선을 따릅니다. 

시뮬레이션에서 배출 Cd의 평균 계수는 0.660으로, 비대칭 값 0.611보다 약 8% 큽니다(SwameeandSwamee, 2010). immersed boundary solver 을 사용한 시뮬레이션은 이중 인터페이스(Xeon E5-2623 v3)에서 약 19시간이 소요된다. 반면에 the standard solver의 방전 계수와 벽-블록은 각각 0.800과 39시간이 소요된다.

또 다른 예는 NAVY 선박 모델 선체에 대한 총 저항력의 계산입니다. 이 경우, 선체 길이는 5.72m이고, 드래프트는 0.248m이다. 평균유속은 2.10m/s이고, 레이놀즈 수는 약 12 × 106입니다. 이 해석은 대칭이므로 선체의 절반만 모델링됩니다. 계산 영역은 길이 30m, 너비 8m, 깊이 5.5m입니다. 선체 절반에 대해 실험적으로 얻어진 총 저항력의 평균은 22.62N이다 (Larsson et al., 2003). the standard solver의 총 저항력의 평균은 24.41N이었으며 실험 결과보다 7.9 % 차이가 있으며 immersed boundary solver 경우 총 저항력의 평균은 22.43N이었고 0.8 % 더 낮았습니다 (오류가 8 개 줄었습니다. 또한 immersed 경계 솔버는 약 40 시간 만에 완성되었으며 표준 솔버보다 8 시간 빠릅니다).

References

Hirt, C., & Sicilian, J. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. International Conference on Numerical Ship Hydrodynamics, 4th. Washington, D.C.

Hirt, C. (1993). Volume-fraction techniques: powerful tools for wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 46 & 47, 327-338.

Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A., & von Loebbecke, A. (2008). A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of computational physics, 227(10), 4825-4852.

Swamee, P., & Swamee , N., (2010). Discharge equation of a circular sharp-crested orifice. Journal of Hydraulic Research, 48(1), 106-107.

Modeling Thermal Expansion Effects in FLOW-3D

This note describes the modeling used in FLOW-3D® for thermal expansion processes in onefluid, incompressible flows. Volume changes are modeled in unconfined flows while the limited
compressibility model may be used to compute the change is pressure in flows that are confined and density cannot change.

물리 모델 소개

FLOW-3D 는 고도의 정확성이 필요한 항공, 자동차,  수자원 및 환경, 금속 산업분야의 세계적인 선진 기업에서 사용됩니다.

FLOW-3D의 광범위한 다중 물리 기능(multiphysics )은 자유 표면 흐름, 표면 장력, 열전달, 난류, 움직이는 물체, 단순 변형 고체, 전기 기계, 캐비테이션, 탄/소성, 점성, 가소성, 입자, 고체 연료, 연소 및 위상 변화를 포함합니다.
이러한 모델은 FLOW-3D를 사용하는 사용자들이 기술 및 과학의 광범위한 문제를 해결하도록 설계를 최적화하고 복잡한 프로세스 흐름에 대한 통찰력을 얻을 수 있도록 합니다.

flow-3d-multiphysics-model
Physics Models
Flow/Fluid Modes
  • Incompressible and Compressible Flows
  • Constant/Varying Density
  • Fluid Sources
  • Non-Inertial Frame Reference
  • Laminar/Turbulent Flow
  • Elastic Stresses
  • Electro-Mechanics
  • Heat Transfer
  • Particle Tracking
  • Surface Tension
  • Wall Contact Time
  • Phase Change

Materials Databases

  • Fluids Database
  • Solids Database

매우 정확한
시뮬레이션 결과

FAVOR, 으로 알려진 특별한 메쉬 프로세스는 데카르트 구조의 단순함을 유지하면서 복잡한 형상을 효율적으로 구현합니다.

Optimized Setup
and Workflow

TruVOF 표면 추적 방법은 유동시뮬레이션을 위해 알려진 유체 체적을 사용하는 동안 가장 높은 정확도를 제공합니다.

FlowSight
Postprocessing

산업계에서 최고의 시각화 postprocessor인 FlowSight 는 사용자에게 2차원 및 3차원에 대한 심층 분석 기능을 제공합니다.