World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021
World Users Conference 2021

FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 및 기관의 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하며 최신 소프트웨어 개발에 대해 알아보십시오. 이 컨퍼런스에는 금속 주조 및 물 및 환경 응용 프로그램 트랙, 고급 교육 세션, 고객의 심층 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표 한 최신 제품 개발이 포함됩니다. 이 컨퍼런스는 Flow Science Deutschland 가 공동 주최합니다 .

우리는 BMW의 Hubert Lang이 컨퍼런스 기조 연설자가 될 것이라는 점을 매우 기쁘게 생각합니다.초록을 요청하십시오!온라인 등록

기조 연설 발표! 

Hubert Lang, BMW, 기조 연설자
Hubert Lang, BMW, FLOW-3D 세계 사용자 컨퍼런스 2021의 기조 연설자

 BMW에서 15 년 동안  FLOW-3D 사용

Hubert Lang은 Landshut University of Applied Sciences에서 자동차 공학에 중점을두고 기계 공학을 전공했습니다. 1998 년에 그는 Landshut에있는 BMW의 Light Metal Foundry에서 도구 설계 부서에서 일하면서 6 기통 엔진용 주조 도구 개발을 감독했습니다. 2005 년에 Hubert는 파운드리의 시뮬레이션 부서로 옮겨 FLOW-3D 의 금속 주조 기능을 소개 받았습니다 . 그 이후로 그는 시뮬레이션의 분야에서 FLOW-3D 사용에 있어 상당한 확장을 이끌었습니다 .

오늘날 BMW는 모래 주조, 영구 금형 중력 주조, 저압 다이캐스팅, 고압 다이캐스팅 및 로스트 폼 주조에 FLOW-3D 를 사용합니다 . FLOW-3D 는 또한 코어 건조 모델 개발을 통한 모래 코어용 무기 바인더 시스템 개발 지원과 같은 BMW의 여러 특수 프로젝트에도 적용되었습니다. (실린더 라이너 코팅 중 열 입력 계산; 주입기 주조 절차를위한 주조 형상의 개발, 그리고 주조 도구를위한 냉각 시스템의 레이아웃과 치수 등)

BMW 박물관 투어

컨퍼런스 제공의 일환으로 BMW 박물관 투어를 제공하게되어 기쁘게 생각합니다  . 투어는 6 월 8 일 화요일 기술 진행 후 17:30에 진행됩니다 . 컨퍼런스 등록을 하시면 투어에 등록 하실 수 있습니다 .

BMW 박물관 투어
BMW Welt 건물의 외부 건축 세부 사항.

컨퍼런스 정보

중요한 날짜들

  • 2 월 25 일 : 초록 마감
  • 3 월 11 일 : 초록 수락
  • 5 월 3 일 : 프레젠테이션 마감
  • 6 월 7 일 : 고급 교육 세션
  • 6 월 7 일 : 개막식
  • 6 월 8 일 : BMW 박물관 견학
  • 6 월 8 일 : 컨퍼런스 디너

등록비

  • 컨퍼런스 1 일 및 2 일 : 300 €
  • 컨퍼런스 첫째 날 : 200 €
  • 컨퍼런스 둘째 날 : 200 €
  • 손님 수수료 : 50 €
  • 오프닝 리셉션 : 등록에 포함
  • BMW 투어 : 등록에 포함
  • 컨퍼런스 디너 : 등록에 포함

고급 교육 주제

해당 분야의 선임 기술 직원과 전문가가 가르치는 고급 교육 주제  에는 FLOW-3D  CAST 및 FLOW-3D  AM 사용자를 위한 Version Up 세미나와 문제 해결 기술 및 애플리케이션에 초점을 맞춘 세션이 포함됩니다. 이 과정은 응용 프로그램에 관계없이 모든 사람이 문제 해결 세션에 참여할 수 있도록 설계되었습니다. 온라인으로 등록 할 때 이러한 교육 세션에 등록 할 수 있습니다 .

교육 시간 및 비용

  • 6 월 7 일 – 13:00 – 14:00 – 버전 업 : FLOW-3D CAST  – 100 €
  • 6 월 7 일 – 14:00 – 15:00 – 버전 업 : FLOW-3D AM  – 100 €
  • 6 월 7 일 – 13:00 – 15:00 – 시립 신청 – 200 €
  • 6 월 7 일 – 15:00 – 17:00 – 문제 해결 – 200 유로

고급 교육 주제

초록 요청

경험을 공유하고 성공 사례를 제시하며 FLOW-3D  사용자 커뮤니티와 당사의 선임 기술 직원 으로부터 소중한 피드백을 얻으십시오  . 다음 응용 프로그램에 초점을 맞춘 주제를 포함한 모든 주제에 대한 초록을 환영합니다.

  • 금속 주조
  • 첨가제 제조
  • 토목 및 시립 유압
  • 소비재
  • 마이크로 / 나노 / 바이오 플루이 딕스
  • 에너지
  • 항공 우주
  • 자동차
  • 코팅
  • 해안 공학
  • 해상
  • 일반 응용

초록에는 제목, 저자 및 200 단어 설명이 포함되어야합니다. 새로운 초록 마감일은 2021 년 2 월 25 일입니다. 초록을 info@flow3d.com으로 이메일을 보내주십시오 .

발표자에게는 등록 및 교육비가 면제됩니다.

발표자 정보

각 발표자는 Q & A를 포함하여 30 분의 강연 시간을 갖게됩니다. 모든 프레젠테이션은 컨퍼런스 참석자에게 배포되며 컨퍼런스가 끝난 후 웹 사이트를 통해 배포됩니다. 이 회의에는 전체 논문이 필요하지 않습니다. 컨퍼런스 발표에 대해 궁금한 점이 있으시면 연락 주시기 바랍니다  . Flow Science Deutschland는 각 트랙에 대해 Best Presentation Awards를 후원합니다.

컨퍼런스 디너

아우 구 스티 너 켈러 컨퍼런스 디너

이 컨퍼런스 만찬은 항상 ​​인기있는 Augustiner-Keller 에서 개최됩니다  . 모든 컨퍼런스 참석자와 그들의 손님은 6 월 8 일 화요일에 아름답고 유명한 비어 가든에서 독일 전통 축제에 초대됩니다. 회의 만찬은 BMW 투어 이후에 진행됩니다.

비어 가르 텐

여행

컨퍼런스 호텔

마리 팀 호텔 뮌헨
+49 (0) 89 55235-0
info.mun@maritim.de

뮌헨

뮌헨의 모든 것

뮌헨 도시지도 다운로드

CFD가 레이저 용접을 만나면 : 불꽃이 어떻게 날아갑니까?

Pareekshith Allu Senior CFD Engineer | Additive Manufacturing | Laser Welding | Business Development

When CFD meets laser welding: How sparks fly!

CFD 또는 전산 유체 역학은 수치적 방법을 사용하여 유체 흐름을 연구하는 것입니다. 유체 흐름의 기본 방정식에는 솔루션 해가 없으므로 컴퓨터를 사용하여 방정식을 반복적으로 계산하는 수치해석 방법으로 해결합니다. 일반적으로 CFD 도구는 공기 역학, 엔진 연소, 물 및 환경 흐름, 미세 유체 및 제조 공정에서 광범위한 연구 및 엔지니어링 문제에 적용될 수 있습니다. CFD가 개발에 중요한 역할을 한 기술을 매일 접할 가능성이 있습니다. FLOW-3D 소프트웨어 제품 제조업체인 Flow Science Inc.에서는 자유 표면 흐름 문제 라고하는 특수한 문제 해결에 중점을 둡니다 . 

자유 표면 흐름이란 무엇입니까? 밀도 차이가 큰 두 유체간에 인터페이스가 공유되는 분야는 자유 표면 흐름입니다. 예를 들어, 기체-액체 경계면이 제한되지 않고 시간에 따라 자유롭게 움직이고 변경할 수 있다는 점에서 강의 물과 주변 공기 사이에 자유 표면이 존재합니다. FLOW-3D 솔버의 기본 DNA 인 Volume of Fluid 또는 VoF 방법 은 자유 표면의 진화를 추적하는 강력한 계산 기술입니다. 우리는 지난 40 년 동안 이 문제에 거의 전적으로 집중했습니다.

자유 표면 흐름은 제조산업 분야에서도 널리 사용됩니다. 금속 주조에서는 용융 금속과 용융 금속이 채우는 금형 또는 다이의 공기 사이에 자유 표면이 존재합니다. L-PBF ( Laser Powder Bed fusion) 라고하는 적층 제조 공정에서 레이저를 사용하여 분말 입자를 녹이고 융합하여 공정에서 자유 표면 용융 풀을 만듭니다. 그리고 레이저 용접에서는 레이저 빔에 의해 녹아서 두 개의 금속 부품 / 부품을 함께 융합 할 때 형성되는 자유 표면 용융 풀이 있습니다. 

이 게시물에서는 레이저 용접 공정에 대한 CFD 시뮬레이션이 유용한 이유를 설명합니다.

레이저 기술은 지난 몇 년 동안 상당히 발전했으며 이제 다른 레이저 제조업체는 다양한 파장에서 펄싱 기능이 있는 고출력 레이저를 제공 할 수 있습니다. 레이저와 로봇 자동화 시스템, 컨트롤러 및 프로세스 센서의 통합은 다양한 제조 산업에서 사용을 확대하여 열 입력이 적고 열 영향 영역이 더 작은 레이저 용접 조인트를 가능하게합니다. 

레이저-재료 상호 작용은 복잡하며이를 정확하게 모델링하려면 이러한 시간적 및 공간적 규모와 관련된 물리학을 구현해야합니다. 레이저 열원은 표면에 에너지를 축적하여 기판을 녹이고 용융 금속 풀을 만듭니다. 용융 풀은 전력, 속도 및 스캔 경로와 같은 레이저 가공 매개 변수와 용융 풀의 자유 표면에 동적 증기압을 적용하는 차폐 가스의 영향을 더 많이받습니다. 또한 용접되는 기판의 재료 특성이 중요한 역할을합니다. 용융된 풀의 상 변화와 증발은 용융 풀을 더욱 압박하는 반동 압력을 유발할 수있는 반면 표면 장력은 풀 내의 유체 대류에 영향을줍니다. 키홀 링이있는 경우 레이저 광선이 키홀 내에 갇혀 추가 반사 영향을 받을 수 있습니다. 기판에 더 많은 에너지를 전달합니다. 불안정한 키홀이 붕괴되면 갇힌 공극이 진행되는 응고 경계에 의해 포착되는 다공성 형성으로 이어질 수 있습니다. 

분명히 많은 일이 진행되고 있습니다. 이것이 CFD 시뮬레이션이 강력 할 수있는 곳이며 FLOW-3D WELD를 개발할 때 레이저-재료 상호 작용을 이해하는 데 많은 노력을 기울이는 이유입니다. 자유 표면 추적 및 레이저 에너지 증착, 차폐 가스 역학, 상 변화, 반동 압력, 표면 장력, 레이저 광선 추적 및 응고와 함께 유체 및 열 흐름 방정식을 통합하는 물리 기반 모델은 레이저의 복잡한 상호 작용을 캡처하는 데 매우 정확합니다. 용접과정을 해석하는 기능은 용융 풀의 안정성에 대한 다양한 공정 매개 변수의 영향을 분리하고 엔지니어와 연구원이 용접 일정을 최적화하는 데 도움이 될 수 있습니다.

CFD 시뮬레이션은 레이저 용접 프로세스를 분석하고 개선하는데 도움이되는 프레임 워크를 제공 할 수 있습니다. 불안정한 용융 풀은 키홀 유발 다공성, 파열 및 스패 터와 같은 결함을 초래할 수 있기 때문에 용융 풀의 작동 방식을 이해하는 것은 조인트의 품질에 매우 중요합니다. 그 후, FLOW-3D WELD 모델의 출력인 응고된 용융 풀 데이터 및 열 구배와 같은 결과를 미세 구조 또는 유한 요소 분석 모델에 입력하여 각각 결정 성장 및 열 응력 진화를위한 길을 닦을 수 있습니다.

이 게시물이 CFD를 사용하여 레이저 용접 프로세스를 시뮬레이션하는 이점을 이해하는데 도움이 되기를 바랍니다.

레이저 용접 공정을 더 잘 이해하기 위해 CFD 시뮬레이션 적용을 고려해 보셨습니까? 어떤 특징 / 물리 현상이 모델링되기를 원하십니까? 질문과 의견이 있으면 언제든지 flow3d@stikorea.co.kr 또는 미국 본사의 paree.allu@flow3d.com에게 연락하십시오.

코어 가스(Core Gas)

코어 가스(Core Gas)

 

코어로 주조 모델링 (Modeling Castings with Cores)

모래 속의 화학 결합제는 용융 된 금속에 의해 가열 될 때 가스를 생성 할 수 있으며 적절하게 환기되지 않으면 가스가 금속으로 흘러 가스의 다공성 결함이 발생할 수 있습니다. 이것은 빠르게 가열되고 긴 환기 경로를 갖는 주물의 얇은 내부 특징을 형성하는 코어에서 가장 가능성이 높습니다. FLOW-3D CAST의 코어 가스 모델은 이러한 가스 결함의 가능성을 예측하고 코어에서 모든 갇히는 가스들을 안전하게 배출 할 수있는 코어 벤팅을 설계하는 데 도움이됩니다.

 

알루미늄 및 철 주조의 결함 모델링 (Modeling Defects in Aluminum and Iron Castings)

‘Core Gas’ 모델은 철 주물 (그림 1)과 알루미늄 주물 (그림 2) 모두에서 수지 결합 코어의 결함을 예측합니다. 충전 및 응고 모델과 동시에 작동이 가능하며 주조의 충전 중 및 충전 후 갇히는 가스 생성 및 흐름을 계산합니다.

 

그림 1 : 열린 플라스크 부분 V8 Al 블록 어셈블리의 채우기. 두 개의 코어는 블록의 워터 재킷 공동을 형성합니다. 플라스크 바닥에 Al이 20 초 안에 채워집니다.

그림 2 : 환기가 되지 않을 때 워터 재킷 코어는 충전 중에 금속에 가스를 불어 넣습니다.

FLOW-3D WELD를 이용한 해석과 실험 결과의 비교

FLOW-3D@ WELD를 이용한 해석과 실험 결과의 비교

자료 제공: SHILOH INDUSTRIES, INC
자료 제공: FLOW Science Japan

미국 Shiloh사는 주조 및 용접, 프레스 가공 등을 다루는 부품업체로 경량화, 원재료 절약, 원가에서 경쟁력을 갖춘 머티리얼 전문회사입니다. 그 동안 Shiloh사는 FLOW-3D@ 주조 문제 해결에 사용해 왔으나, 최근 FLOW-3D@ WELD 용접 모듈에 주목하여 FLOW-3D@ WELD를 이용하여 해석을 실시하였으며, 그 결과를 Shiloh사의 레이저 용접 실험 결과와 비교한 내용입니다.

두 금속은 사용하는 플레이트의 두께가 다르며 CASE2에서는 금속간 갭이 있습니다.

해석 결과 (실험과 비교)

FLOW-3D@ WELD를 사용하여 CASE1, CASE2 분석을 실시했습니다. CASE1은 바닥 직전까지 용해 시키지만, CASE2는 완전히 관통하고 있습니다. 관통시에도 바닥이 빠지지 않는 것은 표면 장력과 대류의 영향에 의한 것으로 생각됩니다.

Summary

CASE1, CASE2 모두 단면 형상에서 2개의 경사가 나타나고 있으며,그 특징은 분석 결과에서도 뚜렷하게 관찰됩니다.

CASE2는 용융 영역의 팽창도 잘 재현할 수 있었습니다. FLOW-3D@ WELD는 레이저 용접의 대략적인 형상, 용융폭 등 레이저 용접 경향을 잘 파악하는 것을 확인할 수 있습니다.

Cavitation | 캐비테이션

캐비테이션이란 무엇입니까?

The spillways of the Glen Canyon dam in 1983 (Lee and Hoopes, 1996).

캐비테이션은 유체 흐름의 매우 낮은 압력 또는 포화 압력을 높이는 온도 상승으로 인해 유체 내에서 증기 또는 기포가 빠르게 발생하는 것입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유도 된 힘은 1983 년 Glen Canyon 댐의 배수로에서 경험 한 손상에서 볼 수 있듯이 며칠 내에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

또한 고압 다이 캐스팅에서 캐비테이션이 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 급속한 압력 강하를 초래하고 후속 캐비테이션으로 이어질 수 있습니다. 생성된 증기 기포는 최종 주조에서 다공성을 유발하거나 더 나쁜 경우 다이에 손상을 일으켜 주조품을 훼손시키고 다이 수명을 감소시킬 수 있습니다.

캐비테이션은 터빈과 파이프에 손상을 줄 수 있고, 댐의 배수로에서 콘크리트를 침식하는 등의 원인이 될 수 있습니다. 아래 이미지는 댐의 배수로 바닥 근처의 콘크리트 침식을 보여줍니다. 댐에 사용되는 콘크리트는 일반적으로 강도가 높지만 캐비테이션은 여전히 그것을 부식시킬 수 있습니다.

Eroded concrete due to cavitation on the spillway of a dam

캐비테이션은 때때로 오염 물질과 유기 분자를 분해하고, 소수성 화학 물질을 결합하고, 캐비테이션 기포의 파열로 인해 생성 된 충격파를 통해 신장 결석을 파괴하고, 혼합을위한 난류를 증가시켜 수질 정화와 같은 특정 산업 응용 분야에서 의도적으로 유도됩니다.

따라서 캐비테이션이 발생할 가능성이있는 위치와 그 강도를 이해하는 것이 중요합니다. 캐비테이션을 실험을 수행하거나 실험 결과의 현상을 시각화하는 것이 어렵고, 잠재적으로 손상 될 수 있으므로 수치해석 시뮬레이션으로 검토하는 것이 매우 필요하고, 유용합니다.

Real-World Applications | 실제 응용 분야

  • 물 및 환경 구조 내에서 손상을 주는 캐비테이션 시뮬레이션
  • 다이 손상 및 주조 다공성을 유발할 수 있는 고압 다이 캐스팅 중 캐비테이션 시뮬레이션
  • MEMS 장치 내의 열 거품 형성 시뮬레이션
  • 열 전달 표면의 비등 거동 예측
  • 캐비테이션 역학으로 인한 혼합 예측

Modeling Cavitation in FLOW-3D

FLOW-3D의 캐비테이션 모델은 thermal bubble jets 와 MEMS devices를 시뮬레이션하는데 성공적으로 사용되었습니다. FLOW-3D는 “active”또는 “passive” 모델 옵션을 제공합니다. Active 모델은 기포 영역을 열고 수동 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전파하지만, 기포 영역의 형성을 시작하지는 않습니다.

Active모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합하며, Passive모델은 작은 기포의 간단한 모양이 예상되는 시뮬레이션에 가장 적합합니다. 활성 모델과 에너지 전송 계산을 통해 위상 변화도 옵션입니다. 기포는 계면에서의 증발 또는 응축으로 인해 추가로 팽창하거나 수축 할 수 있습니다.

Sample Results

아래 시뮬레이션은 수축 노즐을 보여줍니다. 애니메이션은 매우 일시적인 진동 동작을 보여주는 캐비테이션 버블의 진화를 보여줍니다. 캐비테이션 부피 분율은 초기 연속 액체에서 캐비테이션의 시작을 시각화하기 위해 플롯됩니다.

아래 애니메이션은 진입 속도가 8m/s이고 수렴 기울기가 18 °이고 발산 기울기가 8 ° 인 벤츄리 내의 캐비테이션을 보여줍니다. 다시 말하지만, 캐비테이션의 과도 동작은 잘 모델링되어 있으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션주기 기간을 예측합니다 (Stutz and Reboud 1997).

Cavitation in a venturi

물 탱크를 통해 이동하는 고속 발사체를 시뮬레이션하여 발사체 후류에서 생성 된 저압 영역의 공동 기둥을 보여줍니다. 발사체의 초기 속도는 600m / s입니다. 아래는 탱크의 움직임과 후행하는 캐비테이션 유체의 애니메이션입니다. 발사체가 감속함에 따라 캐비테이션 기둥의 반경이 좁아집니다.

@

High-speed bullet

References

Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.

Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.

Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.

Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.

The realm of operations of FLOW-3D

ADDITIVE MANUFACTURING SIMULATIONS

Capabilities of FLOW-3D

FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.

또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다.
적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.

유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.

FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다.
구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.

The realm of operations of FLOW-3D
The realm of operations of FLOW-3D

FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다.
FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.

예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다.
FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.

FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다.
또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.

Sequence of a multi-layer L-PBF simulation setup in FLOW-3D

Ease of Use

FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다.
사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다.
사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.

Available Literature

실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.

Laser Welding

  1. L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014.
    A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
  2. Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E.
    Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017.
    General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
  3. Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015.
    Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.

Additive Manufacturing

  1. Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018
    This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
  2. Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015
    A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
  3. Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016
    A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.

 

 

화학기반 응고모델 / chemistry-based solidification

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 응고 모델은 업계를 주조 시뮬레이션의 다음 개척지로 발전시켜 사용자에게 캐스트 부품의 강도와 무결성을 예측하는 동시에 스크랩을 줄이고 제품 안전 및 성능 요구 사항을 충족합니다.

응고 모델 기능

새로운 응고 모델은 핵 생성, 분리 및 냉각 조건을 고려한 온도 및 화학의 진화로부터 잠열, 열전도율, 열용량, 밀도, 점도 등 응고 경로 및 재료 특성을 계산합니다.

응고 모델은 SDAS (secondary dendrite arm sapcing) 및 입자 크기와 같은 구성 및 냉각 조건을 기반으로 미세 구조 진화를 예측합니다. 또한 확산 및 이류로 인한 거시적 분리를 예측합니다. 기계적 특성과 미세 구조 간의 경험적 관계는 실험 측정을 기반으로합니다. 독특하고 강력한 미세 구조 및 기계적 특성 예측 기능을 갖춘 새로운 응고 모델은 미세 다공성 예측을위한 무 차원 Niyama 기준과 같은 다른 모델의 기반을 마련합니다.

응고 미세 구조 및 다공성 결함은 주조의 기계적 특성에 영향을 미치는 주요 요인입니다. 차례로 국부적 인 미세 구조는 합금의 화학적 조성, 응고 속도 및 합금 원소의 분리로 인한 화학적 비균질성에 의해 결정됩니다. 새로운 응고 모델을 사용하여 공정 설계자는 다양한 공정 매개 변수 및 합금 구성이 기계적 특성에 미치는 영향을 결정하여 가능한 최고 품질의 안전한 제품을 생산하기 위해 주조 성능을 최적화 할 수 있습니다.

Solidification of AlSi9Cu3

Aluminium A356

응고 모델에는 전체 모델과 단순화 된 모델이 모두 포함되어있어 사용자가 시뮬레이션 워크 플로를 더 잘 제어 할 수 있습니다. 전체 모델은 용융물이 응고됨에 따라 화학적 조성과 상 변화를 고려하는 반면, 단순화 된 모델은 더 빠른 런타임을 제공하고 전체 모델만큼 많은 메모리를 필요로하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화 된 모델에서 시작할 수 있으며 그 반대의 경우도 마찬가지입니다. 이는 시뮬레이션의 여러 단계뿐만 아니라 다양한 유형의 시뮬레이션에 적합한 모델을 사용할 수있는 완벽한 유연성을 제공합니다.

리소스를 적게 사용한다는 분명한 이점이 있으므로 사용자는 가능한 한 단순화 된 모델을 사용하는 것이 좋습니다. 사용자는 매크로 분리가 중요한 경우 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클링 시뮬레이션의 경우 이러한 모델링 시나리오에서는 전체 분석이 필요하지 않기 때문에 소프트웨어에 의해 단순화 된 모델이 적용됩니다.

벽이 얇은 일부 주조의 경우 확산 및 이류에 기반한 매크로 분리는 중요하지 않습니다. 이러한 주물에서 응고 경로는 전체적으로 거의 동일하며 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 진화를 추적 할 필요가 없습니다. 이러한 유형의 시나리오의 경우 사용자가 단순화 된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

FLOW-3D CAST

FLOW-3D CAST는 다양한 금속 주조 해석이 가능한 완벽한 열유동 해석 프로그램으로, 매우 정확한 모델링과 다기능성, 사용 용이성 및 고성능 클라우드 컴퓨팅 기능을 결합한 최첨단 금속 주조 해석 시뮬레이션 플랫폼입니다. 모든 금속 주조 공정에 대해 FLOW-3D CAST는  빠르고 직관적인 해석이 가능한 작업 공간을 제공합니다. 11개 공정에 대한 Workspace, 강력한 후처리, 충진 예측, 응고 및 결함 분석을 통해 FLOW-3D CAST는 최적의 주조 제품 설계에 필요한 도구와 로드맵을 모두 제공합니다.

FLOW-3D Cast는 거의 모든 주조 공정을 모델링 할 수 있도록 설계되었습니다. FLOW-3D Cast의 매우 정확한 유동 및 응고 결과는 표면 산화물, 혼입된 공기, 매크로 및 미세 다공성과 같은 중요한 주조 결함을 포착합니다. 다른 특별한 모델링 기능으로는 로봇 스프레이 냉각 및 윤활, 샷 슬리브 흐름 프로필, 스퀴즈 핀 및 열 응력을 모델링 할 수있는 열 다이 사이클링이 있습니다.

최적화된 시뮬레이션 설계를 통해 개발 시간을 단축하고 출시 시간을 단축하며 수율을 높일 수 있습니다. FLOW-3D CAST를 사용하면 설계 및 개발 비용을 절감할 수 있습니다.

FLOW-3D CAST Continuous Casting WorkspaceFLOW-3D CAST Gravity Die Casting Workspace
FLOW-3D CAST HPDC WorkspaceFLOW-3D CAST Investment Casting WorkspaceFLOW-3D CAST Low Pressure Sand Casting Workspace
FLOW-3D CAST Low Pressure Die Casting WorkspaceFLOW-3D CAST Sand Casting WorkspaceFLOW-3D CAST Sand Core Making Workspace
Lost Foam CastingFLOW-3D CAST Tilt Pour Casting
HPDC Oxides Simulation | FLOW-3D CAST
BMW Injector Casting Process – Innovative ingate system for gravity casting
Continuous Slab Casting | FLOW-3D CAST
Horizontal Centrifugal Pipe Casting | FLOW-3D CAST

FLOW-3D AM

FLOW-3D AM 제품 배너

FLOW-3D AM 은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

L-PBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 사용하면 아래 동영상처럼 입자의 분포를 무작위로 떨어뜨려 파우더 베드 배치 프로세스를 시뮬레이션할 수 있습니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

파우더 베드 용해

파우더 베드를 놓은 후 FLOW-3D  WELD 에서 레이저 빔 공정 매개 변수를 지정 하여 고 충실도 용융 풀 시뮬레이션을 수행 할 수 있습니다  . 온도, 속도, 고체 분율, 온도 구배 및 고체 속도의 플롯을 자세히 분석 할 수 있습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

다층 적층 제조

첫 번째 용융 층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고 된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

dem9
dem10

FLOW DEM

FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법)공법인 입자의 거동을 분석해주는 모듈입니다.

주요 기능 :고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용 Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응 가변 밀도 / 가변 직경 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소 독립적인 DEM의 Sub Time Step 이용

Discrete Element Method : 개별 요소법

다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

dem1

입자 간의 충돌

Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

분석 모드

기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로
평가되는 항목이 추가되기 형태로되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

dem4

입자 유형

입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

dem7

응용 분야

1. Mechanical Engineering 분야

수지 충전, 스쿠류 이송, 분말 이송 / Resin filling, screw conveyance, powder conveyance

2. Civil Engineering분야

3. Civil Engineering 분야

파편, 자갈, 낙 성/ Debris flow, gravel, falling rock

dem11

3. Chemical Engineering, Pharmaceutics 분야

유동층, 사이클론, 교반기 / Fluidized bed, cyclone, stirrer

dem12

4. MEMS, Electrical Engineering 분야

하전 입자를 포함한 전기장 해석 등

dem15

입자 그룹 가시화

그룹 가시화

DEM은 일반적으로 다수의 입자를 필요로하는 분석을 상정하고 있습니다. 
다만 이 경우, 계산 부하가 높아 지므로 현실적인 계산자원을 고려하면, 입자 수가 너무 많아 현실적으로 취급 할 수 없는 경우 입자의 특성은 유지하고 숫자를 줄여 가시화할 필요가 있습니다 .
일반적인 유동해석 계산의 메쉬 해상도에 해당합니다.
메쉬 수 많음 (계산 부하 큼) → 소 (계산 부하 적음)
입자 수 다 (계산 부하 큼) → 소 (계산 부하 적음)

원래 입자수
입자 사이즈를 키운경우
그룹 가시화
  • 입자 수를 줄이기 위해 그대로 입경을 크게했을 경우와 그룹 가시화 한 경우의 비교.
  • 입자 크기를 크게하면 개별 입자 특성이 달라지기 때문에 거동이 달라진다. (본 사례에서는 부력이 커진다.)
  • 그룹 가시화의 경우 개별 특성은 동일 원래의 거동과 대체로 일치한다.

주조 시뮬레이션에 DEM 적용

그룹 가시화 비교 예

그룹 가시화한 경우와 입경을 크게하여 수를 줄인 경우, 입경을 크게하면
개별 입자 특성이 변화하여 거동이 바뀌어 버리기 때문에 실제 계산으로는 사용할 수 어렵습니다.

중자 모래 분사 분석

DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

Reference :

  • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
  • Development and use of simulation in the Design of Blown Cores and Moulds

Casting Case Study

Casting Case Study

금속 주조물의 결함을 식별하고, 가볍고 튼튼한 주조 부품을 위해 새로운 재료로 부품을 설계하거나, 최적의 설계를 위해 반복적인 설계 작업을 수행하는 것은 고객이 당사의 소프트웨어를 사용하여 작업 요구 사항을 충족하고, 고철 비율을 줄임으로써 조직의 비용을 절감하는 일부 방법입니다.

이를 통해 제품 개발 시간을 단축함으로써 제품의 시장 출시 및 경쟁 우위를 위한 시간 확보가 용이해 집니다.

Customer Case Studies

Increasing Productivity by Reducing Ejection Times
Realizing Da Vinci’s Il Cavallo
Aluminum Integral Foam Molding Process

Solidification model

Solidification model

FLOW-3D CAST v5.1 solidification model

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 고체화 모델은 주조 시뮬레이션을 새로운 단계로 발전시킬것 입니다. 사용자는 주조 부품의 강도와 무결성을 예측하면서도 고철을 줄이고 제품 안전 및 성능 요구사항을 충족할 수 있습니다.

Solidification model capabilities

새로운 응고모델은 핵, 분리, 냉각 조건을 고려한 온도와 화학의 진화로 인한 잠열, 열전도도, 열 용량, 밀도, 점성 등을 포함한 고체화 경로와 재료 특성을 계산합니다.

응고모델은 이차 덴드라이트 암 사핑(SDAS) 및 입자 크기와 같은 구성 및 냉각 조건에 기반한 미세 구조 진화를 예측합니다. 또한 확산과 집착으로 인한 매크로 분리를 예측합니다. 기계적 특성과 미세구조 사이의 경험적 관계는 실험 측정을 기반으로 합니다. 독특하고 강력한 마이크로 구조와 기계적 특성 예측 기능을 갖춘 새로운 고체화 모델은 마이크로도 예측을 위한 차원 없는 니야마 기준과 같은 다른 모델의 기초를 제공합니다.

응고 미세 구조와 다공성 결함은 주물의 기계적 특성에 영향을 미치는 주요 요소입니다. 또한, 국소 미세 구조는 합금 원소의 분리에 따른 합금의 화학적 구성, 응고율 및 화학적 비동종성에 의해 결정됩니다. 공정 설계자는 새로운 응고 모델을 사용하여 다양한 공정 매개변수 및 합금 조합이 기계적 특성에 미치는 영향을 판단하여 주조물의 성능을 최적화하여 가능한 최고 품질의 안전한 제품을 생산할 수 있습니다.

Solidification of A356

 

Solidification of A206

MICROSTRUCTURE OUTPUT

  • Secondary dendrite arm spacing (SDAS)
  • Grain size

MECHANICAL PROPERTY OUTPUT

  • Ultimate tensile strength (UTS)
  • Elongation
  • Quality index
  • Yield strength for heat treated properties

DEFECT INDICATORS

  • Dimensionless Niyama criterion
  • Microporosity

완전하고 단순화된 화학 기반 응고 모델

유연성 모델

솔리드화 모델에는 전체 모델과 단순화된 모델이 모두 포함되어 있어 사용자가 시뮬레이션 워크플로우를 보다 효과적으로 제어할 수 있습니다. 전체 모델은 용융이 응고될 때 화응고 모델에는 전체 모델과 단순 모델이 모두 포함되어 있어 사용자가 시뮬레이션 워크 플로우를 보다 효과적으로 제어할 수 있습니다. 전체 모델은 용해가 응고됨에 따라 화학적 구성과 위상 변화를 고려하는 반면, 단순화된 모델은 보다 빠른 런트를 제공하고 전체 모델만큼 많은 메모리를 필요로 하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화된 모델에서 시작하거나 그 반대로 시작할 수 있습니다. 이를 통해 다양한 시뮬레이션 유형과 시뮬레이션 단계에 적합한 모델을 사용할 수 있는 완전한 유연성을 제공합니다.

사용할 모델

자원을 적게 사용하는 것의 명백한 이점 때문에 사용자는 가능한 단순화된 모델을 많이 사용할 것을 권장한다. 매크로 분리가 중요한 경우에는 사용자가 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클 시뮬레이션의 경우, 이러한 모델링 시나리오에서는 완전한 분석이 필요하지 않기 때문에 소프트웨어가 단순화된 모델을 적용합니다.

일부 박막형 주조물의 경우 확산 및 홍보에 기반한 매크로 세그멘테이션은 중요하지 않습니다. 이러한 주조물에서 응고 경로는 전체적으로 거의 동일합니다. 따라서 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 변화를 추적할 필요가 없습니다. 이러한 유형의 시나리오에서는 사용자가 간소화된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

FLOW-3D CAST Bibliography

FLOW-3D CAST bibliography

아래는 FSI의 금속 주조 참고 문헌에 수록된 기술 논문 모음입니다. 이 모든 논문에는 FLOW-3D CAST 해석 결과가 수록되어 있습니다. FLOW-3D CAST를 사용하여 금속 주조 산업의 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our Metal Casting Bibliography. All of these papers feature FLOW-3D CAST results. Learn more about how FLOW-3D CAST can be used to successfully simulate applications for the Metal Casting Industry.

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019. 

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019. 

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi.org/10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi.org/10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi.org/10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi.org/10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi.org/10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi.org/10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi.org/10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi.org/10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi.org/10.1016/j.jmatprotec.2018.11.016

92-18   Fast, Flexible… More Versatile, Foundry Management Technology, March, 2018. 

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi.org/10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi.org/10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi.org/10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi.org/10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. doi.org/10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi.org/10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi.org/10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi.org/10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, 2015.

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, doi.org/10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), doi.org/10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, doi.org/10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi.org/10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi.org/10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, doi.org/10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi.org/10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, doi.org/10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, doi.org/10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, doi.org/10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, doi.org/10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order FormEurope Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. Jolly, Casting Simulation – How Well Do Reality and Virtual Casting Match – A State of the Art Review, Intl. J. Cast Metals Research, 2002, 14, pp. 303-313

10-03 Gebelin., J-C and Jolly, M.R., Modeling of the Investment Casting Process, Journal of  Materials Processing Tech., Vol. 135/2-3, pp. 291 – 300

9-03 Cox, M, Harding, R.A. and Campbell, J., Optimised Running System Design for Bottom Filled Aluminium Alloy 2L99 Investment Castings, J. Mat. Sci. Tech., May 2003, Vol. 19, pp. 613-625

8-03 Von Alexander Schrey and Regina Reek, Numerische Simulation der Kernherstellung, (Numerical Simulation of Core Blowing), Giesserei, June 2003, pp. 64-68 (in German)

7-03 J. Zuidema Jr., L Katgerman, Cyclone separation of particles in aluminum DC Casting, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 607-614

6-03 Jean-Christophe Gebelin and Mark Jolly, Numerical Modeling of Metal Flow Through Filters, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 431-438

5-03 N.W. Lai, W.D. Griffiths and J. Campbell, Modelling of the Potential for Oxide Film Entrainment in Light Metal Alloy Castings, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 415-422

21-02 Boris Lukezic, Case History: Process Modeling Solves Die Design Problems, Modern Casting, February 2003, P 59

20-02 C.W. Hirt and M.R. Barkhudarov, Predicting Defects in Lost Foam Castings, Modern Casting, December 2002, pp 31-33

19-02 Mark Jolly, Mike Cox, Ric Harding, Bill Griffiths and John Campbell, Quiescent Filling Applied to Investment Castings, Modern Casting, December 2002 pp. 36-38

18-02 Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Foundry Management and Technology, October 2002, pp 13-15

17-02 G Messmer, Simulation of a Thixoforging Process of Aluminum Alloys with FLOW-3D, Institute for Metal Forming Technology, University of Stuttgart

16-02 Barkhudarov, Michael, Computer Simulation of Lost Foam Process, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 319-324

15-02 Barkhudarov, Michael, Computer Simulation of Inclusion Tracking, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 341-346

14-02 Barkhudarov, Michael, Advanced Simulation of the Flow and Heat Transfer of an Alternator Housing, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 219-228

8-02 Sayavur I. Bakhtiyarov, and Ruel A. Overfelt, Experimental and Numerical Study of Bonded Sand-Air Two-Phase Flow in PUA Process, Auburn University, 2002 American Foundry Society, AFS Transactions 02-091, Kansas City, MO

7-02 A Habibollah Zadeh, and J Campbell, Metal Flow Through a Filter System, University of Birmingham, 2002 American Foundry Society, AFS Transactions 02-020, Kansas City, MO

6-02 Phil Ward, and Helen Atkinson, Final Report for EPSRC Project: Modeling of Thixotropic Flow of Metal Alloys into a Die, GR/M17334/01, March 2002, University of Sheffield

5-02 S. I. Bakhtiyarov and R. A. Overfelt, Numerical and Experimental Study of Aluminum Casting in Vacuum-sealed Step Molding, Auburn University, 2002 American Foundry Society, AFS Transactions 02-050, Kansas City, MO

4-02 J. C. Gebelin and M. R. Jolly, Modelling Filters in Light Alloy Casting Processes, University of Birmingham, 2002 American Foundry Society AFS Transactions 02-079, Kansas City, MO

3-02 Mark Jolly, Mike Cox, Jean-Christophe Gebelin, Sam Jones, and Alex Cendrowicz, Fundamentals of Investment Casting (FOCAST), Modelling the Investment Casting Process, Some preliminary results from the UK Research Programme, IRC in Materials, University of Birmingham, UK, AFS2001

49-01   Hua Bai and Brian G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B, Vol. 32, No. 6, pp. 1143-1159, 2001. doi.org/10.1007/s11663-001-0102-y

45-01 Jan Zuidema; Laurens Katgerman; Ivo J. Opstelten;Jan M. Rabenberg, Secondary Cooling in DC Casting: Modelling and Experimental Results, TMS 2001, New Orleans, Louisianna, February 11-15, 2001

43-01 James Andrew Yurko, Fluid Flow Behavior of Semi-Solid Aluminum at High Shear Rates,Ph.D. thesis; Massachusetts Institute of Technology, June 2001. Abstract only; full thesis available at http://dspace.mit.edu/handle/1721.1/8451 (for a fee).

33-01 Juang, S.H., CAE Application on Design of Die Casting Dies, 2001 Conference on CAE Technology and Application, Hsin-Chu, Taiwan, November 2001, (article in Chinese with English-language abstract)

32-01 Juang, S.H. and C. M. Wang, Effect of Feeding Geometry on Flow Characteristics of Magnesium Die Casting by Numerical Analysis, The Preceedings of 6th FADMA Conference, Taipei, Taiwan, July 2001, Chinese language with English abstract

26-01 C. W. Hirt., Predicting Defects in Lost Foam Castings, December 13, 2001

21-01 P. Scarber Jr., Using Liquid Free Surface Areas as a Predictor of Reoxidation Tendency in Metal Alloy Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

20-01 P. Scarber Jr., J. Griffin, and C. E. Bates, The Effect of Gating and Pouring Practice on Reoxidation of Steel Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

19-01 L. Wang, T. Nguyen, M. Murray, Simulation of Flow Pattern and Temperature Profile in the Shot Sleeve of a High Pressure Die Casting Process, CSIRO Manufacturing Science and Technology, Melbourne, Victoria, Australia, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, To1-014

18-01 Rajiv Shivpuri, Venkatesh Sankararaman, Kaustubh Kulkarni, An Approach at Optimizing the Ingate Design for Reducing Filling and Shrinkage Defects, The Ohio State University, Columbus, OH, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, TO1-052

5-01 Michael Barkhudarov, Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Diecasting World, March 2001, pp. 5-6

2-01 J. Grindling, Customized CFD Codes to Simulate Casting of Thermosets in Full 3D, Electrical Manufacturing and Coil Winding 2000 Conference, October 31-November 2, 20

20-00 Richard Schuhmann, John Carrig, Thang Nguyen, Arne Dahle, Comparison of Water Analogue Modelling and Numerical Simulation Using Real-Time X-Ray Flow Data in Gravity Die Casting, Australian Die Casting Association Die Casting 2000 Conference, September 3-6, 2000, Melbourne, Victoria, Australia

15-00 M. Sirvio, Vainola, J. Vartianinen, M. Vuorinen, J. Orkas, and S. Devenyi, Fluid Flow Analysis for Designing Gating of Aluminum Castings, Proc. NADCA Conf., Rosemont, IL, Nov 6-8, 1999

14-00 X. Yang, M. Jolly, and J. Campbell, Reduction of Surface Turbulence during Filling of Sand Castings Using a Vortex-flow Runner, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

13-00 H. S. H. Lo and J. Campbell, The Modeling of Ceramic Foam Filters, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

12-00 M. R. Jolly, H. S. H. Lo, M. Turan and J. Campbell, Use of Simulation Tools in the Practical Development of a Method for Manufacture of Cast Iron Camshafts,” Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August, 2000

14-99 J Koke, and M Modigell, Time-Dependent Rheological Properties of Semi-solid Metal Alloys, Institute of Chemical Engineering, Aachen University of Technology, Mechanics of Time-Dependent Materials 3: 15-30, 1999

12-99 Grun, Gerd-Ulrich, Schneider, Wolfgang, Ray, Steven, Marthinusen, Jan-Olaf, Recent Improvements in Ceramic Foam Filter Design by Coupled Heat and Fluid Flow Modeling, Proc TMS Annual Meeting, 1999, pp. 1041-1047

10-99 Bongcheol Park and Jerald R. Brevick, Computer Flow Modeling of Cavity Pre-fill Effects in High Pressure Die Casting, NADCA Proceedings, Cleveland T99-011, November, 1999

8-99 Brad Guthrie, Simulation Reduces Aluminum Die Casting Cost by Reducing Volume, Die Casting Engineer Magazine, September/October 1999, pp. 78-81

7-99 Fred L. Church, Virtual Reality Predicts Cast Metal Flow, Modern Metals, September, 1999, pp. 67F-J

19-98 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Numerical Modeling of Fluid Flow Phenomena in the Launder-integrated Tool Within Casting Unit Development, Proc TMS Annual Meeting, 1998, pp. 1175-1182

18-98 X. Yang & J. Campbell, Liquid Metal Flow in a Pouring Basin, Int. J. Cast Metals Res, 1998, 10, pp. 239-253

15-98 R. Van Tol, Mould Filling of Horizontal Thin-Wall Castings, Delft University Press, The Netherlands, 1998

14-98 J. Daughtery and K. A. Williams, Thermal Modeling of Mold Material Candidates for Copper Pressure Die Casting of the Induction Motor Rotor Structure, Proc. Int’l Workshop on Permanent Mold Casting of Copper-Based Alloys, Ottawa, Ontario, Canada, Oct. 15-16, 1998

10-98 C. W. Hirt, and M.R. Barkhudarov, Lost Foam Casting Simulation with Defect Prediction, Flow Science Inc, presented at Modeling of Casting, Welding and Advanced Solidification Processes VIII Conference, June 7-12, 1998, Catamaran Hotel, San Diego, California

9-98 M. R. Barkhudarov and C. W. Hirt, Tracking Defects, Flow Science Inc, presented at the 1st International Aluminum Casting Technology Symposium, 12-14 October 1998, Rosemont, IL

5-98 J. Righi, Computer Simulation Helps Eliminate Porosity, Die Casting Management Magazine, pp. 36-38, January 1998

3-98 P. Kapranos, M. R. Barkhudarov, D. H. Kirkwood, Modeling of Structural Breakdown during Rapid Compression of Semi-Solid Alloy Slugs, Dept. Engineering Materials, The University of Sheffield, Sheffield S1 3JD, U.K. and Flow Science Inc, USA, Presented at the 5th International Conference Semi-Solid Processing of Alloys and Composites, Colorado School of Mines, Golden, CO, 23-25 June 1998

1-98 U. Jerichow, T. Altan, and P. R. Sahm, Semi Solid Metal Forming of Aluminum Alloys-The Effect of Process Variables Upon Material Flow, Cavity Fill and Mechanical Properties, The Ohio State University, Columbus, OH, published in Die Casting Engineer, p. 26, Jan/Feb 1998

8-97 Michael Barkhudarov, High Pressure Die Casting Simulation Using FLOW-3D, Die Casting Engineer, 1997

15-97 M. R. Barkhudarov, Advanced Simulation of the Flow and Heat Transfer Process in Simultaneous Engineering, Flow Science report, presented at the Casting 1997 – International ADI and Simulation Conference, Helsinki, Finland, May 28-30, 1997

14-97 M. Ranganathan and R. Shivpuri, Reducing Scrap and Increasing Die Life in Low Pressure Die Casting through Flow Simulation and Accelerated Testing, Dept. Welding and Systems Engineering, Ohio State University, Columbus, OH, presented at 19th International Die Casting Congress & Exposition, November 3-6, 1997

13-97 J. Koke, Modellierung und Simulation der Fließeigenschaften teilerstarrter Metallegierungen, Livt Information, Institut für Verfahrenstechnik, RWTH Aachen, October 1997

10-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics – Part 2 Fiber Orientation, Body-in-White Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 6, June 1997

9-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics. Part 1 – Injection Pressures and Flow, Manufacturing Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 3, March 1997

8-97 H. Grazzini and D. Nesa, Thermophysical Properties, Casting Simulation and Experiments for a Stainless Steel, AT Systemes (Renault) report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

7-97 R. Van Tol, L. Katgerman and H. E. A. Van den Akker, Horizontal Mould Filling of a Thin Wall Aluminum Casting, Laboratory of Materials report, Delft University, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

6-97 M. R. Barkhudarov, Is Fluid Flow Important for Predicting Solidification, Flow Science report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

22-96 Grun, Gerd-Ulrich & Schneider, Wolfgang, 3-D Modeling of the Start-up Phase of DC Casting of Sheet Ingots, Proc TMS Annual Meeting, 1996, pp. 971-981

9-96 M. R. Barkhudarov and C. W. Hirt, Thixotropic Flow Effects under Conditions of Strong Shear, Flow Science report FSI96-00-2, to be presented at the “Materials Week ’96” TMS Conference, Cincinnati, OH, 7-10 October 1996

4-96 C. W. Hirt, A Computational Model for the Lost Foam Process, Flow Science final report, February 1996 (FSI-96-57-R2)

3-96 M. R. Barkhudarov, C. L. Bronisz, C. W. Hirt, Three-Dimensional Thixotropic Flow Model, Flow Science report, FSI-96-00-1, published in the proceedings of (pp. 110- 114) and presented at the 4th International Conference on Semi-Solid Processing of Alloys and Composites, The University of Sheffield, 19-21 June 1996

1-96 M. R. Barkhudarov, J. Beech, K. Chang, and S. B. Chin, Numerical Simulation of Metal/Mould Interfacial Heat Transfer in Casting, Dept. Mech. & Process Engineering, Dept. Engineering Materials, University of Sheffield and Flow Science Inc, 9th Int. Symposium on Transport Phenomena in Thermal-Fluid Engineering, June 25-28, 1996, Singapore

11-95 Barkhudarov, M. R., Hirt, C.W., Casting Simulation Mold Filling and Solidification-Benchmark Calculations Using FLOW-3D, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pp 935-946

10-95 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Optimal Design of a Distribution Pan for Level Pour Casting, Proc TMS Annual Meeting, 1995, pp. 1061-1070

9-95 E. Masuda, I. Itoh, K. Haraguchi, Application of Mold Filling Simulation to Die Casting Processes, Honda Engineering Co., Ltd., Tochigi, Japan, presented at the Modelling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals & Materials Society, 1995

6-95 K. Venkatesan, Experimental and Numerical Investigation of the Effect of Process Parameters on the Erosive Wear of Die Casting Dies, presented for Ph.D. degree at Ohio State University, 1995

5-95 J. Righi, A. F. LaCamera, S. A. Jones, W. G. Truckner, T. N. Rouns, Integration of Experience and Simulation Based Understanding in the Die Design Process, Alcoa Technical Center, Alcoa Center, PA 15069, presented by the North American Die Casting Association, 1995

2-95 K. Venkatesan and R. Shivpuri, Numerical Simulation and Comparison with Water Modeling Studies of the Inertia Dominated Cavity Filling in Die Casting, NUMIFORM, 1995

1-95 K. Venkatesan and R. Shivpuri, Numerical Investigation of the Effect of Gate Velocity and Gate Size on the Quality of Die Casting Parts, NAMRC, 1995.

15-94 D. Liang, Y. Bayraktar, S. A. Moir, M. Barkhudarov, and H. Jones, Primary Silicon Segregation During Isothermal Holding of Hypereutectic AI-18.3%Si Alloy in the Freezing Range, Dept. of Engr. Materials, U. of Sheffield, Metals and Materials, February 1994

13-94 Deniece Korzekwa and Paul Dunn, A Combined Experimental and Modeling Approach to Uranium Casting, Materials Division, Los Alamos National Laboratory, presented at the Symposium on Liquid Metal Processing and Casting, El Dorado Hotel, Santa Fe, New Mexico, 1994

12-94 R. van Tol, H. E. A. van den Akker and L. Katgerman, CFD Study of the Mould Filling of a Horizontal Thin Wall Aluminum Casting, Delft University of Technology, Delft, The Netherlands, HTD-Vol. 284/AMD-Vol. 182, Transport Phenomena in Solidification, ASME 1994

11-94 M. R. Barkhudarov and K. A. Williams, Simulation of ‘Surface Turbulence’ Fluid Phenomena During the Mold Filling Phase of Gravity Castings, Flow Science Technical Note #41, November 1994 (FSI-94-TN41)

10-94 M. R. Barkhudarov and S. B. Chin, Stability of a Numerical Algorithm for Gas Bubble Modelling, University of Sheffield, Sheffield, U.K., International Journal for Numerical Methods in Fluids, Vol. 19, 415-437 (1994)

16-93 K. Venkatesan and R. Shivpuri, Numerical Simulation of Die Cavity Filling in Die Castings and an Evaluation of Process Parameters on Die Wear, Dept. of Industrial Systems Engineering, Presented by: N.A. Die Casting Association, Cleveland, Ohio, October 18-21, 1993

15-93 K. Venkatesen and R. Shivpuri, Numerical Modeling of Filling and Solidification for Improved Quality of Die Casting: A Literature Survey (Chapters II and III), Engineering Research Center for Net Shape Manufacturing, Report C-93-07, August 1993, Ohio State University

1-93 P-E Persson, Computer Simulation of the Solidification of a Hub Carrier for the Volvo 800 Series, AB Volvo Technological Development, Metals Laboratory, Technical Report No. LM 500014E, Jan. 1993

13-92 D. R. Korzekwa, M. A. K. Lewis, Experimentation and Simulation of Gravity Fed Lead Castings, in proceedings of a TMS Symposium on Concurrent Engineering Approach to Materials Processing, S. N. Dwivedi, A. J. Paul and F. R. Dax, eds., TMS-AIME Warrendale, p. 155 (1992)

12-92 M. A. K. Lewis, Near-Net-Shaiconpe Casting Simulation and Experimentation, MST 1992 Review, Los Alamos National Laboratory

2-92 M. R. Barkhudarov, H. You, J. Beech, S. B. Chin, D. H. Kirkwood, Validation and Development of FLOW-3D for Casting, School of Materials, University of Sheffield, Sheffield, UK, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

1-92 D. R. Korzekwa and L. A. Jacobson, Los Alamos National Laboratory and C.W. Hirt, Flow Science Inc, Modeling Planar Flow Casting with FLOW-3D, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

12-91 R. Shivpuri, M. Kuthirakulathu, and M. Mittal, Nonisothermal 3-D Finite Difference Simulation of Cavity Filling during the Die Casting Process, Dept. Industrial and Systems Engineering, Ohio State University, presented at the 1991 Winter Annual ASME Meeting, Atlanta, GA, Dec. 1-6, 1991

3-91 C. W. Hirt, FLOW-3D Study of the Importance of Fluid Momentum in Mold Filling, presented at the 18th Annual Automotive Materials Symposium, Michigan State University, Lansing, MI, May 1-2, 1991 (FSI-91-00-2)

11-90 N. Saluja, O.J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Melts, accepted in J. Appl. Physics, 1990

10-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Molds in Continuous Castings, presented at the 6th Iron and Steel Congress of the Iron and Steel Institute of Japan, Nagoya, Japan, October 1990

9-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow in Phenomena in the Electromagnetic Stirring of Continuous Casting Systems, Part I. The Behavior of a Cylindrically Shaped, Laboratory Scale Installation, accepted for publication in Steel Research, 1990

8-89 C. W. Hirt, Gravity-Fed Casting, Flow Science Technical Note #20, July 1989 (FSI-89-TN20)

6-89 E. W. M. Hansen and F. Syvertsen, Numerical Simulation of Flow Behaviour in Moldfilling for Casting Analysis, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. STS20 A89001, June 1989

1-88 C. W. Hirt and R. P. Harper, Modeling Tests for Casting Processes, Flow Science report, Jan. 1988 (FSI-88-38-01)

2-87 C. W. Hirt, Addition of a Solidification/Melting Model to FLOW-3D, Flow Science report, April 1987 (FSI-87-33-1)

Tilt Pour Casting Workspace, 경동주조

Tilt Pour Casting Workspace Highlights, 경동주조

  • 금형의 모션 제어
  • 최첨단 금형온도관리, 동적 냉각 채널, 스프레이 냉각, 금형온도 싸이클링
  • 정확한 가스 고립 및 기공 예측

Workspace Overview

경동주조(Tilt Pour Casting) Workspace는 엔지니어가 FLOW-3D  CAST로 경동주조(Tilt Pour Casting)을 성공적으로 모델링 할 수 있도록 설계된 직관적인 모델링 환경입니다 . 작업 공간에는 프로세스별 특정 다이 및 재료 유형이 포함되어 있으며, 정확한 기계 기능에 맞게 회전 동작을 쉽게 정의 할 수 있습니다. 

기포 결함의 완전한 분석을 위해 충진 분석에 벤트 및 배압이 포함되어 있으며, 다이사이클링 및 최신 응고 모델은 작업 공간의 하위 프로세스 아키텍처를 통해 충진시 매끄럽게 연결됩니다. Tilt Pour Casting Workspace는 단순하지만 다양한 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

Tilt Pour Simulation | FLOW-3D CAST
Tilt Pour Casting | FLOW-3D CAST
8-Cavity Tilt Pour | FLOW-3D CAST v5.1

프로세스 모델링

  • 틸트 주입
  • 역 틸트 주입

유연한 격자 생성

  • FAVOR ™ 단순 격자 생성 도구
  • 멀티 블록
  • Conforming mesh

금형 온도 관리

  • 다이 사이클링
  • 열 포화
  • 완전 열전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 열 계수
  • 기계적 특성 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

금형 동작 제어

  • 6 개의 회전축
  • 회전 속도를위한 테이블 형식 입력

결함 예측

  • 매크로 및 미세 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

다이나믹 시뮬레이션 제어

  • 모션 제어를위한 이벤트 프로브 기반 트리거

완벽한 분석 패키지

  • 다중 뷰포트가있는 애니메이션-3D, 2D, 히스토리 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 병렬 시뮬레이션 결과 비교
  • 용융 온도, 고체 분율 측정 용 센서
  • 입자 추적기
  • 일괄 배치 처리
  • 보고서 생성

Lost Foam Casting Workspace, 소실모형주조

Lost Foam Casting Workspace Highlights, 소실모형주조

  • 최첨단 Foam 잔여물 추적
  • 진보된 Foam 증발 및 금속 유동 모델링
  • 응고, 다공성 및 표면 결함 분석

Workspace Overview

Lost Foam Casting Workspace(소실모형주조) 는 Lost Foam Casting에 필요한 충진, 응고 및 냉각 하위 프로세스를 시뮬레이션하는 모든 도구를 제공합니다. 각 하위 프로세스는 해석 엔지니어가 사용하기 쉬운 인터페이스를 제공하도록 맞춤화된 템플릿 디자인을 기반으로합니다.

Lost Foam Casting 의 결함은 충진 프로파일에서 추적할 수 있기 때문에  FLOW-3D  CAST 의 용탕유동 및 소실모형(foam)의 연소 시뮬레이션의 탁월한 정확도는 고품질의 Lost Foam Casting 주물을 생산하는 데 귀중한 통찰력을 제공합니다. 기포. 잔류물 형성과 같은 주입 결함은 최종 주조에서 정확하게 추적되고 처리됩니다.

Lost Foam Casting Workspace | FLOW-3D CAST
Lost Foam Residue Tracking – Filling Simulation | FLOW-3D CAST
Lost Foam Impeller Tree – Filling Simulation | FLOW-3D CAST
Lost Foam Residue Simulation | FLOW-3D CAST

PROCESSES MODELED

  • Filling
  • Solidification
  • Cooling

FLEXIBLE MESHING

  • Structured meshing for fast, easy generation
  • Multi-block meshing for localized accuracy control
  • Foam-conforming meshes for memory optimization

MOLD MODELING

  • Ceramic filters
  • Inserts – standard and porous
  • Air vents
  • Chills
  • Insulating and exothermic sleeves
  • Moving ladles and stoppers

ADVANCED SOLIDIFICATION

  • Chemistry-based solidification
  • Dimensionless Niyama criteria
  • Cooling rates, SDAS, grain size mechanical properties

FILLING ACCURACY

  • Foam/melt interface tracking
  • Gas/bubble entrapment
  • Automatic melt flow drag calculation in filters

DEFECT PREDICTION

  • Foam residue defect tracking
  • Cold shuts
  • Porosity prediction
  • Shrinkage
  • Hot spots

DYNAMIC SIMULATION CONTROL

  • Probe-controlled pouring control

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Sand Casting Workspace, 사형주조

Sand Casting Workspace Highlights, 사형주조

  • 모래 특성의 통합에는 투과성, 코어 가스 및 수분 함량이 포함됩니다.
  • 주입 컵 채우기 조건에 따라 동적 래들 주입 및 동적 래들 동작
  • 첨단 솔루션을 통해 정확한 가스 포집 및 다공성 제공

Workspace Overview

Sand Casting Workspace(사형주조)는 샌드 캐스터에 주입, 응고 및 냉각 분석을 시뮬레이션하는 데 필요한 모든 도구를 제공합니다. Sand Casting Workspace는 엔지니어의 언어를 사용하여, 사용이 간편한 인터페이스를 제공하도록 설계되어 있습니다.

사형주조의 결함은 흔히 충전 단계에서 추적할 수 있습니다. FLOW3D CAST는 뛰어난 금속 흐름 예측에 대해 뛰어난 정확도를 제공하여, 쉽게 결함을 파악할 수 있습니다. 산화물 형성 및 콜드샷을 정확하게 추적하여 최종 주물에서의 발생 위치를 확인합니다. 압탕의 크기를 조정하고 핫 스팟(최종응고부)에 배치하는 한편, 진보된 응고 및 수축 분석을 통해 가장 까다로운 제조 환경에서도 최종적으로 최적화된 설계를 달성할 수 있습니다.

프로세스 모델링

  • 충전재
  • 응고
  • 냉각

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 적합 메쉬

주형 모델링

  • 가스 및 수분 배출이 가능한 투과성 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 공기 통로

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마(Niyama ) 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

충전 정확도

  • 가스/버블 포획
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산
  • 난류 모델링

코어 모델링

  • 가스 생성을 포함한 모래 코어
  • 소금 코어

결함 예측

  • 혼입 공기
  • 산화물 형성 및 추적
  • 콜드 샷
  • 다공성 예측
  • 수축
  • 핫 스팟

라이저 공구

  • 발열체 조립체
  • 절연 및 발열 슬리브

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Die Casting Workspace, 저압주조

Workspace Highlights, 저압주조

  • 매우 정확한 충진을 위한 압력 제어 주입
  • 공극, 배기 및 역압 효과를 포함한 전체 프로세스 모델링
  • 다공성과 같은 정밀한 조기 동결 및 응고 결함을 해결하기 위한 향상된 응고 및 열 전달 제어

Workspace Overview

저압주조 Workspace 는 엔지니어가 FLOW-3D CAST를 통해 저압주조 제품을 성공적으로 모델링하도록 설계된 직관적인 모델링 환경입니다. 

유연한 압력 제어를 통해 엔지니어는 가압, 벤트 및 배압 조건을 정확하게 재현하여 주입, 공기 갇힘 및 미세수축결함에 대한 완전한 분석을 수행할 수 있습니다.

금형온도해석 및 최첨단 응고 모델은 작업 공간의 서브 프로세스 아키텍처를 통해 원활하게 충전 상태에 연결됩니다. 저압주조 Workspace은 단순하면서도 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

프로세스 모델링

  • 중력 저 압력 다이 캐스트 주조

유연한 메쉬

  • FAVOR™단순 메시 생성 도구
  • 멀티 블록 메쉬
  • 중첩된 메쉬

다이 열 관리

  • 열사이 사이클
  • 열 포화도
  • 풀 열 전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫 스폿 식별
  • 기계적 특성 예측
  • 마이크로 아키텍처 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

진공 및 환기

  • 대화형 프로브 배치
  • 면적 및 손실 계수 계산기

LADLE운동

  • 6도의 자유 동작 정의

주입 정확도

  • 가스 및 기포 걸림
  • 표면 산화물 계산
  • RNG및 LES난류 모델
  • 배경 압력

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

동적 시뮬레이션 컨트롤

  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 컨트롤

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Low Pressure Sand Casting (LPSC) Workspace, 저압사형주조

Workspace Highlights, 저압사형주조

  • 투과성, 코어 가스 및 수분 함량을 포함한 모래 특성 통합
  • 전체 프로세스 모델링에는 보이드, 환기 및 역압 영향이 포함됨
  • 고급 다이내믹스에는 채우기 후 고체화 틸트 동작이 포함됨

Workspace Overview

저압 사형 주조(LPSC) Workspace 는 주조 공장에서 일반적으로 사용되는 모든 공정을 시뮬레이션할 수 있는 간편한 도구를 제공합니다. 새로운 LPSC Workspace를 통해 사용자는 프로세스 파라미터를 모델링하고 최적화하는 데 필요한 도구를 사용할 수 있습니다.

필터는 하단 충진 스프로(sprues)에 삽입하여 충진 패턴을 추가로 제어하고, 용해 시 불순물을 제거할 수 있습니다. FLOW-3D CAST는 충전 중 흐름에 미치는 영향을 모델링하기 위한 세라믹 필터를 제공합니다. LPSC Workspace는 응고중의 수축 및 미세수축결함을 해결하기 위해 발열 압탕어셈블리 및 단열 슬리브를 제공합니다.

FLOW-3D CAST의 틸트 기능을 사용하면 응고 전에 몰드를 거꾸로 뒤집어 충전 스프루(sprues)가 라이저 역할을 할 수 있습니다. 이 접근 방식은 충진 스프루(sprues)가 적절하게 설계된 경우 추가 라이저가 필요하지 않습니다.

프로세스 모델링

  • 압력 또는 용량 제어 바닥 공급
  • 회전식 응고

유연한 메쉬

  • 빠르고 쉬운 생성을 위한 체계적인 메쉬
  • 국지적인 정확도 제어를 위한 멀티 블록 메쉬
  • 메모리 최적화를 위한 캐스팅 구성 메쉬

주형 모델링

  • 가스 및 수분 배출이 포함된 허용 가능한 금형
  • 국소 냉각을 위한 코일
  • 다공성 및 표준 인서트
  • 세라믹 필터
  • 에어벤트

고급 응고

  • 화학 기반 응고
  • 치수 없는 니야마 기준
  • 냉각 속도, SDAS, 입자 크기 기계적 특성

라이저 공구

  • 발열체 데이터베이스
  • 발열성 및 절연성 슬리브

주입 정확도

  • 가스/버스/자갈 끼임
  • 표면 산화물 형성
  • 필터의 자동 드래그 계산

몰드 모션 컨트롤

  • 시간 제어 금형 회전

결함 예측

  • 다공성 예측
  • 수축
  • 핫 스팟

동적 시뮬레이션 컨트롤

  • 문제가 제어되는 주입 속도

완전한 분석

  • 다중 뷰 포트를 사용한 애니메이션-3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 사이드 바이 사이드 시뮬레이션 결과 비교
  • 용해 온도, 고체 부분을 측정하기 위한 센서
  • 입자 추적기
  • 일괄 처리
  • 보고서 생성

Investment Casting Workspace, 정밀주조

Workspace Highlights

  • 주조 패턴으로 쉘 생성을 능률적으로 수행할 수 있습니다.
  • 고급 방사 모델은 쉘 표면 사이의 완전한 복사 열 전달을 계산합니다.
  • 고급 모션 컨트롤에는 Bridgman, 레들 및 스핀 모션이 포함됩니다.

Workspace Overview

Investment Casting Workspace는 쉘 생성, 충전, 응고 (정적 또는 움직이는 Bridgman 쉘 금형) 및 냉각을 포함한 Investment Casting 주조의 모든 측면을 시뮬레이션하기 위한 사용하기 쉬운 도구를 Investment Casting 엔지니어에게 제공합니다.

쉘 몰드 생성 도구는 빠르고 신뢰할 수 있는 쉘 형상 생성을 위해 제공되며, radiative heat 및 view factor 모델은 쉘의 여러 부분 간의 복사 열전달(radiation heat transfer)을 정확하게 재현합니다. Directional solidification를 위해 쿨러 하부 단면과 분리된 뜨거운 상부 섹션이 있는 moving oven은 Bridgman 프로세스를 재현합니다. 용융 표면 진행 뿐만 아니라 몰드의 이동, 충진 양상 및 응고 패턴은 직관적인 후처리 도구를 통해 쉽게 평가되므로 공정 조건을 수정하여 주조 공정을 구현할 수 있습니다.

 프로세스 모델링

  • 유동
  • 고화 -고정 및 브리지먼
  • 냉각
 

쉘 몰드 생성

 

열 금형 모델링

  • 뷰 인자를 가진 전체 방사 모델링
  • 대류 및 전도 열 전달
 

멀티 블록 메시

 

유동 해석의 탁월한 정확도

  • 가스/버블 고립
  • 표면 산화물 계산
  • RNG 및 LES 난류 모델
 

래들 주입

 응고해석
  • 기공 예측
  • 수축 예측
  • 방향성 응고
 

결함 예측

  • 기공 예측
  • 공기 고립 예측
  • 조기 응고
  • 산화물 형성
 

동적 시뮬레이션 제어

  • 용탕 주입 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 여러가지 해석 결과 비교
  • 용융 온도, 응고 분율 측정을 위한 센서 추가 기능
  • 파티클 트레이서
  • 일괄 후 처리
  • 보고서 생성

High Pressure Die Casting Workspace, 고압다이캐스팅

High Pressure Die Casting Workspace Highlights

  • 주입 정확도가 탁월합니다.
  • 전체 프로세스 모델링에는 고급 환기, PQ2 및 스프레이 냉각이 포함됩니다.
  • 동적 시뮬레이션 제어를 통해 동적 런타임 프로세스를 제어할 수 있습니다.
  • 최첨단 알루미늄 실리콘 합금 고형화입니다.

고압 다이 캐스팅 Workspace

고압 다이 캐스팅 Workspace은 엔지니어가 FLOW-3D CAST를 사용하여, 고압 다이 캐스팅 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

FLOW-3D CAST v5.1은 첨단 다이 열 제어, 기계 파라미터 모델링,주입 및 배압 조건의 정확한 해석기능과 결합된 샷 슬리브 모션의 완전한 제어는 가장 까다로운 HPDC 시뮬레이션에 필요한 최적화된 솔루션입니다. HPDC Workspace에는 진보된 미세수축공 예측 및 후처리 기능 외에도 Al-Si 및 Al-Cu 기반 합금에 대한 최첨단 화학 기반 응고 및 재료 강도 모델이 포함되어 있습니다.

모델링된 프로세스

  • 고압 다이 주조
 

유연한 메시

  • FAVOR™ 간단한 메쉬 생성 도구
  • 멀티 블록 메시
  • 중첩 메시
 

다이 열 관리

  • 열 다이 사이클링
  • 열 포화도
  • 전체 열 전달 모델링
  • 스마트 냉각 채널 제어
  • 스프레이 냉각 경로 모델링
 

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 기계적 특성 예측
  • 미세 구조 예측
 

국자 모션

  • 자유 모션 정의 6도
 

진공 및 환기

  • 대화형 프로브 배치
  • 지역 및 손실 계수 계산기
 

충전 정확도

  • 느리고 빠른 샷 모델링
  • 강화 압력 효과
  • 가스 및 버블 함정
  • 표면 산화물 계산
  • RNG 및 레 난류 모델
  • 역압력
 

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석
 

표면 결함 분석

  • PQ2 분석
  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

Gravity Die Casting Workspace, 중력주조

Gravity Die Casting Workspace Highlights, 중력주조

  • 최첨단 다이 열 관리, 동적 냉각 채널, 분무 냉각 및 열 순환
  • Ladle 주입 조건에 따라 동적 Ladle 모션이 있는 Ladle 주입
  • 첨단 유량 솔루션으로 정확한 가스 갇힘 및 가스 다공성 제공

Workspace Overview

Gravity Die Casting Workspace(중력주조)는 엔지니어가 FLOW-3D CAST를 사용하여 중력주조 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

Ladle 모션, 벤트 및 배압이 충진해석에 포함되어 공기 갇힘 및 미세 응고수축공의 정확한 예측과 금형온도분포 및 상태 예측이 가능합니다.-첨단 응고 모델은 Workspace의 하위 프로세스 아키텍처를 통해 충준해석기능에 원활하게 연결됩니다. Gravity Die Casting Workspace는 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

PROCESSES MODELED

  • Gravity die casting
  • Vacuum die casting

FLEXIBLE MESHING

  • FAVOR™ simple mesh generation tool
  • Multi-block meshing
  • Nested meshing

MOLD MODELING

  • Localized die heating elements and cooling channels
  • Spray cooling of the die surface
  • Ceramic filters
  • Air vents

ADVANCED SOLIDIFICATION

  • Porosity
  • Shrinkage
  • Hot spots
  • Mechanical property
  • Microstructure

SAND CORES

  • Core gas evolution
  • Material definitions for core properties

DIE THERMAL MANAGEMENT

  • Thermal die cycling
  • Heat saturation
  • Full heat transfer

LADLE MOTION

  • 6 degrees of freedom motion definition

DEFECT PREDICTION

  • Macro and micro porosity
  • Gas porosity
  • Early solidification
  • Oxide formation
  • Surface defect analysis

VACUUM AND VENTING

  • Interactive probe placement
  • Area and loss coefficient calculator

MACRO AND MICRO POROSITY

  • Gas porosity
  • Early solidification
  • Oxide formation
  • Surface defect analysis

FILLING ACCURACY

  • Gas and bubble entrapment
  • Surface oxide calculation
  • RNG and LES turbulence models
  • Backpressure

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Continuous Casting Workspace, 연속주조

연속 주조 Workspace Highlights

  • 고급 모션 컨트롤에는 수직 빌릿, 수평 파이프 및 롤러 시트 캐스팅이 포함됨
  • 열 및 냉각 동적 제어는 타의 추종을 불허하는 열 관리 분석 제공
  • 유체의 완전한 시뮬레이션 – 고급 열 응력 해석을 통해 동작중의 고체 전환

Workspace Overview

Continuous Casting Workspace는 연속형 빌릿 주조 및 직접 냉간 연속 주조 등 일반적으로 사용되는 모든 주조 공장 공정을 시뮬레이션할 수 있는 사용하기 쉬운 도구를 지속적으로 주조 사용자에게 제공합니다. 새로운 Continuous Casting Workspace를 통해 사용자는 연속 주조 공정을 모델링하고 공정 파라미터를 최적화하는 데 필요한 도구를 찾을 수 있습니다.

멀티 블록 메쉬는 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 제공하는 효율적인 방법을 제공합니다. Mold 및 Billlet 냉각, 용해 유량, 과열 및 Mold 형상과 같은 공정 매개변수가 분석에 포함됩니다. 용탕 표면의 운동과 몰드의 온동은 후처리 중에 빠르게 시각화되며, 이 과정에서 충진 및 응고 패턴도 쉽게 평가되므로 공정 수정을 자신 있게 구현할 수 있습니다.

 

 

모델링된 프로세스

  • 연속 빌릿 및 시트 캐스팅
  • 직접 냉각 연속 주조

유연한 메시

  • 다중 블록 메시는 흐름과 온도 그라데이션을 캡처합니다.

열 금형 모델링

  • 난방 및 냉각 요소와 지역화 된 다이 가열 제어
  • 용융 및 금형에서 대류 및 복사 열 전달

고급 응고

  • 수축
  • 방향 응고

결함 예측

  • 다공성 예측
  • 실내 공기
  • 조기 응고
  • 산화물 형성

동적 시뮬레이션 제어

  • 흐름 역학에 따라 제어 부기

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

Centrifugal Casting Workspace, 원심주조

원심주조 워크 스페이스 하이라이트

  • 고급 모션 컨트롤을 통해 모든 스핀 조건의 정밀한 시뮬레이션
  • 수평 파이프 주조, 수직 보석 주조, 수직 대형 회전 등의 솔루션 제공
  • 응고 중 동적 스핀 속도 제어

작업 영역 개요

원심 주조 Workspace는 원심 주조 사용자에게 수평 및 수직 진정한 원심 주조, 부분 원심 주조 및 원심 주조 시뮬레이션을 위한 편리한 도구를 제공합니다. 새로운 원심 주조 Workspace를 사용하면 사용자가 프로세스를 모델링하고 설계 매개 변수를 최적화하는데 필요한 모든 도구를 찾을 수 있습니다. 금형을 고정시키고 회전하는 메쉬를 통해 사용자는 ladle 붓기를 포함하여 상상할 수 있는 모든 금형 모션을 모델링할 수 있는 유연성을 제공합니다.

원통형 메싱은 가능한 최고의 흐름 모델링 정확도를 제공하는 반면, 다중 블록 메싱은 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 위한 효율적인 방법을 제공합니다. 이 솔루션은 적합하지 않은 금형 회전 속도에 따라 비처럼 떨어지는 것과 같은 흐름 관련 문제, 공기 유입 또는 응고 부위의 재용해과 같은 결함을 예측합니다. 몰드 예열 온도, 냉각 구성 및 금형 회전률과 같은 프로세스 매개변수는 모두 모델 설정의 일부가 될 수 있습니다.

모델링된 프로세스

  • 수평 및 수직 진정한 원심 공정
  • 반원심 공정
  • 분리기

열 금형 모델링

  • 가열 요소와 지역화 다이 가열 제어
  • 대류 및 복사 열 전달

유연한 메시

  • 최고의 정확도를 위한 원통형 저술
  • 다중 블록 메시는 흐름과 온도 그라데이션을 캡처합니다.

충전 정확도

  • 용융 픽업 및 강우 예측
  • 가스/버블 함정
  • 표면 산화물 계산
  • RNG 및 레 난류 모델

금형 모션 제어

  • 수직 및 수평 회전
  • 가변 스핀 속도

국자 붓기

고급 응고

  • 수축
  • 방향 응고

결함 예측

  • 다공성 예측
  • 실내 공기
  • 조기 응고
  • 산화물 형성

동적 시뮬레이션 제어

  • 흐름 역학에 따라 제어 부기

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

샌드코어 만들기 시뮬레이션

샌드 코어는 복잡한 내부 구멍을 만드는데 사용되기 때문에 주조 공정에서 중요한 요소입니다. 예를 들어, 샌드 코어는 일반적인 V8 엔진 주조에서 물 냉각, 오일 윤활 및 공기 흐름을 위한 통로를 만드는데 사용됩니다. 샌드 코어가 어떻게 만들어지는지 궁금해한 적이 있습니까? 해변에서 모래성을 만드는데 사용되는 재료가 어떻게 뜨거운 금속이 흐르는 가혹한 조건을 견딜 수 있는 복잡한 형태로 만들어질 수 있을까요? 이 글은 샌드 코어가 어떻게 만들어지는지에 대한 과정을 안내하고 엔지니어가 제조 공정을 설계하는데 도움이 되는 FLOW-3D CAST v5.1의 모델링 도구를 설명합니다.

샌드 코어 만들기 프로세스 작업 공간

샌드 코어 제작을 모델링하기 위해 이러한 복잡한 흐름 역학에 대한 올바른 물리 모델을 선택하는 것은 어려울 수 있습니다. 샌드 코어 만들기 작업 공간은 수치해석을 위한 자동화된 설정을 제공하고, 적절한 물리 모델을 활성화하여 이 문제를 해결합니다. 콜드 박스, 핫 박스 및 무기(inorganic) 공정을 위한 하위 작업 공간은 사용자가 설정해야 하는 프로세스를 쉽게 안내합니다.

Sand Shooting

모든 샌드 코어의 출발점은 Shooting 과정입니다. Shooting 과정에서 공기, 샌드, 바인더의 혼합물은 고압하에서 공기 통풍구가 샌드로 인해 공기를 대체할 수 있도록 공동 주변에 전략적으로 배치된 코어 박스로 ” Shooting” 됩니다.

Sand Shooting

샌드 코어 Shooting의 주요 목표는 균일한 밀도로 샌드 코어를 만드는 것입니다. 샌드 입구의 위치와 공기 통풍구의 위치와 크기등 두 가지 설계 요소가 이 목표를 달성하는데 중요한 역할을 합니다. FLOW-3D CAST를 사용하여 샌드 혼합물의 흐름을 시뮬레이션하면 다른 입구와 공기 통풍구 구성을 연구할 수 있습니다.
이 비디오는 물 재킷 샌드 코어를 생성하기 위해 Shooting되는 2 % 바인더 첨가제H32 샌드의 충전 패턴을 보여줍니다. 일부 영역이 부족합니다.
환기구는 당사의 대화형 지오 메트리 배치 도구를 사용하여 문제 영역에 쉽고 정확하게 배치할 수 있습니다. 여기서 6mm공기 벤트( 빨간 색 화살표 참조)가 불완전한 주입이 관찰된 위치에 배치됩니다.

이 비디오는 에어 벤트가 추가된 지역의 주입 상태를 원래 결과와 비교하여 보여 줍니다. 이제 에어 벤트가 추가된 부위의 충전이 더욱 완료되었습니다. 더 많은 환기구를 추가하여 공급되지 않는 다른 영역을 처리할 수 있습니다.

코어 경화

통풍구 구성이 배치되고 Shooting이 균일한 샌드 분포를 제공하면 샌드 코어를 강화해야합니다. FLOW-3DCAST에서 세가지 다른 경화 방법을 시뮬레이션할 수 있습니다. 즉, 콜드 박스, 핫 박스 및 무기물입니다.

무기 공정에서 샌드 코어 건조

무기 코어를 생산하는데 사용되는 샌드 /바인더 혼합물은 물 기반입니다. 이를 경화시키기 위해 뜨거운 공기 제거와 함께 핫 코어 박스의 에너지가 물을 증발시키고 공기 통풍구를 통해 코어에서 수행합니다. 이 비디오에서는, 2%의 물을 함유한 샌드/바인더 혼합물을 함유한 흡기 매니폴드 샌드 코어 샷은 뜨거운(180C) 공기 제거에 의해 건조됩니다. 파란색 영역은 샌드 코어에 남아 있는 물을 나타냅니다. 통풍구는 회색으로 표시됩니다. 150초의 건조 후, 수분은 가장 많은 환기가 발생하는 영역으로 계속 밀려나고 있습니다.

핫 박스 프로세스에서 코어 강화

핫 박스 공정에서 Shooting한 샌드 코어는 코어 박스의 에너지를 사용하여 바인더를 수정합니다. 이 비디오는 온수 코어 상자에 의해 가열될 때 샌드 코어의 온도 분포를 보여줍니다.

경화 단계를 시뮬레이션하면 샷 샌드 코어의 온도 분포를 결정하고 코어의 모든 영역이 충분히 가열되어 경화되도록 하는데 필요한 시간을 식별할 수 있습니다.

콜드 박스 공정에서 샌드 코어를 가스링

콜드 박스 공정에서 Shooting한 샌드 코어를 생산하는데 사용되는 바인더에는 페놀 우레탄 수지가 포함되어 있습니다. 이러한 코어를 강화하고 주조 공정에서 흐르는 뜨거운 금속을 견딜 수 있는데 필요한 강도를 주기 위해 촉매(이 경우 아민 가스)를 운반하는 뜨거운 공기가 코어를 제거하는데 사용됩니다. 뜨거운 공기/아민 가스 혼합물은 입구를 통해 도입되고 Shooting 단계에서 사용된 공기 통풍구를 통해 코어 박스를 남깁니다.

이 비디오는 내연 기관의 워터 재킷인 다공성 샷 샌드 코어를 통해 아민 가스의 진화를 보여줍니다.

FLOW-3D CAST v5.1을 통해 샌드 코어 제조업체는 코어품질을 최적화하기 위해 샌드 코어 제작 프로세스를 모델링하는데 필요한 도구를 가지고 있습니다. 샌드 코어 만들기 작업 공간에대해 자세히 알아보세요.

Principal CFD Engineer at Flow Science

Permanent Mold Workspace | FLOW-3D CAST

영구 금형 주조의 장점

  • 높은 생산률에 적합
  • 모래에 비해 복잡한 금형에 용이하고 표면 조도 및 치수 정확도가 높음
  • 재료 보존으로 인한 수율 향상 및 금형 관련 결함 발생이 감소

영구 금형의 workflow


재료와 구성요소의 선택

  • 모든 금속 & 주형의 재질은 사용자로부터 제작될 수 있음.
  • 재질의 데이터는 갖추어짐.

CAD → MESH

  • FLOW-3D CAST는 사용자가 만든 stl파일에 알맞게 쉽고 자동으로 격자를 생성해줌.
  • FAVOR = Fractional Area-Volume Obstacle Representation
  • 격자의 성질의 조정없이 빠르고 쉽게 새로운 모형을 업로드

응고 모델


출력 선택 & 후처리 과정

  • 정확한 출력 변수를 정의
  • FlowSight로 고품질의 시각적 데이터를 쉽게 렌더링

Fluid dynamics modelling for additive manufacturing

페이지 편집

Switch to draft
미리보기(새탭에서 열기)
업데이트

코드 편집 중
코드 에디터 나가기
제목 추가
Fluid dynamics modelling for additive manufacturing
텍스트 또는 HTML 입력

AM프로세스에 CFD를 사용해야하는 이유

  • AM의 용융 풀(Melt pool) 분해능(0.01 – 0.001mm 길이 스케일)에서 유체 흐름을 정확하게 표현
    – 파우더 페드 퍼짐(Powder bed spreading) : DEM(Discrete Element Method)을 통해 파우더 베드 압축 및 흡수 특성을 예측하는데 도움
    – 선택적 레이저 용해 : 결함 설계 공간 및 용융 풀(Melt pooe) 형상 매핑 및 예측
    – 빠른 응고(Solidification) : 구성 분리 및 위상 핵(Phase nucleation) 형성 및 예측

파우더 증착 및 레이저 용융(Powder deposition and laser melting)

  • 모델 입력 : 파우더 크기 분포, 합금 재료 특성 및 레이저 공정 매개 변수
  • 모델 출력 : 가열/냉각 프로파일, 결함 밀도, 조성 변화

연속 및 펄스 레이저 용융

  • Takeaway : 두 매개 변수 세트 모두 고밀도 재료를 생산하지만 열 이력(History)은 상당히 다름

모델 정확도 및 검증

NiTi, Ti64 및 316L에서 수행된 모델 검증

용융 풀(Melt pool) 형태 및 키홀링(Keyholing)

공정 공간에서 열분해에 대한 경향

패널 토글: All In One SEO Pack
메인 설정소셜 설정
Help
프로 버전으로 업그레이드 하기
스니펫 미리보기
Fluid dynamics modelling for additive manufacturing | FLOW-3D
/fluid-dynamics-modelling-for-additive-manufacturing/
타이틀
Fluid dynamics modelling for additive manufacturing

61
문자. 대부분의 검색 엔진은 60의 최대 타이틀 문자를 사용합니다.
설명

0
문자. 대부분의 검색 엔진은 160의 최대 설명 문자를 사용합니다.
키워드 (쉼표로 분리)
사용자 정의 대표(canonical) URL
NOINDEX이 페이지/게시물

NOFOLLOW 페이지/게시물

사이트 맵에서 제외

Sitemap Priority

오버라이드 안 함
Upgrade to Pro to unlock this feature.
Sitemap Frequency

오버라이드 안 함
페이지/포스트에 비활성화

패널 토글: EME Membership
Limit access to EME members of

Allow access after the membership has been active for this many days (drip content):
0

Access denied message
No templates defined yet!

The format of the text shown if access to the page is denied. If left empty, a default message will be shown.

패널 토글: Suggested tags
Choose a provider to get suggested tags (local, yahoo or tag the net).
패널 토글: Click tags
Display click tags
문서
블럭

Status & visibility
가시성
공개
공개
2020-04-01 9:17 오전
글쓴이

관리자
휴지통으로 이동

고유주소
URL 슬러그
fluid-dynamics-modelling-for-additive-manufacturing
URL의 마지막 부분 고유주소에 대해 읽기(새탭에서 열기)

페이지 보기

:443/fluid-dynamics-modelling-for-additive-manufacturing/(새탭에서 열기)

카테고리
TechnicalNote
Slide
Uncategorized
공지사항
물리모델 매뉴얼
이론 매뉴얼
새 카테고리 추가

Featured image

이미지 교체특성 이미지 제거

요약

토론

페이지 속성
패널 토글: Sidebars – Quick Select
우측 사이드바
3D 프린팅 / 적층제조 SidebarCFD-101 SidebarFLOW-3D Cast SidebarFLOW-3D SidebarFLOW-3D 기술자료 SidebarFLOW-3D 물리모델 적용사례 SidebarFLOW-3D 해석예제 SidebarFLOW-3D/MP SidebarFlowsight SidebarLaser Welding SidebarMEMS Sidebar공지사항교육안내 Sidebar구매 문의구매문의 Sidebar기술자료 Sidebar논문자료 Sidebar뉴스레터 Sidebar물리모델 매뉴얼 Sidebar바이오분야 Sidebar분야별적용사례 Sidebar수자원분야 Sidebar수처리분야 Sidebar에너지분야 Sidebar이론 매뉴얼 Sidebar자동차분야 Sidebar전용프로그램개발 Sidebar제품소개 Sidebar조선해양분야 Applications주조분야 Sidebar코팅분야 Sidebar항공분야 Sidebar해석용 컴퓨터 sidebar해석컨설팅/용역 SidebarType to Add New Sidebar
좌측 사이드바
Type to Add New Sidebar
헤더 사이드바
Type to Add New Sidebar

Note: Selected Sidebars are displayed on this 페이지 specifically.Display sidebars per 글쓴이, child page, page template etc. with the Sidebar Manager.

패널 토글: Tags (Simple Tags)
Separate tags with commas

패널 토글: Simple Tags – Settings
패널 토글: Hide Featured Image?
Yes No
패널 토글: 레이아웃 선택
기본 레이아웃
우측 사이드바
좌측 사이드바
사이드바 없는 전체 폭
사이드바 없는 콘텐츠 중앙
No Sidebar Content Stretched
공개하기 패널 열기

정밀주조품의 수축 결함 예측

정밀 주조품의 수축 결함 예측

정밀 주조 공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품(왁스)패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.

정밀 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했습니다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였습니다.

오늘날 정밀 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.

정밀 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.

  • 왁스 패턴 생성 후, 패턴 클러스터 또는 ‘트리’를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
  • 나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
  • 용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
  • 마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.

Figure 1. Solid model of the casting geometry

정밀 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 정밀 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.

이 연구의 주요 목적은 정밀 주조 공정에서 주요 요소인 복사 열 전달과 정밀 주조 공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 정밀 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.

Shell mold

Figure 2. Shell mold

Methodology

현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.

  • complement 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
  • “complement”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
  • 솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
  • 솔리드 특성 GUI의 구성 요소 특성에서 “Thermal penetration depth”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
  • 이제 전처리기를 실행하십시오.
  • Analyze 탭>3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “thermally active component volume”을 선택하고 “Render”을 선택하십시오.
  • Display에 이제 형상의 셸 부분 만 표시됩니다.
  • 개체 목록 (창의 왼쪽 하단)에서 “component 1″을 선택하고 “component 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.
Two mesh blocks

Figure 3. The view of the two mesh blocks for the creation of a void with discretization

쉘 몰드 용 STL 파일을 만든 후에, 이 파일을 component 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘heat transfer type 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. heat transfer type 1은 방사선을 포함한 종합 열 전달 계수가 됩니다.
쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.

MATERIAL PROPERTY VALUE UNIT
Fluid –AluminiumA356 alloy Density  2437 kg/m³
Thermal conductivity 116.8 W/(m K)
Specific heat 1074 J/(kg K)
Latent heat 433.22 kJ/m³
Liquidus temperature 608 0C
Solidus temperature 552.4 0C
Zircon Mold Thermal conductivity 1.09 W/(m K)
Specific heat* Density 1.63E+06 J/( m³ 

Initial and boundary conditions used are show in Table 2.

Mold temperature 430°C
Melt pouring temperature 680°C
Filling time 7 s
Interface heat transfer coefficient 850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect) 30 -100 W/m2K

Table 2. Initial and boundary conditions used for the simulation

Sprue basin에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.

Results & Discussion

Validation with reported experimental results

Experimental and numerical comparison

충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다.
온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. probe points C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.

Fill sequence & solidification pattern for two different sprue locations

2 개의 상이한 탕구 위치에서 용탕 충전 순서는 5a 및 5b에 나와 있습니다. 최종 탕구가 더 많은 splashing을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.

Fill sequence at different time intervals when the sprue is located at one end
Figure 5a. Fill sequence at different time intervals when the sprue is located at one end

 

Fill sequence at different time intervals when the sprue is located in the middle
Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle

2D temperature profile after 50% solidification when the sprue is located at one end
Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end
2D temperature profile after 50% solidification when the sprue is located in the middle
Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle
Effect of shell thickness

정밀 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.

Effect of shell heat transfer coefficient

쉘 열 전달 계수는 열이 쉘 몰드의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.

Temperature profile 1
Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values
Temperature profile 2
Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values
Temperature profile at location C1
Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient
Temperature profile at location S11
Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Conclusions

정밀 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.

  • FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
  • 쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
  • 쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.

References

Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.

Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting ProcessTransactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.

Detecting Porosity with the Core Gas Model

Detecting Porosity with the Core Gas Model

Producing High Quality Castings

 

Results options such as core gas flux, binder weight fraction and out-gassing rate can be analyzed using the core gas model

주조공장의 첫 번째 시험에서 주조 품질을 보장하기 위해 많은 선행 엔지니어링을 수행해야 합니다. 최근에는 금속 흐름, 응고, 미세 구조 진화 및 잔류 응력을 모델링하기 위한 수치 도구가 보편화되었습니다. 그러나 아직 완전히 다루어지지 않은 주조 결함 중 하나는 일반적인 코어 가스 불량 결함입니다. 이 문제의 물리학은 금속, 코어 및 바인더 사이의 복잡한 상호 작용을 포함합니다. 이를 해결하지 않으면 고철 수준이 높아질 수 있습니다. 대부분의 문제는 고온의 주입 온도를 사용하고 영향을 받는 영역에 벽체를 추가하여 문제를 관리하지만 완전히 해결할 수는 없습니다.

Designing the Optimum Break-Down

과거에는 재료 및 주조 엔지니어가 코어 가스 버블로 인해 다공성 결함 문제를 발견했을 경우 바인더 함량을 줄이거나 코어 환기량을 늘리거나 코어 환기 시간을 늘리거나 코어를 미리 굽거나 하는 등 일련의 표준 문제를 해결할 수 있었습니다. 가스가 따라가는 경로를 보는 것은 불가능했기 때문에 이것은 한 부분을 완성하는 데 수주가 걸리는 긴 인출 과정이었습니다. 그리고 다른 부분에 문제가 있을 때마다 반복해야 했습니다.

이 가공 일정을 단축해야 하는 시장 중심의 필요성 때문에 주조 시뮬레이션 소프트웨어가 개발되었습니다. 설계 및 제조에 모두 유용한 컴퓨터 기반 모델링을 통해 엔지니어는 실제 비용을 낭비 없이 다양한 접근 방식을 테스트 할 수 있습니다. 주조 공장이 환기 설계에 시뮬레이션을 적용 할 수 있도록 Flow Science는 주조 해석 기능에 핵심 가스 모델을 추가했습니다.

GM engine block water jacket, showing binder weight fraction

Applying CFD Methods to Core Gas Flow

수지 기반 바인더의 화학적 복잡성으로 인해 샌드 코어 열 차단 후 가스가 어디서 어떻게 흐르는 지 이해하는 것은 복잡합니다. 그러나 Flow Science는 여러 그룹과 협력하여 실험 데이터를 얻고 이를 수치 모델의 결과와 비교합니다. 이 회사는 General Motors, Graham-White Manufacturing 및 AlchemCast의 핵심 가스 유량 정보를 수집하여 알루미늄, 철 및 강철과 함께 사용되는 모래 수지 코어에 대한 실제 데이터를 얻었습니다.

GM Powertrain의 캐스팅 분석 엔지니어 인 David Goettsch 박사는 금속 주조물의 충진 및 응고 분석을 위해 15 년 동안 FLOW-3D를 사용했습니다. 새로운 코어 가스 모델은 설계 단계에서 자켓 코어 배출을 최적화하는 데 매우 유용합니다. 모든 요구 사항이 핵심 인화물에 있는 코어 박스에 vent tracks를 구현하기는 매우 어렵습니다.  “핵심 가스 배출에 대한 선행 분석 작업을 통해 시동 시 높은 스크랩률로 부터 벗어날 수 있습니다.”라고 그는 설명합니다. “아마도 프로세스 변경으로 문제가 해결 될 수 있습니다. 그러나 그 시점에 도달하려면 오랜 테스트 기간이 필요할 수 있습니다. “

현재 FLOW-3D에서 사용할 수 있는 코어 가스 모델을 통해 Goettsch는 다양한 삽입 및 배출 위치를 시도하고 글로벌 진단을 받을 수 있습니다. 가스가 얼마나 많이 발생하는지, 어디로 가는지, 금속 프런트가 따라 잡기 전에 얼마만큼 빠져 나오는지 확인하십시오.

Multi-Core Challenges

Core prints for casting with internal geometries

GM Powertrain jacket slab assembly

또 다른 노련한 주조공장 엔지니어인 Graham-White Manufacturing Co.의 Elizabeth Ryder는 가스 다공성은 항상 조사하기가 어려웠다고 주장했다. 그녀는 “특히 다중 코어의 경우, 어떤 코어가 문제의 원인인지 정확하게 찾아 내기가 어려웠으며 전체적인 시스템을 처리 하려고 했습니다. “

1700개의 부품으로 구성된 지속적인 생산으로, 그 중 일부는 연간 10,000개의 부품으로 구성되었으며, Graham-White는 시뮬레이션을 통해 제조 공정을 개선하는 데 매우 익숙했습니다.

Graham-White는 레이저 스캐닝으로 제작한 회주철 부품(약 3 x 4in)의 3D 모델로 작업하면서 평가를 위해 현재 vent 디자인을 제공했습니다. 이 탕구 디자인은 수평으로 분할된 금형에서 패턴 플레이트당 4개의 인상이 포함되었으며, 각 인상은 각 코어에 대한 vent가 있습니다. 중앙 sprue는 2 초 이내에 각각의 몰드를 충진할 수 있게 해주었습니다.

FLOW-3D를 이용한 시뮬레이션은 주입률을 확인시켜 주었지만, 또한 한 코어의 배출량이 충분하지 않다는 것을 보여주었다. Graham-White는 기존 분출구를 통해 가스를 더 많이 공급할 수 있도록 코어에 깊은 구멍을 뚫기 시작했습니다. 새로운 vent 디자인으로 전환한 이후, 회사는 코어 블로우 스크랩을 약 30% 감소 시켰습니다.

Ryder는 FLOW-3D 결과가 디자인 초점을 결정하는데 도움을 주었고, 어떤 코어 (멀티 코어 디자인)가 문제였는지, 코어의 어느 부분이 문제의 근원인지에 대해 파악할 수 있었습니다.

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast>

냉각 및 공급 시스템 설계 / Cooling and Feeding System Design

캐비티 또는 다공성 결함은 일반적으로 마지막 냉각 지점에서 발생됩니다. 라이저는 일반적으로 주조물이 응고 될 때 용융 금속을 주물에 제공하여 이러한 결함을 방지하는 데 사용됩니다. 그러나 라이저(risers)가 효과적이려면 수축을 보상하기에 충분한 재료를 포함 할 수 있도록 적절한 크기로 올바른 위치에 배치해야합니다. FLOW-3D에서 캐스터가 결함이 없는 주물을 위한 냉각 및 공급 시스템을 설계할 수 있도록 도와 주는 두가지 새로운 도구가 개발되었습니다. 즉, 마지막으로 동결할 장소의 예측과 열 계수의 계산입니다.

마지막으로 냉각할 위치 / Last Places to Freeze

주조물 내에서 마지막으로 냉각되고 수축 다공성 결함이 발생할 가능성이 높은 직접 표시 위치. 이러한 장소들은 고체 부분의 진행이나 응고 시간으로부터 파생될 수 있지만, 그것들을 시각화하는 좀 더 직접적인 방법이 항상 선호된다.

그림 2. 핫스팟 입자를 포함하는 액체 부피의 진행 예시 : t3> t2> t1.
그림 1. 핫스팟 입자는 바로 이웃이 고체가 된 후 응고 될 때 셀의 중앙에 삽입됩니다.Hot spot particle그림 2. 핫스팟 입자를 포함하는 액체 부피의 진화 예시 : t3> t2> t1.

특수한 유형의 고정 입자가 “핫 스폿”이라고 하는 가장 최근의 자유로운 위치를 식별하고 시각화하는 데 사용됩니다. 이 출력은 응고 모델이 사용될 때 자동으로 생성됩니다. 핫 스폿 입자는 그림 1에서 도해로 나타난 것처럼 모든 인접 요소가 고체가 된 후 응고될 때 셀에 삽입됩니다.

이러한 입자는 자유로운 마지막 위치를 식별하는것 외에도 이러한 위치에서 수축 다공성 결함의 가능성과 크기, 즉 셀 응고 시간, 핫 스폿 ID및 핫 스폿 크기를 결정하는 데 사용할 수 있는 다른 속성을 가지고 있습니다. 셀 응고 시간은 셀 이 응고되는 시간입니다. 핫 스폿 ID는 핫 스폿이 응고되는 순서를 보여 줍니다(1은 첫번째, 2는 두번째 등). 마지막으로, 핫 스폿 크기는 다음 등식으로 계산된다.

hsm (i) 는 입자 i의 핫스팟 크기입니다 .
t 0 은 입자의 위치에서 셀 응고 시간입니다.
ν liq (t) 는 시간 t

그림 2는 연결된 액체 영역 부피가 입자 i 의 시간 함수로 어떻게 변하는 지 보여줍니다 . 계산 된 양은 모든 핫스팟 크기의 값을 0과 1 사이의 범위로 가져 오도록 정규화됩니다. 이는 다공성 형성에 대한 잠재적 인 영향과 관련하여 주조 내 여러 핫스팟의 간단한 비교 분석을 허용합니다. 값이 높을수록 응고 중에 연결된 액체 영역이 더 커졌으며 마지막 동결 위치에서 수축 다공성 결함이있을 가능성이 더 큽니다.

열 모듈러스 방법 / The Thermal Modulus Method

열 계수 법은 특히 알루미늄 합금 및 강철 주조물의 경우 일반적인 라이저 설계에 가장 많이 사용되는 방법 중 하나입니다. 주어진 주물 부품의 경우 그 계수는 다음과 같이 정의됩니다.

, 여기서:

V는 주조 부품의 체적이고,

A은(는)주물 부품의 표면적입니다.

주물의 기하학적 계수는 구 또는 블록과 같은 일반적인 형상에 대해 계산하기 쉽습니다. 이보다 더 복잡한 작업에는 일반적인 모양에 따라 주조 섹션을 지루하게 근사치를 계산해야 합니다. 또한 기하학적 계수 접근 방식은 주물의 기하학적 구조에 전적으로 의존합니다. 실제 주조물은 한기 및 절연체를 사용하여 응고 진행을 제어합니다. 이러한 특성은 기하학적 계수 접근 방식에서 무시된다. 계수 계산을 자동화하고 냉각, 단열 및 기타 몰드 변화와 관련된 열 효과를 고려하기 위해 라이저 설계에 흔히 열 계수라는 혁신적인 접근 방식이 사용됩니다.

열 계수 접근 방식의 경우 먼저 주물의 응고 시뮬레이션을 실행합니다. 시뮬레이션이 완료되면, Chvorinov의 규칙에 따른 응고 시간으로부터 주물 전체에 해당하는 계수를 계산할 수 있습니다. 이 방법을 사용하여 계산된 등가 계수를 열 계수라고 합니다. 라이저 설계를 안내하기 위해 기하학적 계수와 동일한 방법으로 사용할 수 있다.

Chvorinov의 규칙은 응고 시간 사이의 관계를 제공하며, 그 계수는 다음과 같이 기록될 수 있다.

, 여기서:

  • t는 주조 응고 시간입니다.
  • N은 상수(일반적으로 2와 같음)입니다.
  • B는 금형의 상수입니다. 다음 공식을 사용하여 계산할 수 있습니다.

, 여기서:

  • mρρ는 금속의 밀도이고,
  • mT는 금속의 용해 또는 동결 온도입니다.
  • 0TT는 금형의 초기 온도입니다.
  • k는 주형의 열 전도율입니다.
  • ρ는 주형의 밀도입니다.
  • c는 곰팡이의 특정한 열이다.
  • L은 금속의 융해열이다.
  • mcc는 금속의 특정한 열이며,
  • pourTT는 금속 주입 온도이다.

일반적으로 주조 공정을 설계할 때 라이저의 응고 시간이 인접한 주조 섹션의 응고 시간보다 긴 방식으로 라이저를 선택하여 적절한 이송을 할 수 있습니다. Chvorinov의 규칙에 따르면 응고 시간은 주물의 계수에 정비례합니다. 따라서 응고 시간을 비교할 때 모듈을 직접 비교할 수 있습니다. 모듈은 기하학적인 양에 불과하기 때문에 모듈의 비교는 설계 작업을 훨씬 더 단순하게 만든다. 금속 주조 엔지니어는 실제 주조 공정의 구체적인 내용을 고려하지 않고도 보다 큰 계수로 압탕을 설계하여 부품을 적절하게 이송할 수 있습니다.

냉방 및 공급 시스템 설계를 위한 새로운 도구의 적용

예를 들어, 새로운 공구를 사용하는 증기 터빈 실린더의 절반에 대한 중력 주조를 위한 냉각 및 공급 시스템 설계가 유량 과학 중국에 의해 제공되고 이 절에서 논의된다. 부품의 외부 치수는 2.83×2.34×1.10 m이며, 총 용적은 아래와 같이 약 0.95입방 미터이다. 주조 재료는 탄소강이며 주입 온도는 1530°C이다.

Casting part geometry
그림 3. 주물 부품 지오 메트리

첫째, 냉각 장치와 라이저가 없는 주물의 응고 시뮬레이션을 실행합니다. 그 목적은 뜨거운 스폿 위치를 식별하고 한기와 라이저의 위치와 라이저의 크기를 결정하는 것이다. 이 두가지 새로운 공구는 냉기와 라이저 설계를 개선하는데 사용됩니다.

마지막으로 입자를 동결하는 장소는 셀 응고 시간, 입자 ID및 핫 스폿 크기로 각각 색상이 지정된 다음 그림에 표시됩니다. 핫 스폿 위치와 수축 다공성 결함이 발생할 가능성은 이러한 그림에서 직접 확인할 수 있습니다. 주조물의 기하학적 특성에 따라 라이저 배치 위치는 그림. 4의 마지막 프레임에서 볼 수 있듯이 쉽게 결정할 수 있습니다. 단, 바닥 껍질에는 라이저 배치에 적합하지 않은 몇개의 핫 스폿이 있습니다. 이러한 위치에서 수축 다공성 결함을 방지하기 위해 한기를 사용하여 응고 패턴을 변경하고 라이저 영역에 마지막으로 동결하는 위치를 구동할 수 있습니다.

Hot spot locations
그림 4. 핫 스폿 위치는 세가지 속성(왼쪽 위에서 시계 방향)으로 색상이 지정됩니다. 핫 스폿 응고 시간, 입자 ID및 핫 스폿 크기.

열 모듈 계산

계산된 열 계수는 오른쪽에 표시되어 있습니다. 값이 클수록 마지막으로 고정할 위치와 일치합니다. 또한 열 계수를 사용하여 핫 스폿 위치의 라이저 크기를 결정할 수 있습니다.

일단 한기와 라이저가 결정되면 냉각제와 라이저를 사용한 두번째 응고 시뮬레이션을 실행하여 냉각제와 라이저 설계를 검증한다. 핫 스폿 크기로 채색된 마지막 자유형 입자와 열 계수는 그림. 6과 같다. 한기가 마지막 부분을 성공적으로 운전하여 라이저 부위를 얼리는 것을 볼 수 있다. 하지만, 라이저 아래에는 여전히 위험한 핫 스폿이 있다. 실제로 실제 주조물은 아래 그림과 같이 핫 스폿 입자로 식별된 위치에서 수축 다공성 결함을 보여 줍니다.

Calculated thermal modulus
그림 5. 계산된 열 계수

마지막으로 동결할 장소는 라이저가 아니라 주조물에 있습니다. 이는 라이저 위치와 크기가 올바르게 결정되더라도 주물이 라이저 쪽으로 방향성 있게 응고되지 않도록 응고 패턴이 올바르지 않음을 나타냅니다. 한가지 해결책은 발열체 슬리브를 사용하여 응고 패턴을 수정하는 것이다. 이것은 이 글의 범위를 벗어나므로 더 이상의 논의는 없을 것이다.

Cooling and feeding system design
그림 6. 핫 스폿 위치(상단 좌측), 단열 계수(상단 오른쪽)는 계측된 주조물로 계산되며 수축 결함의 관측된 위치입니다.

결론

금속 공학자들이 결함이 없는 주물을 위한 냉각 및 공급 시스템을 설계하는 데 도움이 되도록 FLOW-3DCAST5.0에서 두개의 새로운 공구가 개발되었습니다:마지막으로 동결할 장소와 열 계수의 계산입니다. 수축 다공성 결함이 발생할 가능성이 높은 곳은 마지막으로 동결할 장소입니다. 이들은 한기와 라이저가 위치해야 하는 위치를 나타냅니다. 열 계수는 냉기와 라이저 위치를 결정하는 데도 사용할 수 있습니다. 또한 라이저 크기를 결정하는 데 사용할 수 있습니다.

이 비디오는 벽 온도에 의해 색칠 된 금형을 통해 10 사이클을 보여줍니다. 슬라이스는 첫 번째 단계에서 코어 냉각 채널을 표시하고 한 단계에서 다른 단계에서 꺼지는 것을 표시하도록 선택되었습니다.

Home

FLOW-3D 는 세계에서 가장 어려운 CFD문제를 해결하는 소프트웨어로, 3차원 자유표면 해석 분야에서 널리 사용되는 최적의 수치해석 소프트웨어 입니다. 특히 자유표면(자유수면)을 가진 유동흐름을 정확하게 예측하는 분야에서는 타의 추종을 불허하는 정확성을 자랑합니다.

FLOW-3D 는 핵폭탄 개발 프로젝트로 유명한 미국 국립 연구소 LANL(LosAlamos National Laboratory)의 허트(C. W. Hirt) 박사가 새로운 자유표면 추적기법(free surface tracking method)인 VOF(Volume ofFluid) 방법을 연구 개발한 후, 수 많은 유동현상에 대한 물리 모델을 추가하고 성능을 개선하여, 설계 및 운영단계에서 사용되면서 엔지니어에게 귀중한 통찰력을 제공하는 세계적인 CFD 소프트웨어 입니다.

FLOW-3D 는 정확한 자유표면 추적, 압축성/비압축성 유동, 층류/난류, 열전달(전도, 대류, 복사), 점성발열, 상변화(응고,증발)/공동현상, 표면장력, 다상유동, 물질확산, 자연대류/밀도류, 뉴턴/비뉴턴유체, 틱소트로피, 다공성매질, 가속도계/관성계, 입자추적, 전기섭동/전기삼투압/주울발열, 열모세관현상 등 수많은 물리 모델을 제공합니다.

수치해석과 관련하여 궁금하신 사항은 언제든지 부담없이 문의 해주십시오.
감사합니다.

 

FLOW-3D Product FLOW-3D HPC
FLOW-3D 는 당사의 주력 제품으로 강력하고 매우 정확한 다중 물리 전산 유체역학(CFD) 패키지 프로그램…
Read More >>
FLOW-3D HPC 는 매우 큰 영역 또는 긴 runtime 문제를 해결하기 위해 고성능 컴퓨팅을 사용할 수…
Read More >>
FLOW-3D Cast 는 다양한 주조 공정의 충전 및 응고, 결함 분포 예측이 가능한 3차원 유동해석 프로그램…
Read More >>
FLOW-3D 제품에 대한 기술자료와 이론 및 논문 등 다양한 기술자료를 제공합…

Read More >>

신규소식 기술자료
T-joint Weld

T-joint Weld

시뮬레이션 사례 설명 T 조인트 용접은 두 개의 재료 조각을 서로 수직으로 놓고 용접할 때 생성됩니다. 이 예제는 펄스 레이저로 인한 알루미늄 합금 두 조각 사이의 용접 결과를 보여줍니다. 이 ...
자세한 내용 보기

연료 탱크 슬로싱

시뮬레이션 사례 설명 이 예는 제트 전투기 연료 탱크 내 연료 슬로싱을 나타냅니다. 이 시뮬레이션을 통해 엔지니어는 탱크 내 연료 모션을 제어하는 배플의 성능을 평가하고 적절한 제어 시스템을 설계할 수 ...
자세한 내용 보기

FLOW-3D HYDRO Conveyance Infrastructure

FLOW-3D & computational fluid dynamics for civil engineering Conveyance systems TunnelsOverflowsHydraulic controlsGatesWeirsOrificeDrop structuresFlow splittingOpen channel conveyancePumpsFlap gates (moving objects)Air flow / air supplyEntrained air (entrainment, evolution, drift flux, buoyancy, bulking, ...
자세한 내용 보기

FLOW-3D HYDRO- Dams & Spillways

Dams & spillways Long history of success Government regulatorsHydro-power utilitiesEngineering consultantsHydraulics laboratoriesCFD consultantsAcademia Dams & spillways •Wide range of applications •Wide range of flow conditions: –Open channel –Pressurized –Mixed •Wide ...
자세한 내용 보기

FLOW-3D HYDRO – The Complete CFD Solution for the Water & Environmental Industry

물 및 환경 산업을 위한 완벽한 CFD 솔루션인 FLOW-3D HYDRO의 신제품 출시를 알립니다. Santa Fe, NM, 2020년 10월 29일 – Flow Science는 토목 및 환경 엔지니어링 산업을 위한 완벽한 CFD ...
자세한 내용 보기

FLOW-3D HYDRO

FLOW-3D HYDRO 제품 개요 최근 FLOW Science, Inc에서는 토목 및 환경 엔지니어링 산업을위한 완벽한 CFD 모델링 솔루션인 FLOW-3D HYDRO 제품을 출시했습니다. 기존 FLOW-3D 사용자이거나 유압 엔지니어링 관행에 CFD 모델링 기능을 ...
자세한 내용 보기

FLOW-3D Glossary

FLOW-3D 용어 사전 / 용어 설명 FLOW-3D 용어 사전 / 용어 설명 Drift Flux 드리프트 모델은 밀도가 서로 다른 두 혼합 유체 구성 요소의 상대적 흐름을 설명합니다. 구성 요소는 상이 ...
자세한 내용 보기

레이저 용접 수치해석 (FLOW-3D WELD)

레이저 용접 수치해석 (FLOW-3D WELD) FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 ...
자세한 내용 보기
컴팩트 디스크 ELISA 칩 [2]

컴팩트 디스크 미세 유체 장치: Optimizing Real Estate

Compact Disc Microfluidic Devices: Optimizing Real Estate 미세 유체 장치 사용자의 증가하는 기대를 충족하려면 작은 미세 유체 장치에서 제한된 공간을 최적화하는 것이 중요합니다. 사용자는 단일 미세 유체 장치에서 최대의 기능과 여러 ...
자세한 내용 보기
World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021 FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 ...
자세한 내용 보기
벨기에 Zele에서 나온 WWTP의 개략도

활성화 된 슬러지 모델링

Activated Sludge Model 폐수 처리 플랜트 (WWTP) 내부의 생화학 적 반응 및 유체 역학에 대한 자세한 이해는 설계자와 엔지니어가 새로운 플랜트 설계를 평가하고, 관리 결정을 정량화하고, 새로운 제어 계획을 개발하고, ...
자세한 내용 보기
Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

연속 잉크젯 인쇄

Continuous Inkjets 연속 잉크젯 인쇄는 약 150 년 동안 축적 된 기술입니다. 간단히 말해, 프린트 헤드가 작동하면 연속적인 유체 흐름이있는 액적 생성 방법입니다. 이 개념은 1867 년 Lord Kelvin에 의해 처음 특허를 ...
자세한 내용 보기
Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

중력을 사용한 미세 유체 입자 분류

Microfluidics Particle Sorting Using Gravity 미세 유체 입자 분류는 진단, 화학적 및 생물학적 분석, 식품 및 화학 처리, 환경 평가에 적용됩니다. 이전 블로그에서 유체 역학을 사용한 미세 유체 입자 분류에 대해 이야기했습니다 . 같은 주제를 ...
자세한 내용 보기
중간 단계, 땅은 여전히 ​​대부분 물에 젖은 상태임

폭우에 따른 홍수 시뮬레이션

Flash Flood Simulation 최근에는 우리나라에서도 국지성 폭우가 빈발하고, 기상 이변에 따라 단시간의 폭우에 의해 돌발 홍수가 발생하고 있습니다. FLOW-3D를 이용한 수치해석으로 홍수 발생시 주요 피해지역이 어떻게 분포될지, 상류피해 영역과 하류피해 ...
자세한 내용 보기

바람이 개방형 철광석 골재 저장소에 미치는 영향 분석 (비산먼지 배출 방지 연구)

다양한 구성에 대한 비산 먼지 배출 이 기사는 Dhananjay Sharma, EI, CFM, 유압 모델링 엔지니어, AECOM 에 의해 기고되었습니다 . 바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 ...
자세한 내용 보기

코어 가스(Core Gas)

코어 가스(Core Gas)   코어로 주조 모델링 (Modeling Castings with Cores) 모래 속의 화학 결합제는 용융 된 금속에 의해 가열 될 때 가스를 생성 할 수 있으며 적절하게 환기되지 않으면 ...
자세한 내용 보기
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. LockAdvanced Analysis, Worley Pty LimitedL7, 116 Miller Street, North Sydney, NSW 2060 AustraliaTel: +61 2 8923 6817 ...
자세한 내용 보기

2 Fluid, 2 Temperature 모델

2 Fluid, 2 Temperature 모델 우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 액체 및 기체 상태 모델링이 필요합니다. 이러한 시스템에 유체 계면이 ...
자세한 내용 보기

FLOW-3D 해석용컴퓨터 선택 가이드

Hardware Selection for FLOW-3D Products - FLOW-3D 2020-09-08 업데이트 / ㈜에스티아이씨앤디 솔루션사업부 In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ...
자세한 내용 보기
 

Sand Core Making / 모래 코어 제작

Sand Core Making / 모래 코어 제작

This article on sand core making was contributed by Dr. Matthias Todte and Frieder Semler, Flow Science Deutschland GmbH.

주조 품질에 대한 수요가 증가하고 고성능 구성 요소에 대한 박막형 구조로의 추세로 인해 품질에 대한 요구가 강화되었으며 동시에 모래 코어의 기하학적 복잡성도 증가했습니다. 시뮬레이션은 코어 박스의 설계를 최적화하는 데 도움이 되며, 저온 및 고온 코어 박스를 위한 유기 및 무기 바인더 시스템의 촬영, 가스 처리 및 경화를 위한 강력한 공정 조건을 확립합니다.

기체 주입, 건조 및 템퍼링의 기본 프로세스에 대한 논의는 실험적 검증을 거쳐야 합니다. 그런 다음 주물 결함을 방지하기 위해 코어 사격 공정 시뮬레이션이 필수적이었는지를 보여 줍니다. 마지막으로 코어 박스의 마모와 수명을 예측하는 수치모델을 개발한 연구 프로젝트를 소개합니다.

Water jacket core

Simulation of sand core making processes

Shooting

Shooting Simulation에서 모래로 채워진 타격 헤드가 공기를 통해 가압되고, 이로 인해 공기/모래/실린더/바인더 혼합물로 구성된 “유체”가 생성됩니다. 이 유체는 분사 노즐을 통해 코어 박스로 흐르고 배출 노즐을 통해 상자 밖으로 공기가 배출됩니다. Shooting Simulation의 목적은 코어 박스에 있는 모래의 밀도분포를 높히고 균일하게 하는 것입니다.

촬영 과정에서 모래로 채워진 블로 헤드가 공기를 통해 가압되어 공기/모래/바인더 혼합물로 구성된 “유체”가 생성됩니다. 이 유체는 블로우 헤드에서 분사 노즐을 통해 코어 박스로 흘러 나와 공기를 환기 노즐을 통해 박스 밖으로 밀어냅니다. Shooting 의 목표는 가능한 한 높고 균일하게 코어 박스에 있는 모래의 밀도 분포를 달성하는 것입니다. 변경할 수 있는 프로세스 매개 변수는 분사 압력과 발사 및 배기 노즐의 수와 위치입니다. 시간과 비용을 절약하기 위해 코어의 품질을 저하시키지 않고 가능한 한 노즐을 적게 사용하는 것이 바람직합니다.

Sand density distribution

Sand density distribution after the shooting

시뮬레이션을 사용하여 다양한 사격 및 환기 노즐 구성과 그 구성이 결과 모래 밀도 분포에 미치는 영향을 분석할 수 있습니다. 엔지니어는 속도와 전단 응력을 예측하여 코어 상자의 마모 및 이에 따른 수명에 대한 결론을 도출할 수 있습니다.

Gassing

유기 바인더 시스템에서는 모래가 유기 수지로 코팅됩니다. 이 수지의 경화는 보통 아민이라는 기체에 의해 이루어지는데, 이것은 일반적으로 분사에 사용된 노즐을 통해 주입됩니다. 이 가스는 코어가 모든 부분에서 경화되도록 하기위해 모든부분에 도달할 만큼 길어야 한다. 반면에, 유독 가스를 줄이기 위해서는 가스 배출이 필요이상으로 길어서는 안됩니다.

유기 바인더 시스템에서는 모래가 유기 레진으로 코팅되어 있습니다. 이 레진의 경화는 보통 아민 가스 작용제에 의해 이루어지는데, 아민은 주로 인젝션에 사용되는 노즐을 통해 분사됩니다. 이 가스 주입은 가스가 코어의 모든 부분에 도달할 수 있도록 충분히 길어야 합니다. 코어가 모든 곳에서 경화되도록 하기 위해서입니다. 반면, 가스 배출은 독성 가스를 절약하기 위해 필요 이상으로 길지 않아야 합니다.

Amine concentration core

Amine concentration in a core

시뮬레이션은 시간 경과에 따른 코어의 아민 농도 분포를 예측하며, 이는 코어의 경도와 동일하다. 이를 통해 엔지니어들은 가스 생성 공정에 대한 합리적인 시간 규모를 결정할 수 있습니다.

Drying

주조물의 수가 증가하는 경우, 독성이 있는 유기적 시스템 대신 무기, 수성-기반 바인더 시스템이 사용됩니다. 배기 가스 배출이 없는 코어 생산 공정의 이점 외에도 이 시스템은 주조 공정 중 코어 가스 생산량을 줄여 주조 품질을 향상시킵니다.

모래 코어의 경화를 위해서는 일반적으로 뜨거운 공기가 주입되어 이루어지는 코어에서 물을 제거해야 합니다. 이러한 바인더 시스템의 경우, 코어의 잔류 수분은 경도에 대한 측정 값입니다. 시뮬레이션은 코어를 통과하는 공기의 흐름뿐만 아니라 물이나 증기의 증발과 응축, 뜨거운 공기와 함께 증기의 이동을 모델링 해야 합니다.

아래 이미지는 예측된 잔류 수분과 실제 코어의 강도(또는 손상)의 상관 관계를 보여 줍니다.

Correlation of predicted residual moisture and the damage of a real core

Tempering of core boxes                                                                    

핫 박스 및 크로닝과 같은 특정 코어 제조 공정에서는 가열된 코어 박스에 있는 바인더의 열 반응을 통해 코어의 경화가 이루어집니다. 상자의 가열은 가열 채널과 전기 가열 요소를 사용하여 수행됩니다. 좋은 코어 품질을 위해서는 코어 상자의 균일한 온도 분포가 바람직합니다. 시뮬레이션은 특정 가열 소자 구성에 대한 온도 분포를 시간 경과에 따른 예측하고 발열의 균일성과 원하는 온도에 도달하는 데 필요한 시간을 표시합니다.

Heated core box

Temperature distribution in a heated core box

Validation of the core blowing model

Experiments and simulations for a water jacket core

핵심 shooting 실험은 TU 뮌헨의 파운드리 연구소에서 실시되었습니다. shooting  시간과 압력, 흡입구와 환기구의 수 등의 공정 매개 변수들이 다양하였으며 이들 매개 변수들이 분석된 코어 품질에 미치는 영향이 다양하였다. 실제 코어에서 발생한 결점은 시뮬레이션에서 모래 밀도가 낮은 영역과 상관 관계가 있습니다(아래 그림 참조).

Core blowing validation

Core defects compared to simulated density distribution

Application of the core blowing model : 리어 액슬 하우징의 주조 품질 개선

품질 보증에서 리어 액슬 하우징의 주물 결함을 감지했습니다(아래 그림 참조). 그 결함들은 중심부의 표면 결함의 결과인 것처럼 보였다. 이 가설을 뒷받침하고 코어 표면 품질을 개선하기 위한 조치를 권고하기 위해 시뮬레이션이 수행되었다. 마지막으로, 코어 박스 환기구의 다른 구성(숫자 및 위치)을 통해 주조 품질을 개선할 수 있었습니다.

Casting defects of a rear axle housing

Casting defects of a rear axle housing

Validation surface defects

Correlation of surface defects and simulated density distribution

Research project: Prediction of the lifetime of core boxes

코어 박스는 대부분 폴리우레탄 수지 코팅의 알루미늄으로 제작된다. 사격 과정에서 모래에 의한 코어 박스 표면의 침식은 코어 박스의 수명을 제한하는 요인이다. 프로젝트 목표는 표면 처리가 수명에 미치는 영향을 이해하고 단일 시뮬레이션에서 다수의 샷에 의해 발생하는 침식을 예측할 수 있는 연산 모델을 개발하는 침식 프로세스를 분석하는 것이었다.

일반적인 코어 상자(아래 참조)는 다른 모양의 삽입물로 제작되었습니다.

Core box with different inserts

Core box with different inserts

수치 모델은 코어 박스 벽의 압력과 전단력의 공간적, 시간적 통합에 기초하여 부식에 대한 양을 도출한다. 모형에 의해 예측된 침식은 실험 값과 일치했습니다(아래 그림 참조).

Measured and simulated erosion

Comparison of measured and simulated erosion

Cooling and Feeding System Design

Cooling and Feeding System Design

공동 또는 다공성 결함은 일반적으로 마지막 응고 위치에서 형성됩니다. 라이저는 일반적으로 주조물이 굳을 때 녹은 금속을 주조물에 제공하여 이러한 결함을 방지하는데 사용됩니다. 그러나 라이저가 효과를 발휘하려면 적절한 크기에 적절한 위치에 배치하여 수축량을 보상할 수 있는 충분한 재료를 포함해야 합니다. FLOW-3D CAST에서는 캐스터가 결점 없는 주물을 위한 냉각 및 공급 시스템을 설계할 수 있도록 두 가지 새로운 도구가 개발되었습니다. 즉, 마지막으로 응고될 장소의 예측과 열 계수 계산입니다.

Last Places to Freeze

마지막으로 응고딜 장소는 주물 내 가장 늦게 응고되는 위치와 수축 다공성 결함이 형성될 가능성이 있는 위치를 직접 표시합니다. 이러한 장소는 고체 분율 진화 또는 응고 시간으로부터 파생될 수 있지만, 보다 직접적인 시각화 방법이 항상 선호됩니다.

특수 유형의 고정 입자는 “핫 스폿”이라고 불리는 마지막 응고 위치를 식별하고 시각화하는 데 사용됩니다. 이 출력은 응고 모델을 사용할 때 자동으로 생성됩니다. 핫 스폿 입자는 그림 1에 도식적으로 나타난 바와 같이, 모든 인접 영역이 고체화된 후에 응고될 때 셀에 삽입됩니다.

이러한 입자는 최종 자유도 위치를 파악하는 것 외에 이러한 위치에서 수축 다공성 결함의 가능성과 크기를 결정하는 데 사용할 수 있는 다른 속성을 가지고 있습니다. 즉, 셀 응고 시간, 핫 스폿 ID 및 핫 스폿크기,  셀이 응고되는 시간입니다. 핫 스폿 ID는 핫 스폿이 첫번째 지점, 두번째 지점인 순서를 나타냅니다. 마지막으로 핫 스팟크기는 다음 공식으로 계산됩니다.

이 입자들은 마지막으로 동결된 위치를 식별하는 것 외에도 이러한 위치에서 수축 다공성 결함의 가능성 및 크기, 즉 셀 응고 시간, 핫 스폿 ID 및 핫 스폿 크기를 결정하는 데 사용할 수 있는 다른 속성을 가지고 있습니다. 셀 응고 시간은 셀이 응고되는 시간입니다. 핫 스폿 ID는 핫 스폿이 굳어지는 순서를 나타냅니다. 1은 첫 번째, 2는 두 번째 등. 마지막으로, 핫 스폿 크기는 다음 방정식으로 계산됩니다.

 

  • hsm(i) 는 입자 i에 대한 핫스팟 크기입니다.
  • t0 는 입자 위치에서의 세포 응고 시간입니다.
  • νliq(t) 는 시간 t에서 입자를 포함하는 액체 영역의 부피입니다.

Figure 1. A hot spot particle is inserted at the center of a cell when it solidifies after its immediate neighbors become solid.

Figure 2. 핫스팟 입자를 포함하는 액체 부피의 진행상태 예시 : t3> t2> t1.

그림 2는 연결된 액체 지역의 부피가 입자 속도의 함수로서 어떻게 변하는지를 보여 준다. 그런 다음 계산된 양을 정규화하여 모든 핫 스팟 크기 값을 0과 1사이의 범위로 가져옵니다. 이를 통해 다공성 형성에 미치는 잠재적인 영향과 관련하여 주물 내 여러 핫 스폿을 간단하게 비교 분석할 수 있습니다. 값이 높을수록 응고하는 동안 연결된 액체 영역이 커지며 최종-동결 위치에서 다공성 결함이 줄어들 가능성이 높아집니다.

 

The Thermal Modulus Method

열 계수 법은 일반적인 라이저 설계 시 가장 많이 사용되는 방법 중 하나이며, 특히 알루미늄 합금 및 강철 주물에 사용됩니다. 주어진 주물 부품의 경우, 그 계수는 다음과 같이 정의됩니다.

  • V는 주조 부품의 체적이며
  • A는 주조 부품의 표면적입니다.

주물의 기하학적 계수는 구체나 블록과 같은 정규 형상에 대해 계산하기 쉽습니다. 그보다 더 복잡한 것은 보통 모양으로 주조 섹션을 지루하게 근사치를 구하는 것입니다. 또한, 기하학적 계수형 접근 방식은 주물의 기하학적 구조에 전적으로 의존합니다.

실제 주조물은 냉각제와 절연체를 사용하여 응고 진행을 제어합니다. 이러한 형상은 기하 계수 접근 방식에서는 무시된다. 계수 계산을 자동화하고, 동결 융해, 단열 및 기타 주형 변형과 관련된 열 영향을 고려하기 위해 열 계수라고 하는 혁신적인 접근법이 라이저 디자인에 사용된다.

열 계수 접근 방식의 경우 먼저 주조물의 응고 시뮬레이션이 실행됩니다. 시뮬레이션이 완료되면, Cavorinov의 규칙에 근거한 응고 시간으로부터 주물 전체의 등가 계수를 계산할 수 있습니다. 이 접근법을 사용하여 계산된 등가 계수를 열 계수라고 한다. 그것은 라이저 설계를 가이드하기 위해 기하학적 계수와 동일한 방법으로 사용될 수 있다.

 

Chvorinov의 법칙은 응고 시간과의 관계를 나타내며 그 계수는 다음과 같이 쓸 수 있습니다.

  • t is the casting solidification time,
  • N is a constant (usually equal to 2), and
  • B is the mold constant. It can be calculated using the following formula:

주조 공정을 설계할 때 라이저는 적절한 유동을 위해 라이저의 응고 시간이 인접 주조 섹션의 응고 시간보다 긴 방식으로 설계됩니다. Chvorinov의 규칙에 따르면 응고 시간은 주물의 계수에 정비례합니다. 따라서 응고 시간을 비교할 때 모듈화를 직접 비교할 수 있습니다. 모듈형은 기하학적인 양이기 때문에, 모듈형의 비교는 훨씬 단순하게 설계를 할수있습니다. 금속 주조 엔지니어는 실제 주조 공정의 세부 사항을 고려하지 않고도 부품을 적절하게 이송할 수 있도록 계수가 큰 라이저를 설계할 수 있습니다.

 

Application of the New Tools to Cooling and Feeding System Design  

예를 들어, 새로운 도구를 사용하는 증기 터빈 실린더의 절반에 대한 냉각 및 공급 시스템 설계가 제공되고 이 섹션에서 Flow Science China 도움을 받아 논의됩니다. 부품의 외부 치수는 2.83×2.34×1.10미터이고 총 부피는 아래와 같이 약 0.95 세제곱미터입니다. 주물 재료는 탄소강이며 주입 온도는 150°C입니다.

Figure 3. Casting part geometry

첫째, 냉각제와 라이저가 없는 주조물의 응고 시뮬레이션을 실행합니다. 그 목적은 핫 스폿 위치를 확인하고 응고 건조기 및 라이저의 위치와 라이저의 크기를 결정하는 것입니다. 두개의 새로운 도구는 냉기와 라이저 설계를 개선하는 데 사용됩니다.

입자를 응고할 마지막 위치는 각각 셀 응고 시간, 입자 ID 및 핫 스폿 크기로 표시된 다음 그림과 같습니다. 이러한 그림을 통해 핫 스폿 위치와 수축 다공성 결함을 형성할 가능성을 직접 확인할 수 있습니다. 주물의 기하학적 특성에 기초하여, 라이저를 배치하는 위치는 그림의 마지막 프레임과 같이 쉽게 확인할 수 있습니다.

그러나 하단 쉘에 몇개의 핫 스폿이 있으며 이는 라이저를 배치하는 데 적합하지 않습니다. 이러한 위치에서 다공성 결함의 수축을 방지하기 위해 냉각제를 사용하여 응고 패턴을 변경하고 마지막으로 라이저 영역까지 응고시킬 수 있습니다.

Figure 4. Hot spot locations colored by three attributes (clockwise from top left): hot spot solidification time, particle id and hot spot magnitude.

 

Thermal Modulus Computation

계산 된  thermal modulus는 오른쪽에 표시됩니다. 더 큰 값은 응고될 마지막 위치와 일치합니다. 또한 열 모듈러스를 사용하여 핫스팟 위치에서 라이저의 크기를 결정할 수 있습니다.

냉각 및 라이저가 결정되면 냉각 및 라이저 설계를 확인하기 위해 냉각 및 라이저가 포함된 두 번째 응고 시뮬레이션이 실행됩니다. 핫스팟 크기로 채색된 마지막 응고 위치 입자와 thermal modulus가 그림 6에 나와 있습니다. 냉각이 마지막 장소를 라이저 영역으로 성공적으로 응고시키는 것을 볼 수 있습니다. 그러나 라이저 아래에는 여전히 위험한 핫 스팟이 있습니다. 실제로 실제 주조는 아래 그림에 표시된 것처럼 핫스팟 입자로 식별된 위치에서 수축 다공성 결함을 보여줍니다.

 

 

 

Figure 5. Calculated thermal modulus

Calculated thermal modulus 마지막으로 동결할 장소는 라이저가 아닌 주물 안에 있습니다. 즉, 라이저 위치와 크기가 올바르게 결정되더라도 주물이 라이저 쪽 방향으로 굳지 않도록 응고 패턴이 올바르지 않다는 것을 의미합니다. 한 가지 해결책은 발열 라이저 슬리브를 사용하여 응고 패턴을 수정하는 것입니다. 이것은 본 기사의 범위를 벗어나기 때문에, 더 이상 논의되지 않을 것입니다.

 

Figure 6. 핫 스폿 위치(왼쪽 위), 계측된 주조물을 사용하여 계산된 열적 계수(오른쪽 위) 및 수축 결함이 관찰된 위치

 

 

Core Making

Core Making

FLOW-3D CAST의 모델링 기능을 사용하면 주조 엔지니어가 코어 주입과 건조와 같은 코어 제작 프로세스를 쉽게 시뮬레이션 할 수 있습니다.

Core Shooting

샌드 코어는 모래-공기 혼합물을 주형으로 분사하여 생성됩니다. 주조 엔지니어의 목표는 모래 내의 공기 불순물 유입을 방지하는 것 인데, 이때 사용자는 안정적으로 FLOW-3D CAST의 모델링 기능을 통해 모래가 주입되는 노즐의 개수와 위치 및 공기가 빠져나가는 벤트 노즐의 개수와 위치를 변경하여 최적의 노즐 구성을 얻을 수 있습니다.

Core Drying

코어 건조 모델은 모래가 코어 금형으로 주입된 후 남아 있는 습기의 건조 과정을 계산합니다. 일반적으로 건조는 금형에 있는 동안 코어를 통해 뜨거운 공기를 불어넣음으로써 이루어집니다. 코어의 저온 부분에서 가열, 수분 증발 및 일시적인 습기 응결을 시뮬레이션하여 건조 과정을 최적화할 수 있습니다. 이를 통해 완전한 건조를 보장하는 동시에 공기의 가열 및 배출과 관련된 에너지 비용을 최소화할 수 있습니다.

Core Drying Validation

A comparison made by BMW between simulation and experiment of the drying of an inorganic core.

 

Gravity Pour

Gravity Pour

중력 주조는 큰 부품(일반적으로 철, 청동, 황동 또는 알루미늄)을 만드는 데 사용됩니다. 사형 주조 및 영구 금형을 포함한 대부분의 주조 공장 주조 공정은 FLOW-3D CAST를 사용하여 모델링 할 수 있습니다. 주입 프로세스는 고압 다이 캐스팅에 비해 덜하지만 과도한 공기 주입으로 인한 공기 유입으로 인해 품질이 저하될 수 있습니다. 주입하는 동안 잠재적 결함의 위치와 온도의 변화 뿐만 아니라, 용탕 표면의 움직임도 정확하게 예측됩니다. 충진이 완료된 후 용탕의 응고 및 수축을 모델링 할 수도 있습니다.

 

Accurate Filling Simulations

주조 공정에서 주입 작업은 결함들이 라이저로 이동하는지, 또는 부품에 갇힌 채로 남아 있는지 여부와 같은 주입 패턴 및 관련 결함을 분석하는 작업으로 이루어집니다. 시뮬레이션 분석을 사용하면 설계의 효율성을 검증하고 비용을 절감하면서 생산에 들어가기 전에 설계를 테스트할 수 있습니다. 주입의 정확성은 산화물의 결함과 갇힌 공기의 위치를 추적하는 데 중요할 뿐만 아니라, 응고 결과의 핵심입니다. 올바른 주입 패턴은 주입 마지막의 올바른 열 분포를 의미합니다. 이 열 분포는 응고 분석의 기초가 됩니다.

Solidification of Castings for Foundry Applications

편석, 열응력, 마이크로 및 매크로 기공 등 응고와 관련된 다양한 결함들이 있습니다. 정확한 응고 결과를 얻기 위한 중요한 첫번째 단계는, 정확한 주입입니다. 정확한 주입은 응고 모델링의 초기 조건인 올바른 열 프로필을 캡처하는데, FLOW-3D CAST는 주조 부품을 보다 신속하게 설계하고 폐기율을 낮출 수 있는 많은 응고 관련 결함을 감지할 수 있습니다.

Validations

Validations

금속 주조 설계 과정에서 FLOW-3D CAST의 사용은 회사의 비용 절감 방안을 제시하여 수익성을 개선할 수 있습니다. FLOW-3D CAST 는 엔지니어와 설계자에게 경험과 전문지식을 향상시킬 수 있는 강력한 도구가 될 수 있습니다. 보통 수익성은 비용 절감과 비용 회피에서 찾을 수 있습니다. 지금, 품질과 생산성 문제는 제품개발 단계에서 다양한 시뮬레이션 통해 짧은 공정시간, 낮은 비용으로 해결 할 수 있는 방안을 찾을 수 있습니다. 새로운 개발도구인 FLOW-3D CAST의 효율성은 생산이 시작되기 전에 문제를 해결할 수 있는 방안을 제시하여 생산성을 크게 개선할 수 있습니다.

Ladle Pour

샷 슬리브 공정을 최적화하는 것은 고품질 부품을 확보하는 데 필수적입니다. FLOW-3D CAST의 시뮬레이션 결과와 실제 사례의 비교를 통해, 시뮬레이션을 사용하여 엔지니어가 값 비싼 툴링을 제작하기 전에 설계를 개선하는 방법을 강조합니다. FLOW-3D CAST는 프로세스 전반에 걸쳐 유체의 움직임을 정확하게 포착할 수 있으므로, 엔지니어가 실제 레들 주입 공정에서 신속하게 파악할 수 있습니다. 시뮬레이션은 Nemak Poland Sp. z o.o로부터 제공받았습니다.

Gravity Casting

열전대 데이터를 기반으로 한 실제 충진 재구성과 비교 한 중력 주조 시뮬레이션. Courtesy of XC Engineering and Peugeot PSA.

Foundry: Simulating a Flow Fill Pattern


사형 주조 충진중의 X- 레이 검증

X -레이 결과와 FLOW-3D CAST 시뮬레이션 결과를 나란히 비교합니다. A356 알루미늄 합금으로 사형 주조의 3 차원 충진 색상은 금속의 압력을 나타냅니다. 시뮬레이션 결과는 수직 대칭 평면에 표시됩니다. Modeling of Casting, Welding, and Advanced Solidification Processes VII, London, 1995.

HPDC: Flow Pattern


Short sleeve validation – 시뮬레이션 결과와 주조 부품, Littler Diecast Corporation의 예

Modeling Air Entrapment


디젤 엔진 용 오일 필터 하우징의 X-ray vs. FLOW-3D CAST 검증.

디젤 엔진 용 오일 필터 하우징의 X- 레이 검증, 380 다이캐스팅 합금. 결과는 혼입 된 공기의 비율로 표시됩니다. X- 레이의 상세한 영역은 최대 다공도 농도를 나타냅니다.

HPDC Filling


FLOW-3D 결과를 실제 부품과 비교하는 HPDC 캐스팅 검증

Short Shot Simulation


실제 주조 부품의 유효성 검사. 스냅 샷과 FLOW-3D CAST 시뮬레이션 결과. 왼쪽에서 오른쪽으로 : 변속기 하우징, 오일 팬 및 자동차 부품.

HPDC Air Entrapment Defects


Antrametal에 의한 주조 시뮬레이션 대 실험 결과의 성공적인 비교.

Antmetetal의 고객 검증은 FLOW-3D CAST의 Air Entrapment 모델을 사용하여 실험 결과와 시뮬레이션을 비교 한 결과를 보여줍니다. 세탁기 용 전동 모터의 앞 커버의 HPDC입니다. 공기 관련 결함은 이미지의 색상에 정 성적으로 표시됩니다. FLOW-3D CAST 내의 다른 수치 기능에 의해 포착 된 물리적 공기 포켓 또한 명확하게 표현됩니다.

Core Drying


시뮬레이션과 무기 코어의 건조 실험 사이의 BMW에 의한 비교.

Predicting Die Erosion


캐비테이션으로 인한 다이 침식 영역은 FLOW-3D CAST 결과를 실제 사례와 비교하여 올바르게 배치되었습니다.

Predicting Lost Foam Filling


Lost foam L850 블록 벌크 헤드 슬라이스에 대한 실시간 X-ray 및 FLOW-3D CAST 유동 시뮬레이션 결과의 비교. 시뮬레이션은 GM Powertrain의 예입니다.

Porosity Defects


Porosity due to entrained air

Predicting Shrinkage Porosity


A380 diesel engine block casting

 

ALL NEW FLOW-3D CAST v5

ALL NEW FLOW-3D CAST v5

HPC version of FLOW-3D CAST v5 releasedALL NEW FLOW-3D CAST v5 는 금속 주조 시뮬레이션 및 공정 모델링에 있어 큰 발전입니다. 이제 FLOW-3D CAST는 시뮬레이션 할 프로세스를 선택할 수 있으며, 소프트웨어는 적절한 프로세스 매개 변수, 지오메트리 유형 및 합리적인 기본 값을 제공합니다. 이렇게 하면 시뮬레이션 설정이 상당히 간소화됩니다. 또한 FLOW-3D CAST의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계 주기를 단축하고 비용을 절감하는 통찰력을 제공합니다. 대표적인 개발 기능으로 응고 시뮬레이션을 위한 열 계수 및 핫 스팟 식별 출력, 갇혀 있는 가스를 식별하고 환기 효율을 예측하기 위한 결함 채우기 도구 등이 포함됩니다. 그리고 더 빠르고 더 강력한 압력과 및 응력 해소 기능이 모두 포함합니다.

ALL NEW FLOW-3D CAST v5 는 관련 프로세스가 포함된 Suite제품으로 제공됩니다. 영구 금형 제품군은 중력 다이 캐스팅, 저압 다이캐스팅(LPDC), 틸트 주입 주조와 같은 프로세스 작업 공간을 포함합니다. 각 프로세스에 대해 사용자 인터페이스는 특정 프로세스와 관련된 내용만 표시합니다. 모래 주조 Suite에는 중력 사형 주조 및 저압 사형 주조(LPSC)와 같은 프로세스가 포함되어 있습니다. 소실 폼 제품 군에는 사형 주조 Suite의 모든 것과 소실 폼 공정 작업 공간이 포함됩니다. HPDC 제품군은 열 응력 및 변형을 포함하여 고압 다이 캐스팅과 관련된 모든 것을 포함합니다. 각 프로세스 작업 공간 내에서 채우기, 응고 및 냉각과 같은 하위 프로세스는 서로 연결된 시뮬레이션으로, 처음부터 끝까지 차례로 전체 프로세스를 모델링 합니다. 사용자가 그것을 작업장 바닥에서 하는 것처럼. 사용자는 레들을 용융 풀 안에 담갔다가, 숏 슬리브 또는 주입 컵에 옮겨, 전체 이동 및 주입과 같은 단계를 포함하도록 프로세스를 확장할 수 있습니다. LPDC의 경우 프로세스 엔지니어는 도가니의 가압 및 금속 흐름을 주형으로 모델링 할 수 있습니다.  FLOW-3D CAST v5를 사용하면 가능성이 무한해 집니다.

WYSIWYN Process Workspaces

What-You-See-Is-What-You-Need (WYSIWYN) 프로세스 작업 공간은 FLOW-3D CAST의 다기능성을 간소화하여 사용 편의성과 탁월한 솔루션입니다. 대부분의 인터페이스는 사용자가 제공해야 하는 정보만을 요구하고, 사용자 설계 원칙을 적용하여 단순화되었습니다.

FLOW-3D CAST v4.2에 도입된 프로세스 중심 작업 공간은 중력 다이 주조, 저압 주조 및 경사 주입, 모래 등과 같은 영구 금형 공정으로 확장되었습니다. 중력 모래 주조, 저압 모래 주조 및 소실 폼과 같은 주조 공정 지속적인 주조, 투자 주조, 모래 코어 제작, 원심 주조를 포함한 더 많은 공정 작업 공간이 현재 진행 중에 있습니다.

Simulation setup is simplified by only showing the components applicable for a given process.

Types of casting components available in a HPDC simulation. Mold pieces available in a high pressure die casting include cover and ejector dies, sliders, and shot sleeves.

Defect Prediction / 결함 예측

Identify Filling Defects using Particles  결함 예측 및 입자를 이용한 주입 결함 식별

파티클을 사용하는 FLOW-3D CAST v5를 통해 유입된 가스로 인한 충전 결함을 식별하는 것이 훨씬 쉬워 졌습니다. 결함을 식별하기가 훨씬 용이할 뿐만 아니라, 결함 예측에 따른 계산 비용도 크게 절감되었습니다.

붕괴된 가스 지역을 나타내는 보이드 입자가 도입되었습니다. 이전에 붕괴된 가스 영역은 너무 압축되어 수치 메쉬에서 해결할 수 없으면 시뮬레이션에서 사라졌습니다. 보이드 입자는 작은 기포처럼 작용하며 드래그와 압력을 통해 금속과 상호 작용합니다. 주변의 금속 압력에 따라 크기가 변하며, 주입이 끝난 후 최종 위치를 보면 공기 침투 및 산화물로 인한 잠재적인 결함이 있음을 알 수 있습니다.

Predict filling defects caused by entrapped gas using the Particle Model.

Metal/Wall Contact Time 금속/벽 접촉 시간

벽면 접촉 시간은 금형 표면에서 다른 부위보다 금속에 더 오래 노출된 부위를 식별하는 데 유용합니다. 금속 접촉 시간은 금속이 고체 구성 요소와 접촉한 시간을 나타냅니다. 예를 들어 모래 입자가 핵분해 부위의 역할을 하기 때문에 미세 먼지가 발생할 수 있습니다. 개별 솔리드 구성 요소와의 금속 접촉 시간 출력이 모든 구성 요소와의 접촉 시간을 포함하도록 확장되었습니다. 접촉 시간 계산은 출력 탭에서 벽 접촉 시간을 선택하여 활성화합니다.

Identify solidification defects with the new Thermal Modulus output.

Solidification Defect Identification 응고 결함 식별

일반적으로 라이저 크기 조정에 사용되는 열 모듈은 이제 응고 시뮬레이션에서 출력됩니다.

Risers will likely need to be placed on the circled regions.

Hot Spots  핫 스팟

또 다른 결과인 “핫 스팟”은 라이저를 찾고 크기를 조정하며, 응고 관련 결함의 가능성을 식별하는 데 유용합니다. 핫 스팟은 최종적으로 응고된 부위를 나타냅니다. 이것들은 입자들로 표현되고 뜨거운 점 크기에 의해 색깔이 변하기도 합니다. 라이저는 핫 스팟 크기가 가장 큰 곳에 배치해야 합니다.

Porosity Analysis Tool

FlowSight의 새로운 Porosity Analysis Tool은 실제적인 측면에서 porosity-related 결점을 식별합니다. 결점은 이제 순 볼륨, 최대 선형 범위, 모양 인자 및 total count로 식별됩니다.

New defect identification tools allow users to analyze porosity.

Arbitrary 2D Clips 임의 2D 클립

기능 지향적인 2D 클립은 결함을 찾기 위해 전면적으로 살펴 볼 때 유용합니다. 이전에는 클립에 표시된 금속 영역이 솔리드에 의해 점유된 셀로 확장되었습니다. 잡식의 FLOW-3D CAST v5에서 이 클립은 구성 요소를 숨기는 옵션을 선택해야만 열린 공간(예:주조 부품)의 금속을 보여 줄 수 있습니다.

Intensification Pressure 강화 압력

고압 주조 시뮬레이션에 지정된 강화 압력은 이제 매크로 및 마이크로 Porosity모델 모두에 결합되어 형성 사이의 보다 현실적인 관계를 형성합니다. 이러한 결함의 크기 및 플런저에 의해 가해지는 압력의 크기입니다.

Adjusting Shrinkage Porosity 수축 기공 조절

사용자가 금속의 특성을 수정할 필요 없이 수축 다공성의 양과 크기를 미세 조정할 수 있도록 수축 조정 계수가 추가되었습니다. 계수를 사용하면 응고 중에 체적 수축의 양을 전화로 설정하거나 줄일 수 있습니다.

Gas Pressure and Venting Efficiency  가스 압력 및 밴트 효율성 검토

사용자가 충전 결함을 식별하고 다이캐스트에서 밴트 시스템을 설계하는 데 도움을 주기 위해 마지막 국부적인 가스 압력 및 밴트 효율성 검토 결과가 주조 시뮬레이션 출력에 추가되었습니다. 가스 압력은 셀이 금속으로 채워지기 전에 셀의 마지막 보이드 압력을 기록하며, 밴트 효율은 환기구를 배치하는 것이 밴트 위치에서 공기를 배출하는 데 가장 효율적인 영역을 보여 줍니다.

Databases 데이터베이스

주조 공정에서 일반적으로 사용되는 정보의 데이터베이스는 설정 오류를 줄이고 시뮬레이션 workflow 를 개선합니다.

Configurable Simulation Monitor 구성 가능한 시뮬레이션 모니터

시뮬레이션을 실행할 때 발생하는 중요하지만 종종 힘든 작업은 시뮬레이션을 모니터링하는 것입니다. FLOW-3D CAST를 사용하면 다음과 같은 일반적인 시뮬레이션 목표를 모니터링할 수 있습니다.

  • 게이트 속도
    주형 내 고상 분율
    최저/최고 용탕 온도 및 금형 온도
    다양한 프로브 위치에서의 온도
    시뮬레이션 진단(예:시간 스텝, 안정성 한계)

Plotting Capabilities  Plotting기능

이제 시뮬레이션 관리자에는 더 많은 플롯 기능이 포함됩니다. 플롯은 사용자가 구성할 수 있으며 구성은 다른 시뮬레이션에서 사용하기 위해 데이터베이스에 저장됩니다. 사용자는 시뮬레이션 런타임 그래프와 history-data 에서 모니터링할 이력 데이터 변수를 지정할 수 있습니다. 다중 변수를 각 그래프에 입력합니다.

Conforming Meshes

임의 형상의 활성 계산 영역을 정의할 수 있도록 적합한 메쉬 기능이 확장되었습니다. 이는 메쉬 블록이 준수할 수 있는 열린 볼륨과 솔리드 볼륨을 모두 포함하여 계산 도메인의 영역을 정의하는 meshing구성 요소라고 하는 새로운 유형의 지오메트리 구성 요소를 사용합니다.
메쉬 블록은 냉각 채널이나 공동에 선택적으로 조합할 수 있어 사용자가 이러한 기하학적 객체에 대해 최적의 해상도를 선택할 수 있습니다. 이제 확인할 수 있는 메쉬가 FAVORize 탭에 표시될 수 있습니다.

Summary Views of Components/Cooling Channels

FLOW-3D CAST v5의 인터페이스는 주조 시뮬레이션에서 다양한 형상 구성 요소를 꽉 차게 보여줍니다. 2개의 새로운 형상 요약 뷰인 구성 요소 요약 뷰와 냉각 채널 요약 뷰는 기하학적 구성 요소 및 냉각 채널의 플라이 아웃을 제공하여 사용자가 신속하게 수행할 수 있도록 합니다. 중요 설정을 한 눈에 파악하고 필요한 경우 변경 할 수 있습니다.

Under the Hood

FLOW-3D CAST의 많은 강력한 구성 요소들은 Solver Engine이라고 부르는 것 들에서 중요합니다. 아래에서는 이면에서 무거운 작업을 수행하는 데 도움이 되는 몇가지 중요한 사항을 설명합니다.

Thermal Die Cycling (TDC) Model TDC(열 다이 사이클)모델

열 다이 사이클 시뮬레이션의 주입/응고 단계는 균일하지 않은 캐비티 온도를 사용하여 개선할 수 있습니다. 이제 캐비티에 있는 금속의 초기 온도는 재시작 중에 채우기 시뮬레이션을 통해 지정하거나 초기 유체 영역을 사용하는 사용자 정의 분포에서 지정할 수 있습니다. 이 기능은 옵션으로 사용할 수 있는 균일한 초기 금속 온도에 비해 다이 사이클링의 열해석의 정확성과 현실성을 높여줍니다.

Melt temperatures in the casting cavity read from a filling simulation are applied to ejector die during filling/solidification stage of thermal die cycling simulation.

Heat Transfer Coefficient Calculator for Spray Cooling 분사 냉각을 위한 열 전달 계수 계산기

스프레이 유체와 다이 표면 사이의 열 전달 계수(HTC)를 추정하는 것은 어려운 일입니다. 계산 또는 측정을 통해 값을 사용할 수 있는 경우 사용자는 이러한 값을 스프레이 거리 및 각도의 함수로 직접 지정할 수 있습니다. 새로운 기능을 통해 노즐의 스프레이 액의 유량을 기준으로 HTC를 동적으로 계산할 수 있습니다. 단일 조정 계수를 통해 스프레이 유출량을 기준으로 HTC를 미세 조정할 수 있습니다.

FLOW-3D CAST 소개

FLOW-3D CAST

FLOW-3D CAST는 광범위한 금속 주조 공정을 위한 완벽한 해석 솔루션을 제공합니다. 시뮬레이션을 통해 다양한 종류의 다공성, 표면 산화물, 공기 및 기포, 열 응력 및 변형 등과 같은 다양한 결함을 추적하면서, 주조 부품의 충진 및 응고에 대한 상세한 통찰력을 제공합니다. 금형을 분석하거나 FLOW-3D CAST로 코어의 가스 처리 같은 열 특성 및 기타 특성을 제거 할 수 있습니다.

최적화된 시뮬레이션을 통한 설계는 생산 현장에서의 개발 시간이 단축되고 출시 시간이 단축되며 생산량이 늘어나게 됩니다. FLOW-3D CAST는 담당자가 새로운 주조 공정 또는 합금을 배치 할 때 설계 및 개발 비용을 절감 할 수 있습니다.

직관적이고 편의성 높은 사용자 인터페이스를 결합한 FLOW-3D CAST는 성공적인 프로젝트를 통해 충진 및 응고 결함에 대한 정확한 예측을 제공합니다. 공정 요구 사항에 가장 적합한 샌드 캐스팅, 금형 주조 및 고압 다이 캐스팅을 사용할 수 있습니다.

High Performance Computing: in-House or in the Cloud

대규모 시뮬레이션의 경우 많은 계산 시간이 필요하게 되는데 이를 극복하기 위한 최고의 컴퓨팅 성능이 필요하십니까? FLOW-3D CAST는 필요 시 고성능 클라우드 컴퓨팅 환경인 클러스터 버전으로 손 쉽게 전활할 수 있습니다.

Courtesy Littler Diecasting Corporation

금속 주조 애플리케이션은 매우 어려운 시뮬레이션 중 하나입니다. 관련된 물리학의 복잡성과 적용 범위, 박막 주조, 주조 장비 정교함 등 고객의 높은 눈높이가 증가함에 따라 FLOW-3D CAST도 이를 충족하기 위한 다양한 솔루션과 기능을 제공합니다. 사형 주조, LPDC, HPDC, LostForm, 원심주조 등 FLOW-3D CAST사용자 인터페이스 안에는 고유의 전용 모델링 워크 플로우가 있습니다.

FLOW-3D CAST는 매우 정확한 흐름과 응고 결과를 통해 표면 산화물, 발생 기포, 매크로 및 미세 극성을 포함한 중요한 주조 결함을 포착할 수 있습니다. 다른 고유한 모델링 기능으로는 로봇 스프레이 냉각 및 윤활을 모델링 할 수 있는 열 다이 사이클링, 샷 슬리브 흐름 프로파일, 압착 핀 및 열 스트레스가 있습니다.

Customer Case Studies

금속 주물의 결함 식별, 보다 가볍고 강한 주조 부품을 위한 새로운 재료로 부품 설계 또는 최적 설계를 위한 반복 설계 작업은 다음과 같은 방법 중 일부입니다. 고객은 당사의 소프트웨어를 사용하여 작업 요구 사항을 충족하고 폐기율을 줄이고 시장 진출 시간을 단축하며 경쟁 업체보다 앞서 나감으로써 조직을 위한 비용을 절감합니다.

“ The more you can do on a computer ahead of time, the better. It all comes down to saving time.”

“컴퓨터에서 좀 더 많은 것을 할 수 있으면 더욱 좋습니다. 모든 것은 시간 절약에 달려있습니다.”

– Elizabeth Ryder of Graham-White Manufacturing Co.

Products

FLOW-3D 제품 소개


STI C&D 에서 공급하는 CFD 프로그램은 미국 Flow Science 에서 개발된 FLOW-3D solver 를 기반으로 한 매우 강력하고 정확한 열유동 수치해석 프로그램 입니다. 귀하의 업무에 적합한 제품군을 찾고자 하시면 당사의 솔루션팀으로 문의 주시기 바랍니다.
 

FLOW-3D 는 유체의 동적 거동을 연구하는 개발 및 설계 엔지니어에게 꼭 필요한 유동 시뮬레이션 솔루션을 제공합니다. FLOW-3D는 1, 2, 3차원의 자유 표면 해석, 시간에 따른 유체의 유동해석, 제한된 유체의 흐름, 정상 상태의 문제들을 완벽하게 해결 할 수 있습니다.
 

FLOW-3D HPC 는 흔히 슈퍼컴퓨터 또는 클러스터 컴퓨터를 이용하여 고성능 컴퓨팅(HPC, High-Performance Computing)을 할 수 있는 제품으로 대규모 또는 장시간 계산이 필요한 문제를 효과적으로 해결할 수 있도록 뛰어난 성능을 제공합니다. FLOW-3D HPC 는 초대형 컴퓨팅 시스템부터 조립 클러스터까지 쉽게 고성능 컴퓨팅 클러스터를 활용할 수 있습니다.
 
FLOW-3D/CAST 는 금속 주조 공정 시뮬레이션을 위해 특별히 설계된 FLOW-3D의 특별 버전입니다. 본 제품은 FLOW-3D의 강력한 해석기능을 주조분야 설계자가 쉽게 사용할 수 있는 쉬운 인터페이스를 제공합니다.
 

FLOW-3D Weld DEM

FLOW Weld 는 용접 해석에 필요한 모델을 FLOW-3D 에 추가하는 추가 모듈입니다.  FLOW-3D 표면 장력 자유 표면 분석, 용융 · 응고 · 증발 상 변화 모델 등의 기본 기능을 응용하여 각종 용접 현상을 분석 할 수 있습니다.

FLOW-3D AM 은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다.

FSAI는 유체-구조 연성해석을 쉽게 할 수 있는 프로그램으로 FLOW-3D / FLOW-3D MP 해석 결과 데이터(유체 압력, 유체 온도, 벽 온도)를 구조 해석의 유한 요소(FEM) Mesh에 출력할 수 있습니다.  반대로 구조 해석의 유한 요소(FEM) Mesh 데이터를 FLOW-3D Solid 형상으로 읽어 처리 할 수 있습니다.

 
 
 
<제품 브로셔 다운로드>
 
flow3d flow3dmp hydraulics maritime aerospace
 microfluidics inkjets coating casting hpdc

 

 

 

FLOW-3D의 활용 및 설계 적용 사례 (3)

주조, 기계 분야의 활용

주조 분야 사용자들에게 제공되는 FLOW-3D 제품은 주조해석에 전문화된 FLOW-3D Cast이다. 이는 범용인 FLOW-3D를 주조분야에만 국한시켜 이 분야의 사용자가 가장 쉽게 접근, 활용할 수 있도록 사용자 환경을 재구성하였고, 공정 설계자로부터 전문 해석자까지 제품을 사용하는데 어려움이 없도록 최대한 접근성을 높여 개발되었다. <그림 1>은 FLOW-3D Cast의 GUI와 그에 따른 절차 설명을 간단히 보여주고 있다. 

그림 1. FLOW-3D Cast의 GUI

FLOW-3D Cast는 대표적으로 고압 다이캐스팅, 저압 다이캐스팅, 경동주조, 중력주조, 중자성형 등 거의 주조 전분야에 대한 해석을 수행할 수 있으며, 주조 합금과 금형, 몰드 모두에 대해 유동 및 열응력 솔루션을 제공해 줄뿐만 아니라, 제품 생산 시 발생하는 불량 문제 등을 빠르게 파악하고 개선해 나갈 수 있는 방향을 제시해 줄 수 있다.
FLOW-3D Cast의 각 기능에는 앞서 말한 주조 과정에서 사용되는 공정을 모델링할 수 있도록 개발되었고, 정확한 유동과 응고 결과는 물론 제품의 표면산화물, 혼입된 공기, 매크로 및 마이크로 기공, 수축공과 같은 중요한 주조 결함을 포착할 수 있는 기능이 탑재되어 있다. 또 다른 독특한 모델링 기능으로는 로봇 스프레이 냉각을 적용할 수 있는 열 다이 사이클링 기능 및 샷 슬리브 흐름 프로필, 스퀴즈 핀 및 열응력을 모델링할 수 있는 기능도 탑재되어 있다.


그림 2. FLOW-3D Cast의 주조해석 종류

이번 호에서는 대표적인 실물 예제로 여러 주조 공법 중 고압 다이캐스팅, 중력주조의 실례를 들어 설명하고 제철 및 제강 공정에서 활용된 몇 가지 사례를 덧붙여 소개하고자 한다.

1. 고압 다이캐스팅 해석
FLOW-3D Cast가 수행할 수 있는 주조 분야 중 대표적인 주조 해석은 용탕의 충진 현상이 최대 관점인 고압 다이캐스팅 해석이다. 고압 다이캐스팅은 FLOW-3D Cast 내의 GMO(General Moving Object)라는 기능을 이용하여 플런저 운동에 의한 슬리브 내의 용탕(액체화된 용융된 금속)을 제품 캐비티 안에 고속으로 밀어 넣는 공정이다. FLOW-3D Cast는 용탕의 충진 과정뿐 아니라 온도, 압력, 속도 등 사용자가 원하는 결과들을 얻을 수 있으며, 또한 용탕의 충진 과정에서 불가피하게 나타날 수 있는 표면 산화물의 생성, 혼입된 공기로 인한 미세 기공의 생성, 응고 과정 중의 수축공 등 다양한  불량 원인을 찾아 준다.
해석 사례로서 센터 블록이라는 실제 제품에 대해서 고압 다이캐스팅 해석을 수행하여 충진 및 응고 해석을 수행하여 보았다. 이 제품은 각종 유압장치들이 연결되는 부품으로 기밀성이 필수적인 제품이다. 기존에는 사각형의 알루미늄 덩어리를 가공하여 제품을 생산하였으나, 생산성 면에서 매우 뛰어나고 가벼운 고압 다이캐스팅 공법을 적용하여 생산하고 있다.

그림 3. 센터 블록의 제품 형상

다운로드 : [ 3회_201803_analysis_flow3d ]

작성자 | 조애령_에스티아이C&D 솔루션 사업부 차장
이메일 | joal@stikorea.co.kr
홈페이지 | www.flow3d.co.kr

출처 : CAD&Graphics 2018년 03월호

컨설팅 실적

수행 실적

No사업명발주처
1성남정수장 3차원 유동해석한국수자원공사
2소양강댐 홍수방지벽 설치공사 실시설계용역(수치모형실험)도화종합기술공사
3용담댐 도수터널 취수탑 유입수량 유속분포(수치모형실험)한국수자원공사
4대곡댐 여수로 문비설치 기본 및 실시설계(수치해석)도화종합기술공사
5영천댐 치수능력 증대방안 실시설계(실시모형실험)도화종합기술공사
6시화조력발전소 축조공사 턴키설계를 위한 CFD 수치모형실험대우건설
7평화의댐 2단계사업 시설공사 실시설계(수치모형실험)도화종합, 삼안건설, 한국종합개발기술공사
8광동달방댐 치수능력증대사업 기본 및 실시설계영역(수치모형실험)도화종합, 삼안건설기술공사
9광양 3단계 공업용수도 실시설계용역(여수로 수치모형실험,수어댐)삼안건설기술공사
10탐진 다목적댐 치수능력 증대방안용역(수치해석)삼안건설기술공사
11댐 상수원 설계표준도 작성용역삼안건설기술공사
12보성강댐 정밀안전진단(3D모델링 수치해석)한국시설안전관리공단
13반월정수장 노후시설 개량 기본 및 실시설계용역(수치해석 부분)한국종합엔지니어링
14청송양수발전소 1,2호기 설계기술용역/여수로 3차원 수치해석용역현대엔지니어링
15소양강댐 보조여수로 설치공사 기본설계입찰 수치모형실험용역SK건설
16잠실 수중보 어도개선 기본 및 실시설계도화종합기술공사
17서귀포시 동부하수종말처리장 고도처리시설 기본 및 실시설계용역삼안건설기술공사
18서귀포시 서부하수종말처리장 고도처리시설 기본 및 실시설계용역선진엔지니어링
19오산 제2하수처리장 건설사업입찰 기본설계용역 중 3차원 수치유동해석 분야엘지건설
20당진화력 7,8호기 취수로 수치모델링한국동서발전주식회사
21녹산배수펌프장 건설공사 대안설계용역 중 펌프장 흐름해석 부문한국종합기술개발공사
22대암댐 치수능력증대사업 기본 및 실시설계(2차) 수치해석현대엔지니어링
23용인흥덕 쓰레기 이송관로 입찰설계벽산엔지니어링
24군산하수처리장 고도처리사업 턴키공사 기본설계 전산유체해석부강테크(GS건설)
25임하댐 비상여수로 건설공사 기본설계용역(수치모형실험)삼안건설기술공사
26대청댐 비상여수로 건설공사 턴키설계용역(수치해석)삼안건설기술공사
27섬진강댐 재개발 실시설계용역(수치모형실험)삼안건설기술공사
28한강하류권급수체계구축사업 제3공구 생활용수정수장 대안설계신우엔지니어링
29임하댐 취수설비 개선공사 기본 및 실시설계용역 중 전산유체유동해석유신코퍼레이션
30광명 소하 쓰레기 자동집하시설 건설공사 T/K 기본설계용역유신코퍼레이션
31공주막여과정수장 수처리구조물의 합리적 설계를 위한 전산유체해석한국수자원공사
32김포장기지구 쓰레기 자동집하시설의 수치해석한화건설
33군장국가산단(장항지구)호안도로 축조공사 갑문수치모의실험항도엔지니어링(포스코건설)
34대청댐 비상여수로 건설공사 턴키설계용역(주)삼안
35성남판교 자동크린넷시설공사 T/K 기본설계(설계용역)건화엔지니어링
36영등포정수장 재건설 및 고도정수처리 시설공사 턴키설계용역중 수리구조물 전산 유체 해석부분삼성건설
37보령7,8호기 배수로 수치해석한국전력기술
38보령1~6호기 배수로 수치해석한국전력기술
39LNG 지하저장 실증기술개발 중 유속에 의한 Ice Ring 형성조건연구한국지질자원연구원
40LNG 지하저장 실증기술개발 중 유속에 의한 Ice Ring 형성조건연구SK건설
41파주 운정지구 쓰레기 집하시설 수집관로 수치해석건화엔지니어링
42마그네슘블록 유동,응고,응력 해석대림기업(주)
43군남홍수조절지건설공사 기본 및 실시설계용역도화종합기술공사
44안동댐 비상여수로 기본설계용역 수치모형실험에스케이건설
45세탁기 Duct 부품의 Aluminum Die-Casting CAE 해석방안 개발엘지전자
46광양 2~3연주기 고속 주조시 몰드내 열유동응고해석포스코
47Cam-shaft 다이캐스팅용 금형설계 및 주조방안 해석한국생산기술연구원
48팔당수력댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
49담체거동을 고려한 호기조 유동해석한수테크니컬서비스
50피스톤 쿨링젯 해석기술 개발 기술용역현대자동차
51아산 방조제 배수갑문확장사업 1단계 대안설계삼안건설기술공사
52하동화력 7,8호기 냉각수 배수구 전면 저류지 축조공사 3차원 수치모형실험 해석제이슨기술단
53의암수력댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
54춘천 및 보성강댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
55소양강댐 여수로 방류흐름개선을 위한 수치모형실험 용역한국시설안전기술공단
56제천시 하수관거정비 임대형 민자사업(BTL) 기본설계용역 중 수충격검토(주)바셈
57금강살리기 행복지구 생태하천 조성공사계룡건설산업
58첫마을지구 생활폐기물 자동집하시설 건설공사 기본설계 T/K도화종합기술공사
59괴산댐 가능최대홍수량에 대한 댐체월류시 구조적 안정성 검토용역한국시설안전기술공단
60충남도청 이전신도시 자동집하시설 건설공사 T/K입찰 기본설계 용역(주)건화
61영등포정수장 3D 모델링(주)대우건설
62화순홍수조절지 기본 및 실시설계 용역(주)도화종합기술공사
63재천시 하수관거정비 임대형 민자사업(BTL) 기본설계용역 중 수충격검토(주)바셈
64한탄강댐본댐 및 부대시설 공사 설계 변경 용역(주)삼안
65새만금 방수제 만경5공구 건설공사 기본설계 용역(3차원 수치해석)(주)삼안
66연속 주조시 발생되는 몰드 내 열응력 영향 해석(주)엔지비
67낙동강하구둑 배수문 증설공사 기본설계용역 중3차원 수치해석(주)유신
68뚝도정수센터 시설현대화 및 고도정수처리시설 실시설계 수치해석 용역신우엔지니어링
69파주운정쓰레기 자동집하시설 건설공사(T/K)태영건설
70거제평프장도화
71광교댐수치해석도화
72Slag Pouring 및 이송 시 열유동해석매탈젠텍(POSCO)
73LICC DP매탈젠텍(POSCO)
74PFC DP 공정 해석매탈젠텍(RIST)
75행복도시하수처리장이산
76다이캐스팅 주조방안 및 해석코다코(캐스트맨 매출)
77전착성능해석용 차체모델링+전착 이차흐름현대기아기술연구소
78고열전도성 다이캐스팅 경량 방열부품개발현대자동차
79엔진/변속기1 (전륜8속 TM 케이스 및 하우징 방안설계 최적화)현대자동차
80쇽업쇼버 케이스 해석 용역현대자동차
81엔진/변속기2 (세타/실린더헤드 및 후륜 다단변속기 케이스2개 제품)현대자동차
82엔진/변속기3 / 6월현대자동차
83엔진/변속기4 / 8월현대자동차
84고강도 저밀도 산합금 열물성 DB 및 주조해석현대자동차
85진공밸브 최적화현대자동차
86Bloom 해석(연주기 몰드 내 용강 유동해석)현대제철
87상수도관망 최적관리시스템 구축사업(고성군)태성종합기술
88신월빗물저류배수시설 3차원수치해석선진ENG
89실러류 해석기술 개발현대기아기술연구소
90고덕하수처리장 수치해석그레넥스
91고덕하수처리장 수치해석엔바이로솔루션
92라오스수력발전프로젝트SK건설
93슬리브내 역비산기아차
94송석지 싸이폰 여수로농어촌공사(충남도본부 예산지사)
95고풍지 싸이폰 여수로농어촌공사(충남도본부)
96광교저수지 싸이폰 여수로지자체(수원시)
97장수지 싸이폰 여수로지자체(전남공흥군)
98광폭 마그네슘 주조기 용해로 열변형 해석용역포스코
99350톤 양수냄비 다이캐스팅 개발해피콜
100Mg 빌렛 해석HMK
101관망해석 프로그램 개발국민대학교
102충주댐 하류가물막이 수치해석대림산업
103충주댐 하류가적치 수치해석대림산업
104충주댐 하류가적치 수치해석대림산업
105평화의댐 하류부지 계획고 조정에 따른 3D 수치해석 용역대림산업
106봉화댐 실시설계 3차원 수치모형 실험도화엔지니어링
107원통수조 교반해석도화엔지니어링
108DAF 실증시설 부상조 수치해석삼진정밀
109EI과제 프로그램 개발(건기연(정우식박사))오투엔비
110SEMANGKA HEPP 수치모형 실험이산
111공릉저수지 조류 및 유속분포 유동해석한국건설기술연구원
112교육 및 해석 기술 자문한국건설기술연구원
113터빈하우징 로스트폼 주조 용역한국생산기술연구원
114터빈하우징 로스트폼 주조 용역한국생산기술연구원
115교육 및 해석 기술 자문해안해양기술
116새만금 남북2축 도로 제 3공구해석E&H컨설턴트
117달천교 교각세굴 해석E&H컨설턴트
118Lean Amine Air Cooler 부식원인 분석을 위한 유동해석GS칼텍스
119Xe Pian 하류 변경안 해석SK건설
120멤브레인 CFD 프로그램 개발국민대학교
121원형관 내부 유동해석서울시립대학교
122우수저류지 세척 시스템 해석선일엔바이로
123MD 열교환 해석(2차)알이디
124모듈조합프로그램 개발오투앤비
125해양 구조물 세굴해석전남대학교
126하우징 다이캐스팅 해석제이에스테크
127막묘듈 열교환 해석한국건설기술연구원
128두량지 PK Weir 방류량 해석한국농어촌공사
129관내 유동해석GS칼텍스
130정수장 분배수로 응집지 해석그린텍환경컨설팅
131정수장 분배수로 응집지 해석그린텍환경컨설팅
132주조제일테크
133해저구조물 세굴 및 선박유동 해석창원대학교(ADD)
134고출력 저압 램프용 자외선 반응기 해석한국건설기술연구원
135고출력 중압 램프용 자외선 반응기 해석한국건설기술연구원
136과제 해석한국건설기술연구원
137이동식보&팬스한국건설기술연구원
138Point source 기반의 하천 녹조 발생 현황 2차원 mapping 시스템한국건설기술연구원
139해석지원한국종합기술
140데이터교환customizing한국항공우주연구원
141엔진소재의 주조방안 최적화를 위한 주조해석 기술용역현대자동차
142배관유동GS건설
143울산 소수력 수치해석 용역유신
144한국건설기술연구원-이동형 해수담수화 시스템 개발 컨설팅한국건설기술연구원
145Water Dynamometer 해석두산중공업
146약액 침전 외 2건 해석세메스
147Ladle 내 Dam 및 노출부 형상변화에 따른 Vortex 거동 해석(재)포항산업과학연구원
148VMD 모듈 3D모델링알이디
149칠서정수장 기술진단 3차원 수치해석(주)그린텍환경컨설팅
150충주댐 유출부 감세지 3차원 수치해석대림산업
151친환경차용 e-4WD 유도모터 로터 주조기술개발현대자동차
152울산 #4복합 해양소수력 개발 타당성 용역중 3차원 수치해석유신
153사이펀 활용 중력구동 분리막 시스템 수치해석한국건설기술연구원
154삼척화력 소수력발전설비 설치공사(EPC) 기본 및 실시설계 중 CFD해석유신
155LG전자(평택) 생산기술원-레이저 용접 결함 예측 모델 개발LG전자(평택)
156LG전자 창원 H&A사업본부-FLOW-3D 기반 통세척 성능 해석기술 개발LG전자(창원)
 수리/수자원 분야
01 교량 설치에 따른 하천흐름 및 세굴영향 검토
컨설팅내용
  • 교량 설치로 인한 3차원 모형의 수리영향 검토
  • 세굴방지공 설치로 교량의 수리적 안정성 확보
필요데이터
  • 교각 3차원 형상 또는 도면
  • 하천 수심측량 자료 및 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 하천의 유동해석 수행 후 최고유속에 해당하는 교각 선정
  • 선정교각 대상을 중심으로 세굴 모형 적용
결과물
  • 하천 유동흐름, 수위분석
  • 평형세굴심 도달시간
  • 최대세굴심 및 최대퇴적고 등
02 댐체 월류 시 수리/수문 구조적 안정성 검토
컨설팅내용
  • 상류 댐 붕괴 시 급격한 방류로 인하여 하류 댐에 미치는 영향을 검토하기 위해 댐체 월류 시 수리/수문 구조적 안정성검토
필요데이터
  • 공도교 및 수문 구조물 상세 도면
  • 하천 수심측량자료 및 주변 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 상류 댐 붕괴시 홍수위/홍수량 정보입력
  • 구조물/수문 분리 후 취약한 수문 선정
  • 수문 구조해석 및 Total 힘 분석
결과물
  • 수문/구조물 받는 힘 분석
  • 굥도교 월류 여부 및 수위/유속 분포
  • 방류량 및 구조물 부압 등
 수처리 분야
01 정수처리시설 구조물 최적설계
컨설팅내용
  • 정수시설 구조물에 대한 유동, 유량, 압력, 온도분포 분석
  • 수처리과정에 발생하는 현상분석
필요데이터
  • 정수시설 구조물의 제원
  • 분배수로, 침전지 등 도면 및 3D CAD 자료
  • 초기 수위데이터 등
해석방법
  • 정수시설 구조물의 경계조건 설정
  • 형상에 따른 유동흐름 및 유량 등 초기조건 
결과물
  • 정수시설물에 작용하는 압력분포 확인
  • 유동 유입에 따른 유동양상, 유량, 유속데이터 분석
  • 온도변화에 따른 유동 및 침전효율 분석

02 하수처리시설 방류량 및 유동양상 분석
컨설팅내용
  • 토출수조의 수위 및 유동현상검토
  • 각 방류 Box의 방류유량분포 및 유속분석 
필요데이터
  • 구조물관련 설계도면 자료
  • 전체 모형 작성 및 지형데이터
  • 유체 유입량, 초기 수위관련 자료
해석방법
  • 시설 구조물에 따른 경계조건 설정
  • 초기 수위조건 및 유동현상 등 조건 확인
결과물
  • 토출 수조의 수위량 및 유동흐름
  • 유동 유입에 따른 유량, 유속데이터 분석
  • 구조물 단면의 유량흐름 데이터
 
 주조 분야
01 수축 결함최소화를 위한 주조해석
컨설팅내용
  • 주조 시 산화물 혼입방지 설계
  • 조립부 수축결함 최소화 
필요데이터
  • Frame형상 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 용탕 주입시간, 충진속도, 온도 등의 데이터
해석방법
  • 금형형상에 따른 주조해석 경계조건 설정
  • 초기 조건설정에 따른 파라미터분석
결과물
  • 충진시 산화물발생 위치 및 수축공 발생 위치
  • Solidification 확인, 결함부 현상분석
  • Gate, Runner 위치 최적화
         
02 금형 최적설계를 위한 주조해석
컨설팅내용
  • 충진 온도유지 및 제품 결함 최소화를 위한 최적설계
필요데이터
  • 금형관련 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 주조 공정조건 데이터
해석방법
  • 금형형상에 맞는 Runner, Gate 모델링
  • 용탕온도, 속도, 압력 등 조건에 따른 제품 최적설계
결과물
  • 충진시 압력분포 및 산화물 발생 위치분석
  • Solid Fraction, Solidification 등 현상분석
  • 결함부위 최소화를 위한 Gate, Runner 위치 최적화
 코팅 분야
01 Nozzle 분사를 이용한 Slit Coating 해석
컨설팅내용
  • 표면 Coating에 적합한 Nozzle 형상 설계
  • Coating 구동조건 및 압력분포 분석
필요데이터
  • 초기 Nozzle 형상 제원
  • 형상 도면자료 및 3D CAD자료
  • 초기 Coating 도포현상 및 구동조건 데이터
해석방법
  • Nozzle 구동에 따른 Coating 분석
  • 액상조건에 따른 Coating 도포형상 분석
결과물
  • Nozzle 형상 파라미터에 따른 Coating 현상분석
  • Coating 분포에 따른 높이 균일성 확인
  • 액상 온도에 따른 도포량분석
  
 MEMS 분야
01 연료전지 시스템의 최적설계를 위한 유동해석
컨설팅내용
  • 연료전지 내부형상에 따른 유동장변화 데이터
  • 유량분배에 적절한 최적의 형상조건 설계
필요데이터
  • 초기 형상 도면자료 및 3D CAD자료
  • 연료전지의 구동조건 및 물성조건
  • Actuator의 작동, 토출량, 유동 등의 데이터
해석방법
  • Micro-Channel에서의 유동분배 설정
  • 액체의 특성에 따른 토출조건 확인
결과물
  • Actuator의 속도에 따른 유동량 분석
  • Micro-Channel에서의 유동양상
  • 공동현상 최소화를 위한 최적의 구동조건

Micro-porosity(=Micro-shrinkage) Defects, (미세기포(=미세수축공)에 의한 결함)

Micro-porosity(=Mirco-shrinkage) Defects (미세기포(=미세수축공)에 의한 결함)

FLOW-3D는 특별히 응고 과정 후반에  발생하는 미세수축공의 발생 위치를 예측하기 위한 모델을 갖고 있습니다. 이 정보를 이용하여 설계방안을 조정하고 중요한 결함을 방지 할 수 있습니다. 어떤 주조 부품들은 용탕이 응고하는 동안의 수축에 의한 gas pocket이나 porosity(or shrinkage)이 표면에 드러나면 불량품으로 판정받게 됩니다. 대부분의 크기가 큰 수축공은 응고중 피딩(feeding)을 가능하게 하는 적절한 금형 설계 방법에 의해 제거될 수 있습니다. 용탕의 응고수축을 보상하도록 충분한 feeding이 발생할 때, 미세수축공(micro-porosity, micro-shrinkage)은 일반적으로 발생하지 않습니다. 미세수축공은 충진시 공기혼입에 의한 기포와 발생원인이 상이한 것으로 응고말기 수지상(dendrite)조직에 충분한 용탕이 공급되지 않을 경우 주로 발생하며 일반적으로 부피 비율이 1 % 이하 정도의 작은 기포의 분포의미합니다. 그러므로 미세수축공이 나타날 수 있는 위치 및 가능성을 예측하는 수단을 갖는다는 것은 고품질 주조품의 생산에 매우 중요합니다. FLOW-3D의 미세수축공 모델(micro-porosity model )은 이러한 목적을 위해 개발되었습니다.

FLOW-3D CAST 사양

FLOW-3D CAST Feature

CAST virtual foundry conference banner

Active Simulation Control

실행중인 해석의 제어 파라미터는 History probes에서 사용자가 정의한 조건에 따라, 런타임 동안에 자동으로 변경 될 수 있습니다. History probes에 의해 기록된 시뮬레이션 변수는 경계 조건, mass source 및 General Moving Object 기능을 이용하여, 시간에 따른 개체의 동작을 제어하기 위해 사용될 수있습니다. 예를 들어, 고압다이캐스팅 해석에서 게이트에 설정한 History probes에 유체가 도달하면, 그 정보를 캡처하는 데이터 출력 주파수를 증가시켜 플런저의 속도를 고속으로 자동 전환 될 수있습니다. 고압다이캐스팅 해석은 유체가 게이트에 도달 할 때 자동으로 고속 전환됩니다. 이 프로세스는 새로운 실행 시뮬레이션 제어 기능을 통해 자동으로 진행됩니다. 저속 구간에서 플런저의 움직임은 trigger 슬리브의 용융물에 혼입되는 공기의 양을 최소화하기 위해 Barkhudarov 방법 1을 사용하여 계산됩니다. 이 결과는 훨씬 더 높은 품질의 주조품이 나올수 있도록 설계하는데 도움이 될 수 있습니다. Read the development note > Read the blog post >

Batch Postprocessing & Report Generation

Batch 후처리 및 보고서 생성은 해석 결과 분석시 사용자의 해석 처리 시간을 절약하기 위해 개발되었습니다. Batch 후처리는, 해석이 완료된 후, 사용자가 애니메이션, 시나리오, 그래프, 텍스트 데이터 시리즈를 정의하여 자동으로 생성되도록 할 수 있습니다. 그래픽 요청은 백그라운드에서 FlowSight를 실행하여 처리되도록 FLOW-3D Cast에 정의되어 있습니다. 원하는 해석 결과를 생성할 수 있는 컨텍스트 파일을 사용하면 Batch 후처리 기능을 사용할 수 있습니다. Batch 후처리가 완료되면, 사용자는 쉽게 자신의 관리자, 동료, 또는 클라이언트에 보낼 수있는 HTML5 형식의 완벽한 기능을 갖춘 보고서를 만들 수 있습니다. 이미지 및 동영상도 보고서에 포함 할 수 있고, 사용자는 텍스트, 캡션, 참고 문헌의 형식을 완벽하게 제어 하고 유지할 수 있습니다. Read the blog post >

Metal Casting Models

Squeeze Pin Model

스퀴즈 핀은 주조시 주입 공급이 어려운 영역에서, 응고하는 동안 금속 수축을 보상하기 위해 사용되는 실제의 다이 캐스팅 머신의 동작을 모델링하는 해석을 할 수 있습니다. 스퀴즈 핀은 선택된 표면에 cylinderical squeeze pin을 추가하여, STL 파일 또는 대화식으로 생성 될 수 있습니다. Read the development note >

Intensification Pressure Model

새로운 플런저 타입 형상이 추가 되었습니다. 강화된 압력 조건으로 macro-shrinkage 와 micro-porosity 제거를 지정할 수 있습니다.

Thermal Die Cycling model

FLOW-3D Cast v4.1's full process thermal die cycling model

다이싸이클링 (Thermal die cycling, TDC) 모델에 새로운 두 가지의 단계가 추가되었습니다. 금형이 열린 상태에서 제품이 여전히 금형 내부에 있는 ejection 단계와, 금형이 닫혔지만 사출 바로전의 preparation 단계가 추가되었습니다. 또한, 마지막 싸이클만이 아닌 모든 금형 싸이클 모두 수렴된 결과를 전달하기 위해 TDC 솔버가 성능 손실 없이 최적화 되었습니다. Read the blog post >

Valves and Vents

Modeling valves and vents in FLOW-3D Cast v4.1

밸브와 밴트의 외부 압력과 온도는 이제 사용자가 다이 캐스팅 공정에서 충진중에 보다 실제적인 동작을 정의 할 수 있도록, 시간의 표 함수로서 정의 할 수있습니다. 밸브 및 벤트의 압력 및 온도는 프로세스 설계 단계에서 유용한 제품 내부에 설정된 프로브에 의해 제어 될 수 있습니다.

PQ2 Diagram

PQ2다이어그램의 사용은 사용자가 더 나은 슬리브의 플런저 실제 움직임과 유사하게 적용 할 수 있습니다. 새로운 기능은 실제 공정 변수가 아직 알려져 있지 않았을 때 다이캐스팅 설계 단계 중에 특히 유용합니다. Read the blog post >

Cooling Channels

냉각 채널은 금형 각각의 냉각 유로에 의해 제거되거나 추가된 열의 총량에 의해 제어 될 수 있습니다. Read the development note >

Air Entrainment Model

Air entrainment 모델에 compressibility를 입력하는 새로운 옵션이 추가되었습니다. 고압 다이캐스팅의 충진 공정과 같은 경우, 공기 압축성은 유체 압력의 변화로 인한 유체의 흐름에 중요한 인자가 됩니다.
 

Cavitation Model

캐비테이션 모델은 유동 조건의 더 넓은 범위에 걸쳐 유체의 캐비테이션 거동을 나타내도록 개선되었습니다. 캐비테이션 생성에 대한 새로운 옵션은 경험적 관계를 기반으로, 기존의 일정한 속도로 생성되는 방식에서 보완되었습니다. 새로운 passive gas model 옵션은 open bubbles이 아닌 유체내에 cavitationg gas를 추적하여, 계산에 필요한 격자와 계산시간을 줄일 수 있습니다. Read the development note >

Two-fluid Phase Change Model

Two-fluid phase change model 은 과냉각을 포함하도록 확장되었습니다. 일정한 과냉각 온도를 정의하고 가스 온도가 응축이 일어나기 전에 포화점 이하로 내려갈 수 있게 함으로써 구현됩니다.

Simulation Results and Analysis

Simulation Results File Editor

사용자가 FLOW-3D Cast v4.1 결과 파일들을 병합 및 제거 할 수 있는 편집 유틸리티

Linking flsgrf.* files

Restart 해석 결과 파일들(flsgrf.*)은 FlowSight 에서 하나의 연속적인 애니메이션 결과를 표시하기 위해 restart source 결과로 링크될 수 있습니다.

Fluid/wall Contact Time

A new spatial quantity has been added to the solution output that stores the time that metal spent in contact with each geometric component, as well as the time spent by each component with metal.

용탕이 각 geometry 컴포넌트를 접촉한 시간과 각 컴포넌트가 용탕과의 접촉 시간을 나타내는 새로운 공간적 양이 해석 아웃풋에 추가 되었습니다.

Performance and Usability

Calculators

열전달 계수, 열 침투 깊이, 밸브 손실 계수, 슬리브에 용탕량(깊이), 플런저의 속도를 계산할 수 있는 Calculators 기능이 Model Setup 창에서 바로 가능해졌습니다. 또한 유틸리티 메뉴에서도 가능합니다.

Thermal Die Cycling

Heat transfer database in FLOW-3D Cast v4.1

열전달 계수 데이터베이스와 각 싸이클 단계들이 입력되어있어 간편하게 다이싸이클링 해석을 하실 수 있습니다.

GMRES Pressure Solver

GMRES pressure solver의 속도가 솔버 데이터 구조의 최적화로 인해 2배까지 향상되었습니다. 이로 인해 메모리 사용량이 20% 미만으로 증가할 수 있습니다. Read the blog post >

Sampling Volumes

Sampling volume 기능은 STL로 정의할 수 있습니다. 각 sampling volume에 의해 계산된 양들의 목록은 유체의 부피, 최대/최소 온도, 파티클의 갯수와 같은 전체 해석 영역에 대해 모두 같은 양이 되도록 확장되었습니다.

 

FSI/TSE Model

구조분석 모델의 성능이 부분적인 coupling으로 해석 솔버의 병렬화와 최적화를 통해 향상되었습니다.

Workspaces

Workspaces 를 이전에 설치된 FLOW-3D에서 가져올 수 있습니다. Workspaces 와 사용자가 선택한 시뮬레이션들을 복사할 수 있습니다.

Expanded Simulation Pre-check

Simulation pre-check 기능은 preprocessor checks를 포함하고, 문제가 발생하는 경우 링크됩니다.

Improved Transparency

Depth-peeling 옵션은 transparent geometries 를 좀 더 잘 표현하고, v4.0보다 10배 빨라졌습니다.

Interactive Tools

Baffles, history probes, void/fluid pointers, valves, mass-momentum sources, squeeze pins에 대한 새로운 대화형 생성 기능이 추가되었습니다. 또한 probing과 clipping 도구들이 대화형으로 개선되었습니다.

General Enable/Disable

모든 objects (e.g., mesh blocks)은 활성화/비활성화 할 수 있습니다.

Estimated Remaining Simulation Time

솔버 메세지 파일에 short-print로 추정된 잔여 해석 시간이 추가 되었습니다.

Tabular Data

테이블 형식의 데이터에서 선택된 데이터를 마우스 오른쪽 버튼을 클릭하여 csv파일 또는 외부 파일에 복사, 저장할 수 있습니다.

1 23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

[FLOW-3D 물리모델]General Moving Objects / 일반이동물체

General Moving Objects / 일반이동물체

Basics / 기초

The general moving objects (GMO) model in FLOW-3D can simulate rigid body motion, which is either userprescribed (prescribed motion) or dynamically coupled with fluid flow (coupled motion). If an object’s motion is prescribed, fluid flow is affected by the object’s motion, but the object’s motion is not affected by fluid flow. If an object has coupled motion, however, the object’s motion and fluid flow are coupled dynamically and affect each other. In both cases, a moving object can possess six degrees of freedom (DOF), or rotate about a fixed point or a fixed axis. The GMO model allows the location of the fixed point or axis to be arbitrary (it can be inside or outside the object and the computational domain), but the fixed axis must be parallel to one of the three coordinate axes of the space reference system. In one simulation, multiple moving objects with independent motion types can exist (the total number of moving and non-moving components cannot exceed 500). Any object under coupled motion can undergo simultaneous collisions with other moving and non-moving objects and wall and symmetry mesh boundaries (See Collision). The model also allows the existence of multiple (up to 100) elastic linear and torsion springs, elastic ropes and mooring lines which are attached to moving objects and apply forces or torques to them (See Elastic Springs & Ropes and Mooring Lines).

FLOW-3D에서 일반 이동물체인 GMO 모델은 강체운동을 모사(simulate)할 수 있는데, 이는 사용자가 기술하는 운동(지정운동)이거나 유체 유동과 동력학적인(결합된) 운동일 수 있다. 물체의 운동이 지정되면 유체 유동은 이 운동에 의해 영향을 받으나, 물체의 운동은 유체에 의해 영향을 받지 않는다. 그러나 물체가 결합된 운동을 하면 물체와 유체는 동역학적으로 연결되어 서로 영향을 미친다.

이 두 경우에 물체는6 자유도 운동을 할 수 있고, 고정된 점이나 축에 대해 회전할 수가 있다. GMO모델은 고정점이나 고정축의 위치를 임의로 설정할 수 있으나(이는 물체나 계산영역의 내부 또는 외부가 될 수 있다) 고정축은 공간좌표계의 좌표중의 하나에 평행하여야 한다.

어떤 모사(simulate)에서 고유의 운동형태를 갖는 다수의 운동물체가 존재할 수 있다(이동 및 고정된 물체의 전체수는500개를 초과하지 못한다). 결합운동을 하는 물체는 다른 이동/비이동 물체 그리고 벽과 대칭 경계 격자면에서 충돌할 수가 있다(충돌참조). 이 모델은 (100개까지) 다수의 탄성선형과 비틀림 스프링, 탄성로프와 이동 물체에 부착된 탄성력과 회전력을 갖는 계류선들을 표현할 수 있다(Elastic Springs & Ropes 와 Mooring Lines참조). .

In general, the motion of a rigid body can be described with six velocity components: three for translation and three for rotation. In the most general cases of coupled motion, all the available velocity components are coupled with fluid flow. However, the velocity components can also be partially prescribed and partially coupled in complex coupledmotion problems (e.g., a ship in a stream can have its pitch, roll and heave to be coupled but yaw, sway and surge prescribed). For coupled motion only, in addition to the hydraulic, gravitational, inertial and spring forces and torques which are calculated by the code, additional control forces can be prescribed by the user. The control forces can be defined either as up to five forces with their application points fixed on the object or as a net control force and torque. The net control force is applied to the GMO’s mass center, while the control torque is applied about the mass center for 6-DOF motion, and about the fixed point or fixed axis for those kinds of motions. The inertial force and torque exist only if the Non-inertial Reference Frame model is activated.

일반적으로 강체의 운동은 6개의 속도 성분으로 기술될 수 있다: 3개의 이동과3개의 회전. 가장 일반적인 결합 운동의 경우에, 모든 가능한 속도성분들은 유동과 연결되어 있다. 그러나 속도 성분들은 복잡한 결합운동 문제에서는 부분적으로 지정되고 일부는 결합될 수 있다(즉 유속내의 선박에서 pitch, roll and heave는 결합된 운동을 하고 yaw, sway and surge 는 지정될 수있다). 단 결합운동 문제에서는 코드 내에서 계산되는 수력, 중력, 관성 그리고 스프링 힘과 토크에 추가적인 조절할 수 있는 힘(control force) 들이 사용자에 의해 기술될 수 있다. 조절 힘(control force)들은 물체의 지정된 위치에 작용하는5개까지의 힘이나 또는 순수 힘과 토크로 정의 될 수 있다. 순수 조절힘은 GMO의 질량 중심에 작용하지만, 조절토크는6 자유도 운동의 질량중심에 대해 이런 운동을 하기 위한 고정축이나 점들에 대해 적용된다. 관성력과 토크는 단지 비 관성계 모델이 활성화되면 존재한다.

In FLOW-3D, a GMO is classified as a geometry component that is either porous or non-porous. As with stationary components, a GMO can be composed of a number of geometry subcomponents. Each subcomponent can be defined either by quadratic functions and primitives, or by STL data, and can be solid, hole or complement. If STL files are used, since GMO geometry is re-generated at every time step in the computation, the user should strive to minimize the number of triangle facets used to define the GMO to achieve faster execution of the solver while maintaining the necessary level of the geometry resolution. For mass properties, different subcomponents of an object can possess different mass densities.

FLOW-3D 에서 한 개의 GMO 는 다공질 또는 비 다공질의 형상요소로 간주된다. 정지된 구성요소에서와 같이 한 개의 GMO 는 다수의 형상 서브구성요소로 구성될 수 있다. 각 서브구성요소는 2차 함수와 기초 요소 또는 STL 데이터로 정의될 수 있고 고체, 공간 또는 이의 보완일 수 있다. 만약 STL 파일이 사용된다면 GMO 형상은 계산 중에 매 시간에서 재 생성되므로 사용자는 형상 정밀도에 필요한 수준을 유지하는 한편, 빠른 계산을 위해 GMO를 정의하는데 사용되는 삼각면의 수를 줄이려고 노력해야 한다. 질량물성을 위해 한 물체의 다른 서브구성요소는 다른 질량밀도를 가질 수 있다.

In order to define the motion of a GMO and interpret the computational results correctly, the user needs to understand the body-fixed reference system (body system) which is always fixed on the object and experiences the same motion. In the FLOW-3D preprocessor, the body system (x’, y’, z’) is automatically set up for each GMO. The initial directions of its coordinate axes (at t = 0) are the same as those of the space system (x, y, z). The origin of the body system is fixed at the GMO’s reference point which is a point automatically set on each moving object in accordance with the object’s motion type.

GMO 의 운동을 정의하고 계산결과를 정확히 이해하기 위해, 사용자는 항상 물체에 고정되고, 물체와 같은 운동을 하는 물체에, 고정된 기준계(물체계)를 이해할 필요가 있다. FLOW-3D 의 전처리에서 물체계(x’, y’, z’) 가 자동으로 각 GMO 에 대해 설정된다. 좌표축(t = 0에서) 의 초기방향은 공간계(x, y, z) 의 것과 같다. 물체계의 원점은 물체의 이동형상에 일치하는 각 이동체 상에 자동으로 설정된 GMO 의 기준점에 고정되어 있다.

 

The reference point is: 기준점은 다음과 같다.

  • the object’s mass center for the coupled 6-DOF motion;

결합된6자유도 운동의 질량중심

  • the fixed point for the fixed-point motion;

고정점 운동을 위한 고정점

  • a point on the fixed axis for the fixed-axis rotation;

고정축 회전을 위한 고정축 상의 점

  • a user-defined reference point for the prescribed 6-DOF motion.

기술된6자유도 운동을 위한 사용자 지정의 기준점

  • If the reference point is not given by users for the prescribed 6-DOF motion, it is set by the code at the mass center (if mass properties are given) or the geometry center (if mass properties are not given) of the object.

기준점이 기술된6자유도 운동을 위해 사용자가 지정하지 않으면 코드에 의해 질량중심 (질량물성이 주어지면) 또는 형상중심(질량물성이 안 주어지면)에 지정된다.

 

The GMO’s motion can be defined through the GUI using four steps:

GMO 운동은 4단계를 거쳐 GUI 를통하여 정의될수있다.

  1. Activate the GMO model;

GMO 모델을 활성화한다

  1. Create the GMO’s initial geometry;

GMO의 초기형상을 생성한다

  1. Specify the GMO’s motion-related parameters, and

GMO의 운동관련 변수들을 지정하고.

  1. Define the GMO’s mass properties.

GMO 질량물성을 정의한다

Without the activation of the GMO model in step 1, the object created as a GMO will be treated as a non-moving object, even if steps 2 to 4 are accomplished.

1단계의 GMO 모델 활성화가 없으면 2~4의 단계가 이루어져도 GMO 로 생성된 물체는 비 이동 물체로 간주될 것이다.

Step 1: Activate the GMO Model GMO 모델활성화

To activate the GMO model, go to Model Setup Physics Moving and simple deforming objects and check the Activate general moving objects (GMO) model box.

GMO 모델을 활성화하기 위해 Model Setup Physics Moving and simple deforming objects 로 가서 Activate general moving objects (GMO) model 박스를 체크한다.

The GMO model has two numerical methods to treat the interaction between fluid and moving objects: an explicit and an implicit method. If no coupled motion exists, the two methods are identical. For coupled motion, the explicit method, in general, works only for heavy GMO problem, i.e., all moving objects under coupled motion have larger mass densities than that of fluid and their added mass is relatively small. The implicit method, however, works for both heavy and light GMO problems. A light GMO problem means at least one of the moving objects under coupled motion has smaller mass densities than that of fluid or their added mass is large. The user may change the selection on the Moving and deforming objects panel or on the Numerics tab Moving object/fluid coupling.

GMO 모델은 유체와 움직이는 물체간의 상호작용을 다루기위해 두 수치해석법을 이용한다: explicit 방법과implicit 방법. 결합 운동이 없으면 두 방법은 동일하다. 결합된 운동에서는 외재적 방법은 일반적으로 무거운 GMO 문제에 사용된다, 즉 결합된 운동을 하는 모든 이동물체는 유체밀도보다 크고 이의 부가질량이 작을 경우이다. 그러나 내재적 방법은 무겁거나 가벼운 GMO 문제에 모두 사용된다. 가벼운 GMO 문제는 결합운동 시에 최소한 하나의 이동물체가 유체밀도보다 작고 이의 부가질량이 클 경우이다. 사용자는 Moving and deforming objects패널이나 Numerics tab Moving object/fluid coupling 상에서 선택을 바꿀 수 있다.

  1. Step 2: Create the GMO’s Initial Geometry GMO의 초기형상을 생성한다

 

In the Meshing & Geometry tab, create the desired geometry for the GMO components using either primitives and/or imported STL files in the same way as is done for any stationary component. The component can be either standard or porous. To set up a porous component, refer to Porous Media. Note that the Copy function cannot be used with geometry components representing GMOs.

정지상태의 구성요소 생성의 경우와 마찬가지로 Meshing & Geometry 탭에서 기초 요소와/또는 외부로부터의 STL 파일을 이용하여 GMO 구성요소의 원하는 형상을 생성한다. 구성요소는 standard이거나porous일 수 있다. 다공성요소를 설정하기 위해 Porous Media 를 참조하라. Copy 기능은 GMO를 나타내는 형상 구성요소에 사용할 수 없음에 주목한다.

Step 3: Specify the GMO’s Motion Related Parameters GMO의 운동관련변수들을 지정한다

The following section discusses how to set up parameters for prescribed and coupled 6-DOF motion, fixed-point motion and fixed-axis motion. The user can go directly to the appropriate part.

다음 섹션은 “지정되고 결합된 6자유도운동”, “고정점 운동과 고정축 운동을 위한 매개변수를 어떻게 설정하는지”에 대해 논한다. 사용자는 직접 해당부분을 참조할 수 있다.

Prescribed 6-DOF Motion 지정된 6자유도운동

In Meshing & Geometry Geometry Component (the desired GMO component) Type of Moving Object, select Prescribed motion. Go to Component Properties Type of Moving Object Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select 6 Degrees of Freedom in the combo box.

Meshing & Geometry Geometry Component (the desired GMO component) Type of Moving Object 에서 Prescribed motion 을 선택한다. Component Properties Type of Moving Object Moving Object Properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 combo 박스에 있는 6 Degrees of Freedom 를 선택한다.

To define the object’s velocity, go to the Initial/Prescribed Velocities tab in the Moving object setup window. The prescribed 6-DOF motion is described as a superimposition of a translation of a reference point and a rotation about the reference point. The reference point can be anywhere inside or outside the moving object and the computational domain. The user needs to enter its initial x, y and z coordinates (at t = 0) in the provided edit boxes. By default, the reference point is determined by the preprocessor in two different ways depending on whether the object’s mass properties are given: if mass properties (either mass density or integrated mass properties) are given, then the mass center of the moving object is used as the reference point; otherwise, the object’s geometric center will be calculated and used as the reference point.

물체의 속도를 정의하기 위해 Moving object setup 의 창에 있는 Initial/Prescribed Velocities 탭으로 이동한다. 지정된 6자유도 운동은 기준점의 이동과 기준점에 대한 회전의 중첩으로 기술된다. 기준점은 이동체의 내부 또는 외부 그리고 계산영역 외부일 수도 있다. 사용자는 주어진 편집박스 내에 이의 초기 x, y 와 z 좌표값(t = 0에서)을 입력할 필요가 있다. 디폴트로 기준점은 물체의 질량 물성이 주어지는가에 따라 두 가지로 전처리 과정에서 결정된다: 질량물성(질량밀도나 전체질량물성)이 주어지면 이동체의 질량중심이 기준점으로 사용되고 아니면 이동체의 형상중심이 계산되고 기준점으로 이용된다.

With the reference point provided (or left for the code to calculate), users can define the translational velocity components for the reference point in space system and the angular velocity components (in radians/time) in body system. Each velocity component can be defined either as a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in the corresponding input box (the default value is 0.0). If a velocity component is Non-sinusoidal and time-dependent, click on the corresponding Tabular button to open a data table and enter values for the velocity component and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity from left to right and must have a csv extension. If the velocity component is sinusoidal in time, then enter the values for Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the input boxes.

기준점이 주어지면(또는 코드 내에서 계산이 되면) 사용자는 공간계 기준점에 대해 translational velocity components 를 그리고 물체계에서angular velocity components (radians/시간으로)를 정의할 수 있다. 각 속도 성분은 상응하는 combo box 에서 선택함으로써 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정 속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 상응하는 combo 박스에 값을 넣는다(디폴트 값은0이다). 속도성분이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 열고 상응하는 Tabular 버튼을 클릭하고 속도성분과 시간을 넣는다. 다른 방법으로는 사용자가 Tabular Import Values를 클릭함으로써 속도성분대 시간의 데이터파일을 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도 성분이 시간에 따른 사인파이면 입력박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

The expression for the sinusoidal velocity component is

사인파 속도의 식은

v = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.
  •  
  • Users can set limits for the translational displacements of the object’s reference point in both negative and positive x, y and z directions in space system. The displacements are measured from the initial location of the reference point. During motion, the reference point cannot go beyond these limits but can move back to the allowed range after it reaches a limit. To set the limits for translation, go to the Motion Constraints tab and enter the maximum displacements allowed in the corresponding input boxes, using absolute values. By default, these values are infinite. Note the Limits for rotation is only for fixed-axis rotation thus cannot be set for 6-DOF motion.사용자는 공간계에서 음이나 양의 x, y 그리고 z 방향으로 물체 기준점의 이동변위를 제한할 수 있다. 변위는 기준점의 초기위치로부터 정해진다. 운동중에 기준점은 이 제한을 넘어갈 수 없지만 이 제한에 도달한 후에 허용된 범위만큼 돌아올 수 있다. 이동의 제한을 설정하기 위해 Motion Constraints 탭으로가서 절대값을 사용하여 상응하는 입력박스 안에 허용된 최대변위를 넣는다. the Limits for rotation 는 고정축 회전에만 해당하므로 6자유도 운동에는 지정될 수 없다.Prescribed Fixed-point Motion지정된 고정점운동In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Prescribed motion. Go to Moving object properties Edit Motion Constraints. Under Type of Constraint, select Fixed point rotation in the combo box and enter the x, y and z coordinates of the fixed point in the corresponding input boxes.Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Prescribed motion 을 선택한다. Moving object properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 combo box 에있는 Fixed point rotation을 선택하고 상응하는 입력박스에서 고정점의 the x, y 및 z 좌표를 입력한다.To define the velocity of the object, go to the Initial/Prescribed Velocities tab in the Moving object setup window. The velocity components to be defined are the x, y and z components of the angular velocity (in radians/time) in the body system. Each velocity component can be defined as either a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in its input box (the default value is 0.0). If a velocity component is time-variant and Non-sinusoidal, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity component from left to right and must have a csv extension. If the velocity component is sinusoidal in time, then enter the values for Amplitude, Frequency (in cycles/time) and Initial Phase (in degrees) in the corresponding input boxes.

    물체의 속도를 정의하기 위해 Moving object setup 의 창에 있는 Initial/Prescribed Velocities 탭으로 간다. 정의되어야 할 속도성분은 물체계에서 각속도  (radians/시간으로) 를 x, y 및 z 성분으로 정의할 수 있다

    각 속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다.

    일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 상응하는 combo box 박스에 값을 넣는다(디폴트 값은0이다). 속도성분이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 열고 상응하는 Tabular 버튼을 클릭하고 속도성분과 시간을 넣는다. 그렇지 않으면 사용자가 Tabular Import Values 를 클릭함으로써 속도성분대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도성분이 시간에 따른 사인파이면 상응하는 입력박스에서 Amplitude, Frequency (in Hz) 와 Initial Phase (in degrees) 값을 입력한다.

    The expression for a sinusoidal angular velocity component is

    ω = Asin(2πft + ϕ0)

    where: 여기서

    • A is the amplitude, 진폭
    • f is the frequency, and주기이며
    • ϕ0 is the initial phase. 초기위상이다.

    Prescribed Fixed-Axis Motion

    In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Prescribed motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed X-Axis Rotation or Fixed Y-Axis Rotation or Fixed Z-Axis Rotation in the combo box depending on which coordinate axis the rotational axis is parallel to.

    Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Prescribed motion 을 선택한다. Moving object properties Edit Motion Constraints 로 가서Type of Constraint밑에서 회전축이 어떤 좌표축에 평행인가에 따라 combo box 에있는 Fixed X-Axis Rotation 또는 Fixed Y-Axis Rotation 또는 Fixed Z-Axis Rotation 를 선택한다.

    Coordinates of the rotational axis need be given in two of the three input boxes for Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate and Fixed Axis/Point Z Coordinate. For example, if the rotational axis is parallel to the z-axis, then the x and y coordinates for the rotational axis must be defined. Users can also set limits for the object’s rotational angle in both positive and negative directions. The rotational angle (i.e., angular displacement) is a vector and measured from the object’s initial orientation based on the right-hand rule. Its value is positive if it points in the positive direction of the coordinate axis which the rotational axis is parallel to. The object cannot rotate beyond these limits but can rotate back to the allowed angular range after it reaches a limit. To set the limits for rotation, in Motion Constraints Limits for rotation, enter the Maximum rotational angle allowed in negative and positive directions in the corresponding input boxes, using absolute values in degrees. By default, these values are infinite.

    회전축 좌표는 3개 Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate Fixed Axis/Point Z Coordinate 중 2개의 입력박스에서 주어져야 한다. 예를 들면 회전축이 z 축에 평행 하다면 이 회전축의 the x 와 y 좌표가 정의 되어야 한다. 사용자는 물체의 양음 방향의 회전각도를 제한할 수 있다. 회전각 (즉, 각변위)은 벡터이며 오른손 법칙에 따른 물체의 초기 방향으로부터 측정된다. 이는 회전축에 평행한 좌표축의 양방향을 가리키면 양의 값이다. 물체는 제한 값을 지나 회전할 수 없지만 이 값에 도달한 후 허용된 각변위로 되돌아갈 수 있다. 회전의 제한을 설정하기 위해 Motion Constraints Limits for rotation 내에서 상응하는 입력박스에서 음이나 양의방향으로 허용된 Maximum rotational angle 을 입력한다. 이의 디폴트 값은 무한대이다.

To define the angular velocity of an object (in radians/time), go to Initial/Prescribed Velocities. The angular velocity can be defined either as a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant angular velocity, choose Non-Sinusoidal and simply enter its value in its input box (the default value is 0.0). If it is Non-sinusoidal in time, click on the corresponding Tabular button to open a data table and enter the values for the angular velocity and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and angular velocity from left to right and must have a csv extension. If the angular velocity is sinusoidal in time, then enter the values for Amplitude, Frequency (in cycles/time) and Initial Phase (in degrees) in the corresponding input boxes.

물체의 각속도(radians/시간으로)를 정의하기 위해 Initial/Prescribed Velocities 탭으로 간다. 각속도는 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정 각속도에 대해서 Non-Sinusoidal 을 선택하고, 이에 상응하는 combo box 에 단순히 값을 넣는다(디폴트 값은0.0이다). 이것이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 불러와, 상응하는 Tabular 버튼을 클릭하고 각속도와 시간을 넣는다. 그렇지 않으면 사용자가 Tabular Import Values 를 클릭함으로써 속도 성분대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 시간과 각속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 각속도가 시간에 따른 사인파이면 입력박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

 

The expression for a sinusoidal angular velocity is사인파 각속도식은

ω = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.

Coupled 6-DOF motion 결합된 6자유도운동

In Meshing & Geometry → Geometry → Component (the desired GMO component) → Component Properties → Type of Moving Object, select Coupled motion. Go to Moving Object Properties → Edit → Motion Constraints. Under Type of Constraint, select 6 Degrees of Freedom in the combo box.

Meshing & Geometry → Geometry → Component (the desired GMO component) → Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties → Edit → Motion Constraints 로가서 Type of Constraint 밑에서 combo 박스에 있는 6 Degrees of Freedom 를 선택한다.

 

Users need to define the initial velocities for the object. Go to the Initial/Prescribed Velocities tab. Enter the x, y, and z components of the initial velocity of the GMO’s mass center in X Initial Velocity, Y Initial Velocity and Z Initial Velocity, respectively. Enter the x’, y’ and z’ components of the initial angular velocity (in radians/time) in the body system in X Initial Angular Velocity, Y Initial Angular Velocity and Z Initial Angular Velocity, respectively. By default, the initial velocity components are zero.

사용자는 물체에 대한 초기속도를 정의해야 한다. Initial/Prescribed Velocities 탭으로 간다. 각 X Initial Velocity, Y Initial Velocity 그리고 Z Initial Velocity 로 GMO 질량중심의 초기속도의 x, y 와 z 성분값(t = 0에서)을 입력한다. 물체 계에서의 X Initial Angular Velocity, Y Initial Angular Velocity 그리고 Z Initial Angular Velocity (radians/시간으로)로 초기 각속도의 x’, y’ 및 z’ 성분값을 입력한다.

 

For coupled 6-DOF motion, user-prescribed control force(s) and torque exerting on the object can be defined either in the space system or the body system. They are combined with the hydraulic, gravitational, inertial and spring forces and torques to determine the object’s motion. There are two different ways to define control force(s) and torque: prescribe either a total force and a total torque about the object’s mass center or multiple forces with their application points fixed on the object. By default, all the control force(s) and torque are equal to zero.

결합된6자유도운동에서 물체에 미치는 사용자 지정 조절 힘과 토크는 물체계 또는 공간계에서 정의될 수 있다. 이들은 물체의 운동을 결정하는 수력, 중력, 관성력 스프링 힘 그리고 토크이다. 이 조절 힘과 토크를 정의하는 두 가지 방법이 있다: 물체의 질량중심에 대한 전체의 힘과 토크를 지정하거나 물체에 고정된 점들에 작용하는 다수의 힘들을 지정하는 것이다. 디폴트는 모든 조절 힘과 토크가0이다.

To prescribe total force and total torque, in the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. Further select In Space System or In Body System depending on which reference system the control force and torque are define in. If a component of the force or the torque is a constant, it can be specified in the corresponding edit box (default is zero). If it varies with time, then click on the Tabular button to bring up a data input table and enter the values for the component and time. The time-variant force and torque are treated as piecewise-linear functions of time during simulation. Alternatively, instead of filling the data table line by line, the user can also import a data file for the force/torque component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and the force/torque component from left to right and must have a csv extension.

전체의 힘과 토크를 지정하기 위해 Control Forces and Torques 탭 안의 combo box 에서 Define Total Force and Total Torque 를 선택한다. 추가로 조절 힘과 토크가 정의되는 기준계에 따른 In Space System 이나 In Body System 을 선택한다. 힘 또는 토크의 한 성분이 상수이면 상응하는 편집박스에 지정된다(디폴트는0). 이것이 시간에 따라 변하면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 성분과 시간 값을 넣는다. 그렇지 않으면 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 를 클릭함으로써 force/torque component versus time 을 읽어 들일 수가 있다. 이 파일은 시간과 힘/토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다

If, instead, control forces and their application points need to be defined, then in the Control Forces and Torques tab choose Define Multiple Forces and Application Points in the combo box. Users can specify up to five forces. For each force, in the editor boxes, choose the force index (1 to 5) and then select Force components in Space System or Body System depending on which reference system the force is defined in. In field on the left, enter the initial coordinates (at t = 0) for the force’s application point. In the field on the right, prescribe components of the force in x, y and z directions of the body or space system. For a constant force component, enter its value in the corresponding edit box. If it varies with time, then click on the Tabular button to bring up a data input table and enter values for the force component versus time. Tabular force input is approximated with a piecewise-linear function of time. Alternatively, the user can import a data file for the force versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and from left to right and must have a csv extension.

대신에 조절힘과 그 적용점들이 정의되어야 한다면 Control Forces and Torques 탭에서 combo box 안에 있는 Define Multiple Forces and Application Points 를 선택한다. 사용자는5개까지의 힘을 지정할 수 있다. 각 힘에 대해, 편집박스 내에서, force index(1에서 5) 를 선정하고 힘이 정의되는 기준계에 따라 Force components in 에서 Space System Body System 을 선택한다. 좌측 칸에 힘 적용점의 초기좌표(t=0에서)를 입력한다. 우측 칸에 물체 또는 공간계에 따른 x, y 그리고 z 방향에서의 힘의 성분을 넣는다. 힘 성분이 상수이면 그 값을 상응하는 편집박스에서 입력한다. 이것이 시간에 따라 변하면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 힘성분 대 시간값을 넣는다. 이렇게 입력된 값들은 구간별 선형함수로 근사 된다.  다른 방법으로 사용자가 Tabular Import Values 를 클릭함으로써 힘과 시간에 대한 데이터파일을 읽어 들일 수가 있다. 이파일은 시간과 힘/토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다.

 

Motion constraints can be imposed to the object to decrease the number of the degrees of freedom to less than six. This selection is made by setting part of its translational and rotational velocity components as Prescribed motion while leaving the other components to coupled motion in Motion Constraints tab Translational and Rotational Options. Note that the translational and rotational components are in the space system and the body system, respectively. Then go to the Initial/Prescribed Velocities tab to define their values. A prescribed velocity component can be defined as either a sinusoidal or piecewise linear function of time in the combo box. For a constant velocity component, choose Non-Sinusoidal and enter its value in its input box (the default value is 0.0). If the velocity component is timedependent and non-sinusoidal, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can import a data file for the velocity component versus time by clicking Tabular Import values. The file must have two columns of data which represent time and the angular velocity component from left to right and must have a csv extension. It is treated as a piecewise-linear function of time in the code. If it is a sinusoidal function of time, instead, enter its Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the edit boxes.

6자유도 보다 운동의 자유도를 줄이기 위해 운동의 제약이 물체에 가해질 수 있다. 이 선택은 일부의 이동과 회전속도 성분을 Prescribed motion 으로 다른 성분들은 Motion Constraints tab Translational and Rotational Options 에서 coupled motion 결합운동으로 설정함으로써 이루어진다. 이동과 회전은 각기 공간계와 물체계로 되어있다는 것에 주목한다. 이 때에 Initial/Prescribed Velocities 탭으로 가서 이 값을 정의한다. 지정속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 입력박스에서 값을 넣는다(디폴트 값은0이다). 속도성분이 시간의 함수이고 Non-Sinusoidal 이면 데이터 테이블을 열고 Tabular 버튼을 클릭하고 속도 성분과 시간 값을 넣는다. 다른 방법으로는 사용자가 Tabular Import Values 를 클릭함으로써 속도성분 대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 좌로부터 우로의 시간과 각속도 성분을 나타내는 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 이렇게 입력된 값들은 코드 내에서 구간별 선형함수로 근사 된다. 대신에 시간의 함수이면 편집박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

 

The expression for a sinusoidal velocity component is사인파 속도식은

v = Asin(2πft + ϕ0)

where:

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.

Users can also set limits for displacements of the object’s mass center in both negative and positive x, y and z directions in the space system, measured from its initial location. The mass center cannot go beyond these limits but can move back to the allowed motion range after it reaches a limit. To specify these limits, open the Motion Constraints tab and in the Limits for translation area, enter the absolute values of maximum displacements in the desired coordinate directions. There are no Limits for rotation for an object with 6-DOF coupled motion.

사용자는 초기 조건으로부터 측정된 공간계에서의 음이나 양의 x, y 그리고 z 방향으로 물체 질량중심의 변위를 제한할 수 있다. 질량중심은 이 제한을 지나갈 수 없지만 이 제한에 도달한 후에 허용된 범위로 돌아올 수 있다. 이동의 제한을 설정하기 위해 Motion Constraints 탭을 열고 Limits for translation에서 원하는 좌표방향에서의 최대 절대변위 값을 넣는다. 6자유도 운동을 갖는 물체에 대한 Limits for rotation 은 없다.

 

Coupled Fixed-Point Motion 결합된 고정점운동

In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Coupled motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed point rotation in the combo box and enter the x, y and z coordinates of the fixed point in the corresponding input boxes. The Limits for rotation and Limits for translation cannot be set for fixed-point motion.

Meshing & Geometry → Geometry → Component (the desired GMO component) → Component Properties → Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties → Edit → Motion Constraints 로 가서 Type of Constraint 밑에서 combo 박스에있는 Fixed point rotation 를 선택하고 상응하는 입력 상자 안에 있는 고정점의 x, y 및 z 좌표를 입력한다. Limits for rotation 와 Limits for translation 는 고정점 운동에 대해 선택될 수 없다.

 

Definition of the initial velocity for the object is required. Go to the Initial/Prescribed Velocities tab and enter the x, y and z components of initial angular velocity (in rad/time) in the boxes for X Initial Angular velocity, Y Initial Angular velocity and Z Initial Angular velocity. Their default values are zero.

물체의 초기속도 정의가 필요하다. Initial/Prescribed Velocities 탭으로 가서 X Initial Angular velocity, Y Initial Angular velocity 그리고 Z Initial Angular velocity 를 위한 상자에서 초기 각속도  (rad/시간) 의 the x, y 및 z 성분을 넣는다.

 

Further constraints of motion can be imposed to the object to decrease its number of degrees of freedom. This is done in the Motion Constraints tab by setting part of its rotational components as prescribed motion while leaving the others as coupled motion in the combo box for Translational and rotational options. Note that the rotational components are in the body system. By default, the prescribed velocity components are equal to zero. To specify a non-zero velocity component, go to the Initial/Prescribed Velocities tab. It can be defined as either a sinusoidal or a piecewise linear function of time by making selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in the input box (the default value is 0.0). If it is non-sinusoidal timedependent, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can import a data file for the velocity component versus time by clicking Tabular Import values. The file must have two columns of data which represent time and the angular velocity component from left to right and must have a csv extension. If the velocity component is a sinusoidal function of time, enter the values for Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the input boxes.

운동의 자유도를 줄이기 위해 운동의 제약이 물체에 가해질 수 있다. 이 선택은 일부의 회전속도 성분을 Prescribed motion 으로 다른 성분들은 Translational and rotational options를 위한 상자에서 coupled motion 으로 Motion Constraints 탭에서 설정함으로써 이루어진다. 회전성분은 물체계로 되어있다는 것에 주목한다. 디폴트로 지정속도 성분들은 0이다. 0이 아닌 속도성분을 지정하기 위해 Initial/Prescribed Velocities탭으로 간다. 지정속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 입력박스에서 값을 넣는다(디폴트 값은0이다). 속도성분이 시간의 함수이고 Non-Sinusoidal 이면 데이터 테이블을 열고 Tabular 버튼을 클릭하고 속도 성분과 시간 값을 넣는다. 다른 방법으로는   사용자가 Tabular Import Values 를 클릭함으로써 속도 성분 대 시간의 데이터파일을 읽어들일 수 가 있다. 이 파일은 좌로부터 우로의 시간과 각속도 성분을 나타내는 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도성분이 사인파의 시간의 함수이면 입력상자에서 Amplitude, Frequency (in Hz) and Initial Phase (in degrees) 값을 넣는다.

The expression for a sinusoidal velocity component is사인파속도성분식은

ω = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude진폭,
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다

 

User-prescribed total torque exerting on the object can also be defined. They are combined with the hydraulic, gravitational, inertial and spring torques to determine the object’s rotation.

또한 사용자에 의해 지정된 물체에 작용하는 전체 토크가 지정될 수 있다. 이들은 물체의 회전을 결정하기 위해 수력, 중력, 관성력과 스프링에 의한 토크와 결합되어 있다.

In the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. Further, select In Space System or In Body System depending on which reference system the control torque is define in. If the torque is constant, it can be simply set in the provided edit box for its x, y and z components. For a time-dependent control torque, click the Tabular button to bring up data tables and then enter the values of time and the torque components. The control torque is treated as a piecewise-linear function of time. As an option, instead of filling the data table line by line, the user can also import a data file for the angular velocity versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity from left to right and must have a csv extension.

Control Forces and Torques 탭에서 combo box 상자 안의 Define Total Force and Total Torque 를 선택한다. 추가로 조절 토크가 정의되는 기준계에 따른 공간계 In Space System 나 물체계 In Body System 을 선택한다.  토크가 상수이면 its x, y 및 z 성분을 위한 주어진 편집상자에서 지정된다. 이것이   시간에 따라 변하는 조절 토크이면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 성분과 토크 성분값을 넣는다. 제어토크는 구간 내 시간의 선형함수로 간주된다. 선택으로 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 을 클릭함으로써 각속도 대 시간 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며  csv 확장자를 가져야 한다

 

Coupled Fixed-Axis Motion  결합된 고정축운동

In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Coupled motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed X-Axis Rotation or Fixed Y-Axis Rotation or Fixed Z-Axis Rotation in the combo box depending on which coordinate axis the rotational axis is parallel to.

Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 회전축이 어느 좌표축과 평행한지에 따라 combo 박스에있는 Fixed X-Axis Rotation또는Fixed Y-Axis Rotation 또는 Fixed Z-Axis Rotation 를 선택한다.

 

Coordinates of the rotational axis need be given in two of the three input boxes for Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate and Fixed Axis/Point Z Coordinate. For example, if the rotational axis is parallel to the z-axis, then the x and y coordinates for the rotational axis must be defined. Users can also set limits for the object’s rotational angle in both positive and negative directions. The rotational angle (i.e., angular displacement) is a vector and measured from the object’s initial orientation based on the right-hand rule. Its value is positive if it points to the positive direction of the coordinate axis which the rotational axis is parallel to. The object cannot rotate beyond these limits but can rotate back to the allowed angular range after it reaches a limit. To set the limits for rotation, in Motion Constraints Limits for rotation, enter the maximum rotational allowed in negative and positive directions in the corresponding input boxes, using absolute values in degrees. By default, these values are infinite.

회전축좌표는 3개 Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate Fixed Axis/Point Z Coordinate 중 2개의 입력박스에서 주어져야 한다. 예를들면 회전축이 z 축에 평행하다면 이 회전축의 the x 와 y 좌표가 정의되어야 한다. 사용자는 물체의 양과 음 방향의 회전각도를 제한할 수 있다. 회전각 (즉, 각변위)은 벡터이며 오른손 법칙에 따라 물체의 초기 방향으로 부터 측정된다. 이것이 회전축에 평행한 좌표축의 양방향을 가리키면 양의 값이다. 물체는 제한 값을 지나 회전할 수 없지만 이 값에 도달한 후 허용된 각 변위로 되돌아갈 수 있다. 회전의 제한을 설정하기 위해 Motion Constraints Limits for rotation 내에서 상응하는 입력박스에서 음이나 양의방향으로 허용된 Maximum rotational angle 을 입력한다. 이의 디폴트 값은 무한대이다.

 

A definition of the initial angular velocity for the object is required. In the Initial/Prescribed Velocities tab, enter the initial angular velocity (in radians per time) in x, y or z direction in the corresponding input box in the Angular velocity components area, depending on the orientation of the rotational axis. The default value is zero.

User-prescribed total torque exerting on the object can be defined. They are combined with the hydraulic, gravitational, inertial and spring torques to determine the object’s rotation. In the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. If the torque is constant, it can be simply set in the provided edit box for x, y or z component of the torque, depending on direction of the coordinate axis which the rotational axis is parallel to. For a time-dependent control torque, click the corresponding Tabular button to bring up a data table and then enter the values of time and the torque. The control torque is treated as a piecewise-linear function of time in computation. As an option, instead of filling the data table line by line, the user can also import a data file for the torque versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and torque from left to right and must have a csv extension. The torque about the fixed axis is the same in the space and body systems, thus the choice of In space system or In body system options makes no difference to the computation. User-prescribed total control force and multiple forces are not allowed for the fixed-axis motion.

물체의 초기 각속도 정의가 필요하다. Initial/Prescribed Velocities 탭에서 회전축의 방향에 따라 the Angular velocity components 면에서 x, y 및 z 방향으로 초기 각속도(시간당radians으로)를 넣는다. 디폴트는0이다. 사용자에 의해 지정된 물체에 작용하는 전체 토크가 정의될 수 있다, 이들은 물체의 회전을 결정하기 위해 수력, 중력, 관성력과 스프링에 의한 토크와 결합되어 있다. Control Forces and Torques 탭 안의 combo box 에서 Define Total Force and Total Torque 을 선택한다.  토크가 상수이면 회전축이 평행한 좌표축의 방향에 따라, 토크의 x, y 또는 z 성분을 위한 주어진 편집박스에서 단순히 지정된다. 따라 변하면 데이터테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 시간과 토크를 넣는다. 제어토크는 계산시 구간 내 시간의 함수로 간주된다. 선택으로 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 를 클릭함으로써 토크대 시간의 파일을 읽어 들일 수 가 있다. 이 파일은 시간과 토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 고정축에 대한 토크는 공간과 시간계에서 같으므로 In space system 이나 In body system 의 선택은 계산에 차이가 없다. 사용자가 지정하는 전체 제어 힘과 다중의 힘은 고정축 운동에서는 허용되지 않는다.

Step 4: Specify the GMO’s Mass Properties GMO 질량물성을 정의한다

Definition of the mass properties is required for any moving object with coupled motion and is optional for objects with prescribed motion. If the mass properties are provided for a prescribed-motion object, the solver will calculate and output the residual control force and torque, which complement the gravitational, hydraulic, spring, inertial and user-prescribed control forces and torques to maintain the prescribed motion. To specify the mass properties, click on Mass Properties to open the dialog window. Two options are available for the mass properties definition: provide mass density or the integrated mass properties including the total mass, mass center and the moment of inertia tensor.

질량물성의 정의가 결합운동을 하는 이동체에 대해 필요하지만 지정운동을 하는 이동체에는 선택적이다. 지정운동체에 대해 질량 물성이 주어지면 solver 는 지정 운동을 유지하기 위해 중력, 수력, 관성력, 스프링 힘과 사용자 지정의 힘과 토크를 보완하는 잔여 조절 힘과 토크를 계산하고 출력할 것이다. 질량물성을 지정하기 위한 대화창을 열기 위해 Mass Properties를 클릭한다. 이를 위해 두 가지 선택이 있다: 질량밀도 또는 전체질량, 질량중심과 관성모멘트텐서를 포함하는 통합 질량 물성을 제공한다.

The option to provide mass density is convenient if the object has a uniform density or all its subcomponents have uniform densities. In this case, the preprocessor will calculate the integrated mass properties for the object. In the Mass Properties tab, select Define Density in the combo box and enter the density value in the Mass Density input box. By default, each subcomponent of the object takes this value as its own mass density. If a subcomponent has a different density, define it under that subcomponent in the geometry tree, Geometry Component Subcomponents Subcomponent (the desired component) Mass Density.

물체나 이 물체의 소 구성요소가 균일한 밀도를 가지면 질량밀도를 주는 선택이 편하다. 이 경우 전처리과정이 이에 대한 모든 통합 질량물성을 계산할 것이다. Mass Properties 탭에서 combo 박스에 있는 Define Density 를 선택하고 Mass Density 입력박스에서 밀도 값을 넣는다. 디폴트로 물체의 소 구성 요소의 밀도는 물체의 밀도와 같다. 만약에 소 구성요소가 다른 밀도를 가지면 이를 형상체계에 있는 Geometry Component Subcomponents Subcomponent (the desired component) Mass Density 소구성요소에서 정의한다.

 

The option to provide integrated mass properties is useful if the object’s mass, mass center and moment of inertia tensor are known parameters regardless of whether the object’s density is uniform or not. In the Mass Properties tab, choose Define Integrated Mass Properties in the combo box and enter the following parameters in the input boxes depending on the type of motion: Total mass, initial mass center location (at t = 0) and moment of inertia tensor about mass center for 6-DOF and fixed-point motion types;

통합 질량 물성의 사용은 물체의 밀도가 균일한지와 무관하게 물체의 질량, 질량중심, 관성모멘트 텐서 등이 알려진 변수일 경우에 유용하다. Mass Properties 탭에서 combo 박스에있는 Define Integrated Mass Properties 을 선택하고 운동형태에 따라 입력상자 안에 다음 변수들을 넣는다:

 

  • Total mass, initial mass center location (at t = 0) and moment of inertia about fixed axis for fixed-axis motion type.

전체 질량, 초기 질량중심 위치(t=0에서), 그리고 6자유도 및 고정점 운동 형태를 위한 질량중심에 관한 관성모멘트텐서

Output출력

For each GMO component, the solver outputs time variations of several solution variables that characterize the object’s motion. These variables can be accessed during post-processing in the General history data catalog and can be viewed either graphically or in a text format. For both prescribed and coupled types of motion with the mass properties provided, the user can find the following variables:

각 GMO 요소에 대해solver는 물체의 운동 특성을 보여주는 대여섯 개의 해석변수의 시간에 대한 변화를 출력한다. 이 변수들은 General history 데이터카탈로그에서 후처리중에 텍스트나 도식으로 볼 수 있다. 주어진 질량을 갖는 지정과 결합운동에 대해 사용자는 다음 변수들을 이용할 수가 있다.

  1. Mass center coordinates in space system공간계 내의 질량중심좌표
  2. Mass center velocity in space system공간계 내의 질량중심 속도
  3. Angular velocity in body system물체계 내의 각속도
  4. Hydraulic force in space system공간계 내의 수리력
  5. Hydraulic torque in body system물체계 내의 수리토크
  6. Combined kinetic energy of translation and rotation 이동과 회전의 결합운동에너지

There will be no output for items 1, 2 and 6 for any prescribed-motion GMO if the mass properties are not provided. Additional output of history data include:

질량물성이 주어지지 않으면 지정운동을 하는 GMO 에대해 상기 1,2와6에대한 출력은없다. 추가적이력데이터의 출력은

  • Location and velocity of the reference point for a prescribed 6-DOF motion지정된6자유도운동을 위한 기준점의 위치와 속도
  • Rotational angle for a fixed-axis motion

고정축 운동을 위한 회전각

  • Residual control force and torque in both space and body systems for any prescribed motion and a coupled motion with constraints (fixed axis, fixed point and prescribed velocity components)

지정운동 및 구속을 갖는 결합운동(고정축, 고정점, 그리고 지정속도성분)에 대한 두 공간과 물체계에서의 잔여 제어 힘과 토크

  • Spring force/torque and deformation

스프링 힘과 토크 및 변형

  • Mooring line extension and maximum tension force

계류선 신장 및 최대인장력

  • Mooring line tension forces at two ends in the x, y and z directions

x, y 및 z 방향에서 양끝에 작용하는 계류선 인장력

 

As an option, the history data for a GMO with 6-DOF motion can also include the buoyancy center and the metacentric heights for rotations about x and y axes of the space system, which is useful for stability analysis of a floating object. Go to Geometry Component (the desired moving object) Output Buoyancy Center and Metacentric Height, and select Yes. The buoyancy center is defined as the mass center of the fluid displaced by the object. The metacentric height (GM) is the distance from the gravitational center (point G) to the metacenter (point M). It is positive (negative) if point G is below (above) M.

선택사항으로 GMO 6자유도의 이력데이터는 부력중심과 부력물체의 안정성 해석에 유용한 공간계의 x와 y 축에 대한 회전을 위한 metacentric 높이를 포함한다. Geometry Component (the desired moving object) Output Buoyancy Center and Metacentric Height 로가서 Yes 를 선택한다. 부력 중심은 물체에 의해 배수된 부분을 차지하는 유체의 질량중심으로 정의된다. The metacentric height (GM) 은 중력중심(점 G) 에서 metacenter (점M)까지이다. 점 G가 M보다 밑(위)이면 양(음)이다.

 

GMO components can participate in heat transfer just like any stationary solid component. When defining specific heat of a GMO component, Component Properties Solid Properties Density*Specific Heat must be given.

GMO 요소는 여느 정지 고체 요소와 같이 열전달을 포함 할 수 있다. GMO 요소의 비열을 정의할 때 Component Properties Solid Properties Density*Specific Heat 가 주어져야 한다.

 

Two options are available when defining heat sources for a GMO component: use the specific heat flux, or the total power. When the total power is used, the heat fluxes along the open surface of the moving object are adjusted at every time step to maintain a constant total power. If the surface area varies significantly with time, so will the heat fluxes. When the specific heat is used instead, then the fluxes will be constant, but the total power may vary as the surface area changes during the object’s motion. To define heat source for a GMO component, go to Component Properties Solid Properties Heat Source type Total amount or Specific amount.

GMO 요소의 열 소스를 정의할 때 두 가지 선택이 있다: 비열유속 또는 전체 일률(power)를 사용하는 것이다. 전체 일률이 사용되면 이동체의 개표면을 통한 열 유속은 일정 전체 일률을 유지하기 위해 매 시간 단계 마다 조정된다. 표면적이 시간에 따라 상당히 변하면 열유속도 그러할 것이다. 대신에 비열이 사용되면 열 유속은 일정할 것이고 전체일률은 표면적이 이동체의 운동에 따라 변할 때 변할 수도 있다. GMO 요소의 열소스를 정의하기 위해 to Component Properties Solid Properties Heat Source type Total amount or Specific amount 로 간다.

 

Mass sources/sinks can also be defined on the open surfaces of a GMO component. Details can be found in Mass

Sources. 질량소스나 싱크 또한 GMO 요소의 개표면 상에 정의될 수 있다. 자세한 것은 in Mass Sources 에서 볼 수 있다.

Although the GMO model can be used with most physical models and numerical options, limitations exist. To use the model properly, it is noted that

GMO 모델은 대부분의 다른 물리적 모델이나 수치해석 선택과 같이 사용될 수 있지만 제한이 따른다. 모델을 제대로 사용하기 위해 다음 사항들에 유의한다.

  • For coupled motion, the explicit and implicit GMO methods perform differently. The implicit GMO method works for both heavy and light moving objects. The explicit GMO method, however, only works for heavy object problems (i.e., the density of moving object is higher than the fluid density).

결합운동에 대해 내재적과 외재적 GMO 방법은 다르게 작동한다. 내재적 GMO 방법은 무겁거나 가벼운 이동물체에 이용될 수 있지만 외재적 GMO 방법은 무거운 물체의 이동에만 이용한다(즉, 이동물체의 밀도가 유체의 밀도보다 크다).

  • When the explicit GMO method is used, solution for fully coupled moving objects may become unstable if the added mass of the fluid surrounding the object exceeds the object’s mass.

외재적 GMO 방법이 사용될 때 물체 주위 유체의 부가질량이 물체의 질량보다 크면 완전결합 이동물체의 해석은 불안정하게 된다.

  • If there are no GMO components with coupled motion, then the implicit and explicit methods are identical and the choice of one makes no difference to the computational results.

결합운동을 하는 GMO 요소가 없으면 내재적과 외재적 방법은 같고 어느 하나를 사용해도 계산결과에 차이가 없다.

  • The implicit method does not necessarily take more CPU time than the explicit method, even though the former required more computational work, because it improves numerical stability and convergence, and allows for larger time step. It is thus recommended for all GMO problems.

내재적 방법은 수치(해석) 안정성과 수렴이 개선되고 더 큰 시간 단계를 가능하게 해주기 때문에 더 많은 계산을 필요로 하지만 외재적 방법보다 항상 더 많이 CPU시간을 필요로 하지는 않는다. 따라서 모든 문제에 권장된다.

  • It is recommended that the limited compressibility be specified in the fluid properties to improve numerical stability by reducing pressure fluctuations in the fluid.

유체내의 압력 변동을 줄임으로써 수치해석안정성을 증가시키기 위해 제한된 압축성이 유체 물성에서 지정되도록 권장된다.

  • In the simulation result, fluctuations of hydraulic force may exist due to numerical reasons. To reduce these fluctuations, the user can set No f-packing for free-surface problems in Numerics Volume of fluid advection Advanced options and set FAVOR tolerance to 0.0001 in Numerics Time-step controls Advanced Options Stability enhancement. It is noted that an unnecessarily small FAVORTM tolerance factor can cause small time steps and slow down the computation.

모사(simulate)결과에서 수리력의 변동이 수치적인 이유로 존재할 수 있다. 이 변동을 줄이기 위해 사용자는 Numerics Volume of fluid advection Advanced options 에서 자유표면 문제에 대해 No f-packing 을 지정하고 FAVOR tolerance Numerics Time-step controls Advanced Options Stability enhancement 에서 0.0001로 지정할 수 있다. 불필요하게 작은 FAVORTM tolerance 인자는 작은시간 단계를 발생시키고 계산을 더디게 할 수 있다.

  • In order to calculate the fluid force on a moving object accurately, the computational mesh needs to be reasonably fine in every part of the domain where the moving object is expected to be in contact with fluid.

이동물체에 대한 유체의 힘을 정확히 계산하기 위해 이동체가 유체와 접촉할 것으로 예상되는 영역내의 모든 부분에서 적절히 미세한 계산격자를 사용해야한다.

  • An object can move completely outside the computational domain during a computation. When this happens, the hydraulic forces and torques vanish, but the object still moves under actions of gravitational, spring, inertial and control forces and torques. For example, an object experiences free fall outside the domain under the gravitational force in the absence of all other forces and torques.

물체는 계산 동안에 완전히 계산영역 외부로 이동할 수 있다. 이럴 경우 수리력과 토크는 사라지지만 물체는 중력, 스프링힘, 관성력 및 조절 힘과 토크의 영향으로 움직인다. 예를 들면 물체는 모든 다른 힘과 토크가 없는 경우에 중력장 안에 있는 영역외부에서 자유낙하를 할 것이다.

  • If mass density is given, then the moving object must initially be placed completely within the computational domain and the mesh around it should be reasonably fine so that its integrated mass properties (the total mass, mass center and moment of inertia tensor) can be calculated accurately by the code

질량밀도가 주어지면 초기에 물체가 완전히 계산영역 내에 위치하고 있어야 하고 이 주변의 격자는 적절히 미세하게 하여 이의 통합 질량물성(전체질량, 질량중심 그리고 관성모멘트텐서)이 이 코드에 의해 정확히 계산될 수 있어야 한다.

  • If a moving object is composed of multiple subcomponents, they should have overlap in places of contact so that no unphysical gaps are created during motion when the original geometry is converted to area and volume fractions. If different subcomponents are given with different mass densities, this overlap should be small to avoid big errors in mass property calculation.

이동체가 다수의 소 구성요소로 이루어져 있다면 원래 형상이 면적과 체적율로 전환될 때 이들은 접촉부에 중첩이 있어야만 이동 시에 실제로 존재하지 않은 간격이 발생 안 한다. 다른 소구성요소가 다른 질량밀도로 주어지면 이 간격은 질량물성 계산시 큰 에러를 줄이기 위해 작아야 한다.

  • A moving object cannot be of a phantom component type like lost foam or a deforming object.

이동체는 lost foam 이나 변형물체 같은 phantom 구성요소가 될 수 없다.

  • The GMO model works with the electric field model the same way as the stationary objects, but no additional forces associated with electrical field are computed for moving objects.

GMO 모델은 정지 물체와 같은 전장모델과 이용할 수 있으나, 전장 관련 추가적 힘은 계산되지 않는다.

  • If a GMO is porous, light in density and high in porous media drag coefficients, then the simulation may experience convergence difficulties.

GMO가 밀도가 가볍고 다공매질 저항계수가 큰 다공질이면 모사(simulate)에 수렴의 어려움이 있을 수 있다.

  • A Courant-type stability criterion is used to calculate the maximum allowed time-step size for GMO components. The stability limit ensures that the object does not move more than one computational cell in a single time step for accuracy and stability of the solution. Thus the time step is also limited by the speed of the moving objects during computation.

GMO 구성요소에 대해 Courant 형의 안정성 기준이 최대허용 시간 단계 크기를 계산하도록 이용된다. 안정성 제한은 해석의 정확성과 안정성을 위해 물체가 하나의 시간 단계에 하나 이상의 계산 셀을 지나가지 않도록 보장하는 것이다. 그러므로 시간 단계는 계산시 또한 이동체의 속도에 의해 제한된다.

Note:

  • Time-Saving Tip: For prescribed motion, users can preview the object motion in a so-called “dry run” prior to the full flow simulation. To do so, simply remove all fluid from the computational domain to allow for faster execution. Upon the completion of the simulation the motion of the GMO objects can be previewed by post-processing the results. 시간절약팁: 지정운동에서 사용자는 실제 전체 유동 계산 전에 소위 “dry run” 이라는 형태로 GMO 물체의 운동을 미리 볼 수 있다. 이러기 위해 빠른 계산을 하기 위해 계산영역 내로부터 모든 유체를 단순히 제거한다. 모사(simulate)가 끝나면 운동은 결과를 후처리함으로써 미리 볼 수 있다.
  • The residual forces (and torques) are computed for the directions in which the motion of the object is prescribed/constrained. They are defined as the difference between the total force on an object (computed from the prescribed mass*acceleration) and the computed forces on the object from pressure, shear, gravity, specified control forces, etc. As such, they represent the force required to move the object as prescribed.

잔류력(그리고 토크)은 물체의 이동이 지정되거나 제약되는 방향으로 계산된다. 이들은 물체에 작용하는 전체 힘(지정 질량*가속도로부터 구해지는)과 압력, 전단력, 중력, 지정된 조절력 등으로부터 물체에 가해지는 계산된 힘과의 차이로 정의된다.

Collision충돌

The GMO model allows users to have multiple moving objects in one problem, and each of them can possess independent type of coupled or prescribed motion. At any moment of time, each object under coupled motion can collide with any other moving objects (of a coupled- or prescribed-motion type), non-moving objects as well as wall- and symmetry-type mesh boundaries. Without the collision model, objects may penetrate and overlap each other.

GMO 모델에서 사용자는 한 문제에서 다수의 이동체를 지정할 수 있고 각 이동체는 결합 또는 지정된 별도 운동을 할 수가 있다. 어느 순간에서 결합 운동을 하는 각 물체는 벽 또는 대칭형 격자 경계뿐만 아니라 다른 이동체들(결합운동 이나 지정운동을 하는), 그리고 정지하고 있는 물체와 충돌할 수 있다.  충돌모델 없으면 물체는 각기 침투하거나 중첩될 수가 있다.

The GMO collision model is activated by selecting Physics Moving and simple deforming objects Activate collision model. It requires the activation of the GMO model first, done in the same panel. For a GMO problem with only prescribed-motion objects, it is noted that the collision model has no effect on the computation: interpenetration of the objects can still happen.

GMO 충돌모델은 Physics Moving and simple deforming objects Activate collision model 를 선택함으로써 활성화된다. 먼저 같은 패널에서 GMO 모델을 활성화한다. 단지 지정된 운동을 하는 GMO 물체 문제에 대해 충돌모델은 계산에 영향을 안 미친다는 것을 주목한다: 그래도 물체의 침투는 가능하다.

The model allows each individual collision to be fully elastic, completely plastic, or partially elastic, depending on the value of Stronge’s energetic restitution coefficient, which is an input parameter. In general, a collision experiences two phases: compression and restitution, which are associated with loss and recovery of kinetic energy. The Stronge’s restitution coefficient is a measure of kinetic energy recovery in the restitution phase. It depends on the material, surface geometry and impact velocity of the colliding objects. The range of its values is from zero to one. The value of one corresponds to a fully elastic collision, i.e., all kinetic energy lost in the compression is recovered in the restitution (if the collision is frictionless). Conversely, a zero restitution coefficient means a fully plastic collision, that is, there is no restitution phase after compression thus recovery of the kinetic energy cannot occur. A rough estimate of the restitution coefficient can be conducted through a simple experiment. Drop a sphere from height h0 onto a level anvil made of the same material and measure the rebound height h. The restitution coefficient can be obtained as h/h0. In this model, the restitution coefficient is an object-specific constant. A global value of the restitution coefficient that applies to all moving and non-moving objects is set in Physics Moving and simple deforming objects Coefficient of restitution.

입력 변수인 Stronge 의 에너지 반발계수의 값에 따라 모델은 물체의 완전탄성, 완전소성 또는 탄성의 각기 충돌을 다룰 수 있다. 일반적으로 충돌은 두 단계로 나뉜다: 압축과 반발이며 이들은 운동에너지의 손실및 회복과 연관되어 있다. Stronge 의 반발계수는 반발단계에서의 에너지회복의 척도이다. 이는 물질, 표면형상 그리고 충돌하는 물체의 충격속도에 의존한다.

이값은 0과1사이이다. 1은 완전탄성충돌이며 압축에서 손실된 모든 운동에너지가 반발에서 회복된다(충돌에마찰이없다면). 역으로, 0의 반발계수는 완전소성충돌로 즉 압축 후에 반발이 없으며 운동에너지의 회복은 일어나지 않는다. 반발계수의 개략 추정치는 단순한 실험을 통해 얻어질 수 있다.

높이 h0에서 구를 같은 재질로 만들어진 anvil (모루?)위로 떨어뜨려 반발높이 h 를 측정한다. 반발계수는 h/h0로얻어진다. 이모델에서 반발계수는 물질에 특정한 상수이다. 모든 이동과 비 이동물체에 적용되는 반발계수의 포괄적인 값은 Physics Moving and simple deforming objects Coefficient of restitution 에서 지정된다.

 

Friction can be included at the contact point of each pair of colliding bodies by defining the Coulomb’s friction coefficient. A global value of the friction coefficient that applies to all collisions is set in Physics General moving objects Coefficient of friction. Friction forces apply when the friction coefficient is positive; a collision is frictionless for the zero value of the friction coefficient, which is the default. The existence of friction in a collision always causes a loss of kinetic energy.

마찰은 Coulomb 마찰계수를 정의함으로써 충돌하는 각 물체의 접촉 점에 작용한다. 모든 충돌에 적용되는 마찰계수의 포괄적 값은 Physics General moving objects Coefficient of friction 에서 설정된다. 마찰력은 마찰계수가 양일 경우 작용한다; 충돌시 마찰계수가0일 경우 마찰력이 없고, 이는 디폴트이다. 충돌 시 마찰력의 존재는 항상 운동에너지의 손실을 뜻한다.

 

The global values of the restitution and friction coefficients are also used in the collisions at the wall-type mesh boundaries, while collisions of the moving objects with the symmetry mesh boundaries are always fully elastic and frictionless.

포괄적 마찰 및 반발계수는 또한 벽 형태의 경계에서 충돌이 발생할 경우에도 사용될 수 있으나 이동체의 대칭격자 경계와의 충돌은 항상 완전탄성이고 마찰이 없다.

 

The object-specific values for the restitution and friction coefficients are defined in the tab Model Setup Meshing & Geometry. In the geometry tree on the left, click on Geometry Component (the desired component) Component Properties Collision Properties and then enter their values in the corresponding data boxes. If an impact occurs between two objects with different values of restitution coefficients, the smaller value is used in that collision calculation. The same is true for the friction coefficient.

물체에 특정한 반발 및 마찰계수는 탭 Model Setup Meshing & Geometry 에서 정의된다. 좌측의 형상체계에서 on Geometry Component (the desired component) Component Properties Collision Properties 를 클릭하고 상응하는 데이터박스에 그 값들을 입력한다. 다른 반발계수를 갖는 두 물체 사이에 충격이 발생하면 그 충돌 계산에 작은 마찰계수 값이 이용된다. 이는 마찰의 경우에도 마찬가지이다.

Continuous contact, including sliding, rolling and resting of an object on top of another object, is simulated through a series of small-amplitude collisions, called micro-collisions. Micro-collisions are calculated in the same way as the ordinary collisions thus no additional parameters are needed. The amplitude of the micro-collisions is usually small and negligible. In case the collsion strength is obvious in continuous contact, using smaller time step may reduce the collision amplitude.

미끄러짐, 회전, 및 타물체상에 정지하고 있는 물체를 포함하는 지속적인 접촉은 미세충돌이라고 불리는 일련의 소 진폭 충돌에 의해 모사(simulate)된다. 미세 충돌은 추가적인 매개변수 필요 없이 보통충돌과 같은 방식으로 계산된다. 충돌강도가 지속적 접촉에서 현저한 경우 더 작은 시간간격을 시용하는 것이 충돌 진촉을 감소시킬지도 모른다.

 

If the collision model is activated but the user needs two specific objects to have no collision throughout the computation, he can open the text editor (File Edit Simulation) and set ICLIDOB(m,n) = 0 in namelist OBS, where m and n are the corresponding component indexes. An example of such a case is when an object (component index m) rotates about a pivot – another object (component index n). If the former has a fixed-axis motion type, then calculating the collisions with the pivot is not necessary. Moreover, ignoring these collisions makes the computation more accurate and more efficient. If no collisions between a GMO component m with all other objects and mesh boundaries are desired, then set ICLIDOB(m,m) to be zero. By default, ICLIDOB(m,n) = 1 and ICLIDOB(m,m) = 1, which means collision is allowed.

충돌모델이 활성화되고 시용자가 모사(simulate)동안에 충돌하지 않는 두 특정 물체를 필요로 하면 텍스트편집(File Edit Simulation) 을 열어 namelist OBS 에서 ICLIDOB(m,n) = 0 를 지정하는데, 여기서 m n 은 상응하는 구성 요소 색인이다.

이런 예는 한 물체(component index m)가 경첩축인 다른 물체(component index n)에대해 회전할 경우이다. 전자가 고정축에 대한 운동형태이면 경첩 축과의 충돌은 계산할 필요가 없다. 더구나 이런 충돌을 무시하는 것이 계산상 더 정확하고 효율적이다.

한 GMO component 구성요소 m 과 모든 다른 물체나 격자 경계와의 충돌이 없다면 ICLIDOB(m,m) 를 0으로 지정한다. 디폴트는 ICLIDOB(m,n) = 1 이며 이는 충돌이 허용됨을 뜻한다.

 

To use the model prpperly, users should be noted that

모델을 적절히 사용하기 위해서 사용자는 다음에 주목한다.

  • The collision model is based on the impact theory for two colliding objects with one contact point. If multiple contact points exist for two colliding objects (e.g. surface contact) or one object has simultaneous contact with more than one objects, object overlap may and may not occur if the model is used, varing from case to case.

충돌모델은 한 접촉점을 갖는 두 물체의 충돌이론에 의거한다. 이 모델 사용시 두 물체의 충돌에 다수의 접촉점이 존재(즉 표면접촉같이)하거나 한 물체가 동시에 다른 물체들과 충돌하면 경우에 따라 중첩이 발생할 수도 있고 안 할 수도 있다.

  • To use the model, one of the two colliding object must be under coupled motion, and the other can have coupled or prescribed motion or no motion. The coupled motion can be 6-DOF motion, translation, fixed-axis rotation or fixed-point rotation. For other constrained motion, (e.g., rotation is coupled in one direction but prescribed in another direction), the model is not valid, and mechanical energy of the colliding objects may have conservation problem.

이 모델사용 시 두 충돌 물체중의 하나는 결합운동을 하여야 하고 다른 물체는 결합 또는 지정 운동 또는 정지하고 있을 수 있다. 결합운동은 6자유도 운동일 수 있다(이동, 고정축 또는 고정점 회전). 다른 구속 운동(즉, 한 방향에서는 결합 운동이지만 다른 방향에서는 지정 운동)에서 이 모델은 유효하지 않고 충돌물체의 역학에너지는 보존문제가 발생할는지도 모른다.

  • The model works with and without existence of fluid in the computational domain. It is required, however, that the contact point for a collision be within the computational domain, whereas the colliding bodies can be partially outside the domain at the moment of the collision. If two objects are completely outside the domain, their collision is not detected although their motions are still tracked.

이 모델은 계산 영역 내 유체의 존재 유무에 상관없이 작동한다. 그러나 충돌 시 접촉점은 계산 영역 내에 존재해야 하나 충돌체는 충돌 시 부분적으로 영역외부에 있어도 된다. 두 물체가 완전히 영역 외부에 있으면 이들의 운동은 그래도 추적되지만 충돌은 감지되지 못한다.

  • Collisions are not calculated between a baffle and a moving object: they can overlap when they contact.

이동물체와 배플간의 충돌은 계산되지 않는다: 이들이 접촉하면 중첩될 수 있다.

The model does not calculate impact force and collision time. Instead, it calculates impulse that is the product of the two quantities. Therefore, there is no output of impact force and collision time.

이 모델은 충격 힘과 충돌시간은 계산하지 않는다. 대신에 두 양의 곱인 impulse 를계산한다. 그러므로 충격 힘과 충돌시간에 대한 출력이 없다.

PQ2 Analysis PQ2 해석

PQ2 analysis is important for high pressure die casting. The goal of the PQ2 analysis is to optimally match the die’s designed gating system to the part requirements and the machine’s capability. PQ2 diagram is the basic tool used for PQ2 analysis.

PQ2 해석은 고압주조에서 중요하다. 이 해석의 목적은 부품 요건 및 기계의 용량에 따른 다이의 설계된 게이트 시스템을 최적화시키기 위한 것이다. PQ2 도표는 PQ2해석을 위한 기본 도구이다.

According to the Bernoulli’s equation, the metal pressure at the gate is proportional to the flow rate squared:

베르누이 정리에 의하면 게이트에서의 금속압력은 유량의 제곱에 비례한다.

P Q2                                                                                     (11.5)

where: 여기서

  • P is the metal pressure at the gate, and P 는 게이트에서의 압력이며
  • Q is the metal flow rate at the gate. Q 는 게이트에서의 유량이다.
  • The machine performance line follows the same relationship. 기계성능 곡선도 같은 관계를 따른다.

Based on the die resistance, machine performance, and the part requirements, an operating windows can be determined from the PQ2 diagram, as shown below. The die and the machine has to operate within the operating windows.

다이 저항, 기계성능, 그리고 부품 요건에 따라 운영범위가 밑에 보여진 바와 같이 PQ2 도표에서 결정될 수 있다. 다이와 기계는 운영범위 내에서 작동되어야 한다.

Model Setup모델설정

PQ2 analysis can only be performed on moving object with prescribed motion. The PQ2 analysis can be activated in Meshing & Geometry Component Properties Moving Object. PQ2 analysis can only be performed on one component.

PQ2해석은 단지 지정운동을 하는 이동체에서만 실행될 수 있다. 이는 Meshing & Geometry Component Properties Moving Object 에서 활성화된다. 또 이는 단지 한 개의 구성요소에 대해서만 실행될 수 있다.

The parameters Maximum pressure and Maximum flow rate define the machine performance line.

매개변수 Maximum pressure Maximum flow rate 는 기계성능 곡선을 정의한다.

During the design stage, the process parameters specified might not optimal, such that the resulting pressure is beyond the machine capability. If this happens, the option Adjust velocity can be selected so that the piston velocity is automatically adjusted to match the machine capability. If Adjust velocity is selected, at every time step the pressure at the piston head will be compared with the machine performance pressure to see if it is beyond the machine capability. If it is beyond the machine capability, the flow rate is then reduced to match the machine capability. The reduction is instantaneous and no machine inertia is considered. Once the pressure drops below the machine performance line, the piston will then accelerate to the prescribed velocity. The acceleration has to be less than the machine Maximum acceleration specified.

설계시에 초래된 압력이 기계 성능 이상으로 되는 것같이 지정된 공정 변수들이 최적화가 되지 않았을지도 모른다.  이런 경우에 Adjust velocity 를 선택할 수 가 있고 피스톤속도는 기계성능에 맞게끔 자동적으로 조절될 수 있다. 만약 Adjust velocity 가 선택되면 매 시간단계에서 피스톤헤드의 압력이 기계 성능 이상인지를 알기 위해 기계성능 압력과 비교될 것이다. 압력이 기계 성능 이상이라면 유량은 기계성능을 맞추기 위해 감소될 것이다. 감소는 순간적으로 이루어지고 기계의 관성은 고려되지 않는다. 일단 압력이 성능 이하로 줄어들면 피스톤은 지정속도로 가속할 것이다. 가속도는 기계의 지정된 Maximum acceleration 보다 작아야 할 것이다. .

 

If Adjust velocity is selected, the machine parameters Maximum pressure and Maximum flow rate have to be provided. The Maximum acceleration is also required, however, it is by default to be infinite if not provided.

Adjust velocity 가 선택되면 기계시스템 변수 Maximum pressure Maximum flow rate 가 주어져야 한다. 또한 Maximum acceleration 가 필요하나 주어지지 않으면 디폴트 값은0이다.

 

For high pressure die casting, the fast shot stage is very short. But it is this stage that is of interest. The pressure and flow rate are written as general history data. The data output interval has to be very small to capture all the features in this stage. To reduce FLSGRF file size, only when flow rate reaches Minimum flow rate, the history data output interval is reduced to every two time steps. If Minimum flow rate is not provided, it is default to 1/3 of the Maximum flow rate. Note that the only purpose of Minimum flow rate is to change the history data output frequency.

고압주조에서 고속충진단계는 아주 짧은데 우리는 이 단계에 관심이 있다. 압력과 유량은 일반 이력 데이터로 기록된다. 데이터출력 간격은 이 단계에서의 모든 양상을 보기 위해 아주 작아야 한다. FLSGRF 파일 크기를 줄이기 위해 유량이 Minimum flow rate 에 도달했을 때만 이력데이터 출력 간격은 두 시간 간격에 한번으로 감소된다. Minimum flow rate 가 주어지지 않으면 Maximum flow rate 의 1/3이 디폴트값이다. 단지, Minimum flow rate 를 사용하는 목적은 이력 데이터 출력 간격을 변경하는 것임에 주목한다.

 

Due to the limitation of the FAVORTM, the piston head area computed may fluctuate as piston pushing through the shot sleeve. As a result, the metal flow rate computed may also fluctuate. To reduce the fluctuation, Shot sleeve diameter is recommended to be provided, so that it can be used to correct the metal flow rate. If only half of the domain is modeled, the diameter needs to be scaled to reflect the real cross section area in the simulation.

FAVORTM 제약에 따라 계산된 피스톤헤드 면적은 피스톤이 shot sleeve 를 통해 움직일 때 변할 수 있다. 결과적으로 계산된 액체금속 유량이 변할 수 있다. 이를 줄이기 위해 Shot sleeve diameter 를 주는 것이 필요하고, 이로부터 액체금속 유량을 정정할 수 있다.  만약에 단지 영역의 반만 모델이 되면 직경은 모사(simulate)시에 실제 단면적을 나타내기 위해 비례되어야 한다.

Postprocessing 후처리

If PQ2 analysis is chosen, the pressure, flow rate, and prescribed velocity of the specified moving object will be written to FLSGRF file as General history data. If Adjust velocity is selected, the adjusted velocity will also be written as General history data. In addition, the PQ2 diagram can be drawn directly from the history data in FlowSight.

PQ2해석이 선택되면 압력, 유량 그리고 특정 이동체의 지정속도가 General history 데이터로 FLSGRF 파일에 쓰여질 것이다. Adjust velocity 가 선택되면 조절된 속도 또한 General history 데이터로 쓰여질 것이다. 추가로 PQ2 도표는 직접 Flow Sight에서 이력데이터로 그려질 수 있다.

Elastic Springs & Ropes 탄성 스프링과 로프

The GMO model allows existence of elastic springs (linear and torsion springs) and ropes which exert forces or torques on objects under coupled motion. Users can define up to 100 springs and ropes in one simulation, and each moving object can be arbitrarily connected to multiple springs and ropes. For a linear spring, the elastic restoring force Fe is along the length of the spring and satisfies Hooke’s law of elasticity,

GMO 모델은 결합운동하는 물체에 힘과 토크를 미치는 탄성스프링(선형과 비틀림 스프링)과 로프로 이용될 수 있다. 사용자는 한 모사(simulate)에서 100개까지의 스프링과 로프를 정의할 수 있고 각 이동체는 임의로 다수의 스프링과 로프에 연결될 수 있다. 선형 스프링에서 탄성회복력 Fe 는 스프링의 길이 방향을 따라서 작용하며 Hooke 의 탄성법을 만족한다.

Fe = kl l

where: 여기서

  • kl is the spring coefficient,

kl 는스프링상수

  • l is the spring’s length change from its free condition,

l 는 스프링의 길이 변화량

  • Fe is a pressure force when the spring is compressed, and a tension force when stretched.

Fe 는 스프링이 압축되었을 때는 압축힘이며 늘어났을 때는 인장력이다.

An elastic rope also obeys Hooke’s law. It generates tension force only if stretched, but when compressed it is relaxed and the restoring force vanishes as would be the case of a slack rope.

탄성 로프 또한 Hooke 의 탄성법칙을 따른다. 단지 인장의 경우에만 인장력을   발생시키나 압축의 경우 느슨한 로프의 경우에서와 같이 느슨해지고 복원력은 사라진다.

A torsion spring produces a restoring torque T on a moving object with fixed-axis when the spring is twisted, following the angular form of Hooke’s law,

비틀림 스프링은 스프링이 비틀렸을 때 의 각 형태의 Hooke 법칙을 따라 고정 회전축을 갖는 이동체에 복원 토크 T 를 일으킨다.

Te = kθ θ

where: 여기서

  • kθ is the spring coefficient in the unit of [torque]/degree, and

kθ  [torque]/degree 는 단위의 스프링상수 그리고

  • θ is the angular deformation of the spring.

θ 는 스프링의 각변형

  • It is assumed that there is no elastic limit for the springs and ropes, namely Hooke’s law always holds no matter how big the deformation is.

스프링과 로프에는 탄성한계가 없다고 가정된다. 즉 아무리 스프링과 로프의 변형이 커도 Hooke 의 법칙이 작용한다고 가정된다.

A linear damping force associated with a spring/rope and a damping torque associated with a torsion spring may also be defined. The damping force Fd is exerted on the moving object at the attachment point of the spring/rope. Its line of action is along the spring/rope, and its value is proportional to the time rate of the spring/rope length,

스프링/로프에서의 선형 감쇠력 그리고 비틀림 스프링에서의 감쇠토크가 또한 정의된다. 감쇠력 Fd 는 스프링/로프의 부착점이 있는 이동체에 작용한다. 이의 작용선은 스프링/로프를 따라서이며 그 값은 스프링/로프 길이의 시간당 변화율에 비례한다.

dl

Fd = −cl

dt

Note the damping force for a rope vanishes when the rope is relaxed.

로프의 감쇠력은 로프가 느슨해질 때 없어진다.

The damping torque Td can only be applied on an object with a fixed-axis rotation. Its direction is opposite to the angular velocity, and its value is proportional to the angular velocity value,

감쇠 토크 Td 는 단지 고정축 회전을 하는 물체에만 적용된다. 그 방향은 각속도에 반대방향이고 값은 각속도 값에 비례한다.

Td = −cdω

where ω (in rad/time) is the angular velocity of the moving object.

여기서 ω (in rad/time) 는 이동체의 각속도이다.

 

In this model, a linear spring or rope can have one end attached to a moving object under coupled motion and the other end fixed in space or attached to another moving object under either prescribed or coupled motion. A torsion spring, however, must have one end attached to an object under coupled fixed-axis motion and the other end fixed in space. It is assumed that the rotation axis of the object and the axis of the torsion spring are the same. As a result, the torque applied by the spring on the object is around the object’s rotation axis, and the deformation angle of the spring is equal to the angular displacement of the object from where the spring is in free condition.

이 모델에서 선형 스프링 또는 로프는 한쪽 끝은 결합 운동하는 물체에 그리고 다른 끝은 공간에 고정되어 있거나 지정 또는 결합 운동을 하는 다른 이동체에 연결될 수 있다. 그러나 비틀림 스프링은 한 끝은 결합된 운동을 하는 물체에, 그리고 다른 한끝은 공간에 고정되어 있어야 한다. 물체의 회전축 및 비틀림 스프링의 축은 같다고 가정된다. 결과적으로 물체에 스프링에 의해 가해진 토크는 물체의 회전축둘레로 작용하며 스프링의 각 변형은 스프링의 자유위치로부터의 각변위와 같다.

 

A linear spring has a block length due to the thickness of the spring coil. It is the length of the spring at which the spring’s compression motion is blocked by its coil and cannot be compressed any further. This model allows for three types of linear springs:

선형스프링은 스프링 코일의 두께에 의한 차단 거리가 있다. 이는 스프링의 압축 운동이 그 코일에 의해 방해되어 더 이상 압축될 수 없는 스프링의 길이이다. 이 모델은 3가지의 선형 스프링을 고려할 수 있다.

  • Compression and extension spring: a spring that can be both compressed and extended. Its block length, by default, is 10% of its free length (the length of the spring in the force-free condition).

압축 및 확장스프링: 압축되거나 확장될 수 있는 스프링이며 이의 차단거리는 디폴트로 자유길이(힘을 받지 않을 때의 스프링의 길이) 의 10%이다

  • Extension spring: a spring that can only be extended. Its block length is always equal to its free length.

확장스프링: 확장될 수 있는 스프링이며 차단거리는 항상 자유 길이와 같다.

  • Compression spring: a spring that applies force only when it is compressed. When it is stretched, the force on the connected object vanishes. Its default block length is 10% of its free length.

압축스프링: 단지 압축되었을 경우에만 힘이 작용한다.  늘어날 경우 연결된 물체에 힘은 없고, 이의 디폴트 길이는 자유 길이의 10%이다.

To define a spring or rope, go to Model Setup Meshing Geometry. Click on the spring icon to bring up the Springs and Ropes window. Right click on Springs and Ropes to add a spring or rope. In the combo box for Type, select the type for the spring or rope.

스프링이나 로프를 정의하기 위해 Model Setup Meshing Geometry 로 가서 Springs and Ropes 창을 불러오기 위해 스프링 아이콘을 클릭한다. 스프링이나 로프를 추가하기 위해 Springs and Ropes 를 오른쪽 클릭한다. Type 을위한 combo 상자에서 스프링이나 로프를 선택한다.

  • Linear spring and rope: Click to open the branches for End 1 and End 2 which represent the initial coordinates of the ends of the spring/rope. In each branch, go to Component # and select the index of the moving object which the spring end is connected to. If the end is not connected to any moving component, i.e., is fixed in space, select None. In the X, Y and Z edit boxes, enter the initial coordinates of the spring’s end. Each end can be placed anywhere inside or outside the moving object and the computational domain. Enter Free Length (the length of the spring/rope in the force-free condition), Block Length, Spring Coefficient (required) and Damping Coefficient (default is 0.0). Note that the Block Length is deactivated for rope and extension spring because the former has no block length while the latter always has its block length equal to its free length. By default, the free length is set equal to the initial distance between the two ends.

선형 스프링과 로프: 스프링/로프의 양쪽 끝의 초기좌표를 나타내는 End 1 End 2 를 위한 branches를 열기 위해 클릭한다. 각 branch 에서 Component #로 가서 스프링의 끝이 연결되어 있는 이동체의 색인을 설정한다. 끝이 어떤 이동체에 연결되어 있지 않다면, 즉 공간에 고정되어 있다면 None 을 선택한다. X, Y Z 편집상자에서 스프링 끝의 초기좌표를 입력한다. 각 끝은 이동체나 계산 영역의 내, 외부 어디에도 놓여질 수 있다.

Free Length (힘이없는상태에서의 스프링/로프의 길이), Block Length, Spring Coefficient (필요함) 그리고 Damping Coefficient (디폴트는0.0)를 입력한다. 로프와 인장스프링에서는 Block Length 가 비 활성화됨을 주목하는데 그 이유는 전자는 Block Length 가 없고 후자는 항상 자유 길이와 같은 Block Length 를 가지기 때문이다.

디폴트로 자유길이는 양쪽 끝 사이의 초기길이와 같게 설정된다.

  • Torsion spring: End 1 represents the spring’s end that is attached to a moving object under fixed-axis rotation, and End 2 the end fixed in space. Click to open the branch for End 1. In the combo box for Component #, select the index of the moving object which End 1 is attached to. Then enter Spring Coefficient (required, in unit of [torque]/degree) and Damping Coefficient (default is 0.0). Finally enter the Initial Torque in the input box. The initial torque is the torque of the spring applied on the moving object at t = 0. It is positive if it is in the positive direction of the coordinate axis which the rotation axis of the moving object is parallel to.

비틀림 스프링: End 1은 고정축 회전을 하는 이동체에 연결된 스프링의 끝을 나타내고 End 2는 공간에 고정된 끝을 나타낸다. End 1의 branch 를 열기 위해 클릭한다. Component #를위한 combo 상자에서 End 1 이 연결된 이동체의 색인을 선택한다. 그런 후에 Spring Coefficient ([torque]/degree의 단위로 필요) 와 Damping Coefficient (디폴트는0.0)를 입력한다.

마지막으로 입력 상자에서 Initial Torque 를 넣는다. 초기토크는 t = 0일 때 이동체에 적용된 스프링의 토크이다. 이동체의 회전축이 평행한 좌표축의 양의 방향이면 양의 값이다.

After the simulation is complete, users can display the calculated deformation and force (or torque) of each spring and rope as functions of time. Go to Analyze Probe Data source and check General history. In the variable list under Data variables, find the Spring/rope index followed by spring/rope length extension from free state, spring/rope force and/or spring torque. Then check Output form Text or Graphical and click Render to display the data. Positive/negative values of spring force and length extension mean the linear spring or rope is stretched/compressed relative to its free state and the restoring force is a tension/pressure force. Positive/negative values of the torque of a torsion spring means its deformation angle (a vector) measured from its free state is in the negative/positive direction of the coordinate axis which its axis is parallel to.

모사(simulate)가 끝난 후에 사용자는 시간의 함수로 각 스프링의 계산된 변형과 힘(토크)를 나타낼 수 있다. Analyze Probe Data source 로가서 General history 를 체크한다. Data variables 에 있는 변수 목록에서 spring/rope length extension from free state, spring/rope force 과/또는 spring torque 로 이어지는 스프링/로프의 색인을 찾는다. 그리고 Output form Text 또는 Graphical 를 체크하고 데이터를 나타내기 위해 Render 를 클릭한다.

스프링 힘과 인장길이의 양/음의 값은 선 스프링과 로프가 자유상태에 대해 상대적으로 늘어나거나 압축된 것을 뜻한다. 비틀림스프링 토크의 양/음의값은 축에 평행한 좌표 축의 양/음의 방향에 대해 측정된 변형각(벡터)을 뜻한다.

 

It is noted that the spring/rope calculation is explicitly coupled with GMO motion calculation. If a numerical instability occurs it is recommended that users activate the implicit GMO model, define limited compressibility of fluid, or decrease time step.

스프링/로프 계산은 GMO 운동계산과 외재적으로 결합되어 있음에 주목한다. 수치 불안정성이 발생하면 사용자는 내재적 GMO모델을 활성화하고 유체의 제한적 압축성을 정의하던가 또는 시간간격을 줄이는 것을 추천한다.

Mooring Lines 계류선

The mooring line model allows moving objects with prescribed or coupled motion to be connected to fixed anchors or other moving or non-moving objects via compliant mooring lines. Multiple mooring lines are allowed in one simulation, and their connections to the moving objects are arbitrary. The mooring lines can be taut or slack and may fully or partially rest on sea/river floor. The model considers gravity, buoyancy, fluid drag and tension force on the mooring lines. The mooring lines are assumed to be cylinders with uniform diameter and material distributions, and each line can have its own length, diameter, mass density and other physical properties. The model numerically calculates the full 3D dynamics of the mooring lines and their dynamic interactions with the tethered moving objects.

계류선 모델링은 유연한 계류선을 이용하여 지정 또는 결합운동을 하는 이동체가 고정 닻 또는 다른 이동 또는 고정물체에 연결되는 것을 가능하게 해준다. 다수의 계류선도 한 모사(simulate)내에서 가능하며 이들의 이동체에의 연결은 인위적이다.

계류선은 팽팽하거나 느슨할 수 있고 전체 또는 부분이 해저나 하상에 위치할 수 있다. 이 모델은 계류선에 작용하는 중력, 부력, 유체저항 및 인장력을 고려할 수 있다. 계류선은 일정직경과 균일분포의 원통형으로 가정되고 각 선은 각 길이, 직경, 밀도 및 기타 물리적 물성을 가질 수 있다. 이 모델은 수치적으로 3차원계류선 운동 및 선에 의해 묶여진 이동체와의 동적 상호작용을 계산한다.

 

The model allows the mooring lines to be partially or completely outside the computational domain. When a line is anchored deep in water, depending on the vertical size of the domain, the lower part of the line can be located below the domain bottom where there is no computation of fluid flow. In this case, it is assumed that uniform water current exists below the domain for that part of mooring line, and the corresponding drag force is evaluated based on the uniform deep water velocity. Limitations exist for the model. It does not consider bending stiffness of mooring lines. Interactions between mooring lines are ignored. When simulating mooring line networks, free nodes are not allowed.

이 모델은 계류선이 계산 영역의 완전히 또는 부분적으로 외부에 위치하게 할 수 있다. 계류선은 영역의 심해에 앵커되어 있을 때 수직(세로)크기에 따라 선의 하부는 유동 계산이 없는 영역 바닥에 위치할 수 있다. 이 경우 계류선의 하부가 있는 영역하부에는 균일한 유속이 존재한다고 가정되고 이에 상응하는 유속저항은 균일한 심해유속에 근거하여 계산된다.

이모델은 제약이 있는데 선의 굽힘 강도는 고려하지 않는다. 선간의 상호작용도 무시된다. 선간의 관계를 모사(simulate)활 때 자유접속점은 허용되지 않는다.

 

To define a mooring line, go to Model Setup Meshing & Geometry. Click on the spring icon to bring up the Springs, Ropes and Mooring Lines window. Right click on Springs / Ropes / Mooring Lines to add a mooring line. Click on Mooring Lines Deep Water Velocity and enter x, y and z components of the deep water velocity (default value is zero). Click on Mooring Line # and enter the physical and numerical properties of the mooring line.

계류선을 정의하기위해 Model Setup Meshing & Geometry 로간다. Springs, Ropes and Mooring Lines 창을 불러오기 위해 스프링 아이콘을 클릭한다. 계류선을 추가하기위해 Springs / Ropes / Mooring Lines 에서 오른쪽 클릭을 하고 Mooring Lines Deep Water Velocity 를클릭해서 심해속도의 x, y 및 z 성분을 입력한다(디폴트는0이다). Mooring Line # 를 클릭하고 선의 물리적 및 수치적 물성들을 입력한다.

 

열응력 개선 / Thermal Stress Evolution

열응력 개선 / Thermal Stress Evolution

FLOW-3D의 TSE(Thermalstressdiversion)모델은 모델링 가능한 주조 프로세스의 범위를 확장합니다. FSI/SETSE모델은 주변 유체, 열 구배 및 지정된 구속 조건의 압력에 대응하여 솔리드 및 단단한 구성 요소의 응력 및 변형을 모델링 하는 유한 요소 접근 방식을 사용하여 유체와 솔리드 사이의 완전 결합 상호 작용을 설명합니다.

균일하지 않은 냉각에 의해 발생하는 응고 과정 동안 열 스트레스가 발생합니다. 이러한 응력은 주형 벽의 수축 및 주물 형상의 불규칙에 의해 영향을 받습니다.Thermal stress evolution simulation
Von Mises stresses in a solidified aluminum V6 engine block

위의 시뮬레이션은 VonMises가 단단한 알루미늄 V6엔진 블록에서 응력을 나타냅니다. 이 블록은 강철 다이 내에서 주조된 알루미늄 A380합금으로 구성되어 있습니다.

알루미늄의 주입 온도는 527°C였으며 초기 다이 온도는 125°C였습니다. 부품을 60초 동안 다이 내에서 냉각한 후 주변 조건(125°C)에서 9분 동안 부품을 계속 냉각시켜 총 10분의 시뮬레이션 시간을 제공했습니다. 표시된 VonMises 응력은 부품 내 전단 응력의 크기를 측정한 것이며, 따라서 찢어지기 쉬운 부위를 보여 줍니다.

응력은 금형과 응고 금속에서 동시에 계산할 수 있습니다. FLOW-3D의 구조화된 메쉬를 초기 템플릿으로 사용하여 자동으로 메쉬 작업을 수행할 수 있습니다. 사용자는 중첩 또는 링크된 메쉬 블록을 만들고 V1.1.0의 새로운 적합한 메쉬 기능을 사용하여 메쉬의 로컬 해상도를 제어할 수 있습니다. 또는, Exodus-II형식의 타사 메쉬 생성 소프트웨어에서 유한 요소 메쉬를 가져올 수 있습니다.

Simulating Thermal Stress

아래에 표시된 알루미늄 커버는 강철 다이 내 알루미늄 A380합금으로 구성되어 있습니다. 주입 온도는 654°C였으며 초기 다이 온도는 240°C였습니다. 부품이 다이 내에서 6s동안 냉각되었으며 이때 부품이 완전히 경화되었습니다(러너 시스템 제외). 그런 다음 다이를 열고 부품이 주변 조건(25°C)에서 10초 이상 냉각되도록 했습니다. 그런 다음 탕도(runner)시스템을 제거했고, 이후 주변 조건에서 10초간 더 냉각했습니다. 여기에 표시된 정상 변위는 부품 표면의 움직임을 나타내며, 최대 변형 영역을 강조하기 위해 30회 증폭됩니다.

Displacements in a die cast part, die closed
Displacements in a die cast part, die closed.
Displacements in the part and runners, die open
Displacements in the part and runners, die open.
Displacements in the part with runner system removed
Displacements in the part with runner system removed.

Component Coupling within the Fluid-Structure Interaction and Thermal Stress Evolution Models

FLOW-3Dv11의 새로운 기능은 인접한 FSI(유체-구조물 상호 작용)구성 요소 및/또는 TSE(열 스트레스 진화)고체화된 유체 영역 간의 탄성 응력을 결합할 수 있는 기존의 유한 요소 고체 역학 용제의 업그레이드입니다. 이 새로운 기능은 복합 재료 부품(예:주형에서 응고되는 금속 주물 응고제 또는 바이메탈 게이지)의 열 응력과 변형을 시뮬레이션하고 반경 게이트 및 파이프 라인 지지 시스템과 같은 연결된 유압 구조에 가해지는 힘을 시뮬레이션하는 등 다양한 모델링 가능성을 열어 줍니다.

모델에는 복잡한 프로세스를 효율적으로 계산할 수 있는 여러가지 옵션이 있습니다.

No coupling

이 옵션은 인접 FSI구성 요소가 응력을 교환하지 않는 단순화된 경우를 나타냅니다. 그것은 계산적으로 효율적이며 요소들 간의 스트레스 상호 작용이 중요하지 않은 시나리오에 적합하다.

Full coupling

전체 커플링 옵션은 서로 다른 재료 특성을 가진 인접 FSI구성 요소를 모델링 하기 위한 것입니다. 두 구성 요소는 서로 당기거나 미끄러질 수 없지만 인터페이스의 응력은 구성 요소 간에 전달됩니다. 이는 바이메탈과 같이 접합된 구조물을 모델링 하는 데 이상적입니다.

Partial coupling

부분 커플링 옵션은 인접 FSI구성 요소가 마찰력과 정상적인 힘을 통해 상호 작용하지만 분리될 수 있는 일반적인 문제를 모델링 하기 위한 것. 이 옵션은 FSI구성 요소와 TSE의 고체화된 유체 영역을 결합하는 데 사용될 수 있으므로 부품이 다이에서 냉각될 때 주조 부품 및 다이에 대한 열 응력의 영향을 조사하는 데 이상적입니다.

두가지 시뮬레이션이 제시되어 모델의 새로운 특징을 보다 자세히 보여 줍니다. 첫번째 상황에서는 완전한 커플링 옵션을 사용하여 시간이 변화하는 온도에 대응하여 바이메탈 벤딩을 모델링 하는 반면, 두번째 예에서는 다이에서 V6엔진 블록을 응고하는 동안 부분 커플링 모델을 사용하여 열 응력을 확인하는 것을 보여 줍니다.

Full Coupling Example: Bimetallic Strip

전체 커플링 옵션의 가장 간단한 예 중 하나는 온도 구배에 대한 반응으로 바이메탈이 움직이는 것입니다. 이러한 스트립은 온도 변화에 대응하여 두 금속이 동일한 속도로 팽창하지 않기 때문에 열 스위치 및 벤딩에 일반적으로 사용됩니다. 시뮬레이션에서 모델링 된 바이메탈은 그림 1과 같이 길이 15cm, 두께 0.5cm의 강철 스트립으로 구성된 캔틸레버 빔입니다.

Schematic of bimetallic strip
그림 1:예제 시뮬레이션에 사용된 바이메탈의 개략도; 검은 색 화살표는 편향이 프로브 되는 위치를 나타내고, 양의 편향은 상향이다.

그리고 나서 스트립은 온도가 70초에 걸쳐 균일하게 변화하는 환경에 배치되었다. 그림 2는 시간 경과에 따른 다양한 온도에서 시뮬레이션 및 분석 용액을 위한 스트립 팁의 편향을 보여 준다. 결과는 온도가 변한 시기와 스트립의 열적 관성으로 인한 스트립의 반응 사이의 약간의 지연을 포함하여 몇가지 흥미로운 특징을 보여 준다. 이러한 지연은 분석 솔루션이 온도의 즉각적인 변화를 가정하기 때문에 계산된 편향과 분석적 편향 사이의 타이밍 차이에도 영향을 미친다. 변위의 진폭 차이는 분석 결과에서 무한대의 얇은 스트립의 가정에 기인할 수 있다. 계산 모델의 두께는 장착 지점에 응력을 추가하여 편향을 증가시킵니다.

Bimetallic deflection plot FLOW-3D
그림 2:스트립의 끝에서 시뮬레이션 시간에 걸쳐 처짐. 그림에 표시된 것은 스트립의 평균 온도( 진한 파란 색)뿐만 아니라 분석적( 연한 파란 색)및 계산( 빨간 색)편향입니다.

Partial Coupling Example: Metal Casting within a Deformable Die

Temperature profile of a v6 engine block
Figure 3: V6 엔진 블록의 온도 프로파일 단면도. 시뮬레이션 시작 7 초.

두번째 예제 시뮬레이션에서는 부분 커플링 모델을 사용하여 변형 가능한 강철 다이 내 금속 주물의 응력 개발을 보여 줍니다. 다이의 두 절반과 응고된 유체는 부분적으로 서로 결합되어 정상적인 응력과 마찰을 통해 상호 작용합니다. 시뮬레이션은 다이와 주물 부품의 열 응력 변화를 770,000 K의 solidus온도 바로 아래에서 298K의 주변 온도로 냉각하는 모습을 보여 줍니다. 주물 부분은 A380알루미늄 합금으로 구성되어 있고 다이 반쪽은 H-13강철로 구성되어 있습니다.

주조 부품과 주변 다이의 유한 요소 메시는 그림 3과 같이 3,665,533 요소와 3,862,378개 노드로 구성됩니다. 또한 각 다이의 절반에 대해 분리된 메쉬와 TSE고형화된 유체 영역도 나와 있습니다. 전면의 빨간 색 원은 서포트 피스톤 때문입니다(그림과 같이 표시되지 않음).

Thermal stress model
Figure 4 는 채워진 후 고압 다이 캐스팅 부품 300s의 주조물 온도와 변위 크기로 채색 된 강철 다이 조각을 결합한 이미지를 보여줍니다. 이 시뮬레이션에서, 다이는 응고하는 알루미늄에 연결되어 응력이 그들 사이에 전달됩니다. 변위 크기는 다이의 에지에서 0에서부터 주조에 인접한 0.1mm 이상까지 다양합니다.

금형과 응고된 유체 표면 사이의 경계면에서 발생하는 응력이 부분적으로 결합되어 제한된 수축을 확인할 수 있습니다. 그림 4는 시뮬레이션을 통해 주형 부분의 변형과 다이 부분의 절반의 변형을 보여 줍니다. 온도가 감소함에 따라 다이 캐스트와 주물이 서로 다른 속도로 수축하여 간섭 영역에 큰 응력이 발생하고 잠재적인 문제 영역이 나타납니다. 다이와 부품에서 결합된 응력을 계산하면 사용자가 각 구성 요소 내에서 발생하는 응력을 더 잘 예측하고 부품 품질을 개선하고 도구 수명을 연장하는 방법에 대한 통찰력을 제공할 수 있습니다.

Conclusion

다른 단단한 물체들의 상호 작용은 현대 디자인과 공학의 중요한 부분입니다. FSI구성 요소와 TSE고정 유체 영역 간의 새로운 결합 옵션이 FLOW-3D에 추가되어 오늘날의 엔지니어들이 정기적으로 접하는 복잡한 기하학적 구조를 평가하는 데 유용한 도구가 되었습니다.

스퀴즈(압착) 핀 / Squeeze Pins

스퀴즈(압착) 핀 / Squeeze Pins

주조의 복잡성이 증가함에 따라, 게이팅 및 피딩 시스템 및 적절한 다이 온도 관리가 최적화되어 있음에도 불구하고, 대부분의 경우 절삭유 부족으로 인한 다공성 수축이 불가피합니다. 고압 및 영구 몰드 주조에서 수축 다공성을 감소시키기 위해 국부적으로 금속을 압착하는 데 압착 핀이 자주 사용됩니다. 그러나 스퀴즈 핀의 효과는 압착의 타이밍과 위치에 따라 크게 좌우됩니다. 이러한 실제 시나리오를 예측하기 위해 스퀴즈 핀 모델이 FLOW-3D 버전 11.1 및 FLOW-3D Cast v4.1에서 개발되어 스퀴즈 핀 프로세스 매개 변수를 설계하고 최적화하는 데 도움을 줍니다.

주조물의 복잡성이 증가함에 따라 최적화된 탕구계 및 공급 시스템과 적절한 다이 온도 관리에도 불구하고, 많은 부품에서 불량한 공급으로 인한 수축 다공성이 불가피한 경우가 많습니다.

고압 및 영구 금형 주물에서는 squeeze 핀을 사용하여 금속을 국부적으로 눌러 수축 다공성을 낮추는 경우가 많습니다. 단, squeeze 핀의 효과는 그 배치와 가압 시기에 따라 크게 달라집니다. 이러한 실제 시나리오를 예측하기 위해 FLOW-3D에서 스퀴즈 핀 프로세스 매개 변수를 설계하고 최적화하는데 도움이 되는 스퀴즈 핀 모델이 개발되었습니다 .

Squeeze Pin Model in FLOW-3D

스퀴즈 핀 모델은 규정 된 moving objects model 을 기반으로하며 열 전달 및 응고 역학 고려 사항을 기반으로하는 단순 수축 모델과 함께 작동합니다. 활성화되면 스퀴즈 핀이 인접한 액체 금속의 수축량을 감지하고 해당 부피를 정확하게 보정하기 위해 이동합니다. 스퀴즈 핀은 최대 허용 거리를 벗어나거나 표면에 너무 많은 굳은 금속을 만나면 멈 춥니 다. 핀에 대한 힘을 정의 할 수 있으며 금속 압력으로 변환됩니다. 그 압력은  thermal stress evolution 및 미세 다공성 모델과 함께 사용할 수 있습니다 .

스퀴즈 핀의 활성화 타이밍은 모델의 구성 요소입니다. 이 모델은 몇 가지 유연한 활성화 제어를 제공합니다. 스퀴즈 핀은 Active Simulation Control 이벤트에 의해 사용자가 지정한 시간에 활성화되거나 자동으로 활성화되도록 설정할 수 있습니다. 후자의 경우 다음 조건이 충족되면 스퀴즈 핀이 활성화됩니다.

  1. 핀은 액체 영역에 인접 해 있습니다.
  2. 핀 사이의 경쟁을 피하기 위해 핀이 인접한 액체 경로를 통해 다른 핀에 연결되어 있지 않습니다.
  3. 인접한 액체 영역에는 게이트가 응고 된 금속으로 밀봉되기 전에 금속이 캐비티 밖으로 밀려 나올 수있는 자유 표면이 없습니다.

자동 활성화 제어는 핀의 정확한 타이밍을 알 수없는 설계 단계에서 유용합니다. 이 경우 핀 활성화 시간은 모델 출력의 일부입니다.

버전 11.1의 새로운 기능인 Active Simulation Control을 사용하여 다이캐스팅 기계에서 실제 스퀴즈 핀 제어 시스템을 모방 할 수 있습니다. 이를 통해 사용자는 주조의 다른 부분에있는 솔루션을 기반으로 핀 타이밍에 더 많은 제어 및 개선을 추가 할 수 있습니다.

Squeeze Pin Model Applications

  • 주물에서 공급이 어려운 부분의 다공성을 줄이거 나 제거하는 스퀴즈 핀의 효과 시뮬레이션
  • 숏 슬리브 피스톤은 응고 수축을 보상하고 강화 압력을 적용하기 위해 응고 중에 스퀴즈 핀으로 정의 할 수 있습니다.
  • 기존 스퀴즈 핀 설계 검증
  • 스퀴즈 핀 배치 최적화
  • 스퀴즈 핀 활성화 타이밍 최적화
  • 실제 다이캐스팅 기계에서 스퀴즈 핀 제어 검증 및 최적화

Sample Results

Squeeze pin configuration

2-캐비티 고압 다이 캐스트에 대한 사례 연구가 수행되었습니다.  두 세트의 시뮬레이션이 실행되었습니다. 하나는 스퀴즈 핀이없는 것이고 다른 하나는 스퀴즈 핀이있는 것입니다. 스퀴즈 핀의 구성은 그림 1에 나와 있습니다. 스퀴즈 핀은 두 개의 주조 부품 각각의 중앙에 배치됩니다. 이 스퀴즈 핀은 자동으로 활성화되도록 설정됩니다. 플런저는 충전 완료 즉시 활성화되도록 설정되는 압착 핀으로도 정의됩니다. 결과 수축 분포는 그림 2에 나와 있습니다. 스퀴즈 핀에 의한 수축 감소는 주물 중앙과 비스킷 중앙에서 분명합니다. 두 시뮬레이션의 총 매크로 수축도 비교되고 그림 3에 그려져 있는데, 이는 스퀴즈 핀에 의한 극적인 수축 감소를 정량적으로 보여줍니다.

Shrinkage distribution squeeze pin model

핀 활성화 시간은 그림 4와 같이 화면, HD3MSG, HD3OUT 및 REPORT 파일에 기록됩니다. 시간 정보는 고압 다이캐스팅 기계에서 스퀴즈 핀 제어 매개 변수로 직접 사용할 수 있습니다. 또한 각 스퀴즈 핀의 이동 거리와 변위량도 일반 이력 데이터에 기록되어 각 스퀴즈 핀의 효과를 확인하는 데 사용할 수 있습니다. 그림 5와 같이 각 스퀴즈 핀의 이동 거리가 표시됩니다. 플런저는 미리 정해진대로 시뮬레이션 시작시 즉시 움직이고, 플런저 근처가 마지막 응고 영역이고 가장 큰 수축을 생성한다는 사실로 인해 가장 멀리 그리고 가장 길게 움직이는 것을 볼 수 있습니다. 두 개의 주조 부품 각각의 중앙에 정의 된 두 개의 스퀴즈 핀이 동시에 활성화됩니다.주조 및 압착 핀 구성의 대칭으로 인해 거의 동일한 거리를 이동했습니다.

Macro-shrinkage volume comparison with and without squeeze pins
Figure 3. Macro-shrinkage volume comparison with and without squeeze pins.
Pin activation output
Figure 4. The output of the pin’s activation in HD3MSG file.
The traveled distance of each squeeze pin
Figure 5. The traveled distance of each squeeze pin.

주조의 복잡성이 증가함에 따라 최적화된 게이팅 및 공급 시스템과 적절한 다이 온도 관리에도 불구하고 공급 불량으로 인한 수축 다공성은 종종 큰 부품 섹션에서 불가피합니다. 고압 및 영구 주형 주조에서 수축 공극률을 줄이기 위해 금속을 국부적으로 누르는데 스퀴즈 핀이 자주 사용됩니다. 그러나 스퀴즈 핀의 효과는 위치와 가압 타이밍에 따라 크게 달라집니다. 이러한 실제 시나리오를 예측하기 위해 FLOW-3D  에서 스퀴즈핀 프로세스 매개 변수를 설계하고 최적화하는 데 도움 이되는 스퀴즈핀 모델이 개발되었습니다 .

다이 스프레이 냉각 / Die Spray Cooling

열 다이 사이클링 시뮬레이션에서 다이의 온도 분포를 정확하게 예측하려면 스프레이 냉각의 공간 변화를 모델링해야 합니다. 새로운 다이 스프레이 냉각 모델은 이러한 목적으로 개발되었으며 현재 FLOW-3D의 최신 버전에서 사용할 수 있습니다. 이 모델은 전체 다이 캐비티에 걸쳐 일정한 열 전달 계수를 가정하는 대신 각 스프레이의 냉각을 명시적으로 계산합니다. 다이 표면의 스프레이 영역은 스프레이 노즐의 움직임으로 인해 지속적으로 계산되고 업데이트됩니다. 또한 모델은 분무되는 유체의 차단을 고려하여 살수 각도와 다이 표면의 형태로 인해 냉각에 미치는 영향을 고려한다. 새로운 모델은 안정적이고 현실적인 입력 매개 변수를 사용하여 다이 표면에 정확한 온도 분포를 제공하여 엔지니어가 냉각 프로세스를 보다 효율적으로 설계하고 최적화하여 핫 스팟을 제거할 수 있도록 도와 줍니다.

스프레이 구역 계산 / Spray Area Computation

새 모델에서는 다이 표면의 형상과 분무 노즐 위치가 살수 냉각에 미치는 영향을 고려합니다. 아래 그림과 같이 다이 표면에 분사되는 일부 영역은 막히고 일부 영역은 2개 이상의 스프레이로 덮여 있습니다. 이러한 영역은 다양한 스프레이 냉각 효과를 구별하기 위해 광선 추적 알고리즘을 사용하여 계산하고 식별합니다. 스프레이 영역은 FlowSightTM에서 시각화할 수 있으며, 스프레이 냉각을 통해 유닛 영역별로 제거된 총 분사 시간 및 총 열 등의 다른 특성도 확인할 수 있습니다.

Spray area computation

열 전달 계수 결정 / Heat Transfer Coefficient Determination

스프레이 냉각 메커니즘은 복잡하며 스프레이 냉각 열전달 계수 (HTC)는 스프레이 모양, 냉각수 유량, 스프레이 압력, 금형 온도, 스프레이 각도 및 스프레이 거리와 같은 다양한 변수에 따라 달라집니다. 스프레이 냉각 HTC 계산을 단순화하기 위해, 모든 스프레이 표면 요소에 대해 HTC는 기본 요소 HTC에 종속 요소 ( : 원추형 스프레이)를 곱하여 계산됩니다.

스프레이 냉각 메커니즘은 복잡하며, 스프레이 냉각 열 전달 계수(HTC)는 스프레이 형태, 냉각수 유량, 스프레이 압력, 금형 온도, 스프레이 각도, 스프레이 거리 등 다양한 변수에 따라 달라집니다. 스프레이 냉각 HTC의 계산을 단순화하기 위해 모든 스프레이 표면 요소에 대해 HTC는 기본 HTC에 원뿔형 스프레이의 경우와 같은 의존성 요인을 곱한 후 계산됩니다.

\displaystyle HTC=HT{{C}_{0}}(T)\cdot {{f}_{d}}(d)\cdot {{f}_{b}}(\beta )\cdot {{f}_{e}}(\varepsilon )

여기에서

  • 0HTCHTC는 노즐이 지정된 거리에서 몰드에 분사할 때 기본 스프레이 열 전달 계수입니다. 기준 열 전달 계수는 분무 콘의 특성, 살수 매체 및 살수 압력 등에 따라 달라지며, 주형 표면 온도의 함수입니다.
  • dff는 거리 d종속 인자 함수이다.
  • bff는 살수 각도β의존적 인자 함수이다.
  • eff는(표면 법선과 살수 방향 사이의)살수 각도이며, Eu의존적 인자 함수이다.

스프레이 거리 d와 스프레이 각도 β 및 ε의 의미는 아래 그림과 같습니다

Spray distance and angle

기본 열 전달 계수 및 의존 계수 함수는 이론 또는 경험으로부터 유도 된 실험 측정으로부터 곡선 맞춤을 할 수 있습니다. 스프레이가 원추형이 아닌 경우 종속 요소가 다를 수 있습니다.

스프레이 노즐 정의 / Spray Nozzles Definition

분무 노즐은 뱅크로 분류된다. 동일한 뱅크의 노즐은 스프레이 콘 각도와 같은 특성을 가지고 있다. 또한, 동일한 살수 매체 온도와 동일한 그룹의 다이 구성 요소에 분사하고, 동일한 상태 제어 표를 공유하며, 동일한 열 전달 계수 기능을 가진다.

모든 스프레이 노즐 뱅크는 사실상 동일한 로봇 암에 장착됩니다. 로봇 암의 변환 및 회전 이동은 FLOW3D 에서 지정할 수 있습니다. 모션 데이터가 외부 파일에 저장된 경우 외부 파일에서 가져오거나 연결할 수 있습니다. 스프레이 기계에 프로그래밍된 제어 데이터를 모델에 직접 사용할 수 있기 때문에 외부 파일을 가져오거나 연결할 수 있으면 입력이 상당히 간단해 집니다.

노즐 속성은 노즐 데이터베이스에서 직접 읽을 수 있습니다. 열 전달 계수 기능은 스프레이 콘 각도를 포함한 스프레이 콘 특성에 따라 달라지기 때문에 노즐 데이터베이스에 포함된 모든 노즐 특성의 일부입니다. 데이터베이스에 노즐이 정의되어 있지 않으면 그 속성을 직접 입력할 수 있습니다. 열 전달 계수 기능은 상수이거나 표로 정의할 수 있습니다. 다른 테이블 입력과 마찬가지로 데이터를 외부 파일에 연결할 수 있습니다. 동일한 노즐을 자주 사용하는 경우 재료 데이터베이스에 새 재료를 추가하는 것과 유사하게 해당 특성을 노즐 데이터베이스에 쉽게 추가할 수 있습니다.

각 노즐에 대해 스프레이 출처 및 엔드 좌표 또는 스프레이 방향을 정의해야 합니다. 노즐 위치가 미리 설계되어 있고 데이터를 사용할 수 있거나 노즐 수가 상대적으로 많을 경우 외부 파일에서 이 위치를 읽을 수 있습니다. 노즐 수가 적으면 위치를 대화식으로 선택하고 표 형식으로 입력할 수 있습니다.

Sample Results

새로운 모델의 성능과 다이 스프레이 프로세스를 명시적으로 시뮬레이션하는 것의 중요성을 입증하기 위해 사례 연구가 수행되었습니다. 이는 큰 치수와 얇은 벽 두께를 가진 차량 구조 부품의 생산에 기초한다. 이젝터 다이의 다이 표면 안에 세개의 열전대가 배치됩니다. 위치는 다음 그림에 나와 있습니다. 첫번째 열전대는 주조 영역의 다이 표면에 배치됩니다. 두번째 열전대는 캐비티 밖에서 정의됩니다. 따라서 용해된 부분은 접촉하지 않지만 분사 과정 중에는 냉각되는 부분이 있습니다. 세번째 열전대는 비스킷에 있는데, 이것은 다이 내부의 핫 스폿입니다.

Thermocouples die spray cooling model

시뮬레이션은 5개의 사이클을 기반으로 하며, 각 사이클은 응고, 방출, 스프레이 냉각 및 주거라는 4개의 세그먼트로 정의됩니다. 전체 다이 캐비티에 걸쳐 일정한 열 전달 계수를 가정하는 암시적 다이 스프레이 냉각 시뮬레이션에서는 실제 공정 값을 사용할 수 없으므로 항상 스프레이의 평균 시간을 추정하기가 어렵습니다. 이 사례 연구에서는 열전대 1의 온도가 측정과 일치하도록 평균 시간을 추정하고 조정합니다. 반대로 각 스프레이 노즐의 냉각을 명시적으로 시뮬레이션하는 새로운 스프레이 냉각 모델의 경우, 실제 분사 프로세스에는 모든 시간 값이 포함되어 있어 시뮬레이션에 직접 전달될 수 있습니다. 이는 새로운 다이 스프레이 냉각 모델의 장점 중 하나입니다.

아래의 첫번째 애니메이션은 스프레이 냉각 중 다이 표면의 스프레이 영역을 보여 줍니다. 두번째 애니메이션은 다섯번째 주기에서 스프레이 냉각 중의 다이 표면 온도를 보여 줍니다. 글로벌 스프레이 및 핫 스팟 스프레이의 효과를 명확하게 확인할 수 있습니다.

Spray area during spray cooling. Simulation courtesy of Audi AG.

Die surface temperature at the fifth cycle of spray cooling. Simulation courtesy of Audi AG.

다섯번째 사이클 동안 세개의 열전대 온도가 다음 그림에 표시되어 있습니다. 실선은 암시적 모델의 결과를 나타내고 점선은 새로운 다이 스프레이 냉각 모델의 결과를 나타냅니다. 사이클이 끝날 때 세개의 열전대의 온도 차이도 표시됩니다. 암시적 모델에서 열전대 1의 온도를 일치시키기 위해 비스킷 영역이 지나치게 냉각되어 열전대 3에서 다이 온도의 90°C차이가 발생한다는 것을 알 수 있습니다. 이는 극적인 차이입니다. 다이 캐스터의 경우 비스킷의 온도는 다이 캐스팅 프로세스에서 매우 민감한 온도입니다. 사이클이 끝날 때 캐비티(열전대 2)외부의 온도 차이는 20°C입니다. 이러한 값은 실제 공정에서 우수한 품질의 주물이 생산되거나 사출 중에 다이에 응고되는지 여부를 결정합니다. 다이 스프레이 냉각 프로세스의 명확한 시뮬레이션은 정확한 다이 온도 분포를 예측하는 데 매우 중요합니다.

Temperatures thermocouples - die spray cooling model

Conclusions

새로운 다이 스프레이 냉각 모델은 몰드 표면 형태의 영향과 스프레이 노즐의 위치 및 움직임을 고려하여 FLOW-3D 사용자에게 다이 준비의 모든 측면을 모델링 할 수 있는 능력을 제공합니다. 또한 열 다이 사이클 시뮬레이션을 위한 신뢰할 수 있고 사실적인 입력 파라미터를 사용하여 다이 표면의 정확한 온도 분포를 정확하게 예측할 수 있습니다. 이를 통해 금속 주물 엔지니어는 다이의 내부 냉각 구조와 스프레이 냉각 매개 변수를 보다 효율적으로 설계하고 평가할 수 있습니다.

References

  1. Müller, et al., A die spray cooling model for thermal die cycling simulations, Transactions of NADCA 2015 Die Casting Congress & Exposition, Indianapolis, T15-101, 2015

코어 가스 / Core Gas

코어를 이용한 주조 모델링

모래의 화학 결합제는 용해된 금속에 의해 가열될 때 가스를 생성할 수 있으며, 적절히 환기되지 않을 경우 가스가 금속으로 흘러 들어가 기체 다공성 결함을 초래할 수 있습니다. 이는 빠르게 가열되고 환기 경로가 긴 주물의 얇은 내부 특징을 형성하는 코어에서 가장 가능성이 높습니다. FLOW-3D의 핵심 가스 모델은 이러한 가스 결함 가능성을 예측하고 코어에서 모든 결합제 제품 가스를 안전하게 배출할 수 있는 코어 환기를 설계하는 데 도움이 됩니다.

알루미늄 및 철 주조의 결함 모델링

Core Gas 모델은 철 주물 (그림 1)과 알루미늄 주물 (그림 2) 모두에서 수지 결합 코어의 결함을 예측합니다. 충전 및 응고 모델과 동시에 작동하고 주조 충전 중 및 충전 후 바인더 가스 생성 및 흐름을 계산합니다.

코어 가스 시뮬레이션
그림 1 : 열린 플라스크 부분 V8 Al 블록 어셈블리 채우기. 두 개의 코어는 블록의 워터 재킷 공동을 형성합니다. 플라스크 바닥에 Al이 20 초 안에 채워집니다.
핵심 가스 모델
그림 2 : 환기가되지 않을 때 워터 재킷 코어는 충전 중에 금속에 가스를 불어 넣습니다 (그림 2b).

주철 / Cast Iron

 Carbide (red) and graphite (blue) rich areas in a solidified gray iron casting.

Cast iron model

FLOW-3D‘의 주철 모델은 hypo 및 hyper-eutectic 철-탄소-실리콘 합금의 응고를 설명합니다. FLOW-3D‘는 융해하는 혼합반응(eutectic reaction) 동안 흑연, 오스테나이트 (또는 감마 – 철) 및 탄화물 상(유동) 형성을 예측합니다. 냉각 및 고형화 동안의 용적 변화는 수축 및 다공성 형성 모델과 결합됩니다. 주철 모델은 실제 철 동결 경로와 냉각 취약성 기준을 사용하여 현장의 탄화 수소 형성을 제어합니다.

주조 공장 엔지니어의 주요 관심사 중 하나는 응고 중에 형성될 수 있는 과도한 수축 다공성입니다. 주철의 체적 변화는 대부분 액체 합금을 주입 온도에서 고체로 냉각할 때, 그리고 더욱 중요하게는 감마선, 흑연 및 탄화물 형태로 응고할 때 발생합니다. 라이저(or risering)를 배치하면 수축을 유도할 수 있는 추가 금속이 제공됩니다. 최소 비용으로 우수한 품질의 주물을 달성하기 위해서는 최적의 하역이 중요합니다. 또한 금속의 적절한 합금과 냉각을 통해 수축의 양을 제어할 수 있습니다. FLOW-3D의 주철 모델은 이러한 모든 요소를 고려하여 용융, 응고 동안 기공 형성 및 위상 개발을 예측합니다.

주철 모델 개요 / Overview of the Cast Iron Model

주철은 탄소와 실리콘이 합금 된 용융 철입니다. 탄소는 전형적으로 2.5 wt % 내지 4.5 wt % 범위로 존재하고 실리콘은 1 wt % 내지 3 wt % 범위로 존재합니다. 흑연을 안정화하고 “냉각”경향 (즉, 탄소 철의 형성)을 줄이기 위해 실리콘이 첨가됩니다. 다른 원소 및 화합물은 미량으로 존재하며 일반적으로 흑연 모양 (예 : 연성 철의 마그네슘)을 제어하거나, 추가 탈산제 (예 : 인)로 작용하거나, 흑연의 주입제 (예 : 페로 실리콘) 역할을합니다.

FLOW-3D  의 주철 모델은 주입 온도에서 응고까지 발생하는 부피 변화를 설명합니다. 액체 상태에서 냉각 중 수축; 사전 용융 감마 철 형성 동안 추가 수축; 용융 반응 동안 후속 수축 또는 팽창; 그리고 용융 반응의 끝에서 고형 선으로의 2 차 수축. 주철은 일반적으로 탄화물의 형성에 영향을 미칠 수있는 비철 상을 포함하기 때문에, 응고된 금속의 밀도에 대한 이러한상의 영향에 대해 휴리스틱 허용치 (냉각 민감성 매개 변수의 형태)가 만들어집니다.

주철 응고 모델의 잠열 방출은 초기 용융물에서 탄소와 실리콘의 농도를 사용하여 Fe-C 위상 다이어그램 [1] 에서 결정된 온도 함수 (소위 동결 경로)로 계산됩니다 . 이 모델은 유동 유무에 관계없이 일반 응고 모델과 함께 사용할 수 있습니다. 그러나 다른 단계의 형성과 관련된 체적 변화는 흐름을 포함하지 않는 단순화된 수축 모델에만 결합됩니다.

철 확장 중 금형 벽 이동의 효과는 현재 모델에 포함되지 않습니다. 금형에서 사용 가능한 공간으로 수용 할 수없는 순 체적 확장은 무시됩니다.

융해 영역에서는 융해 경계의 속도를 사용하여 국부적인 냉각 경향을 계산하고, 따라서 국부적인 탄화물의 양을 계산하므로 금형 벽 근처의 냉각 영역을 모델링 할 수 있습니다. 고체 유전체 변환 중에는 더 이상의 공기상 변화를 추적하려는 시도가 없습니다. 즉, 최종 물질 미세 구조가 예측되지 않습니다.

hyper-eutectic cast irons의 경우, 회색 및 연성 주철과 같이 초기 경화전 공정 단계에서 흑연만 형성되는 것으로 가정합니다. 즉, 이 모델은 주로 탄화물이 형성되는 사전 융해 단계에서 hyper-eutectic white irons의 응고를 포함하지 않습니다.

Cast Iron Freezing Path

주철 동결 경로는 공융 합금의 경로입니다. 이는 액상 선 온도, 공융 온도, 공융 – 시작 및 공융 – 말단 고체 분율 및 고 상면 온도에 의해 특징 지어 질 수 있습니다. 모두지만, 마지막 두 양은 평형 3 원 Fe-C-Si 상 다이어그램 [1]에서 계산됩니다.
(The cast iron freezing path is that of a eutectic alloy. It can be characterized by the liquidus temperature, eutectic temperature, the eutectic-start and eutectic-end solid fractions and the solidus temperature. All, but the last two quantities are computed from the equilibrium ternary Fe-C-Si phase diagram [1].)

감마상의 탄소 용해도는 다음에 따라 중량 % 단위 Si 함량 에 따라 달라집니다 .

(1)     \displaystyle {{C}_{{\gamma ,mx}}}=2.07-0.098Si,

이는 Stefanescu [2]에 의해 보고된 용해도와 밀접한 관련이 있습니다. 합금의 액상 점 (섭씨 온도)은 hypo-eutectic liquidus plane :

(2)     \displaystyle {{T}_{i}}=1636-113\left( {C+0.25Si} \right)

또는 초정밀 액상 평면 [2] :

(3)     \displaystyle {{T}_{i}}=-505.8+389.1\left( {C+0.31Si} \right),

그리고 공융 혼합물 및 온도는 이들 평면의 교차점에 의해 주어집니다.

(4)     \displaystyle {{C}_{e}}=4.26-0.296Si,     \displaystyle {{T}_{e}}=1154.6+5.2Si

공융 반응의 시작은 레버 규칙에 의해 주어진 파생된 양입니다.

(5)     \displaystyle {{f}_{e}}=\frac{{c-{{c}_{\varepsilon }}}}{{{{c}_{{\gamma ,mx}}}-{{c}_{\varepsilon }}}}.

[3]의 측정은 이 근사가 많은 주철에 적합 함을 암시합니다.

흑연 공융 반응의 끝, 수수료 및 solidus Ts는 사용자 정의 수량으로 남습니다. 액체에서 인의 양의 분리를 고려하면 실제 고 상선 온도는 흑연 공융 온도보다 낮고 1100 ° C 정도로 낮습니다. 이 경우, 흑연 침전은 동결이 끝나기 전에 완료되고 동결되는 금속의 마지막 부분은 공융 밀도와 다른 밀도 ρei 에서 수행된다고 가정합니다.

흑연 공융 반응의 끝 f ee 및 고형 선 T s 는 사용자 정의 수량으로 남습니다. 액체에서 인의 양의 분리를 고려하면 실제 고 상선 온도는 흑연 공융 온도보다 낮으며 1100 ° C까지 낮습니다. 이 경우, 흑연 침전이 동결이 끝나기 전에 완료되고 동결 할 마지막 금속 부분 인 1- f ee 가 공융 밀도와 다른 밀도 ρ ei 에서 그렇게 한다고 가정합니다.
( The end of graphitic eutectic reaction, fee , and the solidus Ts, are left as user-defined quantities. If one considers positive segregation of phosphorous in the liquid, the actual solidus temperature is below the graphitic eutectic temperature, and is as low as 1100 °C. For this case, it is assumed that graphite precipitation is complete before the end of freezing, and that the last fraction of metal to freeze, 1-fee, does so at a density ρei different from the eutectic density. )

밀도 변화 / Density Changes

일반적으로 주철 주물의 과열은 크며 응고가 시작되기 전에 냉각 중 수축이 중요합니다. 액체 철 밀도의 온도 의존성은 선형 형태로 모델링됩니다 :

(6)     \displaystyle \rho \left( T \right)={{\rho }_{0}}\left[ {1-\alpha \left( {T-{{T}_{0}}} \right)} \right]

또는 테이블 형식으로 함수 ρ (T) 를 정의하여 .

일단 동결 범위에 들어가면 감마철은 고형분수에 도달할 때까지 형성됩니다. 이 단계의 농도 값인 ,ϒ은 7.2 g/cc입니다 [4,5,6]. 고형분수에 도달하면, 일반(흰색) 공극과 불규칙한 회색 공극이 경쟁적으로 성장하는 동안 공극 반응이 시작됩니다. 높은 동결률과 높은 황동-전방 속도에서 백색 황동은 부분적으로 황동 전방에 앞서 탄소 농도 구배가 더 낮기 때문에 안정적입니다. 낮은 Eutectic-front 속도에서는 회색 Eutectic이 안정적입니다.
( Once in the freezing range, gamma iron forms until fe solid fraction is reached. The density value of this phase, ρϒ, is a 7.2 g/cc [4,5,6]. Upon reaching fe solid fraction, the eutectic reaction begins during which a regular (white) eutectic and an irregular grey eutectic grow competitively. At high freezing rates and high eutectic-freezing-front speeds the white eutectic is stable in part due to shallower carbon concentration gradients ahead of the eutectic front. At lower eutectic-front speeds the grey eutectic is stable. )

냉기 형성을 설명하기 위해 간단한 접근 방식이 사용됩니다.  In a range of eutectic freezing front speeds,

(7)     \displaystyle {{\nu }_{e}}\in \left[ {\frac{{\nu -}}{{{{X}_{{eut}}}}},\frac{{\nu +}}{{{{X}_{{eut}}}}}} \right]

형성되는 냉기의 양은 주어진 탄소 구성에서 허용되는 최대치에서 0까지 다양합니다. 파라미터 ν-=30μ/ms, ν+=60μ/ms, Xeut은 사용자 정의 파라미터인 쿨링 취약성 기준이며, 값이 0.0 ~ 1.0 범위이고 기본값은 1입니다. 잘 절연된 철이나 특정 표면적이 높은 회색 광택제의 경우 Xeut는 0에 가깝고 추위는 형성되지 않습니다. 반면, 철이 절연되지 않은 경우 기본값인 1이 더 적합해야 합니다. Xeut의 실제 값은 예를 들어 ASTM 쿨웨지 테스트(그림 1)에서 실험적으로 결정해야 합니다.
( the amount of chill formed varies from zero to the maximum allowed for a given carbon composition. The parameters ν-=30 μ/ms, and ν+=60 μ/ms, and Xeut is the chilling susceptibility criterion, a user-defined parameter, with values in the range from 0.0 to 1.0 with the default of one. For well-inoculated iron, or for a grey eutectic with a high specific surface area, Xeut is close to zero, and no chill will form. On the other hand, if the iron is un-inoculated the default value of one should be more appropriate. The actual value of Xeut must be determined experimentally, for example, from an ASTM chill-wedge test (Fig 1.).)

Figure 1. Carbide (left) and graphite (right) content in a 3.4 wt% C, 1.7 wt% Si iron with Xeut=0.25 (top) and Xeut=0.40 (bottom)

주조물의 순 체적 변화는 응고 과정에서 형성되는 서로 다른 상의 양과 액체 수축의 결합 효과입니다. 그림 2는 3.4wt %의 탄소와 2.5wt %의 실리콘을 갖는 합금에 대한 3 가지 상이한 과열 온도에 대한 금속 부피의 변화를 보여줍니다. 더 큰 과열은 금속 체적의 순수한 감소로 이어. 그래파이트 형성으로 인해 응고 동안 나중에 팽창은 체적의 손실을 보상 할 수 없습니다.

Figure 2. Computed volume vs. time for three pouring temperatures for a 3.4 wt % C, 2.5 wt % Si cast iron. From top to bottom: 1250, 1400 and 1550°C pouring temperatures.

Summary

동결시 철의 밀도 변화를 추적하고 흑연, 오스테나이트 및 탄화물 상을 포함하는 미세 구조를 예측하기 위한 주철 모델을 기술하였습니다. 이 모델은 단순 응고 수축 및 미세 다공성 모델에 대한 옵션입니다. 고형물 (> 2 %)을 함유 한 철의 변성 열을 정의하기 위해 유동이 있건, 없건 응고 중에 사용할 수 있습니다. 수축 및 팽창 모두 흐름없이 모델에 포함됩니다. 팽창을 위한 공간이 없는 경우를 제외하고 팽창은 무시됩니다.

References

[1] G. Goodrich and John Svoboda, “Basic Concepts of Ferrous Metallurgy,” Cast Metals Institute, Inc., American Foundry Society, Inc., 1997.

[2] D. M. Stefanescu, S. Katz, “Thermodynamic Properties of Iron-Base Alloys,” ASM Handbook Volume 15, Casting (ASM International), 2008.

[3] K.G. Upadhya, D.M. Stefanescu, K. Lieu and D.P. Yeager, “Computer-Aided Cooling Curve Analysis: Principles and Applications in Metal Casting,” AFS Transactions, Vol. 97, 1989, 61-66.

[4] AFS, “Gating Calculations for Iron Castings,” spreadsheet, 2009.

[5] Von Alfred Holzmuller, VDG and Robert Wlodawer, VDG, “Zehn Jahre Speiser-Eingrs-Verfahren fur Guseisen,” Giesserei, 1963.

[6] G. Goodrich, “Introduction to Cast Irons,” ASM Handbook, Volume 15: Casting, 2008, pp 794-795.

[7] A. Starobin, M.C. Carter, “Modeling Volume Changes and High Temperature Microstructure in Cast Iron,” Flow Science Technical Note FSI-11-TN89, 2011.

공기 갇힘 / Air Entrapment

공기 갇힘 / Air Entrapment

FLOW-3D  의 공기 혼입 모델은 중력 주조 공정과 같은 금속 주조 시스템에서 발생하는 갇힌 공기의 양을 추정하는데 사용됩니다. 이는 단순한 물리적 메커니즘을 기반으로하므로 고압 다이 캐스팅 공정과 같은 다른 금속 주조 시스템에서 발생하는 혼입 공기의 양을 추정하는 데에도 사용할 수 있습니다. 최근 모델에 더 많은 물리적 세부 사항이 추가되어 기포 형태로 가정되는 동반 공기가 부력으로 인해 주변 액체 금속에서 상승하고 심지어 자유 표면에 도달하면 액체를 떠나는 것으로 모델링 할 수 있습니다.

고객 사례

Littler Diecast Co.

A380에 캐스팅 된 지지대. 공기 흡입에 의해 착색됩니다. Littler Diecast Co.의 예

Deco Products

Caster Wheel Leg part의 4 가지 시뮬레이션 사례. 이 부품들은 아연 합금 # 5로 만들어져 있습니다. 데코 제품의 예.

Shiloh Industries

동반 된 공기의 비율로 착색 된 전면 기어 하우징, 380 다이캐스팅 합금. Shiloh Industries의 예.
이 모델에 대한 더 자세한 정보는 Air Entrainment 의 Flow Science Report를 다운로드하십시오.

금속 주조 모델 / Metal Casting Models

FLOW-3D 는 금속 주조를 위해 특별히 고안된 다양한 물리모델을 제공하고 있습니다. 제공되는 물리모델은 모든 종류의 금속 주조 응용 및 분석이 필요한 업무에 가장 정확한 솔루션을 제공합니다. 이를 통해 고객들은 지속적으로 주조 수율과 품질을보다 적은 시간과 비용으로 개선할 수 있습니다.

자유 표면 흐름을 정확하게 예측하기 위한 특수 기능을 갖춘 FLOW-3D  는 금형 충진 및 공기 포집과 같은 관련 결함을 시뮬레이션하는데 가장 먼저 선택됩니다. 강력하고 유연한 열 전달 모델은 금속과 금형 사이의 열 교환을 빠르고 정확하게 예측할 수 있으며 응고, 냉각 채널 및 열 다이 사이클링 시뮬레이션을위한 견고한 기반을 마련합니다.

금형 충진과 결합 할 수있는 응고 및 수축 모델은 과도한 수축 또는 다공성 영역을 정확히 파악할 수 있으며, 고객이 라이저의 배치를 결정하여 이러한 결함이 완화되도록 할 수 있습니다. 세분화된 매체 모델 및 수분 건조 모델을 사용하여 모래 코어 분사 및 건조를 시뮬레이션 할 수 있습니다.

FLOW-3D  의 유한 요소 기반 열 응력 모델을 통해 고객은 응력이 발생하는 위치와 주조가 왜곡되는 현상을 정확하게 예측할 수 있으므로, 고객은 금속 주조에서 열 응력 결함을 제거 할 수 있습니다. 주철 모델은 공극 반응 동안 흑연, 감마철 및 탄화물 위상의 형성을 예측하여 FLOW-3D 의 적용 범위를 확장합니다 . 코어 가스 제품군의 독특한 특징으로 코어 가스 생성 및 모래 코어의 유동을 모델링하며, 이는 금속 주조에서 코어 가스 관련 결함을 예측할 수 있습니다.

FLOW-3D 는 금속 주조 모델링 및 시뮬레이션의 선두 주자입니다. 금속 주조 산업에 대한 오랜 연구개발과  고객과의 지속적인 협력을 통해 개발된 응용 프로그램으로 고객의 품질과 생산성을 향상시키고 지속적으로 혁신 할 수 있도록 지원할 것입니다.

Excel 엔지니어링 프로그램 개발

Excel Engineering 프로그램 개발

Excel은 매우 유용하게 사용되는 훌륭한 프로그램 입니다. Excel을 매일 사용하지만 손이 너무 많이 가는 업무는 Excel 자동화를 통해 쉽게 고된 업무에서 벗어날 수 있습니다. 또한 복잡한 수식연결이나 과거에 개발된 엔지니어링 프로그램도 편리하게 개선할 수 있습니다.

업무 수행시 또는 연구개발에 필요한 Excel 자동화 프로그램 개발이 필요하신 경우 언제든지 연락주시기 바랍니다.

솔루션 개발팀 : 02-2026-0451

생산기술연구원 경량소재 다이캐스팅용 금형설계 웹기반 주조계산수식 설계지원 프로그램
주조 기술 공학용 개발 프로그램 Library
냉각 능력 설계 계산 Lib
Gate 방안 검토
불량요인 분석, 수축율 검증 모듈 등 다수