본 자료는 수치해석을 업무로 수행하는 엔지니어들의 고성능 컴퓨터에 대한 이해를 돕기 위해 https://www.amd.com/ko/technologies/hpc-explained 를 인용한 자료입니다.
본 자료의 모든 저작권은 https://www.amd.com에 있습니다.
고성능 컴퓨팅 안내
신약 개발에 걸리는 기간이 수년에서 수일로 단축된다고 상상해 보십시오. 고성능 컴퓨팅(HPC)은 시뮬레이션, 모델 및 분석을 통해 이러한 유형은 물론 기타 첨단 과학 문제를 해결할 수 있습니다. 이러한 시스템은 세계의 여러 주요 문제에 대한 해결책을 제공하여 “4차 산업혁명”으로 가는 길을 제시합니다.1 HPC 시스템은 이미 다음과 같은 용도로 사용되고 있습니다.
- 여러 유형의 암과 기타 질병 퇴치를 위한 신약 화합물 개발 및 시험2
- 방탄복과 같은 신소재 개발을 위한 분자 역학 시뮬레이션3
- 영향을 받는 지역사회가 더 효과적으로 대비하도록 돕기 위한 중요한 기상 변화 예측4
슈퍼컴퓨터는 최첨단 HPC 시스템을 대표합니다. 슈퍼컴퓨터의 고유한 역량은 기능의 발전에 따라 시간이 지나면서 변화하는 표준에 좌우됩니다. 단일 슈퍼컴퓨팅 클러스터에는 수만 개의 프로세서가 포함될 수 있으며 세계 최고 성능의 최고가 시스템의 가격은 1억 달러 이상에 달합니다.5
HPC의 작동 방식
HPC에서 정보를 처리하는 두 가지 주요 방법:
직렬 처리를 중앙 처리 장치(CPU)에서 수행합니다. 일반적으로 각 CPU 코어에서 한 번에 한 작업만 처리합니다. CPU는 운영체제 및 기본적인 애플리케이션(예: 워드 프로세싱, 사무 생산성)과 같은 기능에 있어 필수적입니다.
병렬 처리를 여러 CPU 또는 그래픽 처리 장치(GPU)를 통해 수행할 수 있습니다. 원래는 전용 그래픽 용으로 개발된 GPU는 데이터 매트릭스(예: 화면 픽셀)에 대해 동시에 여러 산술 연산을 수행할 수 있습니다. GPU는 수많은 데이터 계층에서 동시에 작업할 수 있기 때문에 동영상에서 객체를 인식하는 것과 같은 머신 러닝(ML) 애플리케이션 작업에서 병렬 처리를 수행하는 데 적합합니다.
슈퍼컴퓨팅의 잠재력을 극대화하기 위해서는 다양한 시스템 아키텍처가 필요합니다. 대부분의 HPC 시스템은 초고대역폭 상호 연결을 통해 여러 프로세서 및 메모리 모듈을 취합하여 병렬 처리를 지원합니다. 일부 HPC 시스템은 CPU와 GPU를 결합하는 데 이를 이기종 컴퓨팅이라고 합니다.
컴퓨터의 컴퓨팅 성능은 “FLOPS”(초당 부동 소수점 연산)라는 단위로 측정됩니다. 2019년 초반 현재 최고 수준의 슈퍼 컴퓨터는 143.5페타FLOPS(143 × 1015)를 처리할 수 있습니다. 페타스케일라고 하는 이러한 수준의 슈퍼컴퓨터는 천조 이상의 FLOPS를 수행합니다. 그에 비해, 하이엔드 게이밍 데스크탑은 속도가 1/1,000배 미만으로 약 200기가FLOPS(1 × 109)를 처리하는 데 그칩니다. 프로세싱과 처리 성능 모두에서 슈퍼컴퓨팅 혁신이 이루어지면 머지않아 엑사스케일 수준의 슈퍼컴퓨팅으로 발전하여 페타스케일보다 약 1,000배 빠른 속도가 실현될 것입니다. 이는 엑사스케일 슈퍼컴퓨터가 초당 1018(또는 10억 x 10억)의 연산을 수행할 수 있음을 의미합니다.
“FLOPS”는 이론적 처리 속도를 나타냅니다 – 프로세서에 지속적으로 데이터를 전송하는 데 필요한 속도를 파악합니다. 그러므로, 데이터 처리율이 반드시 시스템 디자인에 반영되어야 합니다. 프로세싱 노드 간 상호 연결과 함께 시스템 메모리가 데이터의 프로세서 도달 속도에 영향을 줍니다.
차세대 슈퍼컴퓨터가 구현하는 1 exaFLOP의 처리 성능은 5,000,000대에 달하는 데스크탑 컴퓨터의 성능에 필적합니다.*
*각 데스크탑의 처리 성능을 200기가FLOPS로 가정
스마트한 용어
- 고성능 컴퓨팅 (HPC): 단일 컴퓨터(예: 1개의 CPU + 8개의 GPU)부터 세계적 수준의 슈퍼컴퓨터를 아우르는 폭넓은 범위의 강력한 컴퓨팅 시스템
- 슈퍼컴퓨터: 진화하는 성능 표준에 기반한 최고 수준의 HPC
- 이기종 컴퓨팅: 직렬(CPU) 및 병렬(GPU) 처리 기능을 최적화하는 HPC 아키텍처
- 메모리: 데이터에 신속하게 액세스하기 위해 HPC 시스템에서 데이터가 저장되는 위치
- 인터커넥트: 프로세싱 노드 간 통신을 지원하는 시스템 계층, 여러 수준의 상호 연결이 슈퍼컴퓨터 내에 존재
- 페타스케일: 초당 1,000조(1015)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터
- 엑사스케일: 초당 100경(1018)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터
새로운 이용 사례
기술 수준이 향상되면서, HPC는 더욱 폭넓은 기능으로 확장되었습니다. 오늘날 처리 능력과 메모리가 그 어느 때보다 향상되어 보다 복잡한 문제를 해결할 수 있게 되었습니다.
- 머신 러닝: 인공지능(AI), 머신 러닝(ML)의 하위집합으로서 수행 지침을 수동적으로 받아들이는 대신 스스로 학습할 수 있는 시스템을 말합니다. HPC 시스템은 사진에서 흑색 종을 감지하는 암 연구와 같이 방대한 양의 데이터를 분석하는 높은 수준의 ML에 사용할 수 있습니다.6
- 빅 데이터 분석: 학술, 과학, 금융, 비즈니스, 의료, 사이버 보안 및 정부 애플리케이션 부문의 연구 및 문제 해결을 보완하기 위해 대량의 데이터 세트를 신속하게 비교하고 상관 관계를 분석합니다. 이 작업에는 대규모 처리 및 컴퓨팅 기능이 필요합니다. 매년 50페타바이트의 임무 데이터가 생성되는 NASA에서는 슈퍼컴퓨팅을 활용해 관측을 분석하고 방대한 정보를 바탕으로 시뮬레이션을 실행합니다.7
- 고급 모델링 및 시뮬레이션: 기업은 초기 단계에서 물리적 구축을 수행하지 않고도, 고급 모델링 및 시뮬레이션을 통해 혁신적인 제품을 더 빨리 출시하고 시간, 재료 및 인건비를 절약할 수 있습니다. HPC 모델링 및 시뮬레이션은 신약 개발 및 시험, 자동차 및 항공 우주 설계, 기후 예측/기상 관측, 에너지 애플리케이션 부문에서 활용됩니다.8
AMD가 엑사스케일에 대한 드라이브를 실현하는 방식
미국에너지국(DOE)/버클리 연구소(Berkeley Lab), 로렌스 리버모어 국립 연구소(U.S. Lawrence Livermore National Laboratory), 슈투트가르트 대학(University of Stuttgart) 및 CSC(핀란드 IT 과학 센터)의 최신 시스템과 같은 세계 최고 성능의 슈퍼컴퓨터가 바로 AMD 기술에 기반합니다.9
가까운 미래에 엑사스케일 수준의 최적의 슈퍼컴퓨터 설계를 실현하기 위해서는 더욱 강력한 처리 성능 및 프로세싱 기능(CPU 및 GPU 모두에서)이 필요합니다. 고성능 컴퓨팅과 그래픽 기술 부문 모두에서 업계 리더인 AMD는 HPC 시스템을 최적화하는 데 있어 몇 가지 고유한 이점을 제시합니다. 미국에너지국(DOE)에서 추진하는 엑사스케일 컴퓨팅 프로젝트의 일환으로, AMD는 미국 최초로 엑사스케일 수준의 슈퍼컴퓨터를 개발하기 위한 기술을 발전시키기 위해 미국 정부와 파트너십을 맺었습니다.10 이 작업에는 CPU 및 GPU 마이크로아키텍처, 메모리 시스템, 구성 요소 통합 및 고속 인터커넥트에 중점을 둔 연구가 포함되었습니다.
데스크탑
지역 전력망에 대한 하나의 동적 시나리오를 실시간으로 시뮬레이션합니다.
페타스케일
국가 전력망에 대한 수만 개의 동적 시나리오를 실시간으로 시뮬레이션합니다.
엑사스케일
전 세계 전력망에 대한 수백만 개의 동적 시나리오를 생성 및 수요에 관한 정의되지 않은 변수를 적용해 실시간으로 시뮬레이션합니다.
미래로 나아가는 힘과 자유
엑사스케일 컴퓨팅은 맞춤형 의료, 탄소 포집, 천체 물리학, 시장 경제학 및 바이오 연료 분야의 발전에 기여할 잠재성이 있습니다. 전문가들이 날씨를 더 정확히 예측하고, 더 복잡한 수학적 문제를 해결하며, 우주의 더 먼 곳까지 탐험하고, 에너지 절감형 전력망을 구축하는 데 도움이 될 것입니다.11 차세대 슈퍼컴퓨팅을 위한 공동의 노력과 이러한 시스템이 사회에 기여할 수 있는 긍정적인 영향을 바탕으로, AMD는 미래의 컴퓨팅 시스템의 성능, 에너지 효율성, 신뢰성 및 프로그래밍의 향상을 위한 연구와 자원에 주력하고 있습니다.
자세히 알아보기: https://www.amd.com/hpc