FLOW-3D HYDRO Conveyance Infrastructure

FLOW-3D & computational fluid dynamics for civil engineering

Conveyance systems

  • Tunnels
  • Overflows
  • Hydraulic controls
    • Gates
    • Weirs
    • Orifice
  • Drop structures
  • Flow splitting
  • Open channel conveyance
  • Pumps
  • Flap gates (moving objects)
  • Air flow / air supply
  • Entrained air (entrainment, evolution, drift flux, buoyancy, bulking, de-aeration)

Baffle dropshaft

Tangential dropshaft

Sample GUI packaged conveyance examples

Conveyance systems: simulation outputs

해석 결과로 얻을 수 있는 Simulation outputs

  • Pressure, velocity field
  • Water elevation profiles
  • 3D transient behaviors
  • Surges & sloshing
  • Pump approach flow
  • Pump discharge & operations
  • Air phase
  • Entrained air
  • Forces & coupled motion for moving objects

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

중력을 사용한 미세 유체 입자 분류

Microfluidics Particle Sorting Using Gravity

미세 유체 입자 분류는 진단, 화학적 및 생물학적 분석, 식품 및 화학 처리, 환경 평가에 적용됩니다. 이전 블로그에서 유체 역학을 사용한 미세 유체 입자 분류에 대해 이야기했습니다 . 같은 주제를 바탕으로 중력을 사용하여 미세 입자를 분류하는 또 다른 방법에 대해 논의하겠습니다. 아래 애니메이션에서 볼 수 있습니다.

유비쿼터스 중력(Ubiquitous gravity)은 미세 유체 장치에서 미세 입자를 분류하는 데 사용할 수 있습니다. 중력이 입자의 움직임에 수직으로 작용할 때 입자는 반경에 따른 속도로 안정됩니다. 또한 입자의 운동은 입자의 밀도, 유체의 밀도 및 유체의 점도 사이의 차이에서 비롯된 유체 역학적 효과의 영향을받습니다. 아래 이미지는 중력 분류 기술 회로도를 보여줍니다.

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류
Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

부력 대 항력

앞서 언급했듯이 중력은 서로 다른 입자가 서로 다른 속도로 침전되도록합니다. 모든 입자의 밀도가 같고 입자 밀도가 주변 유체의 밀도보다 낮 으면 부력 우세와 항력 우세라는 두 가지 유형의 분류를 사용할 수 있습니다. 반경이 더 큰 입자는 더 많은 부력을 경험하고 작은 입자 위의 경로를 따르는 경향이 있습니다. 그러나 외장 액체 (입자를 운반하는 용액)의 유입 속도가 충분히 높으면 항력 효과가 우세하기 시작하고 더 큰 입자가 더 작은 입자의 경로 아래로 이동하는 경향이 있습니다.

FLOW-3D 시뮬레이션 결과

경쟁하는 부력과 항력은 아래 FLOW-3D 에서 얻은 시뮬레이션 결과에서 명확하게 볼 수 있습니다 . 그림 1은 부력 지배적 인 입자 분류의 경우를 보여줍니다. 더 큰 (빨간색) 입자는 수평 채널의 상단을 향해 정렬됩니다. Fig. 2에 나타난 결과는 부력이 우세한 경우의 유입 초 속도를 20 배로 설정 한 후 얻은 것이다. 더 높은 입구 속도에서 더 큰 입자는 더 많은 운동량을 전달하므로 그 위치는 수직 부력의 영향을받지 않습니다. 따라서 입자는 수평 채널의 상단으로 올라가지 않습니다. 대신 그들은 계속해서 바닥으로 이동합니다.

부력

Buoyancy dominant sorting
Buoyancy dominant sorting

Drag

Figure 2. Drag dominant sorting
Figure 2. Drag dominant sorting

LOW-3D 의 입자 모델은입자 분류 또는 기타 입자 역학과 관련된 미세 유체 시뮬레이션에 성공적이고 쉽게 사용할 수 있습니다. 지금까지 우리는 FLOW-3D 의 입자 모델을사용하여 두 가지 입자 분류 기술을 보았습니다. 하나는 유체 역학을 사용하고 다른 하나는 중력을 사용합니다.

Particle sorting 2 (입자 분류)

항력/부력 및 중력 기반의 입자 분류

  • 중력이 입자 운동에 수직으로 작용할 때 분류
  • 분류 운동은 유체역학의 영향을 받음

부력 vs 항력

  • 부력에 지배되는 분류
    – 큰 입자는 더 많은 부력을 받으며 작은입자 위의 경로를 따르는 경향이 있음
  • 항력에 지배되는 분류
    – 입구 유체 속도가 높으면 항력 효과가 부력을 지배하여 큰 입자가 작은 입자의 경로 아래로 이동함

[FLOW-3D 물리모델]General Moving Objects / 일반이동물체

General Moving Objects / 일반이동물체

Basics / 기초

The general moving objects (GMO) model in FLOW-3D can simulate rigid body motion, which is either userprescribed (prescribed motion) or dynamically coupled with fluid flow (coupled motion). If an object’s motion is prescribed, fluid flow is affected by the object’s motion, but the object’s motion is not affected by fluid flow. If an object has coupled motion, however, the object’s motion and fluid flow are coupled dynamically and affect each other. In both cases, a moving object can possess six degrees of freedom (DOF), or rotate about a fixed point or a fixed axis. The GMO model allows the location of the fixed point or axis to be arbitrary (it can be inside or outside the object and the computational domain), but the fixed axis must be parallel to one of the three coordinate axes of the space reference system. In one simulation, multiple moving objects with independent motion types can exist (the total number of moving and non-moving components cannot exceed 500). Any object under coupled motion can undergo simultaneous collisions with other moving and non-moving objects and wall and symmetry mesh boundaries (See Collision). The model also allows the existence of multiple (up to 100) elastic linear and torsion springs, elastic ropes and mooring lines which are attached to moving objects and apply forces or torques to them (See Elastic Springs & Ropes and Mooring Lines).

FLOW-3D에서 일반 이동물체인 GMO 모델은 강체운동을 모사(simulate)할 수 있는데, 이는 사용자가 기술하는 운동(지정운동)이거나 유체 유동과 동력학적인(결합된) 운동일 수 있다. 물체의 운동이 지정되면 유체 유동은 이 운동에 의해 영향을 받으나, 물체의 운동은 유체에 의해 영향을 받지 않는다. 그러나 물체가 결합된 운동을 하면 물체와 유체는 동역학적으로 연결되어 서로 영향을 미친다.

이 두 경우에 물체는6 자유도 운동을 할 수 있고, 고정된 점이나 축에 대해 회전할 수가 있다. GMO모델은 고정점이나 고정축의 위치를 임의로 설정할 수 있으나(이는 물체나 계산영역의 내부 또는 외부가 될 수 있다) 고정축은 공간좌표계의 좌표중의 하나에 평행하여야 한다.

어떤 모사(simulate)에서 고유의 운동형태를 갖는 다수의 운동물체가 존재할 수 있다(이동 및 고정된 물체의 전체수는500개를 초과하지 못한다). 결합운동을 하는 물체는 다른 이동/비이동 물체 그리고 벽과 대칭 경계 격자면에서 충돌할 수가 있다(충돌참조). 이 모델은 (100개까지) 다수의 탄성선형과 비틀림 스프링, 탄성로프와 이동 물체에 부착된 탄성력과 회전력을 갖는 계류선들을 표현할 수 있다(Elastic Springs & Ropes 와 Mooring Lines참조). .

In general, the motion of a rigid body can be described with six velocity components: three for translation and three for rotation. In the most general cases of coupled motion, all the available velocity components are coupled with fluid flow. However, the velocity components can also be partially prescribed and partially coupled in complex coupledmotion problems (e.g., a ship in a stream can have its pitch, roll and heave to be coupled but yaw, sway and surge prescribed). For coupled motion only, in addition to the hydraulic, gravitational, inertial and spring forces and torques which are calculated by the code, additional control forces can be prescribed by the user. The control forces can be defined either as up to five forces with their application points fixed on the object or as a net control force and torque. The net control force is applied to the GMO’s mass center, while the control torque is applied about the mass center for 6-DOF motion, and about the fixed point or fixed axis for those kinds of motions. The inertial force and torque exist only if the Non-inertial Reference Frame model is activated.

일반적으로 강체의 운동은 6개의 속도 성분으로 기술될 수 있다: 3개의 이동과3개의 회전. 가장 일반적인 결합 운동의 경우에, 모든 가능한 속도성분들은 유동과 연결되어 있다. 그러나 속도 성분들은 복잡한 결합운동 문제에서는 부분적으로 지정되고 일부는 결합될 수 있다(즉 유속내의 선박에서 pitch, roll and heave는 결합된 운동을 하고 yaw, sway and surge 는 지정될 수있다). 단 결합운동 문제에서는 코드 내에서 계산되는 수력, 중력, 관성 그리고 스프링 힘과 토크에 추가적인 조절할 수 있는 힘(control force) 들이 사용자에 의해 기술될 수 있다. 조절 힘(control force)들은 물체의 지정된 위치에 작용하는5개까지의 힘이나 또는 순수 힘과 토크로 정의 될 수 있다. 순수 조절힘은 GMO의 질량 중심에 작용하지만, 조절토크는6 자유도 운동의 질량중심에 대해 이런 운동을 하기 위한 고정축이나 점들에 대해 적용된다. 관성력과 토크는 단지 비 관성계 모델이 활성화되면 존재한다.

In FLOW-3D, a GMO is classified as a geometry component that is either porous or non-porous. As with stationary components, a GMO can be composed of a number of geometry subcomponents. Each subcomponent can be defined either by quadratic functions and primitives, or by STL data, and can be solid, hole or complement. If STL files are used, since GMO geometry is re-generated at every time step in the computation, the user should strive to minimize the number of triangle facets used to define the GMO to achieve faster execution of the solver while maintaining the necessary level of the geometry resolution. For mass properties, different subcomponents of an object can possess different mass densities.

FLOW-3D 에서 한 개의 GMO 는 다공질 또는 비 다공질의 형상요소로 간주된다. 정지된 구성요소에서와 같이 한 개의 GMO 는 다수의 형상 서브구성요소로 구성될 수 있다. 각 서브구성요소는 2차 함수와 기초 요소 또는 STL 데이터로 정의될 수 있고 고체, 공간 또는 이의 보완일 수 있다. 만약 STL 파일이 사용된다면 GMO 형상은 계산 중에 매 시간에서 재 생성되므로 사용자는 형상 정밀도에 필요한 수준을 유지하는 한편, 빠른 계산을 위해 GMO를 정의하는데 사용되는 삼각면의 수를 줄이려고 노력해야 한다. 질량물성을 위해 한 물체의 다른 서브구성요소는 다른 질량밀도를 가질 수 있다.

In order to define the motion of a GMO and interpret the computational results correctly, the user needs to understand the body-fixed reference system (body system) which is always fixed on the object and experiences the same motion. In the FLOW-3D preprocessor, the body system (x’, y’, z’) is automatically set up for each GMO. The initial directions of its coordinate axes (at t = 0) are the same as those of the space system (x, y, z). The origin of the body system is fixed at the GMO’s reference point which is a point automatically set on each moving object in accordance with the object’s motion type.

GMO 의 운동을 정의하고 계산결과를 정확히 이해하기 위해, 사용자는 항상 물체에 고정되고, 물체와 같은 운동을 하는 물체에, 고정된 기준계(물체계)를 이해할 필요가 있다. FLOW-3D 의 전처리에서 물체계(x’, y’, z’) 가 자동으로 각 GMO 에 대해 설정된다. 좌표축(t = 0에서) 의 초기방향은 공간계(x, y, z) 의 것과 같다. 물체계의 원점은 물체의 이동형상에 일치하는 각 이동체 상에 자동으로 설정된 GMO 의 기준점에 고정되어 있다.

 

The reference point is: 기준점은 다음과 같다.

  • the object’s mass center for the coupled 6-DOF motion;

결합된6자유도 운동의 질량중심

  • the fixed point for the fixed-point motion;

고정점 운동을 위한 고정점

  • a point on the fixed axis for the fixed-axis rotation;

고정축 회전을 위한 고정축 상의 점

  • a user-defined reference point for the prescribed 6-DOF motion.

기술된6자유도 운동을 위한 사용자 지정의 기준점

  • If the reference point is not given by users for the prescribed 6-DOF motion, it is set by the code at the mass center (if mass properties are given) or the geometry center (if mass properties are not given) of the object.

기준점이 기술된6자유도 운동을 위해 사용자가 지정하지 않으면 코드에 의해 질량중심 (질량물성이 주어지면) 또는 형상중심(질량물성이 안 주어지면)에 지정된다.

 

The GMO’s motion can be defined through the GUI using four steps:

GMO 운동은 4단계를 거쳐 GUI 를통하여 정의될수있다.

  1. Activate the GMO model;

GMO 모델을 활성화한다

  1. Create the GMO’s initial geometry;

GMO의 초기형상을 생성한다

  1. Specify the GMO’s motion-related parameters, and

GMO의 운동관련 변수들을 지정하고.

  1. Define the GMO’s mass properties.

GMO 질량물성을 정의한다

Without the activation of the GMO model in step 1, the object created as a GMO will be treated as a non-moving object, even if steps 2 to 4 are accomplished.

1단계의 GMO 모델 활성화가 없으면 2~4의 단계가 이루어져도 GMO 로 생성된 물체는 비 이동 물체로 간주될 것이다.

Step 1: Activate the GMO Model GMO 모델활성화

To activate the GMO model, go to Model Setup Physics Moving and simple deforming objects and check the Activate general moving objects (GMO) model box.

GMO 모델을 활성화하기 위해 Model Setup Physics Moving and simple deforming objects 로 가서 Activate general moving objects (GMO) model 박스를 체크한다.

The GMO model has two numerical methods to treat the interaction between fluid and moving objects: an explicit and an implicit method. If no coupled motion exists, the two methods are identical. For coupled motion, the explicit method, in general, works only for heavy GMO problem, i.e., all moving objects under coupled motion have larger mass densities than that of fluid and their added mass is relatively small. The implicit method, however, works for both heavy and light GMO problems. A light GMO problem means at least one of the moving objects under coupled motion has smaller mass densities than that of fluid or their added mass is large. The user may change the selection on the Moving and deforming objects panel or on the Numerics tab Moving object/fluid coupling.

GMO 모델은 유체와 움직이는 물체간의 상호작용을 다루기위해 두 수치해석법을 이용한다: explicit 방법과implicit 방법. 결합 운동이 없으면 두 방법은 동일하다. 결합된 운동에서는 외재적 방법은 일반적으로 무거운 GMO 문제에 사용된다, 즉 결합된 운동을 하는 모든 이동물체는 유체밀도보다 크고 이의 부가질량이 작을 경우이다. 그러나 내재적 방법은 무겁거나 가벼운 GMO 문제에 모두 사용된다. 가벼운 GMO 문제는 결합운동 시에 최소한 하나의 이동물체가 유체밀도보다 작고 이의 부가질량이 클 경우이다. 사용자는 Moving and deforming objects패널이나 Numerics tab Moving object/fluid coupling 상에서 선택을 바꿀 수 있다.

  1. Step 2: Create the GMO’s Initial Geometry GMO의 초기형상을 생성한다

 

In the Meshing & Geometry tab, create the desired geometry for the GMO components using either primitives and/or imported STL files in the same way as is done for any stationary component. The component can be either standard or porous. To set up a porous component, refer to Porous Media. Note that the Copy function cannot be used with geometry components representing GMOs.

정지상태의 구성요소 생성의 경우와 마찬가지로 Meshing & Geometry 탭에서 기초 요소와/또는 외부로부터의 STL 파일을 이용하여 GMO 구성요소의 원하는 형상을 생성한다. 구성요소는 standard이거나porous일 수 있다. 다공성요소를 설정하기 위해 Porous Media 를 참조하라. Copy 기능은 GMO를 나타내는 형상 구성요소에 사용할 수 없음에 주목한다.

Step 3: Specify the GMO’s Motion Related Parameters GMO의 운동관련변수들을 지정한다

The following section discusses how to set up parameters for prescribed and coupled 6-DOF motion, fixed-point motion and fixed-axis motion. The user can go directly to the appropriate part.

다음 섹션은 “지정되고 결합된 6자유도운동”, “고정점 운동과 고정축 운동을 위한 매개변수를 어떻게 설정하는지”에 대해 논한다. 사용자는 직접 해당부분을 참조할 수 있다.

Prescribed 6-DOF Motion 지정된 6자유도운동

In Meshing & Geometry Geometry Component (the desired GMO component) Type of Moving Object, select Prescribed motion. Go to Component Properties Type of Moving Object Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select 6 Degrees of Freedom in the combo box.

Meshing & Geometry Geometry Component (the desired GMO component) Type of Moving Object 에서 Prescribed motion 을 선택한다. Component Properties Type of Moving Object Moving Object Properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 combo 박스에 있는 6 Degrees of Freedom 를 선택한다.

To define the object’s velocity, go to the Initial/Prescribed Velocities tab in the Moving object setup window. The prescribed 6-DOF motion is described as a superimposition of a translation of a reference point and a rotation about the reference point. The reference point can be anywhere inside or outside the moving object and the computational domain. The user needs to enter its initial x, y and z coordinates (at t = 0) in the provided edit boxes. By default, the reference point is determined by the preprocessor in two different ways depending on whether the object’s mass properties are given: if mass properties (either mass density or integrated mass properties) are given, then the mass center of the moving object is used as the reference point; otherwise, the object’s geometric center will be calculated and used as the reference point.

물체의 속도를 정의하기 위해 Moving object setup 의 창에 있는 Initial/Prescribed Velocities 탭으로 이동한다. 지정된 6자유도 운동은 기준점의 이동과 기준점에 대한 회전의 중첩으로 기술된다. 기준점은 이동체의 내부 또는 외부 그리고 계산영역 외부일 수도 있다. 사용자는 주어진 편집박스 내에 이의 초기 x, y 와 z 좌표값(t = 0에서)을 입력할 필요가 있다. 디폴트로 기준점은 물체의 질량 물성이 주어지는가에 따라 두 가지로 전처리 과정에서 결정된다: 질량물성(질량밀도나 전체질량물성)이 주어지면 이동체의 질량중심이 기준점으로 사용되고 아니면 이동체의 형상중심이 계산되고 기준점으로 이용된다.

With the reference point provided (or left for the code to calculate), users can define the translational velocity components for the reference point in space system and the angular velocity components (in radians/time) in body system. Each velocity component can be defined either as a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in the corresponding input box (the default value is 0.0). If a velocity component is Non-sinusoidal and time-dependent, click on the corresponding Tabular button to open a data table and enter values for the velocity component and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity from left to right and must have a csv extension. If the velocity component is sinusoidal in time, then enter the values for Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the input boxes.

기준점이 주어지면(또는 코드 내에서 계산이 되면) 사용자는 공간계 기준점에 대해 translational velocity components 를 그리고 물체계에서angular velocity components (radians/시간으로)를 정의할 수 있다. 각 속도 성분은 상응하는 combo box 에서 선택함으로써 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정 속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 상응하는 combo 박스에 값을 넣는다(디폴트 값은0이다). 속도성분이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 열고 상응하는 Tabular 버튼을 클릭하고 속도성분과 시간을 넣는다. 다른 방법으로는 사용자가 Tabular Import Values를 클릭함으로써 속도성분대 시간의 데이터파일을 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도 성분이 시간에 따른 사인파이면 입력박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

The expression for the sinusoidal velocity component is

사인파 속도의 식은

v = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.
  •  
  • Users can set limits for the translational displacements of the object’s reference point in both negative and positive x, y and z directions in space system. The displacements are measured from the initial location of the reference point. During motion, the reference point cannot go beyond these limits but can move back to the allowed range after it reaches a limit. To set the limits for translation, go to the Motion Constraints tab and enter the maximum displacements allowed in the corresponding input boxes, using absolute values. By default, these values are infinite. Note the Limits for rotation is only for fixed-axis rotation thus cannot be set for 6-DOF motion.사용자는 공간계에서 음이나 양의 x, y 그리고 z 방향으로 물체 기준점의 이동변위를 제한할 수 있다. 변위는 기준점의 초기위치로부터 정해진다. 운동중에 기준점은 이 제한을 넘어갈 수 없지만 이 제한에 도달한 후에 허용된 범위만큼 돌아올 수 있다. 이동의 제한을 설정하기 위해 Motion Constraints 탭으로가서 절대값을 사용하여 상응하는 입력박스 안에 허용된 최대변위를 넣는다. the Limits for rotation 는 고정축 회전에만 해당하므로 6자유도 운동에는 지정될 수 없다.Prescribed Fixed-point Motion지정된 고정점운동In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Prescribed motion. Go to Moving object properties Edit Motion Constraints. Under Type of Constraint, select Fixed point rotation in the combo box and enter the x, y and z coordinates of the fixed point in the corresponding input boxes.Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Prescribed motion 을 선택한다. Moving object properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 combo box 에있는 Fixed point rotation을 선택하고 상응하는 입력박스에서 고정점의 the x, y 및 z 좌표를 입력한다.To define the velocity of the object, go to the Initial/Prescribed Velocities tab in the Moving object setup window. The velocity components to be defined are the x, y and z components of the angular velocity (in radians/time) in the body system. Each velocity component can be defined as either a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in its input box (the default value is 0.0). If a velocity component is time-variant and Non-sinusoidal, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity component from left to right and must have a csv extension. If the velocity component is sinusoidal in time, then enter the values for Amplitude, Frequency (in cycles/time) and Initial Phase (in degrees) in the corresponding input boxes.

    물체의 속도를 정의하기 위해 Moving object setup 의 창에 있는 Initial/Prescribed Velocities 탭으로 간다. 정의되어야 할 속도성분은 물체계에서 각속도  (radians/시간으로) 를 x, y 및 z 성분으로 정의할 수 있다

    각 속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다.

    일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 상응하는 combo box 박스에 값을 넣는다(디폴트 값은0이다). 속도성분이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 열고 상응하는 Tabular 버튼을 클릭하고 속도성분과 시간을 넣는다. 그렇지 않으면 사용자가 Tabular Import Values 를 클릭함으로써 속도성분대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도성분이 시간에 따른 사인파이면 상응하는 입력박스에서 Amplitude, Frequency (in Hz) 와 Initial Phase (in degrees) 값을 입력한다.

    The expression for a sinusoidal angular velocity component is

    ω = Asin(2πft + ϕ0)

    where: 여기서

    • A is the amplitude, 진폭
    • f is the frequency, and주기이며
    • ϕ0 is the initial phase. 초기위상이다.

    Prescribed Fixed-Axis Motion

    In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Prescribed motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed X-Axis Rotation or Fixed Y-Axis Rotation or Fixed Z-Axis Rotation in the combo box depending on which coordinate axis the rotational axis is parallel to.

    Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Prescribed motion 을 선택한다. Moving object properties Edit Motion Constraints 로 가서Type of Constraint밑에서 회전축이 어떤 좌표축에 평행인가에 따라 combo box 에있는 Fixed X-Axis Rotation 또는 Fixed Y-Axis Rotation 또는 Fixed Z-Axis Rotation 를 선택한다.

    Coordinates of the rotational axis need be given in two of the three input boxes for Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate and Fixed Axis/Point Z Coordinate. For example, if the rotational axis is parallel to the z-axis, then the x and y coordinates for the rotational axis must be defined. Users can also set limits for the object’s rotational angle in both positive and negative directions. The rotational angle (i.e., angular displacement) is a vector and measured from the object’s initial orientation based on the right-hand rule. Its value is positive if it points in the positive direction of the coordinate axis which the rotational axis is parallel to. The object cannot rotate beyond these limits but can rotate back to the allowed angular range after it reaches a limit. To set the limits for rotation, in Motion Constraints Limits for rotation, enter the Maximum rotational angle allowed in negative and positive directions in the corresponding input boxes, using absolute values in degrees. By default, these values are infinite.

    회전축 좌표는 3개 Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate Fixed Axis/Point Z Coordinate 중 2개의 입력박스에서 주어져야 한다. 예를 들면 회전축이 z 축에 평행 하다면 이 회전축의 the x 와 y 좌표가 정의 되어야 한다. 사용자는 물체의 양음 방향의 회전각도를 제한할 수 있다. 회전각 (즉, 각변위)은 벡터이며 오른손 법칙에 따른 물체의 초기 방향으로부터 측정된다. 이는 회전축에 평행한 좌표축의 양방향을 가리키면 양의 값이다. 물체는 제한 값을 지나 회전할 수 없지만 이 값에 도달한 후 허용된 각변위로 되돌아갈 수 있다. 회전의 제한을 설정하기 위해 Motion Constraints Limits for rotation 내에서 상응하는 입력박스에서 음이나 양의방향으로 허용된 Maximum rotational angle 을 입력한다. 이의 디폴트 값은 무한대이다.

To define the angular velocity of an object (in radians/time), go to Initial/Prescribed Velocities. The angular velocity can be defined either as a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant angular velocity, choose Non-Sinusoidal and simply enter its value in its input box (the default value is 0.0). If it is Non-sinusoidal in time, click on the corresponding Tabular button to open a data table and enter the values for the angular velocity and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and angular velocity from left to right and must have a csv extension. If the angular velocity is sinusoidal in time, then enter the values for Amplitude, Frequency (in cycles/time) and Initial Phase (in degrees) in the corresponding input boxes.

물체의 각속도(radians/시간으로)를 정의하기 위해 Initial/Prescribed Velocities 탭으로 간다. 각속도는 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정 각속도에 대해서 Non-Sinusoidal 을 선택하고, 이에 상응하는 combo box 에 단순히 값을 넣는다(디폴트 값은0.0이다). 이것이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 불러와, 상응하는 Tabular 버튼을 클릭하고 각속도와 시간을 넣는다. 그렇지 않으면 사용자가 Tabular Import Values 를 클릭함으로써 속도 성분대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 시간과 각속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 각속도가 시간에 따른 사인파이면 입력박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

 

The expression for a sinusoidal angular velocity is사인파 각속도식은

ω = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.

Coupled 6-DOF motion 결합된 6자유도운동

In Meshing & Geometry → Geometry → Component (the desired GMO component) → Component Properties → Type of Moving Object, select Coupled motion. Go to Moving Object Properties → Edit → Motion Constraints. Under Type of Constraint, select 6 Degrees of Freedom in the combo box.

Meshing & Geometry → Geometry → Component (the desired GMO component) → Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties → Edit → Motion Constraints 로가서 Type of Constraint 밑에서 combo 박스에 있는 6 Degrees of Freedom 를 선택한다.

 

Users need to define the initial velocities for the object. Go to the Initial/Prescribed Velocities tab. Enter the x, y, and z components of the initial velocity of the GMO’s mass center in X Initial Velocity, Y Initial Velocity and Z Initial Velocity, respectively. Enter the x’, y’ and z’ components of the initial angular velocity (in radians/time) in the body system in X Initial Angular Velocity, Y Initial Angular Velocity and Z Initial Angular Velocity, respectively. By default, the initial velocity components are zero.

사용자는 물체에 대한 초기속도를 정의해야 한다. Initial/Prescribed Velocities 탭으로 간다. 각 X Initial Velocity, Y Initial Velocity 그리고 Z Initial Velocity 로 GMO 질량중심의 초기속도의 x, y 와 z 성분값(t = 0에서)을 입력한다. 물체 계에서의 X Initial Angular Velocity, Y Initial Angular Velocity 그리고 Z Initial Angular Velocity (radians/시간으로)로 초기 각속도의 x’, y’ 및 z’ 성분값을 입력한다.

 

For coupled 6-DOF motion, user-prescribed control force(s) and torque exerting on the object can be defined either in the space system or the body system. They are combined with the hydraulic, gravitational, inertial and spring forces and torques to determine the object’s motion. There are two different ways to define control force(s) and torque: prescribe either a total force and a total torque about the object’s mass center or multiple forces with their application points fixed on the object. By default, all the control force(s) and torque are equal to zero.

결합된6자유도운동에서 물체에 미치는 사용자 지정 조절 힘과 토크는 물체계 또는 공간계에서 정의될 수 있다. 이들은 물체의 운동을 결정하는 수력, 중력, 관성력 스프링 힘 그리고 토크이다. 이 조절 힘과 토크를 정의하는 두 가지 방법이 있다: 물체의 질량중심에 대한 전체의 힘과 토크를 지정하거나 물체에 고정된 점들에 작용하는 다수의 힘들을 지정하는 것이다. 디폴트는 모든 조절 힘과 토크가0이다.

To prescribe total force and total torque, in the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. Further select In Space System or In Body System depending on which reference system the control force and torque are define in. If a component of the force or the torque is a constant, it can be specified in the corresponding edit box (default is zero). If it varies with time, then click on the Tabular button to bring up a data input table and enter the values for the component and time. The time-variant force and torque are treated as piecewise-linear functions of time during simulation. Alternatively, instead of filling the data table line by line, the user can also import a data file for the force/torque component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and the force/torque component from left to right and must have a csv extension.

전체의 힘과 토크를 지정하기 위해 Control Forces and Torques 탭 안의 combo box 에서 Define Total Force and Total Torque 를 선택한다. 추가로 조절 힘과 토크가 정의되는 기준계에 따른 In Space System 이나 In Body System 을 선택한다. 힘 또는 토크의 한 성분이 상수이면 상응하는 편집박스에 지정된다(디폴트는0). 이것이 시간에 따라 변하면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 성분과 시간 값을 넣는다. 그렇지 않으면 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 를 클릭함으로써 force/torque component versus time 을 읽어 들일 수가 있다. 이 파일은 시간과 힘/토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다

If, instead, control forces and their application points need to be defined, then in the Control Forces and Torques tab choose Define Multiple Forces and Application Points in the combo box. Users can specify up to five forces. For each force, in the editor boxes, choose the force index (1 to 5) and then select Force components in Space System or Body System depending on which reference system the force is defined in. In field on the left, enter the initial coordinates (at t = 0) for the force’s application point. In the field on the right, prescribe components of the force in x, y and z directions of the body or space system. For a constant force component, enter its value in the corresponding edit box. If it varies with time, then click on the Tabular button to bring up a data input table and enter values for the force component versus time. Tabular force input is approximated with a piecewise-linear function of time. Alternatively, the user can import a data file for the force versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and from left to right and must have a csv extension.

대신에 조절힘과 그 적용점들이 정의되어야 한다면 Control Forces and Torques 탭에서 combo box 안에 있는 Define Multiple Forces and Application Points 를 선택한다. 사용자는5개까지의 힘을 지정할 수 있다. 각 힘에 대해, 편집박스 내에서, force index(1에서 5) 를 선정하고 힘이 정의되는 기준계에 따라 Force components in 에서 Space System Body System 을 선택한다. 좌측 칸에 힘 적용점의 초기좌표(t=0에서)를 입력한다. 우측 칸에 물체 또는 공간계에 따른 x, y 그리고 z 방향에서의 힘의 성분을 넣는다. 힘 성분이 상수이면 그 값을 상응하는 편집박스에서 입력한다. 이것이 시간에 따라 변하면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 힘성분 대 시간값을 넣는다. 이렇게 입력된 값들은 구간별 선형함수로 근사 된다.  다른 방법으로 사용자가 Tabular Import Values 를 클릭함으로써 힘과 시간에 대한 데이터파일을 읽어 들일 수가 있다. 이파일은 시간과 힘/토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다.

 

Motion constraints can be imposed to the object to decrease the number of the degrees of freedom to less than six. This selection is made by setting part of its translational and rotational velocity components as Prescribed motion while leaving the other components to coupled motion in Motion Constraints tab Translational and Rotational Options. Note that the translational and rotational components are in the space system and the body system, respectively. Then go to the Initial/Prescribed Velocities tab to define their values. A prescribed velocity component can be defined as either a sinusoidal or piecewise linear function of time in the combo box. For a constant velocity component, choose Non-Sinusoidal and enter its value in its input box (the default value is 0.0). If the velocity component is timedependent and non-sinusoidal, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can import a data file for the velocity component versus time by clicking Tabular Import values. The file must have two columns of data which represent time and the angular velocity component from left to right and must have a csv extension. It is treated as a piecewise-linear function of time in the code. If it is a sinusoidal function of time, instead, enter its Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the edit boxes.

6자유도 보다 운동의 자유도를 줄이기 위해 운동의 제약이 물체에 가해질 수 있다. 이 선택은 일부의 이동과 회전속도 성분을 Prescribed motion 으로 다른 성분들은 Motion Constraints tab Translational and Rotational Options 에서 coupled motion 결합운동으로 설정함으로써 이루어진다. 이동과 회전은 각기 공간계와 물체계로 되어있다는 것에 주목한다. 이 때에 Initial/Prescribed Velocities 탭으로 가서 이 값을 정의한다. 지정속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 입력박스에서 값을 넣는다(디폴트 값은0이다). 속도성분이 시간의 함수이고 Non-Sinusoidal 이면 데이터 테이블을 열고 Tabular 버튼을 클릭하고 속도 성분과 시간 값을 넣는다. 다른 방법으로는 사용자가 Tabular Import Values 를 클릭함으로써 속도성분 대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 좌로부터 우로의 시간과 각속도 성분을 나타내는 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 이렇게 입력된 값들은 코드 내에서 구간별 선형함수로 근사 된다. 대신에 시간의 함수이면 편집박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

 

The expression for a sinusoidal velocity component is사인파 속도식은

v = Asin(2πft + ϕ0)

where:

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.

Users can also set limits for displacements of the object’s mass center in both negative and positive x, y and z directions in the space system, measured from its initial location. The mass center cannot go beyond these limits but can move back to the allowed motion range after it reaches a limit. To specify these limits, open the Motion Constraints tab and in the Limits for translation area, enter the absolute values of maximum displacements in the desired coordinate directions. There are no Limits for rotation for an object with 6-DOF coupled motion.

사용자는 초기 조건으로부터 측정된 공간계에서의 음이나 양의 x, y 그리고 z 방향으로 물체 질량중심의 변위를 제한할 수 있다. 질량중심은 이 제한을 지나갈 수 없지만 이 제한에 도달한 후에 허용된 범위로 돌아올 수 있다. 이동의 제한을 설정하기 위해 Motion Constraints 탭을 열고 Limits for translation에서 원하는 좌표방향에서의 최대 절대변위 값을 넣는다. 6자유도 운동을 갖는 물체에 대한 Limits for rotation 은 없다.

 

Coupled Fixed-Point Motion 결합된 고정점운동

In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Coupled motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed point rotation in the combo box and enter the x, y and z coordinates of the fixed point in the corresponding input boxes. The Limits for rotation and Limits for translation cannot be set for fixed-point motion.

Meshing & Geometry → Geometry → Component (the desired GMO component) → Component Properties → Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties → Edit → Motion Constraints 로 가서 Type of Constraint 밑에서 combo 박스에있는 Fixed point rotation 를 선택하고 상응하는 입력 상자 안에 있는 고정점의 x, y 및 z 좌표를 입력한다. Limits for rotation 와 Limits for translation 는 고정점 운동에 대해 선택될 수 없다.

 

Definition of the initial velocity for the object is required. Go to the Initial/Prescribed Velocities tab and enter the x, y and z components of initial angular velocity (in rad/time) in the boxes for X Initial Angular velocity, Y Initial Angular velocity and Z Initial Angular velocity. Their default values are zero.

물체의 초기속도 정의가 필요하다. Initial/Prescribed Velocities 탭으로 가서 X Initial Angular velocity, Y Initial Angular velocity 그리고 Z Initial Angular velocity 를 위한 상자에서 초기 각속도  (rad/시간) 의 the x, y 및 z 성분을 넣는다.

 

Further constraints of motion can be imposed to the object to decrease its number of degrees of freedom. This is done in the Motion Constraints tab by setting part of its rotational components as prescribed motion while leaving the others as coupled motion in the combo box for Translational and rotational options. Note that the rotational components are in the body system. By default, the prescribed velocity components are equal to zero. To specify a non-zero velocity component, go to the Initial/Prescribed Velocities tab. It can be defined as either a sinusoidal or a piecewise linear function of time by making selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in the input box (the default value is 0.0). If it is non-sinusoidal timedependent, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can import a data file for the velocity component versus time by clicking Tabular Import values. The file must have two columns of data which represent time and the angular velocity component from left to right and must have a csv extension. If the velocity component is a sinusoidal function of time, enter the values for Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the input boxes.

운동의 자유도를 줄이기 위해 운동의 제약이 물체에 가해질 수 있다. 이 선택은 일부의 회전속도 성분을 Prescribed motion 으로 다른 성분들은 Translational and rotational options를 위한 상자에서 coupled motion 으로 Motion Constraints 탭에서 설정함으로써 이루어진다. 회전성분은 물체계로 되어있다는 것에 주목한다. 디폴트로 지정속도 성분들은 0이다. 0이 아닌 속도성분을 지정하기 위해 Initial/Prescribed Velocities탭으로 간다. 지정속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 입력박스에서 값을 넣는다(디폴트 값은0이다). 속도성분이 시간의 함수이고 Non-Sinusoidal 이면 데이터 테이블을 열고 Tabular 버튼을 클릭하고 속도 성분과 시간 값을 넣는다. 다른 방법으로는   사용자가 Tabular Import Values 를 클릭함으로써 속도 성분 대 시간의 데이터파일을 읽어들일 수 가 있다. 이 파일은 좌로부터 우로의 시간과 각속도 성분을 나타내는 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도성분이 사인파의 시간의 함수이면 입력상자에서 Amplitude, Frequency (in Hz) and Initial Phase (in degrees) 값을 넣는다.

The expression for a sinusoidal velocity component is사인파속도성분식은

ω = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude진폭,
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다

 

User-prescribed total torque exerting on the object can also be defined. They are combined with the hydraulic, gravitational, inertial and spring torques to determine the object’s rotation.

또한 사용자에 의해 지정된 물체에 작용하는 전체 토크가 지정될 수 있다. 이들은 물체의 회전을 결정하기 위해 수력, 중력, 관성력과 스프링에 의한 토크와 결합되어 있다.

In the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. Further, select In Space System or In Body System depending on which reference system the control torque is define in. If the torque is constant, it can be simply set in the provided edit box for its x, y and z components. For a time-dependent control torque, click the Tabular button to bring up data tables and then enter the values of time and the torque components. The control torque is treated as a piecewise-linear function of time. As an option, instead of filling the data table line by line, the user can also import a data file for the angular velocity versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity from left to right and must have a csv extension.

Control Forces and Torques 탭에서 combo box 상자 안의 Define Total Force and Total Torque 를 선택한다. 추가로 조절 토크가 정의되는 기준계에 따른 공간계 In Space System 나 물체계 In Body System 을 선택한다.  토크가 상수이면 its x, y 및 z 성분을 위한 주어진 편집상자에서 지정된다. 이것이   시간에 따라 변하는 조절 토크이면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 성분과 토크 성분값을 넣는다. 제어토크는 구간 내 시간의 선형함수로 간주된다. 선택으로 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 을 클릭함으로써 각속도 대 시간 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며  csv 확장자를 가져야 한다

 

Coupled Fixed-Axis Motion  결합된 고정축운동

In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Coupled motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed X-Axis Rotation or Fixed Y-Axis Rotation or Fixed Z-Axis Rotation in the combo box depending on which coordinate axis the rotational axis is parallel to.

Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 회전축이 어느 좌표축과 평행한지에 따라 combo 박스에있는 Fixed X-Axis Rotation또는Fixed Y-Axis Rotation 또는 Fixed Z-Axis Rotation 를 선택한다.

 

Coordinates of the rotational axis need be given in two of the three input boxes for Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate and Fixed Axis/Point Z Coordinate. For example, if the rotational axis is parallel to the z-axis, then the x and y coordinates for the rotational axis must be defined. Users can also set limits for the object’s rotational angle in both positive and negative directions. The rotational angle (i.e., angular displacement) is a vector and measured from the object’s initial orientation based on the right-hand rule. Its value is positive if it points to the positive direction of the coordinate axis which the rotational axis is parallel to. The object cannot rotate beyond these limits but can rotate back to the allowed angular range after it reaches a limit. To set the limits for rotation, in Motion Constraints Limits for rotation, enter the maximum rotational allowed in negative and positive directions in the corresponding input boxes, using absolute values in degrees. By default, these values are infinite.

회전축좌표는 3개 Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate Fixed Axis/Point Z Coordinate 중 2개의 입력박스에서 주어져야 한다. 예를들면 회전축이 z 축에 평행하다면 이 회전축의 the x 와 y 좌표가 정의되어야 한다. 사용자는 물체의 양과 음 방향의 회전각도를 제한할 수 있다. 회전각 (즉, 각변위)은 벡터이며 오른손 법칙에 따라 물체의 초기 방향으로 부터 측정된다. 이것이 회전축에 평행한 좌표축의 양방향을 가리키면 양의 값이다. 물체는 제한 값을 지나 회전할 수 없지만 이 값에 도달한 후 허용된 각 변위로 되돌아갈 수 있다. 회전의 제한을 설정하기 위해 Motion Constraints Limits for rotation 내에서 상응하는 입력박스에서 음이나 양의방향으로 허용된 Maximum rotational angle 을 입력한다. 이의 디폴트 값은 무한대이다.

 

A definition of the initial angular velocity for the object is required. In the Initial/Prescribed Velocities tab, enter the initial angular velocity (in radians per time) in x, y or z direction in the corresponding input box in the Angular velocity components area, depending on the orientation of the rotational axis. The default value is zero.

User-prescribed total torque exerting on the object can be defined. They are combined with the hydraulic, gravitational, inertial and spring torques to determine the object’s rotation. In the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. If the torque is constant, it can be simply set in the provided edit box for x, y or z component of the torque, depending on direction of the coordinate axis which the rotational axis is parallel to. For a time-dependent control torque, click the corresponding Tabular button to bring up a data table and then enter the values of time and the torque. The control torque is treated as a piecewise-linear function of time in computation. As an option, instead of filling the data table line by line, the user can also import a data file for the torque versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and torque from left to right and must have a csv extension. The torque about the fixed axis is the same in the space and body systems, thus the choice of In space system or In body system options makes no difference to the computation. User-prescribed total control force and multiple forces are not allowed for the fixed-axis motion.

물체의 초기 각속도 정의가 필요하다. Initial/Prescribed Velocities 탭에서 회전축의 방향에 따라 the Angular velocity components 면에서 x, y 및 z 방향으로 초기 각속도(시간당radians으로)를 넣는다. 디폴트는0이다. 사용자에 의해 지정된 물체에 작용하는 전체 토크가 정의될 수 있다, 이들은 물체의 회전을 결정하기 위해 수력, 중력, 관성력과 스프링에 의한 토크와 결합되어 있다. Control Forces and Torques 탭 안의 combo box 에서 Define Total Force and Total Torque 을 선택한다.  토크가 상수이면 회전축이 평행한 좌표축의 방향에 따라, 토크의 x, y 또는 z 성분을 위한 주어진 편집박스에서 단순히 지정된다. 따라 변하면 데이터테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 시간과 토크를 넣는다. 제어토크는 계산시 구간 내 시간의 함수로 간주된다. 선택으로 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 를 클릭함으로써 토크대 시간의 파일을 읽어 들일 수 가 있다. 이 파일은 시간과 토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 고정축에 대한 토크는 공간과 시간계에서 같으므로 In space system 이나 In body system 의 선택은 계산에 차이가 없다. 사용자가 지정하는 전체 제어 힘과 다중의 힘은 고정축 운동에서는 허용되지 않는다.

Step 4: Specify the GMO’s Mass Properties GMO 질량물성을 정의한다

Definition of the mass properties is required for any moving object with coupled motion and is optional for objects with prescribed motion. If the mass properties are provided for a prescribed-motion object, the solver will calculate and output the residual control force and torque, which complement the gravitational, hydraulic, spring, inertial and user-prescribed control forces and torques to maintain the prescribed motion. To specify the mass properties, click on Mass Properties to open the dialog window. Two options are available for the mass properties definition: provide mass density or the integrated mass properties including the total mass, mass center and the moment of inertia tensor.

질량물성의 정의가 결합운동을 하는 이동체에 대해 필요하지만 지정운동을 하는 이동체에는 선택적이다. 지정운동체에 대해 질량 물성이 주어지면 solver 는 지정 운동을 유지하기 위해 중력, 수력, 관성력, 스프링 힘과 사용자 지정의 힘과 토크를 보완하는 잔여 조절 힘과 토크를 계산하고 출력할 것이다. 질량물성을 지정하기 위한 대화창을 열기 위해 Mass Properties를 클릭한다. 이를 위해 두 가지 선택이 있다: 질량밀도 또는 전체질량, 질량중심과 관성모멘트텐서를 포함하는 통합 질량 물성을 제공한다.

The option to provide mass density is convenient if the object has a uniform density or all its subcomponents have uniform densities. In this case, the preprocessor will calculate the integrated mass properties for the object. In the Mass Properties tab, select Define Density in the combo box and enter the density value in the Mass Density input box. By default, each subcomponent of the object takes this value as its own mass density. If a subcomponent has a different density, define it under that subcomponent in the geometry tree, Geometry Component Subcomponents Subcomponent (the desired component) Mass Density.

물체나 이 물체의 소 구성요소가 균일한 밀도를 가지면 질량밀도를 주는 선택이 편하다. 이 경우 전처리과정이 이에 대한 모든 통합 질량물성을 계산할 것이다. Mass Properties 탭에서 combo 박스에 있는 Define Density 를 선택하고 Mass Density 입력박스에서 밀도 값을 넣는다. 디폴트로 물체의 소 구성 요소의 밀도는 물체의 밀도와 같다. 만약에 소 구성요소가 다른 밀도를 가지면 이를 형상체계에 있는 Geometry Component Subcomponents Subcomponent (the desired component) Mass Density 소구성요소에서 정의한다.

 

The option to provide integrated mass properties is useful if the object’s mass, mass center and moment of inertia tensor are known parameters regardless of whether the object’s density is uniform or not. In the Mass Properties tab, choose Define Integrated Mass Properties in the combo box and enter the following parameters in the input boxes depending on the type of motion: Total mass, initial mass center location (at t = 0) and moment of inertia tensor about mass center for 6-DOF and fixed-point motion types;

통합 질량 물성의 사용은 물체의 밀도가 균일한지와 무관하게 물체의 질량, 질량중심, 관성모멘트 텐서 등이 알려진 변수일 경우에 유용하다. Mass Properties 탭에서 combo 박스에있는 Define Integrated Mass Properties 을 선택하고 운동형태에 따라 입력상자 안에 다음 변수들을 넣는다:

 

  • Total mass, initial mass center location (at t = 0) and moment of inertia about fixed axis for fixed-axis motion type.

전체 질량, 초기 질량중심 위치(t=0에서), 그리고 6자유도 및 고정점 운동 형태를 위한 질량중심에 관한 관성모멘트텐서

Output출력

For each GMO component, the solver outputs time variations of several solution variables that characterize the object’s motion. These variables can be accessed during post-processing in the General history data catalog and can be viewed either graphically or in a text format. For both prescribed and coupled types of motion with the mass properties provided, the user can find the following variables:

각 GMO 요소에 대해solver는 물체의 운동 특성을 보여주는 대여섯 개의 해석변수의 시간에 대한 변화를 출력한다. 이 변수들은 General history 데이터카탈로그에서 후처리중에 텍스트나 도식으로 볼 수 있다. 주어진 질량을 갖는 지정과 결합운동에 대해 사용자는 다음 변수들을 이용할 수가 있다.

  1. Mass center coordinates in space system공간계 내의 질량중심좌표
  2. Mass center velocity in space system공간계 내의 질량중심 속도
  3. Angular velocity in body system물체계 내의 각속도
  4. Hydraulic force in space system공간계 내의 수리력
  5. Hydraulic torque in body system물체계 내의 수리토크
  6. Combined kinetic energy of translation and rotation 이동과 회전의 결합운동에너지

There will be no output for items 1, 2 and 6 for any prescribed-motion GMO if the mass properties are not provided. Additional output of history data include:

질량물성이 주어지지 않으면 지정운동을 하는 GMO 에대해 상기 1,2와6에대한 출력은없다. 추가적이력데이터의 출력은

  • Location and velocity of the reference point for a prescribed 6-DOF motion지정된6자유도운동을 위한 기준점의 위치와 속도
  • Rotational angle for a fixed-axis motion

고정축 운동을 위한 회전각

  • Residual control force and torque in both space and body systems for any prescribed motion and a coupled motion with constraints (fixed axis, fixed point and prescribed velocity components)

지정운동 및 구속을 갖는 결합운동(고정축, 고정점, 그리고 지정속도성분)에 대한 두 공간과 물체계에서의 잔여 제어 힘과 토크

  • Spring force/torque and deformation

스프링 힘과 토크 및 변형

  • Mooring line extension and maximum tension force

계류선 신장 및 최대인장력

  • Mooring line tension forces at two ends in the x, y and z directions

x, y 및 z 방향에서 양끝에 작용하는 계류선 인장력

 

As an option, the history data for a GMO with 6-DOF motion can also include the buoyancy center and the metacentric heights for rotations about x and y axes of the space system, which is useful for stability analysis of a floating object. Go to Geometry Component (the desired moving object) Output Buoyancy Center and Metacentric Height, and select Yes. The buoyancy center is defined as the mass center of the fluid displaced by the object. The metacentric height (GM) is the distance from the gravitational center (point G) to the metacenter (point M). It is positive (negative) if point G is below (above) M.

선택사항으로 GMO 6자유도의 이력데이터는 부력중심과 부력물체의 안정성 해석에 유용한 공간계의 x와 y 축에 대한 회전을 위한 metacentric 높이를 포함한다. Geometry Component (the desired moving object) Output Buoyancy Center and Metacentric Height 로가서 Yes 를 선택한다. 부력 중심은 물체에 의해 배수된 부분을 차지하는 유체의 질량중심으로 정의된다. The metacentric height (GM) 은 중력중심(점 G) 에서 metacenter (점M)까지이다. 점 G가 M보다 밑(위)이면 양(음)이다.

 

GMO components can participate in heat transfer just like any stationary solid component. When defining specific heat of a GMO component, Component Properties Solid Properties Density*Specific Heat must be given.

GMO 요소는 여느 정지 고체 요소와 같이 열전달을 포함 할 수 있다. GMO 요소의 비열을 정의할 때 Component Properties Solid Properties Density*Specific Heat 가 주어져야 한다.

 

Two options are available when defining heat sources for a GMO component: use the specific heat flux, or the total power. When the total power is used, the heat fluxes along the open surface of the moving object are adjusted at every time step to maintain a constant total power. If the surface area varies significantly with time, so will the heat fluxes. When the specific heat is used instead, then the fluxes will be constant, but the total power may vary as the surface area changes during the object’s motion. To define heat source for a GMO component, go to Component Properties Solid Properties Heat Source type Total amount or Specific amount.

GMO 요소의 열 소스를 정의할 때 두 가지 선택이 있다: 비열유속 또는 전체 일률(power)를 사용하는 것이다. 전체 일률이 사용되면 이동체의 개표면을 통한 열 유속은 일정 전체 일률을 유지하기 위해 매 시간 단계 마다 조정된다. 표면적이 시간에 따라 상당히 변하면 열유속도 그러할 것이다. 대신에 비열이 사용되면 열 유속은 일정할 것이고 전체일률은 표면적이 이동체의 운동에 따라 변할 때 변할 수도 있다. GMO 요소의 열소스를 정의하기 위해 to Component Properties Solid Properties Heat Source type Total amount or Specific amount 로 간다.

 

Mass sources/sinks can also be defined on the open surfaces of a GMO component. Details can be found in Mass

Sources. 질량소스나 싱크 또한 GMO 요소의 개표면 상에 정의될 수 있다. 자세한 것은 in Mass Sources 에서 볼 수 있다.

Although the GMO model can be used with most physical models and numerical options, limitations exist. To use the model properly, it is noted that

GMO 모델은 대부분의 다른 물리적 모델이나 수치해석 선택과 같이 사용될 수 있지만 제한이 따른다. 모델을 제대로 사용하기 위해 다음 사항들에 유의한다.

  • For coupled motion, the explicit and implicit GMO methods perform differently. The implicit GMO method works for both heavy and light moving objects. The explicit GMO method, however, only works for heavy object problems (i.e., the density of moving object is higher than the fluid density).

결합운동에 대해 내재적과 외재적 GMO 방법은 다르게 작동한다. 내재적 GMO 방법은 무겁거나 가벼운 이동물체에 이용될 수 있지만 외재적 GMO 방법은 무거운 물체의 이동에만 이용한다(즉, 이동물체의 밀도가 유체의 밀도보다 크다).

  • When the explicit GMO method is used, solution for fully coupled moving objects may become unstable if the added mass of the fluid surrounding the object exceeds the object’s mass.

외재적 GMO 방법이 사용될 때 물체 주위 유체의 부가질량이 물체의 질량보다 크면 완전결합 이동물체의 해석은 불안정하게 된다.

  • If there are no GMO components with coupled motion, then the implicit and explicit methods are identical and the choice of one makes no difference to the computational results.

결합운동을 하는 GMO 요소가 없으면 내재적과 외재적 방법은 같고 어느 하나를 사용해도 계산결과에 차이가 없다.

  • The implicit method does not necessarily take more CPU time than the explicit method, even though the former required more computational work, because it improves numerical stability and convergence, and allows for larger time step. It is thus recommended for all GMO problems.

내재적 방법은 수치(해석) 안정성과 수렴이 개선되고 더 큰 시간 단계를 가능하게 해주기 때문에 더 많은 계산을 필요로 하지만 외재적 방법보다 항상 더 많이 CPU시간을 필요로 하지는 않는다. 따라서 모든 문제에 권장된다.

  • It is recommended that the limited compressibility be specified in the fluid properties to improve numerical stability by reducing pressure fluctuations in the fluid.

유체내의 압력 변동을 줄임으로써 수치해석안정성을 증가시키기 위해 제한된 압축성이 유체 물성에서 지정되도록 권장된다.

  • In the simulation result, fluctuations of hydraulic force may exist due to numerical reasons. To reduce these fluctuations, the user can set No f-packing for free-surface problems in Numerics Volume of fluid advection Advanced options and set FAVOR tolerance to 0.0001 in Numerics Time-step controls Advanced Options Stability enhancement. It is noted that an unnecessarily small FAVORTM tolerance factor can cause small time steps and slow down the computation.

모사(simulate)결과에서 수리력의 변동이 수치적인 이유로 존재할 수 있다. 이 변동을 줄이기 위해 사용자는 Numerics Volume of fluid advection Advanced options 에서 자유표면 문제에 대해 No f-packing 을 지정하고 FAVOR tolerance Numerics Time-step controls Advanced Options Stability enhancement 에서 0.0001로 지정할 수 있다. 불필요하게 작은 FAVORTM tolerance 인자는 작은시간 단계를 발생시키고 계산을 더디게 할 수 있다.

  • In order to calculate the fluid force on a moving object accurately, the computational mesh needs to be reasonably fine in every part of the domain where the moving object is expected to be in contact with fluid.

이동물체에 대한 유체의 힘을 정확히 계산하기 위해 이동체가 유체와 접촉할 것으로 예상되는 영역내의 모든 부분에서 적절히 미세한 계산격자를 사용해야한다.

  • An object can move completely outside the computational domain during a computation. When this happens, the hydraulic forces and torques vanish, but the object still moves under actions of gravitational, spring, inertial and control forces and torques. For example, an object experiences free fall outside the domain under the gravitational force in the absence of all other forces and torques.

물체는 계산 동안에 완전히 계산영역 외부로 이동할 수 있다. 이럴 경우 수리력과 토크는 사라지지만 물체는 중력, 스프링힘, 관성력 및 조절 힘과 토크의 영향으로 움직인다. 예를 들면 물체는 모든 다른 힘과 토크가 없는 경우에 중력장 안에 있는 영역외부에서 자유낙하를 할 것이다.

  • If mass density is given, then the moving object must initially be placed completely within the computational domain and the mesh around it should be reasonably fine so that its integrated mass properties (the total mass, mass center and moment of inertia tensor) can be calculated accurately by the code

질량밀도가 주어지면 초기에 물체가 완전히 계산영역 내에 위치하고 있어야 하고 이 주변의 격자는 적절히 미세하게 하여 이의 통합 질량물성(전체질량, 질량중심 그리고 관성모멘트텐서)이 이 코드에 의해 정확히 계산될 수 있어야 한다.

  • If a moving object is composed of multiple subcomponents, they should have overlap in places of contact so that no unphysical gaps are created during motion when the original geometry is converted to area and volume fractions. If different subcomponents are given with different mass densities, this overlap should be small to avoid big errors in mass property calculation.

이동체가 다수의 소 구성요소로 이루어져 있다면 원래 형상이 면적과 체적율로 전환될 때 이들은 접촉부에 중첩이 있어야만 이동 시에 실제로 존재하지 않은 간격이 발생 안 한다. 다른 소구성요소가 다른 질량밀도로 주어지면 이 간격은 질량물성 계산시 큰 에러를 줄이기 위해 작아야 한다.

  • A moving object cannot be of a phantom component type like lost foam or a deforming object.

이동체는 lost foam 이나 변형물체 같은 phantom 구성요소가 될 수 없다.

  • The GMO model works with the electric field model the same way as the stationary objects, but no additional forces associated with electrical field are computed for moving objects.

GMO 모델은 정지 물체와 같은 전장모델과 이용할 수 있으나, 전장 관련 추가적 힘은 계산되지 않는다.

  • If a GMO is porous, light in density and high in porous media drag coefficients, then the simulation may experience convergence difficulties.

GMO가 밀도가 가볍고 다공매질 저항계수가 큰 다공질이면 모사(simulate)에 수렴의 어려움이 있을 수 있다.

  • A Courant-type stability criterion is used to calculate the maximum allowed time-step size for GMO components. The stability limit ensures that the object does not move more than one computational cell in a single time step for accuracy and stability of the solution. Thus the time step is also limited by the speed of the moving objects during computation.

GMO 구성요소에 대해 Courant 형의 안정성 기준이 최대허용 시간 단계 크기를 계산하도록 이용된다. 안정성 제한은 해석의 정확성과 안정성을 위해 물체가 하나의 시간 단계에 하나 이상의 계산 셀을 지나가지 않도록 보장하는 것이다. 그러므로 시간 단계는 계산시 또한 이동체의 속도에 의해 제한된다.

Note:

  • Time-Saving Tip: For prescribed motion, users can preview the object motion in a so-called “dry run” prior to the full flow simulation. To do so, simply remove all fluid from the computational domain to allow for faster execution. Upon the completion of the simulation the motion of the GMO objects can be previewed by post-processing the results. 시간절약팁: 지정운동에서 사용자는 실제 전체 유동 계산 전에 소위 “dry run” 이라는 형태로 GMO 물체의 운동을 미리 볼 수 있다. 이러기 위해 빠른 계산을 하기 위해 계산영역 내로부터 모든 유체를 단순히 제거한다. 모사(simulate)가 끝나면 운동은 결과를 후처리함으로써 미리 볼 수 있다.
  • The residual forces (and torques) are computed for the directions in which the motion of the object is prescribed/constrained. They are defined as the difference between the total force on an object (computed from the prescribed mass*acceleration) and the computed forces on the object from pressure, shear, gravity, specified control forces, etc. As such, they represent the force required to move the object as prescribed.

잔류력(그리고 토크)은 물체의 이동이 지정되거나 제약되는 방향으로 계산된다. 이들은 물체에 작용하는 전체 힘(지정 질량*가속도로부터 구해지는)과 압력, 전단력, 중력, 지정된 조절력 등으로부터 물체에 가해지는 계산된 힘과의 차이로 정의된다.

Collision충돌

The GMO model allows users to have multiple moving objects in one problem, and each of them can possess independent type of coupled or prescribed motion. At any moment of time, each object under coupled motion can collide with any other moving objects (of a coupled- or prescribed-motion type), non-moving objects as well as wall- and symmetry-type mesh boundaries. Without the collision model, objects may penetrate and overlap each other.

GMO 모델에서 사용자는 한 문제에서 다수의 이동체를 지정할 수 있고 각 이동체는 결합 또는 지정된 별도 운동을 할 수가 있다. 어느 순간에서 결합 운동을 하는 각 물체는 벽 또는 대칭형 격자 경계뿐만 아니라 다른 이동체들(결합운동 이나 지정운동을 하는), 그리고 정지하고 있는 물체와 충돌할 수 있다.  충돌모델 없으면 물체는 각기 침투하거나 중첩될 수가 있다.

The GMO collision model is activated by selecting Physics Moving and simple deforming objects Activate collision model. It requires the activation of the GMO model first, done in the same panel. For a GMO problem with only prescribed-motion objects, it is noted that the collision model has no effect on the computation: interpenetration of the objects can still happen.

GMO 충돌모델은 Physics Moving and simple deforming objects Activate collision model 를 선택함으로써 활성화된다. 먼저 같은 패널에서 GMO 모델을 활성화한다. 단지 지정된 운동을 하는 GMO 물체 문제에 대해 충돌모델은 계산에 영향을 안 미친다는 것을 주목한다: 그래도 물체의 침투는 가능하다.

The model allows each individual collision to be fully elastic, completely plastic, or partially elastic, depending on the value of Stronge’s energetic restitution coefficient, which is an input parameter. In general, a collision experiences two phases: compression and restitution, which are associated with loss and recovery of kinetic energy. The Stronge’s restitution coefficient is a measure of kinetic energy recovery in the restitution phase. It depends on the material, surface geometry and impact velocity of the colliding objects. The range of its values is from zero to one. The value of one corresponds to a fully elastic collision, i.e., all kinetic energy lost in the compression is recovered in the restitution (if the collision is frictionless). Conversely, a zero restitution coefficient means a fully plastic collision, that is, there is no restitution phase after compression thus recovery of the kinetic energy cannot occur. A rough estimate of the restitution coefficient can be conducted through a simple experiment. Drop a sphere from height h0 onto a level anvil made of the same material and measure the rebound height h. The restitution coefficient can be obtained as h/h0. In this model, the restitution coefficient is an object-specific constant. A global value of the restitution coefficient that applies to all moving and non-moving objects is set in Physics Moving and simple deforming objects Coefficient of restitution.

입력 변수인 Stronge 의 에너지 반발계수의 값에 따라 모델은 물체의 완전탄성, 완전소성 또는 탄성의 각기 충돌을 다룰 수 있다. 일반적으로 충돌은 두 단계로 나뉜다: 압축과 반발이며 이들은 운동에너지의 손실및 회복과 연관되어 있다. Stronge 의 반발계수는 반발단계에서의 에너지회복의 척도이다. 이는 물질, 표면형상 그리고 충돌하는 물체의 충격속도에 의존한다.

이값은 0과1사이이다. 1은 완전탄성충돌이며 압축에서 손실된 모든 운동에너지가 반발에서 회복된다(충돌에마찰이없다면). 역으로, 0의 반발계수는 완전소성충돌로 즉 압축 후에 반발이 없으며 운동에너지의 회복은 일어나지 않는다. 반발계수의 개략 추정치는 단순한 실험을 통해 얻어질 수 있다.

높이 h0에서 구를 같은 재질로 만들어진 anvil (모루?)위로 떨어뜨려 반발높이 h 를 측정한다. 반발계수는 h/h0로얻어진다. 이모델에서 반발계수는 물질에 특정한 상수이다. 모든 이동과 비 이동물체에 적용되는 반발계수의 포괄적인 값은 Physics Moving and simple deforming objects Coefficient of restitution 에서 지정된다.

 

Friction can be included at the contact point of each pair of colliding bodies by defining the Coulomb’s friction coefficient. A global value of the friction coefficient that applies to all collisions is set in Physics General moving objects Coefficient of friction. Friction forces apply when the friction coefficient is positive; a collision is frictionless for the zero value of the friction coefficient, which is the default. The existence of friction in a collision always causes a loss of kinetic energy.

마찰은 Coulomb 마찰계수를 정의함으로써 충돌하는 각 물체의 접촉 점에 작용한다. 모든 충돌에 적용되는 마찰계수의 포괄적 값은 Physics General moving objects Coefficient of friction 에서 설정된다. 마찰력은 마찰계수가 양일 경우 작용한다; 충돌시 마찰계수가0일 경우 마찰력이 없고, 이는 디폴트이다. 충돌 시 마찰력의 존재는 항상 운동에너지의 손실을 뜻한다.

 

The global values of the restitution and friction coefficients are also used in the collisions at the wall-type mesh boundaries, while collisions of the moving objects with the symmetry mesh boundaries are always fully elastic and frictionless.

포괄적 마찰 및 반발계수는 또한 벽 형태의 경계에서 충돌이 발생할 경우에도 사용될 수 있으나 이동체의 대칭격자 경계와의 충돌은 항상 완전탄성이고 마찰이 없다.

 

The object-specific values for the restitution and friction coefficients are defined in the tab Model Setup Meshing & Geometry. In the geometry tree on the left, click on Geometry Component (the desired component) Component Properties Collision Properties and then enter their values in the corresponding data boxes. If an impact occurs between two objects with different values of restitution coefficients, the smaller value is used in that collision calculation. The same is true for the friction coefficient.

물체에 특정한 반발 및 마찰계수는 탭 Model Setup Meshing & Geometry 에서 정의된다. 좌측의 형상체계에서 on Geometry Component (the desired component) Component Properties Collision Properties 를 클릭하고 상응하는 데이터박스에 그 값들을 입력한다. 다른 반발계수를 갖는 두 물체 사이에 충격이 발생하면 그 충돌 계산에 작은 마찰계수 값이 이용된다. 이는 마찰의 경우에도 마찬가지이다.

Continuous contact, including sliding, rolling and resting of an object on top of another object, is simulated through a series of small-amplitude collisions, called micro-collisions. Micro-collisions are calculated in the same way as the ordinary collisions thus no additional parameters are needed. The amplitude of the micro-collisions is usually small and negligible. In case the collsion strength is obvious in continuous contact, using smaller time step may reduce the collision amplitude.

미끄러짐, 회전, 및 타물체상에 정지하고 있는 물체를 포함하는 지속적인 접촉은 미세충돌이라고 불리는 일련의 소 진폭 충돌에 의해 모사(simulate)된다. 미세 충돌은 추가적인 매개변수 필요 없이 보통충돌과 같은 방식으로 계산된다. 충돌강도가 지속적 접촉에서 현저한 경우 더 작은 시간간격을 시용하는 것이 충돌 진촉을 감소시킬지도 모른다.

 

If the collision model is activated but the user needs two specific objects to have no collision throughout the computation, he can open the text editor (File Edit Simulation) and set ICLIDOB(m,n) = 0 in namelist OBS, where m and n are the corresponding component indexes. An example of such a case is when an object (component index m) rotates about a pivot – another object (component index n). If the former has a fixed-axis motion type, then calculating the collisions with the pivot is not necessary. Moreover, ignoring these collisions makes the computation more accurate and more efficient. If no collisions between a GMO component m with all other objects and mesh boundaries are desired, then set ICLIDOB(m,m) to be zero. By default, ICLIDOB(m,n) = 1 and ICLIDOB(m,m) = 1, which means collision is allowed.

충돌모델이 활성화되고 시용자가 모사(simulate)동안에 충돌하지 않는 두 특정 물체를 필요로 하면 텍스트편집(File Edit Simulation) 을 열어 namelist OBS 에서 ICLIDOB(m,n) = 0 를 지정하는데, 여기서 m n 은 상응하는 구성 요소 색인이다.

이런 예는 한 물체(component index m)가 경첩축인 다른 물체(component index n)에대해 회전할 경우이다. 전자가 고정축에 대한 운동형태이면 경첩 축과의 충돌은 계산할 필요가 없다. 더구나 이런 충돌을 무시하는 것이 계산상 더 정확하고 효율적이다.

한 GMO component 구성요소 m 과 모든 다른 물체나 격자 경계와의 충돌이 없다면 ICLIDOB(m,m) 를 0으로 지정한다. 디폴트는 ICLIDOB(m,n) = 1 이며 이는 충돌이 허용됨을 뜻한다.

 

To use the model prpperly, users should be noted that

모델을 적절히 사용하기 위해서 사용자는 다음에 주목한다.

  • The collision model is based on the impact theory for two colliding objects with one contact point. If multiple contact points exist for two colliding objects (e.g. surface contact) or one object has simultaneous contact with more than one objects, object overlap may and may not occur if the model is used, varing from case to case.

충돌모델은 한 접촉점을 갖는 두 물체의 충돌이론에 의거한다. 이 모델 사용시 두 물체의 충돌에 다수의 접촉점이 존재(즉 표면접촉같이)하거나 한 물체가 동시에 다른 물체들과 충돌하면 경우에 따라 중첩이 발생할 수도 있고 안 할 수도 있다.

  • To use the model, one of the two colliding object must be under coupled motion, and the other can have coupled or prescribed motion or no motion. The coupled motion can be 6-DOF motion, translation, fixed-axis rotation or fixed-point rotation. For other constrained motion, (e.g., rotation is coupled in one direction but prescribed in another direction), the model is not valid, and mechanical energy of the colliding objects may have conservation problem.

이 모델사용 시 두 충돌 물체중의 하나는 결합운동을 하여야 하고 다른 물체는 결합 또는 지정 운동 또는 정지하고 있을 수 있다. 결합운동은 6자유도 운동일 수 있다(이동, 고정축 또는 고정점 회전). 다른 구속 운동(즉, 한 방향에서는 결합 운동이지만 다른 방향에서는 지정 운동)에서 이 모델은 유효하지 않고 충돌물체의 역학에너지는 보존문제가 발생할는지도 모른다.

  • The model works with and without existence of fluid in the computational domain. It is required, however, that the contact point for a collision be within the computational domain, whereas the colliding bodies can be partially outside the domain at the moment of the collision. If two objects are completely outside the domain, their collision is not detected although their motions are still tracked.

이 모델은 계산 영역 내 유체의 존재 유무에 상관없이 작동한다. 그러나 충돌 시 접촉점은 계산 영역 내에 존재해야 하나 충돌체는 충돌 시 부분적으로 영역외부에 있어도 된다. 두 물체가 완전히 영역 외부에 있으면 이들의 운동은 그래도 추적되지만 충돌은 감지되지 못한다.

  • Collisions are not calculated between a baffle and a moving object: they can overlap when they contact.

이동물체와 배플간의 충돌은 계산되지 않는다: 이들이 접촉하면 중첩될 수 있다.

The model does not calculate impact force and collision time. Instead, it calculates impulse that is the product of the two quantities. Therefore, there is no output of impact force and collision time.

이 모델은 충격 힘과 충돌시간은 계산하지 않는다. 대신에 두 양의 곱인 impulse 를계산한다. 그러므로 충격 힘과 충돌시간에 대한 출력이 없다.

PQ2 Analysis PQ2 해석

PQ2 analysis is important for high pressure die casting. The goal of the PQ2 analysis is to optimally match the die’s designed gating system to the part requirements and the machine’s capability. PQ2 diagram is the basic tool used for PQ2 analysis.

PQ2 해석은 고압주조에서 중요하다. 이 해석의 목적은 부품 요건 및 기계의 용량에 따른 다이의 설계된 게이트 시스템을 최적화시키기 위한 것이다. PQ2 도표는 PQ2해석을 위한 기본 도구이다.

According to the Bernoulli’s equation, the metal pressure at the gate is proportional to the flow rate squared:

베르누이 정리에 의하면 게이트에서의 금속압력은 유량의 제곱에 비례한다.

P Q2                                                                                     (11.5)

where: 여기서

  • P is the metal pressure at the gate, and P 는 게이트에서의 압력이며
  • Q is the metal flow rate at the gate. Q 는 게이트에서의 유량이다.
  • The machine performance line follows the same relationship. 기계성능 곡선도 같은 관계를 따른다.

Based on the die resistance, machine performance, and the part requirements, an operating windows can be determined from the PQ2 diagram, as shown below. The die and the machine has to operate within the operating windows.

다이 저항, 기계성능, 그리고 부품 요건에 따라 운영범위가 밑에 보여진 바와 같이 PQ2 도표에서 결정될 수 있다. 다이와 기계는 운영범위 내에서 작동되어야 한다.

Model Setup모델설정

PQ2 analysis can only be performed on moving object with prescribed motion. The PQ2 analysis can be activated in Meshing & Geometry Component Properties Moving Object. PQ2 analysis can only be performed on one component.

PQ2해석은 단지 지정운동을 하는 이동체에서만 실행될 수 있다. 이는 Meshing & Geometry Component Properties Moving Object 에서 활성화된다. 또 이는 단지 한 개의 구성요소에 대해서만 실행될 수 있다.

The parameters Maximum pressure and Maximum flow rate define the machine performance line.

매개변수 Maximum pressure Maximum flow rate 는 기계성능 곡선을 정의한다.

During the design stage, the process parameters specified might not optimal, such that the resulting pressure is beyond the machine capability. If this happens, the option Adjust velocity can be selected so that the piston velocity is automatically adjusted to match the machine capability. If Adjust velocity is selected, at every time step the pressure at the piston head will be compared with the machine performance pressure to see if it is beyond the machine capability. If it is beyond the machine capability, the flow rate is then reduced to match the machine capability. The reduction is instantaneous and no machine inertia is considered. Once the pressure drops below the machine performance line, the piston will then accelerate to the prescribed velocity. The acceleration has to be less than the machine Maximum acceleration specified.

설계시에 초래된 압력이 기계 성능 이상으로 되는 것같이 지정된 공정 변수들이 최적화가 되지 않았을지도 모른다.  이런 경우에 Adjust velocity 를 선택할 수 가 있고 피스톤속도는 기계성능에 맞게끔 자동적으로 조절될 수 있다. 만약 Adjust velocity 가 선택되면 매 시간단계에서 피스톤헤드의 압력이 기계 성능 이상인지를 알기 위해 기계성능 압력과 비교될 것이다. 압력이 기계 성능 이상이라면 유량은 기계성능을 맞추기 위해 감소될 것이다. 감소는 순간적으로 이루어지고 기계의 관성은 고려되지 않는다. 일단 압력이 성능 이하로 줄어들면 피스톤은 지정속도로 가속할 것이다. 가속도는 기계의 지정된 Maximum acceleration 보다 작아야 할 것이다. .

 

If Adjust velocity is selected, the machine parameters Maximum pressure and Maximum flow rate have to be provided. The Maximum acceleration is also required, however, it is by default to be infinite if not provided.

Adjust velocity 가 선택되면 기계시스템 변수 Maximum pressure Maximum flow rate 가 주어져야 한다. 또한 Maximum acceleration 가 필요하나 주어지지 않으면 디폴트 값은0이다.

 

For high pressure die casting, the fast shot stage is very short. But it is this stage that is of interest. The pressure and flow rate are written as general history data. The data output interval has to be very small to capture all the features in this stage. To reduce FLSGRF file size, only when flow rate reaches Minimum flow rate, the history data output interval is reduced to every two time steps. If Minimum flow rate is not provided, it is default to 1/3 of the Maximum flow rate. Note that the only purpose of Minimum flow rate is to change the history data output frequency.

고압주조에서 고속충진단계는 아주 짧은데 우리는 이 단계에 관심이 있다. 압력과 유량은 일반 이력 데이터로 기록된다. 데이터출력 간격은 이 단계에서의 모든 양상을 보기 위해 아주 작아야 한다. FLSGRF 파일 크기를 줄이기 위해 유량이 Minimum flow rate 에 도달했을 때만 이력데이터 출력 간격은 두 시간 간격에 한번으로 감소된다. Minimum flow rate 가 주어지지 않으면 Maximum flow rate 의 1/3이 디폴트값이다. 단지, Minimum flow rate 를 사용하는 목적은 이력 데이터 출력 간격을 변경하는 것임에 주목한다.

 

Due to the limitation of the FAVORTM, the piston head area computed may fluctuate as piston pushing through the shot sleeve. As a result, the metal flow rate computed may also fluctuate. To reduce the fluctuation, Shot sleeve diameter is recommended to be provided, so that it can be used to correct the metal flow rate. If only half of the domain is modeled, the diameter needs to be scaled to reflect the real cross section area in the simulation.

FAVORTM 제약에 따라 계산된 피스톤헤드 면적은 피스톤이 shot sleeve 를 통해 움직일 때 변할 수 있다. 결과적으로 계산된 액체금속 유량이 변할 수 있다. 이를 줄이기 위해 Shot sleeve diameter 를 주는 것이 필요하고, 이로부터 액체금속 유량을 정정할 수 있다.  만약에 단지 영역의 반만 모델이 되면 직경은 모사(simulate)시에 실제 단면적을 나타내기 위해 비례되어야 한다.

Postprocessing 후처리

If PQ2 analysis is chosen, the pressure, flow rate, and prescribed velocity of the specified moving object will be written to FLSGRF file as General history data. If Adjust velocity is selected, the adjusted velocity will also be written as General history data. In addition, the PQ2 diagram can be drawn directly from the history data in FlowSight.

PQ2해석이 선택되면 압력, 유량 그리고 특정 이동체의 지정속도가 General history 데이터로 FLSGRF 파일에 쓰여질 것이다. Adjust velocity 가 선택되면 조절된 속도 또한 General history 데이터로 쓰여질 것이다. 추가로 PQ2 도표는 직접 Flow Sight에서 이력데이터로 그려질 수 있다.

Elastic Springs & Ropes 탄성 스프링과 로프

The GMO model allows existence of elastic springs (linear and torsion springs) and ropes which exert forces or torques on objects under coupled motion. Users can define up to 100 springs and ropes in one simulation, and each moving object can be arbitrarily connected to multiple springs and ropes. For a linear spring, the elastic restoring force Fe is along the length of the spring and satisfies Hooke’s law of elasticity,

GMO 모델은 결합운동하는 물체에 힘과 토크를 미치는 탄성스프링(선형과 비틀림 스프링)과 로프로 이용될 수 있다. 사용자는 한 모사(simulate)에서 100개까지의 스프링과 로프를 정의할 수 있고 각 이동체는 임의로 다수의 스프링과 로프에 연결될 수 있다. 선형 스프링에서 탄성회복력 Fe 는 스프링의 길이 방향을 따라서 작용하며 Hooke 의 탄성법을 만족한다.

Fe = kl l

where: 여기서

  • kl is the spring coefficient,

kl 는스프링상수

  • l is the spring’s length change from its free condition,

l 는 스프링의 길이 변화량

  • Fe is a pressure force when the spring is compressed, and a tension force when stretched.

Fe 는 스프링이 압축되었을 때는 압축힘이며 늘어났을 때는 인장력이다.

An elastic rope also obeys Hooke’s law. It generates tension force only if stretched, but when compressed it is relaxed and the restoring force vanishes as would be the case of a slack rope.

탄성 로프 또한 Hooke 의 탄성법칙을 따른다. 단지 인장의 경우에만 인장력을   발생시키나 압축의 경우 느슨한 로프의 경우에서와 같이 느슨해지고 복원력은 사라진다.

A torsion spring produces a restoring torque T on a moving object with fixed-axis when the spring is twisted, following the angular form of Hooke’s law,

비틀림 스프링은 스프링이 비틀렸을 때 의 각 형태의 Hooke 법칙을 따라 고정 회전축을 갖는 이동체에 복원 토크 T 를 일으킨다.

Te = kθ θ

where: 여기서

  • kθ is the spring coefficient in the unit of [torque]/degree, and

kθ  [torque]/degree 는 단위의 스프링상수 그리고

  • θ is the angular deformation of the spring.

θ 는 스프링의 각변형

  • It is assumed that there is no elastic limit for the springs and ropes, namely Hooke’s law always holds no matter how big the deformation is.

스프링과 로프에는 탄성한계가 없다고 가정된다. 즉 아무리 스프링과 로프의 변형이 커도 Hooke 의 법칙이 작용한다고 가정된다.

A linear damping force associated with a spring/rope and a damping torque associated with a torsion spring may also be defined. The damping force Fd is exerted on the moving object at the attachment point of the spring/rope. Its line of action is along the spring/rope, and its value is proportional to the time rate of the spring/rope length,

스프링/로프에서의 선형 감쇠력 그리고 비틀림 스프링에서의 감쇠토크가 또한 정의된다. 감쇠력 Fd 는 스프링/로프의 부착점이 있는 이동체에 작용한다. 이의 작용선은 스프링/로프를 따라서이며 그 값은 스프링/로프 길이의 시간당 변화율에 비례한다.

dl

Fd = −cl

dt

Note the damping force for a rope vanishes when the rope is relaxed.

로프의 감쇠력은 로프가 느슨해질 때 없어진다.

The damping torque Td can only be applied on an object with a fixed-axis rotation. Its direction is opposite to the angular velocity, and its value is proportional to the angular velocity value,

감쇠 토크 Td 는 단지 고정축 회전을 하는 물체에만 적용된다. 그 방향은 각속도에 반대방향이고 값은 각속도 값에 비례한다.

Td = −cdω

where ω (in rad/time) is the angular velocity of the moving object.

여기서 ω (in rad/time) 는 이동체의 각속도이다.

 

In this model, a linear spring or rope can have one end attached to a moving object under coupled motion and the other end fixed in space or attached to another moving object under either prescribed or coupled motion. A torsion spring, however, must have one end attached to an object under coupled fixed-axis motion and the other end fixed in space. It is assumed that the rotation axis of the object and the axis of the torsion spring are the same. As a result, the torque applied by the spring on the object is around the object’s rotation axis, and the deformation angle of the spring is equal to the angular displacement of the object from where the spring is in free condition.

이 모델에서 선형 스프링 또는 로프는 한쪽 끝은 결합 운동하는 물체에 그리고 다른 끝은 공간에 고정되어 있거나 지정 또는 결합 운동을 하는 다른 이동체에 연결될 수 있다. 그러나 비틀림 스프링은 한 끝은 결합된 운동을 하는 물체에, 그리고 다른 한끝은 공간에 고정되어 있어야 한다. 물체의 회전축 및 비틀림 스프링의 축은 같다고 가정된다. 결과적으로 물체에 스프링에 의해 가해진 토크는 물체의 회전축둘레로 작용하며 스프링의 각 변형은 스프링의 자유위치로부터의 각변위와 같다.

 

A linear spring has a block length due to the thickness of the spring coil. It is the length of the spring at which the spring’s compression motion is blocked by its coil and cannot be compressed any further. This model allows for three types of linear springs:

선형스프링은 스프링 코일의 두께에 의한 차단 거리가 있다. 이는 스프링의 압축 운동이 그 코일에 의해 방해되어 더 이상 압축될 수 없는 스프링의 길이이다. 이 모델은 3가지의 선형 스프링을 고려할 수 있다.

  • Compression and extension spring: a spring that can be both compressed and extended. Its block length, by default, is 10% of its free length (the length of the spring in the force-free condition).

압축 및 확장스프링: 압축되거나 확장될 수 있는 스프링이며 이의 차단거리는 디폴트로 자유길이(힘을 받지 않을 때의 스프링의 길이) 의 10%이다

  • Extension spring: a spring that can only be extended. Its block length is always equal to its free length.

확장스프링: 확장될 수 있는 스프링이며 차단거리는 항상 자유 길이와 같다.

  • Compression spring: a spring that applies force only when it is compressed. When it is stretched, the force on the connected object vanishes. Its default block length is 10% of its free length.

압축스프링: 단지 압축되었을 경우에만 힘이 작용한다.  늘어날 경우 연결된 물체에 힘은 없고, 이의 디폴트 길이는 자유 길이의 10%이다.

To define a spring or rope, go to Model Setup Meshing Geometry. Click on the spring icon to bring up the Springs and Ropes window. Right click on Springs and Ropes to add a spring or rope. In the combo box for Type, select the type for the spring or rope.

스프링이나 로프를 정의하기 위해 Model Setup Meshing Geometry 로 가서 Springs and Ropes 창을 불러오기 위해 스프링 아이콘을 클릭한다. 스프링이나 로프를 추가하기 위해 Springs and Ropes 를 오른쪽 클릭한다. Type 을위한 combo 상자에서 스프링이나 로프를 선택한다.

  • Linear spring and rope: Click to open the branches for End 1 and End 2 which represent the initial coordinates of the ends of the spring/rope. In each branch, go to Component # and select the index of the moving object which the spring end is connected to. If the end is not connected to any moving component, i.e., is fixed in space, select None. In the X, Y and Z edit boxes, enter the initial coordinates of the spring’s end. Each end can be placed anywhere inside or outside the moving object and the computational domain. Enter Free Length (the length of the spring/rope in the force-free condition), Block Length, Spring Coefficient (required) and Damping Coefficient (default is 0.0). Note that the Block Length is deactivated for rope and extension spring because the former has no block length while the latter always has its block length equal to its free length. By default, the free length is set equal to the initial distance between the two ends.

선형 스프링과 로프: 스프링/로프의 양쪽 끝의 초기좌표를 나타내는 End 1 End 2 를 위한 branches를 열기 위해 클릭한다. 각 branch 에서 Component #로 가서 스프링의 끝이 연결되어 있는 이동체의 색인을 설정한다. 끝이 어떤 이동체에 연결되어 있지 않다면, 즉 공간에 고정되어 있다면 None 을 선택한다. X, Y Z 편집상자에서 스프링 끝의 초기좌표를 입력한다. 각 끝은 이동체나 계산 영역의 내, 외부 어디에도 놓여질 수 있다.

Free Length (힘이없는상태에서의 스프링/로프의 길이), Block Length, Spring Coefficient (필요함) 그리고 Damping Coefficient (디폴트는0.0)를 입력한다. 로프와 인장스프링에서는 Block Length 가 비 활성화됨을 주목하는데 그 이유는 전자는 Block Length 가 없고 후자는 항상 자유 길이와 같은 Block Length 를 가지기 때문이다.

디폴트로 자유길이는 양쪽 끝 사이의 초기길이와 같게 설정된다.

  • Torsion spring: End 1 represents the spring’s end that is attached to a moving object under fixed-axis rotation, and End 2 the end fixed in space. Click to open the branch for End 1. In the combo box for Component #, select the index of the moving object which End 1 is attached to. Then enter Spring Coefficient (required, in unit of [torque]/degree) and Damping Coefficient (default is 0.0). Finally enter the Initial Torque in the input box. The initial torque is the torque of the spring applied on the moving object at t = 0. It is positive if it is in the positive direction of the coordinate axis which the rotation axis of the moving object is parallel to.

비틀림 스프링: End 1은 고정축 회전을 하는 이동체에 연결된 스프링의 끝을 나타내고 End 2는 공간에 고정된 끝을 나타낸다. End 1의 branch 를 열기 위해 클릭한다. Component #를위한 combo 상자에서 End 1 이 연결된 이동체의 색인을 선택한다. 그런 후에 Spring Coefficient ([torque]/degree의 단위로 필요) 와 Damping Coefficient (디폴트는0.0)를 입력한다.

마지막으로 입력 상자에서 Initial Torque 를 넣는다. 초기토크는 t = 0일 때 이동체에 적용된 스프링의 토크이다. 이동체의 회전축이 평행한 좌표축의 양의 방향이면 양의 값이다.

After the simulation is complete, users can display the calculated deformation and force (or torque) of each spring and rope as functions of time. Go to Analyze Probe Data source and check General history. In the variable list under Data variables, find the Spring/rope index followed by spring/rope length extension from free state, spring/rope force and/or spring torque. Then check Output form Text or Graphical and click Render to display the data. Positive/negative values of spring force and length extension mean the linear spring or rope is stretched/compressed relative to its free state and the restoring force is a tension/pressure force. Positive/negative values of the torque of a torsion spring means its deformation angle (a vector) measured from its free state is in the negative/positive direction of the coordinate axis which its axis is parallel to.

모사(simulate)가 끝난 후에 사용자는 시간의 함수로 각 스프링의 계산된 변형과 힘(토크)를 나타낼 수 있다. Analyze Probe Data source 로가서 General history 를 체크한다. Data variables 에 있는 변수 목록에서 spring/rope length extension from free state, spring/rope force 과/또는 spring torque 로 이어지는 스프링/로프의 색인을 찾는다. 그리고 Output form Text 또는 Graphical 를 체크하고 데이터를 나타내기 위해 Render 를 클릭한다.

스프링 힘과 인장길이의 양/음의 값은 선 스프링과 로프가 자유상태에 대해 상대적으로 늘어나거나 압축된 것을 뜻한다. 비틀림스프링 토크의 양/음의값은 축에 평행한 좌표 축의 양/음의 방향에 대해 측정된 변형각(벡터)을 뜻한다.

 

It is noted that the spring/rope calculation is explicitly coupled with GMO motion calculation. If a numerical instability occurs it is recommended that users activate the implicit GMO model, define limited compressibility of fluid, or decrease time step.

스프링/로프 계산은 GMO 운동계산과 외재적으로 결합되어 있음에 주목한다. 수치 불안정성이 발생하면 사용자는 내재적 GMO모델을 활성화하고 유체의 제한적 압축성을 정의하던가 또는 시간간격을 줄이는 것을 추천한다.

Mooring Lines 계류선

The mooring line model allows moving objects with prescribed or coupled motion to be connected to fixed anchors or other moving or non-moving objects via compliant mooring lines. Multiple mooring lines are allowed in one simulation, and their connections to the moving objects are arbitrary. The mooring lines can be taut or slack and may fully or partially rest on sea/river floor. The model considers gravity, buoyancy, fluid drag and tension force on the mooring lines. The mooring lines are assumed to be cylinders with uniform diameter and material distributions, and each line can have its own length, diameter, mass density and other physical properties. The model numerically calculates the full 3D dynamics of the mooring lines and their dynamic interactions with the tethered moving objects.

계류선 모델링은 유연한 계류선을 이용하여 지정 또는 결합운동을 하는 이동체가 고정 닻 또는 다른 이동 또는 고정물체에 연결되는 것을 가능하게 해준다. 다수의 계류선도 한 모사(simulate)내에서 가능하며 이들의 이동체에의 연결은 인위적이다.

계류선은 팽팽하거나 느슨할 수 있고 전체 또는 부분이 해저나 하상에 위치할 수 있다. 이 모델은 계류선에 작용하는 중력, 부력, 유체저항 및 인장력을 고려할 수 있다. 계류선은 일정직경과 균일분포의 원통형으로 가정되고 각 선은 각 길이, 직경, 밀도 및 기타 물리적 물성을 가질 수 있다. 이 모델은 수치적으로 3차원계류선 운동 및 선에 의해 묶여진 이동체와의 동적 상호작용을 계산한다.

 

The model allows the mooring lines to be partially or completely outside the computational domain. When a line is anchored deep in water, depending on the vertical size of the domain, the lower part of the line can be located below the domain bottom where there is no computation of fluid flow. In this case, it is assumed that uniform water current exists below the domain for that part of mooring line, and the corresponding drag force is evaluated based on the uniform deep water velocity. Limitations exist for the model. It does not consider bending stiffness of mooring lines. Interactions between mooring lines are ignored. When simulating mooring line networks, free nodes are not allowed.

이 모델은 계류선이 계산 영역의 완전히 또는 부분적으로 외부에 위치하게 할 수 있다. 계류선은 영역의 심해에 앵커되어 있을 때 수직(세로)크기에 따라 선의 하부는 유동 계산이 없는 영역 바닥에 위치할 수 있다. 이 경우 계류선의 하부가 있는 영역하부에는 균일한 유속이 존재한다고 가정되고 이에 상응하는 유속저항은 균일한 심해유속에 근거하여 계산된다.

이모델은 제약이 있는데 선의 굽힘 강도는 고려하지 않는다. 선간의 상호작용도 무시된다. 선간의 관계를 모사(simulate)활 때 자유접속점은 허용되지 않는다.

 

To define a mooring line, go to Model Setup Meshing & Geometry. Click on the spring icon to bring up the Springs, Ropes and Mooring Lines window. Right click on Springs / Ropes / Mooring Lines to add a mooring line. Click on Mooring Lines Deep Water Velocity and enter x, y and z components of the deep water velocity (default value is zero). Click on Mooring Line # and enter the physical and numerical properties of the mooring line.

계류선을 정의하기위해 Model Setup Meshing & Geometry 로간다. Springs, Ropes and Mooring Lines 창을 불러오기 위해 스프링 아이콘을 클릭한다. 계류선을 추가하기위해 Springs / Ropes / Mooring Lines 에서 오른쪽 클릭을 하고 Mooring Lines Deep Water Velocity 를클릭해서 심해속도의 x, y 및 z 성분을 입력한다(디폴트는0이다). Mooring Line # 를 클릭하고 선의 물리적 및 수치적 물성들을 입력한다.

 

Aerospace Bibliography

아래는 항공 우주 분야에 대한 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 항공 우주 산업을 위한 응용 프로그램을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

Aerospace Bibliography

Below is a collection of technical papers in our Aerospace Bibliography. All of these papers feature FLOW-3D results. Learn more about how  FLOW-3D can be used to successfully simulate applications for the Aerospace Industry.

08-20   Li Yong-Qiang, Dong Jun-Yan and Rui Wei, Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity, Microgravity Science and Technology, 2020. doi.org/10.1007/s12217-019-09773-z

107-19   Martin Konopka, Extension of a standard flow solver for simulating phase change in cryogenic tanks, Journal of Thermophysics and Heat Transfer, 33.3, 2019. doi.org/10.2514/1.T5546

79-19   Baotang Zhuang, Yong Li, Jintao Liu, and Wei Rui, Numerical simulation of fluid transport along parallel vanes for vane type propellant tanks, Microgravity Science and Technology, pp. 1-10, 2019. doi:10.1007/s12217-019-09746-2

54-19     Robert E. Manning, Ian Ballinger, Manoj Bhatia, and Mack Dowdy, Design of the Europa Clipper propellant management device, AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, August 19-22, 2019. doi:10.2514/6.2019-3858

48-19     Lei Wang, Tian Yan, Jiaojiao Wang, Shixuan Ye, Yanzhong Li, Rui Zhuan, and Bin Wang, CFD investigation on thermodynamic characteristics in liquid hydrogen tank during successive varied-gravity conditions, Cryogenics, Vol. 103, 2019. doi:10.1016/j.cryogenics.2019.102973

01-18   Martin Konopka, Extension of a Standard Flow Solver for Simulating Phase Change in Cryogenic Tanks, 018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2018-1818), https://doi.org/10.2514/6.2018-1818

69-16   Philipp Behruzi and Francesco De Rose, Coupling sloshing, GNC and rigid body motions during ballistic flight phases, Propulsion and Energy Forum, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, July 25-27, 2016, Salt Lake City, UT.

55-16   Martin Konopka, Peter Noeding, Jörg Klatte, Philipp Behruzi, Jens Gerstmann, Anton Stark, Nicolas Darkow, Analysis of LN2 Filling, Draining, Stratification and Sloshing Experiments, 46th AIAA Fluid Dynamics Conference, Washington, D.C.

95-15   D Frank, Control of fluid mass center in the Gravity Probe B space mission Dewar, © 2015 IOP Publishing Ltd, Classical and Quantum Gravity, Volume 32, Number 22, November 17, 2015

58-15   Diana Gaulke and Michael E. Dreyer, CFD Simulation of Capillary Transport of Liquid Between Parallel Perforated Plates using FLOW-3D, Microgravity Science and Technology, August 2015

55-15   Sebastian Schmitt and Michael E. Dreyer, Free Surface Oscillations of Liquid Hydrogen in Microgravity Conditions, Cryogenics, doi:10.1016/j.cryogenics.2015.07.004, July 26, 2015

53-15   Jeffrey Moder and Kevin Breisacher, Preliminary Simulations of Ullage Dynamics in Microgravity during Jet Mixing Portion of the Tank Pressure Control Experiments, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

52-15   Philipp Behruzi, Diana Gaulke, Joerg Klatte, Nicolas Fries, Development of the MPCV ESM propellant tanks, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

51-15   Grant O. Musgrove and Shane B. Coogan, Validation and Rules-of-Thumb for Computational Predictions of Liquid Slosh Dynamics, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

23-15   Eckart Fuhrmann, Michael Dreyer, Steffen Basting, and Eberhard Bänsch, Free surface deformation and heat transfer by thermocapillary convection, Heat and Mass Transfer, June 2015, © SpringerLink

09-15   Zhicheng Zhou and Hua Huang, Constraint Surface Model for Large Amplitude Sloshing of the spacecraft with Multiple Tanks, Acta Astronautica, http://dx.doi.org/10.1016/j.actaastro.2015.02.023

43-14   C. Ludwig and M.E. Dreyer, Investigations on thermodynamic phenomena of the active-pressurization process of a cryogenic propellant tankCryogenics (2014), doi: http://dx.doi.org/10.1016/j.cryogenics.2014.05.005.

40-14   M. Berci, S. Mascetti; A. Incognito, P. H. Gaskell, and V. V. Toropov, Dynamic Response of Typical Section Using Variable-Fidelity Fluid Dynamics and Gust-Modeling Approaches—With Correction Methods, Journal of Aerospace Engineering, © ASCE, ISSN 0893-1321/04014026(20), May 2014.

22-14  M. Lazzarin, M. Biolo, A. Bettella, M. Manente, R. DaForno, and D. Pavarin, EUCLID satellite: Sloshing model development through computational fluid dynamics, Aerospace Science and Technology, JID:AESCTE AID:3040 /FLA, Available online 12 April 2014.

75-13   Carina Ludwig and Michael Dreyer, Analyses of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical Simulations, 5TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS), Munich, Germany, 1-5 July 2013

49-13 Damien Theureau, Astrium; Jean Mignot, French Space Agency (CNES); Sebastien Tanguy, Fluid Mechanics Institute of Toulouse (IMFT), Integration of low g sloshing models with spacecraft attitude control simulators, Chapter DOI: 10.2514/6.2013-4961, August 2013.

44-13  Philipp Behruzi, Jörg Klatte and Gaston Netter, Passive Phase Separation in Cryogenic Upper Stage Tanks, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14 – 17, 2013, San Jose, CA.

43-13  Philipp Behruzi, Jörg Klatte, Nicolas Fries, Andreas Schütte, Burkhard Schmitz and Horst Köhler, Cryogenic Propellant Management Sounding Rocket Experiments on TEXUS 48, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14 – 17, 2013, San Jose, CA.

113-12  M. Lazzarin, M. Biolo, A. Bettella, and R. Da Forno, EUCLID Mission: Theoretical Sloshing Model and CFD Comparison, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 30 July – 01 August 2012, Atlanta, Georgia

34-12  N. Fries , P. Behruzi, T. Arndt, M. Winter, G. Netter, U. Renner, Modelling of fluid motion in spacecraft propellant tanks – Sloshing, Space Propulsion 2012 conference, 7th-10th May 2012, Bordeaux

55-11   P. Behruzi, F. de Rose, P. Netzlaf, H. Strauch, Ballistic Phase Management for Cryogenic Upper Stages, DGLR Conference, Bremen, Germany, 2011

11-11 Philipp Behruzi, Hans Strauch, and Francesco de Rose, Coasting Phase Propellant Management for Upper Stages, 38th COSPAR Scientific Assembly, 18-15 July 2010, Bremen, Germany. PowerPoint presentation.

73-10    Amber Bakkum, Kimberly Schultz, Jonathan Braun, Kevin M Crosby, Stephanie Finnvik, Isa Fritz, Bradley Frye, Cecilia Grove, Katelyn Hartstern, Samantha Kreppel and Emily Schiavone, Investigation of Propellant Sloshing and Zero Gravity Equilibrium for the Orion Service Module Propellant Tanks, Wisconsin Space Conference, Yingst, R. A., & Wisconsin Space Grant Consortium. (2010). Dawn of a new age: 20th Annual Wisconsin Space Conference, August 19-20, 2010. Green Bay, Wis: Wisconsin Space Grant Consortium; University of Wisconsin-Green Bay.

35-10   Kevin Breisacher and Jeffrey Moder, Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales, NASA/TM—2010-216749

21-10 Berci M., Mascetti S., Incognito A., Gaskell P.H., Toropov V.V., Gust Response of a Typical Section Via CFD and Analytical Solutions, V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon, Portugal, 14-17 June 2010 (A companion PowerPoint presentation in pdf format is available upon request)

49-08   Jens Gerstmann, Michael Dreyer, et al., Dependency of the apparent contact angle on nonisothermal conditions, PHYSICS OF FLUIDS 20, 042101 (2008)

35-07 N. Fries, K. Odic and M. Dreyer, Wicking of Perfectly Wetting Liquids into a Metallic Mesh, Proceedings of the 2nd International Conference on Porous Media and its Applications in Science and Engineering, ICPM2, Kauai, Hawaii, USA, June 17-21, 2007

08-07 Gary Grayson, Alfredo Lopez, Frank Chandler, Leon Hastings, Ali Hedayat, and James Brethour, CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, © 2007 by The Boeing Company. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission. AIAA 2007-5524, 8 – 11 July 2007

34-06 Phillipp Behruzi, Mark Michaelis and Gaël Khimeche, Behavior of the Cryogenic Propellant Tanks during the First Flight of the Ariane 5 ESC-A Upper Stage, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 9-12 July 2006, Sacramento, California, © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

12-06 G. D. Grayson, A. Lopez, F. O. Chandler, L. J. Hastings, S. P. Tucker, Cryogenic Tank Modeling for the Saturn AS-203 Experiment, AIAA 2006-5258, presented at the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 9-12, 2006, Sacramento, CA.

29-02 O. Bayle, V. L’Hullier, M. Ganet, P. Delpy, J.L. Francart and D. Paris, Influence of the ATV Propellant Sloshing on the GNC Performance, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 5-8 August 2002, © 2002 by EADS Launch Vehicles

42-01 C. Figus and L. Ounougha, Correlations between Neutral Buoyancy Tests and CFD, Spacecraft Propulsion, Third International Conference held 10-13 October, 2000 at Cannes, France. European Space Agency ESASP-465, 2001, p.547

24-01 Hiroshi Nishino, Shujiro Sawai, & Katsumi Furukawa, Prediction of Sloshing Dynamics in Spinning Spherical Tanks, Mitsubishi Heavy Industry, The Institute of Space and Astronautical Science 9th Workshop on Astrodynamics and Flight Mechanics (1999)

5-96 D. J. Frank, Dynamics of Superfluid Helium in Low-Gravity: A Progress Report, Advanced Technology Center, Lockheed Martin Missiles & Space, Palo Alto, CA 94304, USA, To be published in Proceedings of 1996 NASA/JPL Microgravity Low Temperature Physics Workshop, April 1996

7-95 G. D. Grayson, Coupled Thermodynamic-Fluid-Dynamic Solution for a Liquid Hydrogen Tank, Journal of Spacecraft and Rockets, Vol. 32, No. 5, September-October 1995

5-94 G. Ross, Dynamics of Superfluid Helium in Low Gravity, dissertation submitted to Dept. Mech. Engrg. and Committee on Graduate Studies of Stanford University for Ph.D. degree, July 1994

9-93 N. H. Hughes, Numerical Stability Problem Encountered Modeling Large Liquid Mass in Micro Gravity, The Boeing Company, presented at the AAS/AIAA Astrodynamics Specialist Conference, Victoria, B.C., Canada, August 16-19, 1993

8-93 G. D. Grayson and J. Navickas, Interaction Between Fluid-Dynamic and Thermodynamic Phenomena in a Cryogenic Upper Stage, McDonnell Douglas, AIAA-93-2753, presented at the AIAA 28th Thermophysics Conference, Orlando, FL, July 6-9, 1993

7-93 G. Grayson and E. DiStefano, Propellant Acquisition for Single Stage Rocket Technology, McDonnell Douglas, AIAA-93-2283, presented at the AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Monterey, CA, June 28-30, 1993

6-93 Y. Letourneur and J. Sicilian, Propellant Reorientation Effects on the Attitude of the Main Cryotechnic Stage of Ariane V, Aerospatiale, Les Mureaux and Flow Science Inc, presented at the AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Monterey, CA, June 28-30, 1993

4-92 J. M. Sicilian, Evaluation of Space Vehicle Dynamics Including Fluid Slosh and Applied Forces, Flow Science report (FSI-92-47-01), August 1992

9-91 G. P. Sasmal, J. I. Hochstein, M. C. Wendl, Washington University and T. L. Hardy, NASA Lewis Research Center, Computational Modeling of the Pressurization Process in a NASP Vehicle Propellant Tank Experimental Simulation, (AIAA 91-2407), AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, CA, June 24-26, 1991

8-91 M. F. Fisher, G. R. Schmidt, and J. J. Martin,  Analysis of Cryogenic Propellant Behavior in Microgravity and Low Thrust Environments, NASA-Marshall Space Flight Center, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, CA, June 24-26, 1991

15-90 T. L. Hardy and T. M. Tomasik, Prediction of the Ullage Gas Thermal Stratification in a NASP Vehicle Propellant Tank Experimental Simulation Using FLOW-3D, NASA Technical Memorandum 103217, NASA-Lewis Research Center, Cleveland, OH, July 1990

6-90 J. Navickas, McDonnell Douglas Space Systems Co., Huntington Beach, CA and P.Y. Cheng, McDonnell Douglas Aircraft Co., St. Louis, MO, Effect of Propellant Sloshing on the Design of Space Vehicle Propellant Storage Systems, presented at the 26th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Orlando World Center, Orlando, FL, July 16-18, 1990

1-90 S. M. Dominick and J. R. Tegart, Fluid Dynamics and Thermodynamics of a Low Gravity Liquid Tank Filling Method, AIAA 28th Aerospace Sciences Meeting, AAIA-90-0509, Reno, NV, January 1990.

9-89 S. Lin and D. K. Warinner, FLOW-3D Analysis of Pressure Responses in an Enclosed Launching System, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

3-89 C. W. Hirt, Flow in a Solid-Propellant Rocket Chamber, Flow Science Technical Note #17, March 1989 (FSI-89-TN17)

1-89 J. Navickas, E. C. Cady, and J. L. Ditter, Suspension of Solid Particles in the Aerospace Plane’s Slush Hydrogen Tanks, McDonnell Douglas Astronautics Co. report, Huntington Beach, CA, 1988, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

11-88 J. Navickas, Prediction of a Liquid Tank Thermal Stratification by a Finite Difference Computing Method, presented to AIAA/ASEE/ASME/SAE 24th Joint Propulsion Conference, Boston, MA, 11-14 July 1988

10-88 J. Navickas, Space-Based System Disturbances Caused by On-Board Fluid Motion During System Maneuvers, presented to 1st National Fluid Dynamics Congress, Cincinnati, OH, July 24-28, 1988

9-88 J. Navickas, E. C. Cady, and T. L. Flaska, Modeling of Solid-Liquid Circulation in the National Aerospace Plane’s Slush Hydrogen Tanks, Advanced Propulsion, Advanced Technology Center, McDonnell Douglas Astronautics Co., Huntington Beach, CA, May 24, 1988

3-88 J. M. Sicilian and C. W. Hirt, Nozzle/Case Joint Analysis with CFD Analysis Using the FLOW-3D Program, in Redesigned Solid Rocket Motor Circumferential Flow Technical Interchange Meeting Final Report, NASA-TWR-17788, February 1988

11-87 C. W. Hirt, A Perspective on NASA-VOF3D vs. FLOW-3D, Flow Science report, December 1987 (FSI-87-00-3)

8-87 J. M. Sicilian, Fluid Slosh in a Rotating and Accelerating Tank, Flow Science report, Sept. 1987 (FSI-87-37-1)

5-87 J. J. Der and C.L. Stevens, Liquid Propellant Tank Ullage Bubble Deformation and Breakup in Low Gravity Reorientation, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego, Calif., June 1987 (AIAA-87-2021)

3-87 J. Navickas and J. Ditter, Effect of the Propellant Storage Tank Geometric Configuration on the Resultant Disturbing Forces and Moments during Low-Gravity Maneuvers, McDonnell Douglas Astronautics report, MDAC H2589, April 1987, presented at 1987 ASME Winter Annual Meeting

1-87 J. J. Der and C. L. Stevens, Low-Gravity Bubble Reorientation in Liquid Propellant Tanks, AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, January 12-15, 1987 (AIAA-87-0622)

7-86 J. Navickas, C. R. Cross, and D. D. Van Winkle, Propellant Tank Forces Resulting from Fluid Motion in a Low-Gravity Field, ASME Symposium in Microgravity Fluid Mechanics, Winter Annual Meeting, Anaheim, CA, December 7-12, 1986

6-86 J. Navickas and C. R. Cross, Some Typical Applications of the HYDR3D CodeFLOW-3D Experience Conference, Redondo Beach, California, November 6-7, 1986

5-86 R. E. Martin, Effects of Transient Propellant Dynamics on Deployment of Large Liquid Stages in Zero-Gravity with Application to Shuttle-Centaur, 37th Annual Astronautical Congress, Innsbruck, Austria, Oct. 3-10, 1986 (IAF-86-119), Acta Astronautical Vol. 15, No. 6/7, pp. 331-340, 1987

4-86 C. W. Hirt, FLOW-3D Test Problems for Two-Fluid Sloshing, Flow Science report, July 1986 (FSI-86-31-1)

6-85 John I. Hochstein, Computational Prediction of Propellant Motion During Separation of a Centaur G-Prime Vehicle from the Shuttle, NASA report, Washington University, St. Louis, MO, December 1985 (WU/CFDL-85/1)

4-85 T. W. Eastes, Y. M. Chang, C. W. Hirt, and J. M. Sicilian, Zero-Gravity Slosh Analysis, ASME Winter Annual Meeting, Miami, Florida, November 1985

3-84 J. M. Sicilian and C. W. Hirt, Numerical Simulation of Propellant Sloshing for Spacecraft, ASME Winter Annual Meeting, New Orleans, LA, December 9-14, 1984

Coastal & Maritime Bibliography

다음은 연안 및 해양 분야의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 연안 및 해양 시설물을 성공적으로 시뮬레이션 하는 방법에 대해 자세히 알아보십시오.

Coastal & Maritime Bibliography

Below is a collection of technical papers in our Coastal & Maritime Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate Coastal & Maritime applications.

51-20       Yupeng Ren, Xingbei Xu, Guohui Xu, Zhiqin Liu, Measurement and calculation of particle trajectory of liquefied soil under wave action, Applied Ocean Research, 101; 102202, 2020. doi.org/10.1016/j.apor.2020.102202

50-20       C.C. Battiston, F.A. Bombardelli, E.B.C. Schettini, M.G. Marques, Mean flow and turbulence statistics through a sluice gate in a navigation lock system: A numerical study, European Journal of Mechanics – B/Fluids, 84; pp.155-163, 2020. doi.org/10.1016/j.euromechflu.2020.06.003

49-20     Ahmad Fitriadhy, Nur Amira Adam, Nurul Aqilah Mansor, Mohammad Fadhli Ahmad, Ahmad Jusoh, Noraieni Hj. Mokhtar, Mohd Sofiyan Sulaiman, CFD investigation into the effect of heave plate on vertical motion responses of a floating jetty, CFD Letters, 12.5; pp. 24-35, 2020. doi.org/10.37934/cfdl.12.5.2435

40-20       P. April Le Quéré, I. Nistor, A. Mohammadian, Numerical modeling of tsunami-induced scouring around a square column: Performance assessment of FLOW-3D and Delft3D, Journal of Coastal Research (preprint), 2020. doi.org/10.2112/JCOASTRES-D-19-00181

38-20       Sahameddin Mahmoudi Kurdistani, Giuseppe Roberto Tomasicchio, Daniele Conte, Stefano Mascetti, Sensitivity analysis of existing exponential empirical formulas for pore pressure distribution inside breakwater core using numerical modeling, Italian Journal of Engineering Geology and Environment, 1; pp. 65-71, 2020. doi.org/10.4408/IJEGE.2020-01.S-08

36-20       Mohammadamin Torabi, Bruce Savage, Efficiency improvement of a novel submerged oscillating water column (SOWC) energy harvester, Proceedings, World Environmental and Water Resources Congress (Cancelled), Henderson, Nevada, May 17–21, 2020. doi.org/10.1061/9780784482940.003

32-20       Adriano Henrique Tognato, Modelagem CFD da interação entre hidrodinâmica costeira e quebra-mar submerso: estudo de caso da Ponta da Praia em Santos, SP (CFD modeling of interaction between sea waves and submerged breakwater at Ponta de Praia – Santos, SP: a case study, Thesis, Universidad Estadual de Campinas, Campinas, Brazil, 2020.

29-20   Ana Gomes, José L. S. Pinho, Tiago Valente, José S. Antunes do Carmo and Arkal V. Hegde, Performance assessment of a semi-circular breakwater through CFD modelling, Journal of Marine Science and Engineering, 8.3, art. no. 226, 2020. doi.org/10.3390/jmse8030226

23-20  Qi Yang, Peng Yu, Yifan Liu, Hongjun Liu, Peng Zhang and Quandi Wang, Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents, Ocean Engineering, 202, art. no. 106701, 2020. doi.org/10.1016/j.oceaneng.2019.106701

04-20  Bingchen Liang, Shengtao Du, Xinying Pan and Libang Zhang, Local scour for vertical piles in steady currents: review of mechanisms, influencing factors and empirical equations, Journal of Marine Science and Engineering, 8.1, art. no. 4, 2020. doi.org/10.3390/jmse8010004

104-19   A. Fitriadhy, S.F. Abdullah, M. Hairil, M.F. Ahmad and A. Jusoh, Optimized modelling on lateral separation of twin pontoon-net floating breakwater, Journal of Mechanical Engineering and Sciences, 13.4, pp. 5764-5779, 2019. doi.org/10.15282/jmes.13.4.2019.04.0460

103-19  Ahmad Fitriadhy, Nurul Aqilah Mansor, Nur Adlina Aldin and Adi Maimun, CFD analysis on course stability of an asymmetrical bridle towline model of a towed ship, CFD Letters, 11.12, pp. 43-52, 2019.

90-19   Eric P. Lemont and Karthik Ramaswamy, Computational fluid dynamics in coastal engineering: Verification of a breakwater design in the Torres Strait, Proceedings, pp. 762-768, Australian Coasts and Ports 2019 Conference, Hobart, Australia, September 10-13, 2019.

86-19   Mohammed Arab Fatiha, Benoît Augier, François Deniset, Pascal Casari, and Jacques André Astolfi, Morphing hydrofoil model driven by compliant composite structure and internal pressure, Journal of Marine Science and Engineering, 7:423, 2019. doi.org/10.3390/jmse7120423

83-19   Cong-Uy Nguyen, So-Young Lee, Thanh-Canh Huynh, Heon-Tae Kim, and Jeong-Tae Kim, Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation, Smart Structures and Systems, 23:5, pp. 405-420, 2019. doi.org/10.12989/sss.2019.23.5.405

68-19   B.W. Lee and C. Lee, Development of an equation for ship wave crests in a current in whole water depths, Proceedings, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019; pp. 207-212, 2019. doi.org/10.1007/978-981-15-0291-0_29

62-19   Byeong Wook Lee and Changhoon Lee, Equation for ship wave crests in the entire range of water depths, Coastal Engineering, 153:103542, 2019. doi.org/10.1016/j.coastaleng.2019.103542

23-19     Mariano Buccino, Mohammad Daliri, Fabio Dentale, Angela Di Leo, and Mario Calabrese, CFD experiments on a low crested sloping top caisson breakwater, Part 1: Nature of loadings and global stability, Ocean Engineering, Vol. 182, pp. 259-282, 2019. doi.org/10.1016/j.oceaneng.2019.04.017

21-19     Mahsa Ghazian Arabi, Deniz Velioglu Sogut, Ali Khosronejad, Ahmet C. Yalciner, and Ali Farhadzadeh, A numerical and experimental study of local hydrodynamics due to interactions between a solitary wave and an impervious structure, Coastal Engineering, Vol. 147, pp. 43-62, 2019. doi.org/10.1016/j.coastaleng.2019.02.004

15-19     Chencong Liao, Jinjian Chen, and Yizhou Zhang, Accumulation of pore water pressure in a homogeneous sandy seabed around a rocking mono-pile subjected to wave loads, Vol. 173, pp. 810-822, 2019. doi.org/10.1016/j.oceaneng.2018.12.072

09-19     Yaoyong Chen, Guoxu Niu, and Yuliang Ma, Study on hydrodynamics of a new comb-type floating breakwater fixed on the water surface, 2018 International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2018), Wuhan, China, December 14-16, 2018, E3S Web of Conferences Vol. 79, Art. No. 02003, 2019. doi.org/10.1051/e3sconf/20197902003

08-19     Hongda Shi, Zhi Han, and Chenyu Zhao, Numerical study on the optimization design of the conical bottom heaving buoy convertor, Ocean Engineering, Vol. 173, pp. 235-243, 2019. doi.org/10.1016/j.oceaneng.2018.12.061

06-19   S. Hemavathi, R. Manjula and N. Ponmani, Numerical modelling and experimental investigation on the effect of wave attenuation due to coastal vegetation, Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), Vol. 2, pp. 99-110, 2019. doi.org/10.1007/978-981-13-3134-3_9

87-18   Muhammad Syazwan Bazli, Omar Yaakob and Kang Hooi Siang, Validation study of u-oscillating water column device using computational fluid dynamic (CFD) simulation, 11thInternational Conference on Marine Technology, Kuala Lumpur, Malaysia, August 13-14, 2018.

86-18   Nur Adlina Aldin, Ahmad Fitriadhy, Nurul Aqilah Mansor, and Adi Maimun, CFD analysis on unsteady yaw motion characteristic of a towed ship, 11th International Conference on Marine Technology, Kuala Lumpur, Malaysia, August 13-14, 2018.

78-18 A.A. Abo Zaid, W.E. Mahmod, A.S. Koraim, E.M. Heikal and H.E. Fath, Wave interaction of partially immersed semicircular breakwater suspended on piles using FLOW-3D, CSME Conference Proceedings, Toronto, Canada, May 27-30, 2018.

73-18   Jian Zhou and Subhas K. Venayagamoorthy, Near-field mean flow dynamics of a cylindrical canopy patch suspended in deep water, Journal of Fluid Mechanics, Vol. 858, pp. 634-655, 2018. doi.org/10.1017/jfm.2018.775

69-18   Keisuke Yoshida, Shiro Maeno, Tomihiro Iiboshi and Daisuke Araki, Estimation of hydrodynamic forces acting on concrete blocks of toe protection works for coastal dikes by tsunami overflows, Applied Ocean Research, Vol. 80, pp. 181-196, 2018. doi.org/10.1016/j.apor.2018.09.001

68-18   Zegao Yin, Yanxu Wang and Xiaoyu Yang, Regular wave run-up attenuation on a slope by emergent rigid vegetation, Journal of Coastal Research (in-press), 2018. doi.org/10.2112/JCOASTRES-D-17-00200.1

65-18   Dagui Tong, Chencong Liao, Jinjian Chen and Qi Zhang, Numerical simulation of a sandy seabed response to water surface waves propagating on current, Journal of Marine Science and Engineering, Vol. 6, No. 3, 2018. doi.org/10.3390/jmse6030088

61-18   Manuel Gerardo Verduzco-Zapata, Aramis Olivos-Ortiz, Marco Liñán-Cabello, Christian Ortega-Ortiz, Marco Galicia-Pérez, Chris Matthews, and Omar Cervantes-Rosas, Development of a Desalination System Driven by Low Energy Ocean Surface Waves, Journal of Coastal Research: Special Issue 85 – Proceedings of the 15th International Coastal Symposium, pp. 1321 – 1325, 2018. doi.org/10.2112/SI85-265.1

37-18   Songsen Xu, Chunshuo Jiao, Meng Ning and Sheng Dong, Analysis of Buoyancy Module Auxiliary Installation Technology Based on Numerical Simulation, Journal of Ocean University of China, vol. 17, no. 2, pp. 267-280, 2018. doi.org/10.1007/s11802-018-3305-4

36-18   Deniz Velioglu Sogut and Ahmet Cevdet Yalciner, Performance comparison of NAMI DANCE and FLOW-3D® models in tsunami propagation, inundation and currents using NTHMP benchmark problems, Pure and Applied Geophysics, pp. 1-39, 2018. doi.org/10.1007/s00024-018-1907-9

26-18   Mohammad Sarfaraz and Ali Pak, Numerical investigation of the stability of armour units in low-crested breakwaters using combined SPH–Polyhedral DEM method, Journal of Fluids and Structures, vol. 81, pp. 14-35, 2018. doi.org/10.1016/j.jfluidstructs.2018.04.016

25-18   Yen-Lung Chen and Shih-Chun Hsiao, Numerical modeling of a buoyant round jet under regular waves, Ocean Engineering, vol. 161, pp. 154-167, 2018. doi.org/10.1016/j.oceaneng.2018.04.093

13-18   Yizhou Zhang, Chencong Liao, Jinjian Chen, Dagui Tong, and Jianhua Wang, Numerical analysis of interaction between seabed and mono-pile subjected to dynamic wave loadings considering the pile rocking effect, Ocean Engineering, Volume 155, 1 May 2018, Pages 173-188, doi.org/10.1016/j.oceaneng.2018.02.041

11-18  Ching-Piao Tsai, Chun-Han Ko and Ying-Chi Chen, Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter, Open Access Sustainability 2018, 10(3), 643; doi:10.3390/su10030643, © Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.

58-17   Jian Zhou, Claudia Cenedese, Tim Williams and Megan Ball, On the propagation of gravity currents over and through a submerged array of circular cylinders, Journal of Fluid Mechanics, Vol. 831, pp. 394-417, 2017. doi.org/10.1017/jfm.2017.604

56-17   Yu-Shu Kuo, Chih-Yin Chung, Shih-Chun Hsiao and Yu-Kai Wang, Hydrodynamic characteristics of Oscillating Water Column caisson breakwaters, Renewable Energy, vol. 103, pp. 439-447, 2017. doi.org/10.1016/j.renene.2016.11.028

47-17   Jae-Nam Cho, Chang-Geun Song, Kyu-Nam Hwang and Seung-Oh Lee, Experimental assessment of suspended sediment concentration changed by solitary wave, Journal of Marine Science and Technology, Vol. 25, No. 6, pp. 649-655 (2017) 649 DOI: 10.6119/JMST-017-1226-04

45-17   Muhammad Aldhiansyah Rifqi Fauzi, Haryo Dwito Armono, Mahmud Mustain and Aniendhita Rizki Amalia, Comparison Study of Various Type Artificial Reef Performance in Reducing Wave Height, Regional Conference in Civil Engineering (RCCE) 430 The Third International Conference on Civil Engineering Research (ICCER) August 1st-2nd 2017, Surabaya – Indonesia.

44-17   Fabio Dentale, Ferdinando Reale, Angela Di Leo, and Eugenio Pugliese Carratelli, A CFD approach to rubble mound breakwater design, International Journal of Naval Architecture and Ocean Engineering, Available online 30 December 2017.

39-17   Milad Rashidinasab and Mehdi Behdarvandi Askar, Modeling the Pressure Distribution and the Changes of Water Level around the Offshore Platforms Exposed to Waves, Using the Numerical Model of FLOW-3D, Computational Water, Energy, and Environmental Engineering, 2017, 6, 97-106, http://www.scirp.org/journal/cweee, ISSN Online: 2168-1570, ISSN Print: 2168-1562

30-17   Omid Nourani and Mehdi Behdarvandi Askar, Comparison of the Effect of Tetrapod Block and Armor X block on Reducing Wave Overtopping in Breakwaters, Open Journal of Marine Science, 2017, 7, 472-484 http://www.scirp.org/journal/ojms ISSN Online: 2161-7392.

29-17   J.A. Vasquez, Modelling the generation and propagation of landslide generated waves, Leadership in Sustainable Infrastructure, Annual Conference – Vancouver, May 31 – June 3, 2017

28-17   Manuel G. Verduzco-Zapata, Francisco J. Ocampo-Torres, Chris Matthews, Aramis Olivos-Ortiz, Diego E. and Galván-Pozos, Development of a Wave Powered Desalination Device Numerical Modelling, Proceedings of the 12th European Wave and Tidal Energy Conference 27th Aug -1st Sept 2017, Cork, Ireland

20-17   Chu-Kuan Lin, Jaw-Guei Lin, Ya-Lan Chen, Chin-Shen Chang, Seabed Change and Soil Resistance Assessment of Jack up Foundation, Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference, San Francisco, CA, USA, June 25-30, 2017, Copyright © 2017 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-97-5; ISSN 1098-6189.

19-17   Velioğlu Deniz, Advanced Two- and Three-Dimensional Tsunami – Models Benchmarking and Validation, Ph.D Thesis:, Middle East Technical University, June 2017

18-17   Farrokh Mahnamfar and Abdüsselam Altunkaynak, Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems, Ocean Engineering 130 (2017) 10–24.

07-17   Jonas Čerka, Rima Mickevičienė, Žydrūnas Ašmontas, Lukas Norkevičius, Tomas Žapnickas, Vasilij Djačkov and Peilin Zhou, Optimization of the research vessel hull form by using numerical simulation, Ocean Engineering 139 (2017) 33–38

05-17   Liang, B.; Ma, S.; Pan, X., and Lee, D.Y., Numerical modelling of wave run-up with interaction between wave and dolosse breakwater, In: Lee, J.L.; Griffiths, T.; Lotan, A.; Suh, K.-S., and Lee, J. (eds.), 2017, The 2nd International Water Safety Symposium. Journal of Coastal Research, Special Issue No. 79, pp. 294-298. Coconut Creek (Florida), ISSN 0749-0208.

02-17   A. Yazid Maliki, M. Azlan Musa, Ahmad M.F., Zamri I., Omar Y., Comparison of numerical and experimental results for overtopping discharge of the OBREC wave energy converter, Journal of Engineering Science and Technology, In Press, © School of Engineering, Taylor’s University

01-17   Tanvir Sayeed, Bruce Colbourne, David Molyneux, Ayhan Akinturk, Experimental and numerical investigation of wave forces on partially submerged bodies in close proximity to a fixed structure, Ocean Engineering, Volume 132, Pages 70–91, March 2017

101-16 Xin Li, Liang-yu Xu, Jian-Min Yang, Study of fluid resonance between two side-by-side floating barges, Journal of Hydrodynamics, vol. B-28, no. 5, pp. 767-777, 2016. doi.org/10.1016/S1001-6058(16)60679-0

81-16   Loretta Gnavi, Deep water challenges: development of depositional models to support geohazard assessment for submarine facilities, Ph.D. Thesis: Politecnico di Torino, May 2016

80-16   Mohammed Ibrahim, Hany Ahmed, Mostafa Abd Alall and A.S. Koraim, Proposing and investigating the efficiency of vertical perforated breakwater, International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March 2016, ISSN 2229-5518

72-16   Yen-Lung Chen and Shih-Chun Hsiao, Generation of 3D water waves using mass source wavemaker applied to Navier–Stokes model, Coastal Engineering 109 (2016) 76–95.

64-16   Jae Nam Cho, Dong Hyun Kim and Seung Oh Lee, Experimental Study of Shape and Pressure Characteristics of Solitary Wave generated by Sluice Gate for Various Conditions, Journal of the Korean Society of Safety, Vol. 31, No. 2, pp. 70-75, April 2016, Copyright @ 2016 by The Korean Society of Safety (pISSN 1738-3803, eISSN 2383-9953) All right reserved. http://dx.doi.org/10.14346/JKOSOS.2016.31.2.70

56-16   Ali A. Babajani, Mohammad Jafari and Parinaz Hafezi Sefat, Numerical investigation of distance effect between two Searasers for hydrodynamic performance, Alexandria Engineering Journal, June 2016.

53-16   Hwang-Ki Lee, Byeong-Kuk Kim, Jongkyu Kim and Hyeon-Ju Kim, OTEC thermal dispersion in coastal waters of Tarawa, Kiribati, OCEANS 2016 – Shanghai, April 2016, 10.1109/OCEANSAP.2016.7485548, © IEEE.

50-16   Mohsin A. R. Irkal, S. Nallayarasu and S. K. Bhattacharyya, CFD simulation of roll damping characteristics of a ship midsection with bilge keel, Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2016, June 19-24, 2016, Busan, South Korea

49-16   Bill Baird, Seth Logan, Wim Van Der Molen, Trevor Elliot and Don Zimmer, Thoughts on the future of physical models in coastal engineering, Proceedings of the 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright ©: Creative Commons CC BY-NC-ND 4.0

47-16   KH Kim et. al, Numerical analysis on the effects of shoal on the ship wave, Applied Engineering, Materials and Mechanics: Proceedings of the 2016 International Conference on Applied Engineering, Materials and Mechanics (ICAEMM 2016)

17-16  Nan-Jing Wu, Shih-Chun Hsiao, Hsin-Hung Chen, and Ray-Yeng Yang, The study on solitary waves generated by a piston-type wave maker, Ocean Engineering, 117(2016)114–129

13-16   Maryam Deilami-Tarifi, Mehdi Behdarvandi-Askar, Vahid Chegini, and Sadegh Haghighi-Pou, Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3DSoftware, Open Journal of Marine Science, 2016, 6, 317-322, Published Online April 2016 in SciRes.

01-16   Mohsin A.R. Irkal, S. Nallayarasu, and S.K. Bhattacharyya, CFD approach to roll damping of ship with bilge keel with experimental validation, Applied Ocean Research, Volume 55, February 2016, Pages 1–17

121-15   Josh Carter, Scott Fenical, Craig Hunter and Joshua Todd, CFD modeling for the analysis of living shoreline structure performance, Coastal Structures and Solutions to Coastal Disasters Joint Conference, Boston, MA, Sept. 9-11, 2015. © 2017 by the American Society of Civil Engineers. doi.org/10.1061/9780784480304.047

114-15   Jisheng Zhang, Peng Gao, Jinhai Zheng, Xiuguang Wu, Yuxuan Peng and Tiantian Zhang, Current-induced seabed scour around a pile-supported horizontal-axis tidal stream turbine, Journal of Marine Science and Technology, Vol. 23, No. 6, pp. 929-936 (2015) 929, DOI: 10.6119/JMST-015-0610-11

108-15  Tiecheng Wang, Tao Meng, and Hailong Zha, Analysis of Tsunami Effect and Structural Response, ISSN 1330-3651 (Print), ISSN 1848-6339 (Online), DOI: 10.17559/TV-20150122115308

107-15   Jie Chen, Changbo Jiang, Wu Yang, Guizhen Xiao, Laboratory study on protection of tsunami-induced scour by offshore breakwaters, Natural Hazards, 2015, 1-19

85-15   Majid A. Bhinder, M.T. Rahmati, C.G. Mingham and G.A. Aggidis, Numerical hydrodynamic modelling of a pitching wave energy converter, European Journal of Computational Mechanics, Volume 24, Issue 4, 2015, DOI: 10.1080/17797179.2015.1096228

65-15   Giancarlo Alfonsi, Numerical Simulations of Wave-Induced Flow Fields around Large-Diameter Surface-Piercing Vertical Circular CylinderComputation 20153(3), 386-426; doi:10.3390/computation3030386

61-15   Bingchen Liang, Duo Li, Xinying Pan and Guangxin Jiang, Numerical Study of Local Scour of Pipeline under Combined Wave and Current Conditions, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015 Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-89-0; ISSN 1098-6189.

60-15   Chun-Han Ko, Ching-Piao Tsai, Ying-Chi Chen, and Tri-Octaviani Sihombing, Numerical Simulations of Wave and Flow Variations between Submerged Breakwaters and Slope Seawall, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015 Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-89-0; ISSN 1098-6189.

57-15   Giacomo Viccione and Settimio Ferlisi, A numerical investigation of the interaction between debris flows and defense barriers, Advances in Environmental and Geological Science and Engineering, ISBN: 978-1-61804-314-6, 2015

56-15   Vittorio Bovolin, Eugenio Pugliese Carratelli and Giacomo Viccione, A numerical study of liquid impact on inclined surfaces, Advances in Environmental and Geological Science and Engineering, ISBN: 978-1-61804-314-6, 2015

49-15   Fabio Dentale, Giovanna Donnarumma, Eugenio Pugliese Carratelli, and Ferdinando Reale, A numerical method to analyze the interaction between sea waves and rubble mound emerged breakwaters, WSEAS TRANSACTIONS on FLUID MECHANICS, E-ISSN: 2224-347X, Volume 10, 2015

45-15   Diego Vicinanza, Daniela Salerno, Fabio Dentale and Mariano Buccino, Structural Response of Seawave Slot-cone Generator (SSG) from Random Wave CFD Simulations, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, June 21-26, 2015, Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-89-0; ISSN 1098-6189

38-15   Yen-Lung Chen, Shih-Chun Hsiao, Yu-Cheng Hou, Han-Lun Wu and Yuan Chieh Wu, Numerical Simulation of a Neutrally Buoyant Round Jet in a Wave Environment, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

34-15   Dieter Vanneste and Peter Troch, 2D numerical simulation of large-scale physical model tests of wave interaction with a rubble-mound breakwater, Coastal Engineering, Volume 103, September 2015, Pages 22–41.

29-15   Masanobu Toyoda, Hiroki Kusumoto, and Kazuo Watanabe, Intrinsically Safe Cryogenic Cargo Containment System of IHI-SPB LNG Tank, IHI Engineering Review, Vol. 47, No. 2, 2015.

24-15   Xixi Pan, Shiming Wang, and Yongcheng Liang, Three-dimensional simulation of floating wave power device, International Power, Electronics and Materials Engineering Conference (IPEMEC 2015)

05-15   M. A. Bhinder, A. Babarit, L. Gentaz, and P. Ferrant, Potential Time Domain Model with Viscous Correction and CFD Analysis of a Generic Surging Floating Wave Energy Converter, (2015), doi: http://dx.doi.org/10.1016/j.ijome.2015.01.005

137-14   A. Najafi-Jilani, M. Zakiri Niri and Nader Naderi, Simulating three dimensional wave run-up over breakwaters covered by antifer units, Int. J. Nav. Archit. Ocean Eng. (2014) 6:297~306

128-14   Dong Chule Kim, Byung Ho Choi, Kyeong Ok Kim and Efim Pelinovsky, Extreme tsunami runup simulation at Babi Island due to 1992 Flores tsunami and Okushiri due to 1993 Hokkido tsunami, Geophysical Research Abstracts, Vol. 16, EGU2014-1341, 2014, EGU General Assembly 2014, © Author(s) 2013. CC Attribution 3.0 License.

123-14   Irkal Mohsin A.R., S. Nallayarasu and S.K. Bhattacharyya, Experimental and CFD Simulation of Roll Motion of Ship with Bilge Keel, International Conference on Computational and Experimental Marine Hydrodynamics MARHY 2014 3-4 December 2014, Chennai, India.

101-14  Dieter Vanneste, Corrado Altomare, Tomohiro Suzuki, Peter Troch and Toon Verwaest, Comparison of Numerical Models for Wave Overtopping and Impact on a Sea Wall, Coastal Engineering 2014

91-14   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, Numerical wave interaction with tetrapods breakwater, Int. J. Nav. Archit. Ocean Eng. (2014) 6:0~0, http://dx.doi.org/10.2478/IJNAOE-2013-0214, ⓒSNAK, 2014, pISSN: 2092-6782, eISSN: 2092-6790

87-14   Philipp Behruzi, Simulation of breaking wave impacts on a flat wall, The 15th International Workshop on Trends In Numerical and Physical Modeling for Industrial Multiphase Flows, Cargèse, Corsica, October 13th–17th, 2014

86-14   Chuan Sim and Sung-uk Choi, Three-Dimensional Scour at Submarine Pipelines under Indefinite Boundary Conditions, 2014

83-14   Hongda Shi, Dong Wang, Jinghui Song, and Zhe Ma, Systematic Design of a Heaving Buoy Wave Energy Device, 5th International Conference on Ocean Energy, 4th November, Halifax, 2014

71-14   Hadi Sabziyan, Hassan Ghassemi, Farhood Azarsina, and Saeid Kazemi, Effect of Mooring Lines Pattern in a Semi-submersible Platform at Surge and Sway Movements, Journal of Ocean Research, 2014, Vol. 2, No. 1, 17-22 Available online at http://pubs.sciepub.com/jor/2/1/4 © Science and Education Publishing DOI:10.12691/jor-2-1-4

56-14   Fernandez-Montblanc, T., Izquierdo, A., and Bethencourt, M., Modelling the oceanographic conditions during storm following the Battle of Trafalgar, Encuentro de la Oceanografıa Fısica Espanola 2014

52-14   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, A new numerical approach to the study of the interaction between wave motion and roubble mound breakwaters, Latest Trends in Engineering Mechanics, Structures, Engineering Geology, ISBN: 978-960-474-376-6

49-14   H. Ahmed and A. Schlenkhoff, Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls, World Academy of Science, Engineering and Technology, International Journal of Environmental, Ecological, Geological and Mining Engineering Vol:8 No:8, 2014

32-14  Richard Keough, Victoria Mullaley, Hilary Sinclair, and Greg Walsh, Design, Fabrication and Testing of a Water Current Energy Device, Memorial University of Newfoundland, Faculty of Engineering and Applied Science, Mechanical Design Project II – ENGI 8926, April 2014

25-14    Paulius Rapalis, Vytautas Smailys, Vygintas Daukšys, Nadežda Zamiatina, and Vasilij Djačkov, Vandens  – Duju Silumos Mainai Gaz-Lifto Tipo Skruberyje,Technologijos mokslo darbai Vakarų Lietuvoje, Vol 9 > Rapalis. Available for download at http://journals.ku.lt/index.php/TMD/article/view/259.

92-13   Matteo Tirindelli, Scott Fenical and Vladimir Shepsis, State-of-the-Art Methods for Extreme Wave Loading on Bridges and Coastal Highways, Seventh National Seismic Conference on Bridges and Highways (7NSC), May 20-22, 2013, Oakland, CA

89-13 Worakanok Thanyamanta, Don Bass and David Molyneux, Prediction of sloshing effects using a coupled non-linear seakeeping and CFD code, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2013, June 9-14, 2013, Nantes, France. Available for purchase online at ASME.

83-13   B.W. Lee and C. Lee, Development of Wave Power Generation Device with Resonance Channels, Proceedings of the 7th International Conference on Asian and Pacific Coasts (APAC 2013) Bali, Indonesia, September 24-26, 2013

68-13   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, Rubble Mound Breakwater Run-Up, Reflection and Overtopping by Numerical 3D Simulation, ICE Conference, September 2013, Edinburgh (UK).

66-13  Peter Arnold, Validation of FLOW-3D against Experimental Data for an Axi-Symmetric Point Absorber WEC, © wavebob™, 2013

62-13 Yanan Li, Junwei Zhou, Dazheng Wang and Yonggang Cui, Resistance and Strength Analysis of Three Hulls with ifferent Knuckles, Advanced Materials Research Vols. 779-780 (2013) pp 615-618, © (2013) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMR.779-780.615.

61-13  M.R. Soliman, Satoru Ushijima, Nobu Miyagi and Tetsuay Sumi, Density Current Simulation Using Two-Dimensional High Resolution Model, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No 56 B, 2013.

59-13  Guang Wei Liu, Qing He Zhang, and Jin Feng Zhang, Wave Forces on the Composite Bucket Foundation of Offshore Wind Turbines, Applied Mechanics and Materials, 405-408, 1420, September 2013. Available for purchase online at Scientific.net.

50-13  Joel Darnell and Vladimir Shepsis, Pontoon Launch Analysis, Design and Performance, Ports 2013, © ASCE 2013. Available for purchase online at ASCE.

45-13 Min-chi Li, Numerical Simulation of Wave Overtopping Rate at Sloping Seawalls with Different Configurations of Wave Dissipators, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-Sen University. Abstract only available here: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0701113-144919.

22-13  Nahidul Khan, Jonathan Smith, and Michael Hinchey, Models with all the right curves, © Journal of Ocean Technology, The Journal of Ocean Technology, Vol. 8, No. 1, 2013.

20-13  Efim Pelinovsky, Dong-Chul Kim, Kyeong-Ok Kim and Byung-Ho Choi, Three-dimensional simulation of extreme runup heights during the 2004 Indonesian and 2011 Japanese tsunamis, EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-1760. Online at: http://adsabs.harvard.edu/abs/2013EGUGA..15.1760P.

18-13 Dazheng Wang, Fei Ma, and Lei Mei, Optimization of a 17m Catamaran based on the Resistance Performance, Advanced Materials Research Vols. 690-693, pp 3414-3418, © Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMR.690-693.3414, May 2013.

16-13  Dong Chule Kim, Kyeong Ok Kim, Efim Pelinovsky, Ira Didenkulova, and Byung Ho Choi, Three-dimensional tsunami runup simulation for the port of Koborinai on the Sanriku coast of Japan, Journal of Coastal Research, Special Issue No. 65, 2013.

15-13  Dong Chule Kim, Kyeong Ok Kim, Byung Ho Choi, Kyung Hwan Kim, and Efin Pelinovsky, Three –dimensional runup simulation of the 2004 Ocean tsunami at the Lhok Nga twin peaks, Journal of Coastal Research, Special Issue No. 65, 2013.

14-13  Jae-Seol Shim, Jinah Kim, Dong-Shul Kim, Kiyoung Heo, Kideok Do, and Sun-Jung Park, Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea, Journal of Coastal Research, Special Issue No. 65, 2013.

115-12  Worakanok Thanyamanta and David Molyneux, Prediction of Stabilizing Moments and Effects of U-Tube Anti-Roll Tank Geometry Using CFD, ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Volume 5: Ocean Engineering; CFD and VIV, Rio de Janeiro, Brazil, July 1–6, 2012, ISBN: 978-0-7918-4492-2, Copyright © 2012 by ASME

114-12   Dane Kristopher Behrens, The Russian River Estuary: Inlet Morphology, Management, and Estuarine Scalar Field Response, Ph.D. Thesis: Civil and Environmental Engineering, UC Davis, © 2012 by Dane Kristopher Behrens. All Rights Reserved.

111-12  James E. Beget, Zygmunt Kowalik, Juan Horrillo, Fahad Mohammed, Brian C. McFall, and Gyeong-Bo Kim, NEeSR-CR Tsunami Generation by Landslides Integrating Laboratory Scale Experiments, Numerical Models and Natural Scale Applications, George E. Brown, Jr. Network for Earthquake Engineering Simulation Research, July 2012, Boston, MA.

110-12   Gyeong-Bo Kim, Numerical Simulation of Three-Dimensional Tsunami Generation by Subaerial Landslides, M.S. Thesis: Texas A&M University, Copyright 2012 Gyeong-Bo Kim, December 2012

109-12 D. Vanneste, Experimental and Numerical study of Wave-Induced Porous Flow in Rubble-Mound Breakwaters, Ph.D. thesis (Chapters 5 and 6), Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium), 2012.

104-12 Junwoo Choi, Kab Keun Kwon, and Sung Bum Yoon, Tsunami Inundation Simulation of a Built-up Area using Equivalent Resistance Coefficient, Coastal Engineering Journal, Vol. 54, No. 2 (2012) 1250015 (25 pages), © World Scientific Publishing Company and Japan Society of Civil Engineers, DOI: 10.1142/S0578563412500155

94-12 Parviz Ghadimi, Abbas Dashtimanesh, Mohammad Farsi, and Saeed Najafi, Investigation of free surface flow generated by a planing flat plate using smoothed particle hydrodynamics method and FLOW-3D simulations, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, December 7, 2012 1475090212465235. Available for purchase online at sage journals.

92-12    Panayotis Prinos, Maria Tsakiri, and Dimitris Souliotis, A Numerical Simulation of the WOS and the Wave Propagation along a Coastal Dike, Coastal Engineering 2012.

88-12  Nahidul Khan and Michael Hinchey, Adaptive Backstepping Control of Marine Current Energy Conversion System, PKP Open Conference Systems, IEEE Newfoundland and Labrador Section, 2012.

72-12   F. Dentale, G. Donnarumma, and E. Pugliese Carratelli, Wave Run Up and Reflection on Tridimensional Virtual, Journal of Hydrogeology & Hydrologic Engineering, 2012, 1:1, http://dx.doi.org/10.4172/jhhe.1000102.

64-12  Anders Wedel Nielsen, Xiaofeng Liu, B. Mutlu Sumer, Jørgen Fredsøe, Flow and bed shear stresses in scour protections around a pile in a current, Coastal Engineering, Volume 72, February 2013, Pages 20–38.

56-12  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, Flow structures around large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, 2012. DOI:10.1615/JFlowVisImageProc.2012005088.

51-12  Chun-Ho Chen, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University, July 2012. In Chinese.

37-12  Yu-Ren Chen, Numerical Modeling on Internal Solitary Wave propagation over an obstacle using FLOW-3D, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University June 2012. In Chinese.

26-12  D.C. Lo Numerical simulation of hydrodynamic interaction produced during the overtaking and the head-on encounter process of two ships, Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 29 No. 1, 2012. pp. 83-10, Emerald Group Publishing Limited, www.emeraldinsight.com/0264-4401.htm.

14-12  Bahaa Elsharnouby, Akram Soliman, Mohamed Elnaggar, and Mohamed Elshahat, Study of environment friendly porous suspended breakwater for the Egyptian Northwestern Coast, Ocean Engineering 48 (2012) 47-58. Available for purchase online at Science Direct.

11-12  Sang-Ho Oh, Young Min Oh, Ji-Young Kim, Keum-Seok Kang, A case study on the design of condenser effluent outlet of thermal power plant to reduce foam emitted to surrounding seacoast, Ocean Engineering, Volume 47, June 2012, Pages 58–64. Available for purchase online at SciVerse.

101-11 Tsunami – A Growing Disaster, edited by Mohammad Mokhtari, ISBN 978-953-307-431-3, 232 pages, Publisher: InTech, Chapters published December 16, 2011 under CC BY 3.0 license, DOI: 10.5772/922. Available for download at Intech.

100-11 Kwang-Oh Ko, Jun-Woo Choi, Sung-Bum Yoon, and Chang-Beom Park, Internal Wave Generation in FLOW-3D Model, Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference, Maui, Hawaii, USA, June 19-24, 2011, Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-96-8 (Set); ISSN 1098-6189 (Set); www.isope.org

95-11  S. Brizzolara, L. Savio, M. Viviani, Y. Chen, P. Temarel, N. Couty, S. Hoflack, L. Diebold, N. Moirod and A. Souto Iglesias, Comparison of experimental and numerical sloshing loads in partially filled tanks, Ships and Offshore StructuresVol. 6, Nos. 1–2, 2011, 15–43. Available for purchase online at Francis & Taylor.

85-11 Andrew Eoghan Maguire, Hydrodynamics, control and numerical modelling of absorbing wavemakers, thesis: The University of Edinburgh, 2011.

74-11  Jonathan Smith, Nahidul Khan and Michael Hinchey, CFD Simulation of AUV Depth Control, Paper presented at NECEC 2011, St. John’s, Newfoundland and Labrador, Canada. Abstract available online.

70-11  G. Kim, S.-H. Oh, K.S. Lee, I.S. Han, J.W. Chae, and S.-J Ahn, Numerical Investigation on Water Discharge Capability of Sluice Caisson of Tidal Power Plant, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

69-11  G. Alfonsi, A. Lauria, and L. Primavera, Wave-Field Flow Structures Developing Around Large-Diameter Vertical Circular Cylinder, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

68-11    C. Lee, B.W. Lee, Y.J. Kim, and K.O. Ko, Ship Wave Crests in Intermediate-Depth Water, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

63-11   Worakanok Thanyamanta, Paul Herrington, and David Molyneux, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands, June 19-24, 2011.

61-11  Jun Jin and Bo Meng, Computation of wave loads on the superstructures of coastal highway bridges, Ocean Engineering, available online October 19, 2011, ISSN 0029-8018, 10.1016/j.oceaneng.2011.09.029. Available for purchase at Science Direct.

36-11    Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich, CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp: 537-541

28-11  Rodolfo Bolaños, Laurent O. Amoudry and Ken Doyle, Effects of Instrumented Bottom Tripods on Process Measurements, Journal of Atmospheric and Oceanic Technology, June 2011, Vol. 28, No. 6: pp. 827-837. Available online at: AMS Journals Online.

81-10    Ashwin Lohithakshan Parambath, Impact of Tsunamis on Near Shore Wind Power Units, M.S. Thesis: Texas A&M University, Copyright 2010 Ashwin Lohithakshan Parambath December 2010.

80-10    Juan J. Horrillo, Amanda L. Wood, Charles Williams, Ashwin Parambath, and Gyeong-Bo Kim, Construction of Tsunami Inundation Maps in the Gulf of Mexico, Report to the National Tsunami Hazard Mitigation Program, December 2010.

69-10    George A Aggidis and Clive Mingham, A Joint Numerical and Experimental Study of a Surging Point Absorbing Wave Energy Converter (WRASPA), Joule Centre Research Grant Joint Final Report (Lancaster University and Macnhester Metropolitan University), Joule Grant No: JIRP306/02, 2010

67-10  Kazuhiko Terashima, Ryuji Ito, Yoshiyuki Noda, Yoji Masui and Takahiro Iwasa, Innovative Integrated Simulator for Agile Control Design on Shipboard Crane Considering Ship and Load Sway, 2010 IEEE International Conference on Control Applications, Part of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, Japan, September 8-10, 2010

66-10  Shan-Hwei Ou, Tai-Wen Hsu, Jian-Feng Lin, Jian-Wu Lai, Shih-Hsiang Lin, Chen-Chen Chang, Yuan-Jyh Lan, Experimental and Numerical Studies on Wave Transformation over Artificial Reefs, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China, 2010.

65-10 Tai-Wen Hsu, Jian-Wu Lai, Yuan-Jyh Lan, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China, 2010.

26-10 R. Marcer, C. Berhault, C. de Jouëtte, N. Moirod and L. Shen, Validation of CFD Codes for Slamming, V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, J.C.F. Pereira and A. Sequeira (Eds), Lisbon, Portugal, 14-17 June 2010

25-10 J.M. Zhan, Z. Dong, W. Jiang, and Y.S. Li, Numerical Simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models, Ocean Engineering (2010), doi: 10.1016/j.oceaneng.2010.06.005. Available for purchase at Science Direct.

17-10 F. Dentale, S.D. Russo, E. Pugliese Carratelli, S. Mascetti, A New Numerical Approach to Study the Wave Motion with Breakwaters and the Armor Stability, Marine Technology Reporter, May 2010

01-10 F. Dentale, S.D. Russo, E. Pugliese Carratelli, Innovative Numerical Simulation to Study the Fluid withing Rubble Mound Breakwaters and the Armour Stability, 17th Armourstone Wallingford Armourstone Meeting, Wallingford, UK, February 2010.

52-09  Mark Reed, Øistein Johansen, Frode Leirvik, and Bård Brørs, Numerical Algorithm to Compute the Effects of Breaking Waves on Surface Oil Spilled at Sea, Final Report, Second revision, SINTEF, October 2009.

49-09  Anna Pellicioli, Indagine Numerica Sulla Resistenza Idrodinamica Di Uno Scafo In Presenza Di Superficie Libera, thesis: Univerista Degli Studi Di Bergamo, 2008/2009. In Italian. Available upon request.

46-09 Carlos Guedes Soares, P.K. Das, Analysis and Design of Marine Structures, CRC Press; 1 Har/Cdr edition (March 2, 2009), 0415549345

32-09 M.A. Binder, C.G. Mingham, D.M. Causon, M.T. Rahmati, G.A. Aggidis, R.V. Chaplin, Numerical Modelling of a Surging Point Absorber Wave Energy Converter, 8th European Wave and Tidal Energy Conference EWTEC 2009, Uppsala, Sweden, 7-10 September 2009

28-09 D. C. Lo, Dong-Taur Su and Jan-Ming Chen (2009), Application of Computational Fluid Dynamics Simulations to the Analysis of Bank Effects in Restricted Waters, Journal of Navigation, 62, pp 477-491, doi:10.1017/S037346330900527X; Purchase the article online (clicking on this link will take you to the Cambridge Journals website).

26-09 Fabio Dentale, E. Pugliese Carratelli, S.D. Russo, and Stefano Mascetti, Advanced Numerical Simulations on the Interaction between Waves and Rubble Mound Breakwaters, Journal of the Engineering Association for Offshore and Marine in Italy, (translation from the Italian)

25-09 F. Dentale, B. Messina, E. Pugliese Carratelli, S. Mascetti, Studio numerico avanzato sul moto di filtrazione in ambito marittimo, A & C, Analisi e Calcolo, Giugno 2009 (in Italian)

22-09 M.A. Bhinder, C.G. Mingham, D.M. Causon, M.T. Rahmati, G.A. Aggidis and R.V. Chaplin, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA)2, Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii, May 31-June 5, 2009

8-09 Basu, D., S. Green, K. Das, R. Janetzke, and J. Stamatakos, Numerical Simulation of Surface Waves Generated by a Subaerial Landslide at Lituya Bay, 28th International Conference on Ocean, Offshore and Arctic Engineering, May 31–June 5, 2009, Honolulu, Hawaii

17-09 Das, K., R. Janetzke, D. Basu, S. Green, and J. Stamatakos, Numerical Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides Using RANS and SPH Models, 28th International Conference on Ocean, Offshore and Arctic Engineering, May 31–June 5, 2009, Honolulu, Hawaii

16-09 Basu, D., S. Green, K. Das, R. Janetzke, and J. Stamatakos, Navier-Stokes Simulations of Surface Waves Generated by Submarine Landslides Effect of Slide Geometry and Turbulence, 2009 Society of Petroleum Engineering Americas E&P Environmental & Safety Conference, March 23–25, 2009, San Antonio, Texas.

48-08    Osamu Kiyomiya1 and Kazuya Kuroki, Flap Gate to Prevent Urban Area from Tsunami, The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China

43-08  Eldina Fatimah, Ahmad Khairi Abd. Wahab, and Hadibah Ismail, Numerical modeling approach of an artificial mangrove root system (ArMs) submerged breakwater as wetland habitat protector, COPEDEC VII, Dubai UAE, 2008.

40-08 Giacomo Viccione, Fabio Dentale, and Vittorio Bovolin, Simulation of Wave Impact Pressure on Vertical Structures with the SPH Method, 3rd ERCOFTAC SPHERIC workshop on SPH applications, Laussanne, Switzerland, June 4-6, 2008.

39-08 Kang, Young-Seung, Kim, Pyeong-Joong, Hyun, Sang-Kwon and Sung, Ha-Keun, Numerical Simulation of Ship-induced Wave Using FLOW-3D, Journal of Korean Society of Coastal and Ocean Engineers / v.20, no.3, 2008, pp.255-267, ISSN: 1976-8192, http://ksci.kisti.re.kr/search/article/articleView.ksci?articleBean.artSeq=HOHODK_2008_v20n3_255

35-08 B.W. Nam, S.H. Shin, K.Y. Hong, S.W. Hong, Numerical Simulation of Wave Flow over the Spiral-Reef Overtopping Device, Proceedings of the Eighth (2008) ISOPE Pacific/Asia Offshore Mechanics Symposium, Bangkok, Thailand, November 10-14, 2008, © 2008 by The International Society of Offshore and Polar Engineers, ISBN 978-1-880653-52-4

34-08 B. H. Choi, E. Pelinovsky, D.C. Kim, I. Didenkulova and S.-B. Woo, Two and three-dimensional computation of solitary wave runup on non-plane beach, Nonlin. Processes Geophys., 15, 489-502, 2008, www.nonlin-processes-geophys.net/15/489/2008 (c) Author(s) 2008.

23-08 Barb Schmitz, Tecplot, Nastran & FLOW-3D Win the Race, Desktop Engineering’s Elements of Analysis, September 2008

38-07 Choi, B.-H., Kim, D. C., Pelinovsky, E., and Woo, S. B., Three-dimensional simulation of tsunami run-up around conical island, Coast. Eng., Vol. 54, Issue 8, 618-629, 2007.

33-07 Mirela Zalar, Sime Malenica, Zoran Mravak, Nicolas Moirod, Some Aspects of Direct Calculation Methods for the Assessment of LNG Tank Structure Under Sloshing Impacts, La Asociación Española del Gas (sedigas) Spain 2007

20-07 Oceanic Consulting Corporation, Berthing Studies for LNG Carriers in the Calcasieu River Waterway, Making Waves: Newsletter of Oceanic Consulting Corporation, Winter 2007

10-07 Gildas Colleter, Breaking wave uplift and overtopping on a horizontal deck using physical and numerical modeling, Coasts and Ports 2007 Conference in Melbourne, Australia

18-06 Brizzolara, Stefano and Rizzuto, Enrico, Wind Heeling Moments on Very Large Ships. Some Insights through CFD Results, Proceedings on the 9th International Conference on Stability of Ships and Ocean Vehicles, Rio de Janeiro, September 25, 2006

16-06 Ransau, Samuel R, and Hansen, Ernst W.M., Numerical Simulations of Sloshing in Rectangular Tanks, Proceedings of OMAE2006, 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4-9, 2006

15-06 Ema Muk-Pavic, Shin Chin and Don Spencer, Validation of the CFD code FLOW-3D for the free surface flow around the ships’; hulls, 14th Annual Conference of the CFD Society of Canada, Kingston, Canada, July 16-18, 2006

3-06 Hansen, E.W.M. and Geir J. Rørtveit, Numerical Simulation of Fluid Mechanisms and Separation Behaviour in Offshore Gravity Separators, Chapter 16 in Emulsions and Emulsion Stability, 2nd Edition, edited by Johan Sjøblom, Taylor & Francis, 2006

24-05 Hansen E.W., Separation Offshore Survey – Design-Redesign of Gravity Separators, Exploration & Production: The Oil & Gas Review 2005 – Issue 2

8-05 T. Kristiansen, R. Baarholm, C.T. Stansberg, G. Rortveit and E.W.M. Hansen, Kinematics in a Diffracted Wave Field Particle Image Velocimetry (PIV) and Numerical Models, Presented at the 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE 67176, Halkidiki, Greece, June 12-17, 2005

7-05 C.T. Stansberg, R. Baarholm, T. Kristiansen, E.W.M. Hansen and G. Rortveit, Extreme Wave Amplification and Impact Loads on Offshore Structures, presented at the 2005 Offshore Technology Conference, Houston, TX, May 2-5, 2005

16-04 Carl Trygve Stansberg, Kjetil Berget, Oyvind Hellan, Ole A. Hermundstad, Jan R. Hoff and Trygve Kristiansen and Ernst Hansen, Prediction of Green Sea Loads on FPSO in Random Seas, presented at the 14th International Offshore and Polar Engineering Conference (ISOPE 2004), Toulon, France, May 2004

15-04 Š. Malenica, M. Zalar, J.M. Orozco, B. LeGallo & X.B. Chen, Linear and Non-Linear Effects of Sloshing on Ship Motions, 23rd International Conference on Offshore Mechanics and Artic Engineering, OMAE 2004, Vancouver, June 2004

11-04 Don Bass, David Molyneux, Kevin McTaggart, Simulating Wave Action in the Well Deck of Landing Platform Dock Ships Using Computational Fluid Dynamics

37-03  Sreenivasa C Chopakatla, A CFD Model for Wave Transformations and Breaking in the Surf Zone, thesis: Master of Science, The Ohio State Univeristy, 2003.

29-02   O. Bayle, V. L’Hullier, M. Ganet, P. Delpy, J.L. Francart and D. Paris, Influence of the ATV Propellant Sloshing on the GNC Performance, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 5-8 August 2002, © 2002 by EADS Launch Vehicles

25-02 Y. Kim, Numerical Analysis of Sloshing Problem, American Bureau of Shipping, Research Dept, Houston, TX

10-02 Peter Chang III & Xiongjun Wu, Entrainment Correlations Based on a Fuel-Water Stratified Shear Flow, Proceedings of FEDSM2002, 2002 ASME Fluids Engineering Decision Summer Meeting, July 14-18, 2002, Montreal, Quebec, Canada

37-01 Ismail B. Celik, Allen E. Badeau Jr., Andrew Burt and Sherif Kandil, A Single Fluid Transport Model For Computation of Stratified Immiscible Liquid-Liquid Flows, Mechanical and Aerospace Engineering Department, West Virginia University, Proceedings of the XXIX IAHR Congress, September 2001. Beijing, China

14-01 Charles Ortloff, CTC/United Defense, Computer Simulation Analyzed Typhoon Damage to FPSOs, Marine News, April 30, 2001, pp. 22-23

8-01 Charles Ortloff, Computer Simulations Analyze Wave Damage to Offloading Vessels, Marine News, April 30, 2001, pp. 22-23

25-00 Faltinsen, O.A. and Rognebakke, O.F., Sloshing in Rectangular Tanks and Interaction with Ship Motions-Sloshing, Int. Conf. on Ship and Shipping Research NAV, Venice, Italy, 2000.

20-97   C.R. Ortloff, Numerical Test Tank Simulation of Ocean Engineering Problems by Computational Fluid Dynamics, Offshore Technology Conference Paper 8269B, Houston, TX, 1997

19-97   C.R. Ortloff and M. Krafft, Numerical Test Tanks-Computer Simulation-Test Verification of Major Ocean Engineering Problems for the Off-Shore Oil Industry, OTC 8269A, Offshore Technology Conference, Copyright 1997, Houston, Texas, May 1997

9-94 P. A. Chang, C-W Lin, CD-NSWC, Hydrodynamic Analysis of Oil Outflow from Double Hull Tankers, The Advanced Double-Hull Technical Symposium, Gaithersburg, MD, October 25-26, 1994.

8-90 C. W. Hirt, Computational Modeling of Cavitation, Flow Science report, July 1990, presented at the 2nd International Symposium on Performance Enhancement for Marine Applications, Newport, RI, October 14-16, 1990

10-87 H. W. Meldner, USA’s Revolutionary Appendages and CFD, CORDTRAN Corp. Report presented at AIAA and SNAME 17th Annual International Symposium on Sailing, Stanford University, Palo Alto, CA, Oct. 31-Nov. 1, 1987

3-85 C. W. Hirt and J. M. Sicilian, A Porosity Technique for the Definition of Obstacles in Rectangular Cell Meshes, Fourth International Conference on Ship Hydrodynamics, Washington, DC, September 1985