The Fastest Laptops for 2024

FLOW-3D 수치해석용 노트북 선택 가이드

2024년 가장 빠른 노트북

PCMag이 테스트하는 방법 소개 : 기사 원본 출처: https://www.pcmag.com/picks/the-fastest-laptops

 MSI Titan 18 HX

Fastest Cost-Is-No-Object Laptop : MSI Titan 18 HX

The Lenovo Legion Pro 7i Gen 9 16

Fastest High-End Gaming Laptop: Lenovo Legion Pro 7i Gen 9 16

Acer Nitro V 15 (ANV15-51-59MT)

Fastest Value-Priced Gaming Laptop

Acer Nitro V 15 (ANV15-51-59MT)

Asus ROG Zephyrus G14 (2024)

Fastest Compact Gaming Laptop: Asus ROG Zephyrus G14 (2024)

Asus Zenbook 14 OLED Touch (UM3406) right angle

Fastest Ultraportable Laptop: Asus Zenbook 14 OLED Touch (UM3406)

Apple MacBook Pro 16-Inch (2024, M4 Pro)

Fastest Mac Laptop: Apple MacBook Pro 16-Inch (2024, M4 Pro)

The Dell Precision 5490

Fastest Business Laptop: Dell Precision 5490

Lenovo Yoga Pro 9i 16 Gen 9 left angle

Fastest Big-Screen Productivity Laptop: Lenovo Yoga Pro 9i 16 Gen 9:

The Asus ProArt P16 (H7606)

Fastest Content-Creation Laptop: Asus ProArt P16 (H7606)

HP ZBook Fury 16 G11 right angle

Fastest Workstation Laptop: HP ZBook Fury 16 G11

복잡한 노트북 CPU 모델명 완벽하게 이해하기

출처: 본 자료는 IT WORLD에서 인용한 자료입니다.

https://www.itworld.co.kr/ 2024.12.18

초단간 요약

최신 고성능 윈도우 노트북을 원한다면 다음 세 가지를 살펴보자.

  • 인텔 : 모델명이 ‘2’로 시작하고 ‘V’로 끝나는 코어 울트라 시리즈 2(Core Ultra Series 2). 예를 들면 인텔 코어 울트라 5 226V(시리즈2)가 있다.
  • AMD : 라이젠 AI 300 시리즈. 예시로 AMD 라이젠 AI 7 프로 360.
  • 퀄컴 : 스냅드래곤 X 시리즈의 플러스(Plus) 또는 엘리트(Elite) 제품

이 세 가지 프로세서는 성능과 배터리 수명 면에서 애플 맥북의 M 시리즈와 경쟁하도록 설계됐다. 그러나 노트북을 선택할 때는 프로세서뿐 아니라 다양한 요소를 함께 고려해야 한다.

인텔 프로세서

인텔의 최신 프로세서는 다음 세 가지 범주로 나뉜다.

  • 인텔 코어 울트라(Intel Core Ultra) : 프리미엄 칩으로, AI 전용 프로세서를 탑재했다(예 : 인텔 코어 울트라 7 155U).
  • 인텔 코어(Intel Core) : 주류 노트북에 사용되는 칩으로, 코어 울트라보다 한 단계 아래다(예 : 인텔 코어 7 150U).
  • 인텔 프로세서(Intel Processor) : 과거 펜티엄과 셀러론 브랜드를 대체하는 저가형 PC 칩이다(예 : 인텔 프로세서 N200).

인텔은 프로세서를 성능 등급에 따라 ‘3’, ‘5’, ‘7’, ‘9’로 세분화했다. 숫자가 높을수록 더 많은 코어를 가지고 있다는 의미이며, 이미지 처리 및 비디오 작업 속도가 향상된다. 코어 5와 코어 울트라 5 칩은 웹 브라우징 및 오피스 작업에 적합하다.

Intel Core Ultra 9 processor 185H with different parts of the model name broken down.

Intel

모델명 뒤에 붙는 접미사도 중요하다. 이 글자는 프로세서가 어떻게 최적화되었는지를 나타낸다. 긴 접미사 목록 중에 알아두어야 할 주요 단어는 ‘U’와 ‘H’다. U는 배터리 수명을, H는 성능을 강조한다. 코어 울트라 5 226V의 ‘V’는 코어 울트라 제품 라인에만 적용되는 접미사다.

구형 모델은 12세대 코어 i5 1235U처럼 이름에 ‘i’와 세대 번호가 포함되어 있다. 14세대에 이르러 인텔은 모든 것을 재설정하고 이제 ‘시리즈 1’부터 세기 시작했다(예 : 코어 울트라 155U). 즉, 최신 인텔 칩의 모델명은 구형 모델보다 짧다. 가격이 적당한 경우라면 구형 모델도 여전히 고려해 볼만하다.

AMD 프로세서

AMD는 인텔만큼 브랜딩 개편에 적극적이지는 않다. 애플 및 퀄컴과 경쟁하는 AI 300 시리즈 칩 외에 나머지 프로세서는 2023년 도입된 더 길고 혼란스러운 명명 체계를 따르고 있다.

AMD processor name with various attributes broken down

AMD

예시로 AMD 라이젠 5 8640HS를 살펴본다.

  • 첫 번째 숫자 ‘8’은 세대를 의미하며, 2024년에 출시된 칩을 나타낸다(7735HS는 2023년 제품).
  • ‘5’는 성능 등급을 나타내며, 인텔과 마찬가지로 숫자가 높을수록 성능이 좋다는 의미다. 인텔 코어 5와 코어 7 체계와 유사하게 홀수로 계산된다.
  • 마지막 글자는 프로세서의 최적화 방식이다. ‘U’는 배터리 수명, ‘H’는 성능을 우선시한다.

이 명명 체계를 따르는 칩은 AMD의 구형 젠 4(Zen 4) 아키텍처를 기반으로 하지만, 최신 AI 300 시리즈는 젠 5 아키텍처를 사용한다. AMD가 프로세서 라인 대부분을 최신 아키텍처로 전환함에 따라 이에 맞는 새로운 브랜드가 등장할 것으로 예상된다.

퀄컴 프로세서

퀄컴은 올해 초 전력 효율성에 중점을 두고 PC CPU 경쟁에 합류했다. 퀄컴의 스냅드래곤 X 칩은 휴대폰, 태블릿, 애플의 M 시리즈 프로세서에서 볼 수 있는 것과 동일한 Arm 기반 아키텍처를 사용하며, 우수한 PC 성능과 긴 배터리 수명을 제공한다. 무엇보다 퀄컴의 직관적인 브랜드 전략이 신선하게 다가온다.

  • 스냅드래곤 X 엘리트(Snapdragon X Elite) : 최고급 모델
  • 스냅드래곤 X 플러스(Snapdragon X Plus) : 그보다 한 단계 낮은 모델

마이크로소프트 서피스 노트북에 탑재된 스냅드래곤 X 플러스를 사용해 본 경험에 따르면, 충분한 성능과 하루 종일 지속되는 배터리 수명을 제공했다.

다만, Arm 기반 프로세서가 모든 윈도우 소프트웨어와 호환되는 것은 아니다. 스냅드래곤 PC에서 Arm이 아닌 앱을 실행하는 마이크로소프트의 에뮬레이션 엔진에서도 호환성 문제가 발생할 수 있다. 에뮬레이션 개선과 Arm 버전의 소프트웨어를 출시하는 개발자가 늘어나면서 상황이 점점 개선되고 있지만, 인텔과 AMD 노트북에서는 겪지 않아도 될 골칫거리가 여전히 남아 있다.

CPU 시장의 긍정적인 변화

복잡한 이름을 살펴보는 것이 혼란스러울 수 있고 AI에 대한 강조가 다소 과장된 면이 있지만, PC 프로세서 분야에서 3가지 업체가 경쟁하는 덕분에 상황은 개선되고 있다. 지난 4년간 애플은 전력 효율성 측면에서 독보적인 성과를 보여줬다. 그러나 인텔, AMD, 퀄컴이 새로운 프로세서를 내놓으며 애플의 수준에 도달하고 있다.

물론 복잡한 브랜드와 명명 체계는 단점이지만, 이런 경쟁 덕분에 더 나은 성능과 배터리 수명을 갖춘 제품이 등장하고 있다. 사용자에게 긍정적인 변화다.
dl-itworldkorea@foundryco.com

아래 과거 자료도 선택에 큰 도움이 됩니다.

2023년 01월 11일

본 자료는 IT WORLD에서 인용한 자료입니다.

일반적으로 수치해석을 주 업무로 사용하는 경우 노트북을 사용하는 경우는 그리 많지 않습니다. 그 이유는 CPU 성능을 100%로 사용하는 해석 프로그램의 특성상 발열과 부품의 성능 측면에서 데스크탑이나 HPC의 성능을 따라 가기는 어렵기 때문입니다.

그럼에도 불구하고, 이동 편의성이나 발표,  Demo 등의 업무 필요성이 자주 있는 경우, 또는 계산 시간이 짧은 경량 해석을 주로 하는 경우, 노트북이 주는 이점이 크기 때문에 수치해석용 노트북을 고려하기도 합니다.

보통 수치해석용 컴퓨터를 검토하는 경우 CPU의 Core수나 클럭, 메모리, 그래픽카드 등을 신중하게 검토하게 되는데 모든 것이 예산과 직결되어 있기 때문입니다.  따라서 해석용 컴퓨터 구매 시 어떤 것을 선정 우선순위에 두는지에 따라 사양이 달라지게 됩니다.

해석용으로 노트북을 고려하는 경우, 보통 CPU의 클럭은 비교적 선택 기준이 명확합니다. 메모리 또한 용량에 따라 가격이 정해지기 때문에 이것도 비교적 명확합니다. 나머지 가격에 가장 큰 영향을 주는 것이 그래픽카드인데, 이는 그래픽 카드의 경우 일반적인 게임용이나 포토샵으로 일반적인 이미지 처리 작업을 수행하는 그래픽카드와 3차원 CAD/CAE에 사용되는 업무용 그래픽 카드는 명확하게 분리되어 있고, 이는 가격 측면에서 매우 차이가 많이 납니다.

통상 게임용 그래픽카드는 수치해석의 경우 POST 작업시 문제가 발생하는 경우가 종종 발생하기 때문에 일반적으로 선택 우선 순위에서 충분한 확인을 한 후 구입하는 것이 좋습니다.

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 적합합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 NVIDIA의 Quadro K 시리즈와 AMD의 Fire Pro W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

MSI, CES 2023서 인텔 코어 i9-13980HX 탑재 노트북 벤치마크 공개

2023.01.11

Mark Hachman  | PCWorld

MSI가 새로운 노트북 CPU 벤치마크, 그리고 그 CPU가 내장돼 있는 신제품 노트북 제품군을 모두 CES 2023에서 공개했다. CES에서 인텔은 노트북용 13세대 코어 칩, 코드명 랩터 레이크와 핵심 제품인 코어 i9-13980HX를 발표했다.

ⓒ PCWorld

새로운 노트북용 13세대 코어 칩이 게임 플레이에서 12% 더 빠르다는 정도의 약간의 정보는 이미 알려져 있다. 사용자가 기다리는 것은 실제 CPU가 탑재된 노트북에서의 성능이지만 보통 벤치마크는 제품 출시가 임박해서야 공개되는 것이 보통이다. 올해는 다르다.

CES 2023에서 MSI는 인텔 최고급 제품군인 코어 i9-13980HX 프로세서가 탑재된 타이탄 GT77 HX과 레이더 GE78 HX를 공개했다. 이례적으로 여기에 더해 PCI 익스프레서 5 SSD의 실제 성능을 측정하는 크리스털디스크마크, 모바일 프로세서 실행 속도를 측정하는 시네벤치 벤치마크 점수도 함께 제공했다. 다음 영상의 결과부터 말하자면 인텔 최신 프로세서를 큰 폭으로 따돌릴 만한 수치다.

https://www.youtube.com/embed/3kvrOIEOUlw

ⓒ PCWorld

MSI는 레이더 GE78 HX 외에도 레이더 GE68 HX 그리고 게이밍 노트북 같지 않은 외관의 스텔스 16 스튜디오, 스텔스 14, 사이보그 14 등 2023년에 출시될 다른 노트북도 전시했다. 오래된 PC 애호가라면 MSI 노트북 전면을 장식한 화려한 복고풍의 라이트 브라이트(Lite Brite) LED를 반가워할지도 모른다. 바닥면 섀시가 투명한 플라스틱 소재로 MSI 로고가 새겨져 있는 제품도 있다. 상세한 가격, 출시일, 사양 등은 추후 공개 예정이다.
editor@itworld.co.kr 

원문보기:
https://www.itworld.co.kr/news/272199#csidx870364b15ea6aa28b53a990bc5c0697 

‘코어 i7 vs. 코어 i9’ 나에게 맞는 고성능 노트북 CP

2021.06.14

고성능 노트북을 구매할 때는 코어 i7과 코어 i9 사이에서 선택의 갈림길에 서게 된다. 코어 i7 CPU도 강력하지만 코어 i9는 최고의 성능을 위해 만들어진 CPU이며 보통 그에 상응하는 높은 가격대로 판매된다.

CPU에 초점을 둔다면 관건은 성능이다. 성능을 좌우하는 두 가지 주요소는 CPU의 동작 클록 속도(MHz), 그리고 탑재된 연산 코어의 수다. 그러나 노트북에서 한 가지 중요한 제약 요소는 냉각이다. 냉각이 제대로 되지 않으면 고성능도 쓸모가 없다. 가장 적합한 노트북 CPU를 결정하는 데 도움이 되도록 인텔의 지난 3개 세대 CPU의 코어 i7과 i9에 대한 정보를 모았다. 최신 세대부터 시작해 역순으로 살펴보자.

11세대: 코어 i9 vs. 코어 i7

인텔의 11세대 타이거 레이크(Tiger Lake) H는 한 가지 큰 이정표를 달성했다. 인텔이 2015년부터 H급 CPU에 사용해 온 14nm 공정을 마침내 최신 10nm 슈퍼핀(SuperFin) 공정으로 바꾼 것이다. 오랫동안 기다려온 변화다.

인텔이 자랑할 만한 10nm 고성능 칩을 내놓자 타이거 레이크 H를 장착한 노트북도 속속 발표됐다. 얇고 가볍고 예상외로 가격도 저렴한 에이서 프레데터 트라이톤(Acer Predator Triton) 300 SE를 포함해 일부는 벌써 매장에 출시됐다. 모든 타이거 레이크 H 칩이 8코어 CPU라는 점도 달라진 부분이다. 이전 세대의 경우 같은 제품군 내에서 코어 수에 차이를 둬 성능 기대치를 구분했다.

클록 차이도 크지 않다. 코어 i7-11800H의 최대 클록은 4.6GHz, 코어 i9-11980HK는 5GHz로, 클록 속도 증가폭은 약 8.6% 차이다. 나쁘지 않은 수치지만 둘 다 8코어 CPU임을 고려하면 대부분의 사용자에게 코어 i9는 큰 매력은 없다.

다만 코어 i9에 유리한 부분을 하나 더 꼽자면 코어 i9-11980HK가 65W의 열설계전력(TDP)을 옵션으로 제공한다는 점이다. 높은 TDP는 최상위 코어 i9에만 제공되는데, 이는 전력 및 냉각 요구사항을 충족하는 노트북에서는 코어 i7 버전보다 더 높은 지속 클록 속도를 제공할 수 있음을 의미한다.

대신 이런 노트북은 두껍고 크기도 클 가능성이 높다. 따라서 두 개의 얇은 랩톱 중에서(하나는 코어 i9, 하나는 코어 i7) 고민하는 사람에겐 열 및 전력 측면의 여유분은 두께와 크기를 희생할 만큼의 가치는 없을 것이다.

*11세대의 승자: 대부분의 사용자에게 코어 i7

10세대: 코어 i9 vs. 코어 i7

인텔은 10세대 코멧 레이크(Comet Lake) H 제품군에서 14nm를 고수했다. 그 대신 코어 i9 CPU 외에 코어 i7에도 8코어 CPU를 도입, 사용자가 비싼 최상위 CPU를 사지 않고도 더 뛰어난 성능을 누릴 수 있게 했다.

11세대 노트북이 나오기 시작했지만 10세대 CPU 제품 중에서도 아직 괜찮은 제품이 많다. 예를 들어 MSI GE76 게이밍 노트북은 빠른 CPU와 고성능 155W GPU를 탑재했고, 전면 모서리에는 RGB 라이트가 달려 있다.

11세대 칩과 마찬가지로 코어와 클록 속도의 차이가 크지 않으므로 대부분의 사용자에게 코어 i7과 코어 i9 간의 차이는 미미하다. 코어 i9-10980HK의 최대 부스트 클록은 5.3GHz, 코어 i7-10870H는 5GHz로, 두 칩의 차이는 약 6%다. PC를 최대 한계까지 사용해야 하는 경우가 아니라면 더 비싼 비용을 들여 10세대 코어 i9를 구매할 이유가 없다.

*10세대 승자: 대부분의 사용자에게 코어 i7

9세대: 코어 i9 대 코어 i7

인텔은 9세대 커피 레이크 리프레시(Coffee Lake Refresh) 노트북 H급 CPU에서 14nm 공정을 계속 유지했다. 코어 i9는 더 높은 클록 속도(최대 5GHz)를 제공하며 8개의 CPU 코어를 탑재했다. 물론 이 칩은 2년 전에 출시됐지만 인텔이 설계를 도운 XPG 제니아(Xenia) 15 등 아직 괜찮은 게이밍 노트북이 있다. 얇고 가볍고 빠르며 엔비디아 RTX GPU를 내장했다.

8코어 4.8GHz 코어 i9-9880HK와 4.6GHz 6코어 코어 i7-9850의 클록 속도 차이는 약 4%로, 실제 사용 시 유의미한 차이로 이어지는 경우는 극소수다. 두 CPU 모두 기업용 노트북에 많이 사용됐다. 대부분의 소비자용 노트북에는 8코어 5GHz 코어 i9-9880HK와 6코어 4.5GHz 코어 i7-9750H가 탑재됐다. 이 두 CPU의 클록 차이는 약 11%로, 이 정도면 유의미한 차이지만 마찬가지로 대부분의 경우 실제로 체감하기는 어렵다.

그러나 코어 수의 차이는 멀티 스레드 애플리케이션에서 큰 체감 효과로 이어지는 경우가 많다. 3D 모델링 테스트인 씨네벤치(Cinebench) R20에서 코어 i9-9980HK를 탑재한 구형 XPS 15의 점수는 코어 i7-9750H를 탑재한 게이밍 노트북보다 42% 더 높았다. 8코어 코어 i9의 발열을 심화하는 무거운 부하에서는 성능 차이가 약 7%로 줄어들었다. 여기에는 노트북의 설계가 큰 영향을 미칠 것이다. 어쨌든 일부 상황에서는 8코어가 6코어보다 유리하다.

또한 수치해석의 경우 결과를 분석하는 작업중의 많은 부분이 POST 작업으로 그래픽처리가 필요하다. 따라서 아래 영상편집을 위한 노트북에 대한 자료도 선택에 도움이 될것으로 보인다.

영상 편집을 위한 최고의 노트북 9선

Brad Chacos, Ashley Biancuzzo, Sam Singleton | PCWorld

2022.12.29

영상을 편집하다 보면 컴퓨터의 여러 리소스를 집약적으로 사용하기 마련이다. 그래서 영상 편집은 대부분 데스크톱 PC에서 하는 경우가 많지만, 노트북에서 영상을 편집하려 한다면 PC만큼 강력한 사양이 뒷받침되어야 한다. 

ⓒ Gordon Mah Ung / IDG

영상 편집용 노트북을 구매할 때 가장 비싼 제품을 선택할 필요는 없다. 사용 환경에 맞게 프로세서, 디스플레이의 품질, 포트 종류 등을 다양하게 고려해야 한다. 다음은 영상 편집에 최적화된 노트북 제품이다. 추천 제품을 확인한 후 영상 편집용 노트북을 테스트하는 팁도 참고하자. 

1. 영상 편집용 최고의 노트북, 델 XPS 17(2022)

ⓒ  IDG

장점
• 가격 대비 강력한 기능
• 밝고 풍부한 색채의 대형 디스플레이
• 썬더볼트 4 포트 4개 제공
• 긴 배터리 수명 
• 시중에서 가장 빠른 GPU인 RTX 3060

단점
• 무겁고 두꺼움
• 평범한 키보드
• USB-A, HDMI, 이더넷 미지원

델 XPS 17(2022)이야말로 콘텐츠 제작에 최적화된 노트북이다. 인텔 12세대 코어 i7-12700H 프로세서 및 엔비디아 지포스 RTX 3060는 편집을 위한 뛰어난 성능을 제공한다. 1TB SSD도 함께 지원되기에 데이터를 옮길 때도 편하다. 

XPS 17은 SD카드 리더, 여러 썬더볼트 4 포트, 3840×2400 해상도의 17인치 터치스크린 패널, 16:10 화면 비율과 같은 영상 편집자에게 필요한 기능을 포함한다. 무게도 2.5kg 대로 비교적 가볍다. 배터리 지속 시간은 한번 충전 시 11시간인데, 이전 XPS 17 버전보다 1시간 이상 늘어난 수치다. 

2. 영상 편집에 최적화된 스크린, 델 XPS 15 9520

ⓒ  IDG

장점
• 뛰어난 OLED 디스플레이
• 견고하고 멋진 섀시(Chassis)
• 강력한 오디오
• 넓은 키보드 및 터치패드

단점
• 다소 부족한 화면 크기
• 실망스러운 배터리 수명
• 시대에 뒤떨어진 웹캠
• 제한된 포트

델 XPS 15 9520은 놀라운 OLED 디스플레이를 갖추고 있으며, 최신 인텔 코어 i7-12700H CPU 및 지포스 RTX 3050 Ti 그래픽이 탑재되어 있다. 컨텐츠 제작 및 영상 편집용으로 가장 선호하는 제품이다. 시스템도 좋지만 투박하면서 금속 소재로 이루어진 외관이 특히 매력적이다. 

15인치 노트북이지만 매일 갖고 다니기에 다소 무거운 것은 단점이다. XPS 17 모델에서 제공되는 포트도 일부 없다. 그러나 멋진 OLED 디스플레이가 단연 돋보이며, 3456X2160 해상도, 16:10 화면 비율, 그리고 매우 선명하고 정확한 색상을 갖추고 있어 좋다. 

3. 최고의 듀얼 모니터 지원, 에이수스 젠북 프로 14 듀오 올레드

ⓒ IDG

장점
• 놀라운 기본 디스플레이와 보기 쉬운 보조 디스플레이 
• 탁월한 I/O 옵션 및 무선 연결
• 콘텐츠 제작에 알맞은 CPU 및 GPU 성능 

단점
• 생산성 노트북 치고는 부족한 배터리 수명
• 작고 어색하게 배치된 트랙패드
• 닿기 어려운 포트 위치

에이수스 젠북 프로 14 듀오(Asus Zenbook Pro 14 Duo OLED)는 일반적이지 않은 노트북이다. 일단 사양은 코어 i7 프로세서, 지포스 RTX 3050 그래픽, 16GB DDR5 메모리, 빠른 1TB NVMe SSD를 포함해 상당한 성능을 자랑한다. 또한 초광도의 547니트로 빛을 발하는 한편 DCI-P3 색영역의 100%를 커버하는 14.5인치 4K 터치 OLED 패널을 갖추고 있다. 사실상 콘텐츠 제작자를 위해 만들어진 제품이라 볼 수 있다.

가장 흥미로운 부분은 키보드 바로 위에 위치한 12.7인치 2880×864 스크린이다. 윈도우에서는 해당 모니터를 보조 모니터로 간주하며, 사용자는 번들로 제공된 에이수스 소프트웨어를 사용해 트랙패드로 사용하거나 어도비 앱을 위한 터치 제어 패널을 표시할 수 있다. 어떤 작업이든 유용하게 써먹을 수 있다.

젠북 프로 14 듀오 올레드는 기본적으로 휴대용이자 중간급 워크스테이션이다. 단, 배터리 수명은 평균 수준이기 때문에 중요한 작업 수행이 필요한 경우, 반드시 충전 케이블을 가지고 다녀야 한다. 그럼에도 불구하고 젠북 프로 14 듀오 올레드는 3D 렌더링 및 인코딩과 같은 작업에서 탁월한 성능을 보여 콘텐츠 제작자들에게 맞춤화 된 컴퓨터이다. 듀얼 스크린은 역대 최고의 기능이다.

4. 영상 편집하기 좋은 포터블 노트북, 레이저 블레이드 14(2021)

ⓒ IDG

장점
• AAA 게임에서 뛰어난 성능
• 훌륭한 QHD 패널
• 유난히 적은 소음 

단점
• 700g으로 무거운 AC 어댑터
• 비싼 가격
• 썬더볼트 4 미지원

휴대성이 핵심 고려 사항이라면, 레이저 블레이드 14(Razer Blade 14) (2021)를 선택해 보자. 노트북 두께는 1.5cm, 무게는 1.7kg에 불과해 비슷한 수준의 노트북보다 훨씬 가볍다. 사양은 AMD의 8-코어 라이젠 9 5900HX CPU, 엔비디아의 8GB 지포스 RTX 3080, 1TB NVMe SSD, 16GB 메모리를 탑재하고 있어 사양도 매우 좋다. 

그러나 휴대성을 대가로 몇 가지 이점을 포기해야 할 수 있다. 일단 14인치 IPS 등급 스크린은 공장에서 보정된 상태로 제공되지만, 최대 해상도는 2560×1440다. 또 풀 DCI-P3 색영역을 지원하지만 4K 영상 편집은 불가능하다. 거기에 레이저 블레이드 14는 SD 카드 슬롯도 없다. 다만 편집 및 렌더링을 위한 강력한 성능을 갖추고 있고 가방에 쉽게 넣을 수 있는 제품인 것은 분명하다. 

5. 배터리 수명이 긴 노트북, 델 인스피론 16

ⓒ Dell

장점
• 넉넉한 16인치 16:10 디스플레이
• 긴 배터리 수명
• 경쟁력 있는 애플리케이션 성능 
• 편안한 키보드 및 거대한 터치패드 
• 쿼드 스피커(Quad speakers)

단점
• GPU 업그레이드 어려움
• 512GB SSD 초과 불가
• 태블릿 모드에서는 어색하게 느껴질 수 있는 큰 스크린 

긴 배터리 수명을 가장 최우선으로 고려한다면, 델 인스피론 16(Dell Inspiron 16)을 살펴보자. 콘텐츠 제작 작업을 하며테스트해보니, 인스피론 16은 한 번 충전으로 16.5시간 동안 이용할 수 있다. 외부에서 작업을 마음껏 편집할 수 있는 시간이다. 그러나 무거운 배터리로 인해 무게가 2.1 kg에 달하므로 갖고 다니기에 적합한 제품은 아니다. 

가격은 저렴한 편이나 몇 가지 단점이 있다. 일단 인텔 코어 i7-1260P CPU, 인텔 아이리스 Xe 그래픽, 16GB 램, 512GB SSD 스토리지를 탑재하고 있다. 이 정도 사양으로 영상 편집 프로젝트 대부분을 작업할 수 있으나, 스토리지 용량이 부족하기 때문에 영상 파일을 저장할 경우 외장 드라이브가 필요하다. 그러나 델 인스피론 16이 진정으로 빛을 발하는 부분은 단연 배터리 수명이다. 또한 강력한 쿼드 스피커 시스템도 사용해 보면 만족할 것이다. 포트의 경우, USB 타입-C 2개, USB-A 3.2 Gen 1 1개, HDMI 1개, SD 카드 리더 1개, 3.5mm 오디오 잭 1개가 제공된다. 

6. 게이밍과 영상 편집 모두에 적합한 노트북, MSI GE76 레이더

ⓒ MSI

장점
• 뛰어난 성능을 발휘하는 12세대 코어 i9-12900HK
• 팬 소음을 크게 줄이는 AI 성능 모드
• 1080p 웹캠과 훌륭한 마이크 및 오디오로 우수한 화상 회의 경험 제공

단점
• 동일한 유형의 세 번째 버전
• 어수선한 UI
• 비싼 가격 

사양이 제일 좋은 제품을 찾고 있을 경우, 크고 무거운 게이밍 노트북을 선택해 보자. MSI GE76 레이더(Raider)는 강력한 14-코어 인텔 코어 i9-12900HK 칩, 175와트의 엔비디아 RTX 3080 Ti가 탑재됐고, 충분한 내부 냉각 성능 덕분에 UL의 프로시온(Procyon) 벤치마크의 어도비 프리미어 테스트에서 다른 노트북보다 훨씬 뛰어난 성능을 보였다. MSI GE76 레이더는 심지어 고속 카드 전송을 위해 PCle 버스에 연결된 SD 익스프레스(SD Express) 카드 리더도 갖추고 있다.

동일한 제품의 작년 모델은 게이머 중심의 360Hz 1080p 디스플레이를 지원한다. 영상 편집 과정에서는 그닥 이상적이지 않은 사양이다. 그러나 2022년의 12UHS 고급 버전은 4K, 120Hz 패널을 추가했는데, 이 패널은 콘텐츠 생성에 맞춰 튜닝 되지는 않았으나 17.3인치의 넓은 스크린 크기이기에 영상 편집자에게 꽤 유용하다. 

7. 가성비 좋은 노트북, HP 엔비 14t-eb000(2021) 

ⓒ IDG

장점
• 높은 가격 대비 우수한 성능
• 환상적인 배터리 수명
• 성능 조절이 감지되지 않을 정도의 저소음 팬 
• 썬더볼트 4 지원

단점
• 약간 특이한 키보드 레이아웃
• 비효율적인 웹캠의 시그니처 기능

가장 빠른 영상 편집 및 렌더링을 원할 경우 하드웨어에 더 많은 비용을 들여야 하지만, 예산이 넉넉하지 않을 때가 있다. 이때 HP 엔비(Envy) 14 14t-eb000) (2021)를 이용해보면 좋다. 가격은 상대적으로 저렴한 편이고 견고한 기본 컨텐츠 제작에 유용하다. 

엔트리 레벨의 지포스 GTX 1650 Ti GPU 및 코어 i5-1135G7 프로세서는 그 자체로 업계 최고 제품은 아니다. 하지만 일반적인 편집 작업을 충분히 수행할 수 있는 사양이다. 분명 가성비 좋은 제품이다. 14인치 1900×1200 디스플레이는 16:10 화면 비율로 생산성을 향상하고, 공장 색 보정과 DCI-P3는 지원하지 않지만 100% sRGB 지원을 제공한다. 그뿐만 아니라, HP 엔비 14의 경우 중요한 SD 카드 및 썬더볼트 포트가 포함되며, 놀라울 정도로 조용하게 실행된다. 

8. 컨텐츠 제작에 알맞은 또다른 게이밍 노트북, 에이수스 ROG 제피러스 S17

장점
• 뛰어난 CPU 및 GPU 성능
• 강력하고 혁신적인 디자인
• 편안한 맞춤형 키보드

단점
• 약간의 압력이 필요한 트랙패드
• 상당히 높은 가격

에이수스 ROG 제피러스(Zephyrus) S17은 영상 편집자의 궁극적인 꿈이다. 이 노트북은 초고속 GPU 및 CPU 성능과 함께 120Hz 화면 재생률을 갖춘 놀라운 17.3인치 4K 디스플레이를 탑재하고 있다. 견고한 전면 금속 섀시, 6개의 스피커 사운드 시스템 및 맞춤형 키보드는 프리미엄급 경험을 더욱 향상한다. 거기다 SD 카드 슬롯 및 풍부한 썬더볼트 포트가 포함되어 있어 더욱 좋다. 그러나 이를 위해 상당한 비용을 지불해야 한다. 예산이 넉넉하고 최상의 제품을 원한다면 제피루스 S17을 선택하면 된다. 

9. 강력한 휴대성을 가진 노트북, XPG 제니아 15 KC 

ⓒ XPG 

장점
• 가벼운 무게
• 조용함
• 상대적으로 빠른 속도

단점
• 중간 수준 이하의 RGB
• 평범한 오디오 성능
• 느린 SD 카드 리더 

사양이 좋은 노트북의 경우, 대부분 부피가 크고 무거워서 종종 2.2kg 또는 2.7kg를 넘기도 한다. XPG 제니아 15 KC(XPG Xenia 15 KC)만은 예외다. XPG 제니아 15 KC의 무게는 1.8kg가 조금 넘는 수준으로, 타제품에 비해 상당히 가볍다. 또한 소음도 별로 없다. 원래 게이밍 노트북 자체가 소음이 크기에 비교해보면 큰 장점이 될 수 있다. 1440p 디스플레이와 상대적으로 느린 SD 카드 리더 성능으로 인해 일부 콘텐츠 제작자들이 구매를 주저할 수 있으나, 조용하고 휴대하기 좋은 제품을 찾고 있다면 제니아 15 KC가 좋은 선택지다. 

영상 편집 노트북 구매 시 고려 사항

영상 편집 노트북 구매 시 고려해야 할 가장 중요한 사항은 CPU 및 GPU다. 하드웨어가 빨라질수록 편집 속도도 빨라진다. 필자는 UL 프로시온 영상 편집 테스트(UL Procyon Video Editing Test)를 통해 속도를 테스트해보았다. 이 벤치마크는 2개의 서로 다른 영상 프로젝트를 가져와 색상 그레이딩 및 전환과 같은 시각적 효과를 적용한 다음, 1080p와 4K 모두에서 H.264, H.265를 사용해 내보내는 작업을 어도비 프리미어가 수행하도록 한다. 

ⓒ Gordon Mah Ung / IDG

성능은 인텔의 11세대 프로세서를 실행하는 크고 무거운 노트북에서 가장 높았고, AMD의 비피 라이젠 9(beefy Ryzen 9) 프로세서를 탑재한 노트북이 바로 뒤를 이었다. 10세대 인텔 칩은 여전히 상당한 점수를 기록하고 있다. 위의 차트에는 없으나 새로운 인텔 12세대 노트북은 더 빨리 실행된다. 최고 성능의 노트북은 모두 최신 인텔 CPU 및 엔비디아의 RTX 30 시리즈 GPU를 결합했는데, 두 기업 모두 어도비 성능 최적화에 많은 시간 및 리소스를 투자했기 때문에 놀라운 일은 아니다. 

GPU는 어도비 프리미어 프로에서 CPU보다 더 중요하지만, 매우 빠르게 수확체감 지점에 다다른다. 최고급 RTX 3080 그래픽을 사용하는 노트북은 RTX 3060 그래픽을 사용하는 노트북보다 영상 편집 속도가 더 빠르나, 속도 차이가 크지는 않다. 델 XPS 17 9710의 점수를 살펴보면, 지포스 RTX 3060 노트북 GPU는 MSI GE76 레이더의 가장 빠른 RTX 3080보다 14% 더 느릴 수 있다. 특히 GE76 레이더가 델 노트북에 비해 얼마나 더 크고 두꺼운지를 고려할 때 수치가 크지는 않다.

일반적으로 그래픽과 영상 편집을 위해 적어도 RTX 3060을 갖추는 것을 권장한다. 그러나 영상 편집은 워크플로에 크게 의존한다. 특정 작업 및 도구는 CPU 집약적이거나 프리미어보다 GPU에 더 의존할 수 있다. 이 경우 원하는 요소의 우선순위를 조정하길 바란다. 앞서 언급한 목록은 기본적으로 여러 요소를 종합적으로 고려해서 만든 내용이다.

인텔 및 엔비디아는 각각 퀵 싱크(Quick Sync) 및 쿠다(CUDA)와 같은 도구를 구축하는 데 수년을 보냈고, 이로 인해 많은 영상 편집 앱의 속도는 크게 향상될 수 있다. AMD 하드웨어는 영상 편집에 적합하나 특히 워크플로가 공급업체별 소프트웨어 최적화에 의존하는 경우, 특별한 이유가 없는 한 인텔 및 엔비디아를 사용하는 것을 추천한다. 

영상 촬영 ⓒ Gordon Mah Ung/IDG

그러나 내부 기능만 신경 써서는 안된다. PC월드의 영상 디렉터인 아담 패트릭 머레이는 “영상 편집에 이상적인 노트북에는 카메라로 촬영 중 영상 파일을 저장하는 SD 카드 리더가 포함되어 있다”라고 강조한다. 또한 머레이는 영상 편집에 이상적인 게임용 노트북에서 흔히 볼 수 있는 초고속 1080p 패널보다 4k, 60Hz 패널을 갖춘 노트북을 선택할 것을 추천한다.

4K 영상을 잘 편집하려면 4K 패널이 필요하며, 초고속 화면 재생률은 게임에서처럼 영상 편집에는 아무런 의미가 없다. 예를 들어, 개인 유튜브 채널용으로 일상적인 영상만 만드는 경우 색상 정확도가 중요하지 않을 수 있다. 그러나 색상 정확도가 중요할 경우, 델타 E < 2 색상 정확도와 더불어 DCI-P3 색 영역 지원은 필수적이다. 

게임용 노트북은 사양이 좋지만 콘텐츠 제작용으로는 조금 부족해 보일 수 있다. 게임용과 콘텐츠 제작용으로 함께 쓰는 노트북을 원한다면, 게임용으로 노트북 한 대를 구매하고, 색상을 정확히 파악하기 위한 모니터를 추가로 구매하는 것도 방법이다. 
editor@itworld.co.kr

원문보기:
https://www.itworld.co.kr/topnews/269913#csidxa12f167cd9eef5abfb1b6d099fb54ea 

그래픽 카드

AMD FirePro Naver Shopping 검색 결과

2021-12-15 기준

현재 NVIDIA Quadro pro graphic card : 네이버 쇼핑 (naver.com)

코어가 많은 그래픽카드의 경우 가격이 상상 이상으로 높습니다. 빠르면 빠를수록 좋겠지만 어디까지나 예산에 맞춰 구매를 해야 하는 현실을 감안할 수 밖에 없는 것 같습니다.

한가지 유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 모델에 따라 다르기는 하지만, 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상이어야 하고 1GB이상을 권장합니다.


2021-12-15 현재 그래픽카드의 성능 순위는 위와 다음과 같습니다.
출처: https://www.videocardbenchmark.net/high_end_gpus.html

주요 Notebook

출시된 모든 그래픽 카드가 노트북용으로 장착되어 출시되지는 않기 때문에, 현재 오픈마켓 검색서비스를 제공하는 네이버에서 Lenovo Quadro 그래픽카드를 사용하는 노트북을 검색하면 아래와 같습니다. 검색 시점에 따라 상위 그래픽카드를 장착한 노트북의 대략적인 가격을 볼 수 있을 것입니다.

<검색 방법>
네이버 쇼핑 검색 키워드 : 컴퓨터 제조사 + 그래픽카드 모델 + NoteBook 형태로 검색
Lenovo quadro notebook or HP quadro notebook 또는 Lenovo firepro notebook or HP firepro notebook


( 2021-12-15기준)

대부분 검색 시점에 따라 최신 CPU와 최신 그래픽카드를 선택하여 검색을 하면 예산에 적당한 노트북을 자신에게 맞는 최상의 노트북을 어렵지 않게 선택할 수 있습니다.

(주)에스티아이씨앤디 솔루션사업부

EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

FLOW-3D POST용 그래픽 카드, 모니터 선택 가이드

High End Graphic Card 안내

원본 출처: https://www.videocardbenchmark.net/high_end_gpus.html

Update: 2024-11-28

PCI-Express(또는 PCI-E) 표준을 사용하는 최근 출시된 AMD 비디오 카드(예: AMD RX 6950 XT)와 nVidia 그래픽 카드(예: nVidia GeForce RTX 3090)는 하이엔드 비디오 카드 차트에서 흔히 볼 수 있습니다.

PassMark - G3D Mark High End Videocards
PassMark - G3D Mark High End Videocards / Price
PassMark – G3D Mark High End Videocards / Price

FLOW-3D POST 성능과 밀접한 그래픽카드의 이해

FLOW Science, inc의 최첨단 POST Processor인 FLOW-3D POST를 최대한 활용하려면 좋은 하드웨어가 있어야 합니다. 이 블로그에서 소프트웨어 엔지니어링의 GUI 개발자/관리자인 Stephen Sanchez는 이러한 하드웨어 권장 사항에 따라 최적의 FLOW-3D POST 경험을 얻을 수 있는 방법에 대해 정보를 제공 합니다.

고품질 그래픽 하드웨어

최소 3GB의 VRAM 이 있는 그래픽 카드로 시작하는 것이 좋습니다 . 이것은 많은 볼륨 렌더링을 수행할 경우 특히 중요합니다. 볼륨 렌더링은 FLOW-3D POST 의 고급 기능으로 iso-surface가 아닌 유체 도메인 전체에서 변수의 세부 사항을 시각화합니다. 이 기능은 매우 통찰력 있지만 후 처리 중에 효과적으로 사용하려면 좋은 하드웨어가 필요합니다.

다음으로 Intel 통합 그래픽을 기본 그래픽 하드웨어로 사용해서는 안됩니다. 인텔 통합 그래픽은 전용 그래픽 하드웨어가 있는 랩톱에서도 대부분의 랩톱에서 일반적입니다(자세한 내용은 아래 참조). 

대부분의 FLOW-3D POST 기능은 이 구성에서 작동하지 않으므로 Intel 통합 그래픽을 지원하지 않습니다. 

FLOW-3D POST 는 NVIDIA 그래픽 카드 와 함께 사용할 때 가장 잘 수행됩니다. FLOW-3D POST 가 잘 작동하는 것으로 확인되었으므로 Maxwell 아키텍처 제품군 이상의 NVIDIA 그래픽 하드웨어를 적극 권장 합니다. 

NVIDIA Quadro 카드는 가장 안정적인 것으로 입증되었습니다. 고급 AMD 카드도 작동해야 하지만 NVIDIA 하드웨어 및 드라이버만큼 안정적이지 않다는 사실을 발견 했으므로 항상 AMD보다 NVIDIA를 권장합니다.

Nvidia 그래픽 카드

노트북의 듀얼 그래픽 카드 – 간단하지만 숨겨진 솔루션

이제 많은 노트북에 NVIDIA 그래픽 카드와 Intel 통합 그래픽 간에 전환 할 수 있는 기능이 있습니다. NVIDIA 카드로 FLOW-3D POST 가 실행되고 있는지 확인하는 것이 중요합니다 . NVIDIA 제어판을 통해 NVIDIA 카드로 노트북을 강제로 실행할 수 있습니다.

그래픽 카드를 Nvidia로 전환

비디오 드라이버 업데이트

비디오 드라이버가 업데이트 되었는지 확인하는 것이 좋습니다. FLOW-3D POST 에서 비디오 드라이버를 업데이트하여 쉽게 해결할 수 있는 아티팩트 및 디스플레이 문제에 대한 보고가 있었습니다 . 비디오 드라이버를 최신 상태로 유지하는 것은 이러한 문제를 방지하는 좋은 방법입니다.

RAM, RAM, RAM!

메모리가 충분하지 않으면 시뮬레이션 후 처리가 불가능할뿐만 아니라 메모리 요구 사항을 인식하는 것이 중요합니다. 최대 10 배의 성능 저하로 이어질 수 있습니다! FLOW-3D POST 에 필요한 RAM 양은 여러 요소, 특히 시뮬레이션 크기에 따라 다릅니다. 사용자에게 최대한의 유연성을 제공하기 위해 메시의 셀 수에 따라 다음과 같은 RAM 권장 사항이 있습니다.

  • 초대형 (2 억 개 이상의 셀) : 최소 128GB
  • 대용량 (6 천 ~ 1 억 5 천만 셀) : 64-128GB
  • 중간 (3 천만 ~ 6 천만 셀) : 32-64GB
  • 소형 (3,000 만 셀 이하) : 최소 32GB

FLOW-3D POST 는 메모리 집약적 일 수 있습니다. 실행할 시뮬레이션 크기에 대한 대략적인 아이디어가 있는 경우, 이 지침을 가능한 한 잘 따르는 것이 좋습니다. 즉, 유연성을 극대화하고 가장 원활한 FLOW-3D POST 경험을 보장하기 위해 문제 크기에 관계없이 가능한 한 많은 RAM을 확보하는 것이 좋습니다.


그래픽 카드를 업그레이드 교체 설치하는 방법

그래픽 카드를 업그레이드하는 것은 성능 향상을 위한 좋은 방법이다. 그래픽 카드 업그레이드를 통해 시각적으로 고사양을 요구하는 POST 작업을 쉽게 소화할 수 있는 컴퓨터로 진화할 수 있다. 

업그레이드를 위한 그래픽 카드 구매시 고려 사항, 기존 PC에 적합한가? 

원하는 그래픽 카드를 결정하는 것은 복잡하고 미묘한 문제다. AMD와 엔비디아는 200달러 미만에서부터 최대 1,500달러에 이르는 지포스(GeForce) RTX 3090에 이르기까지 거의 모든 예산에 대한 선택지를 제공하기 때문이다.

카드의 소음, 발열, 전력 소비 등과 같은 사항을 고려할 수 있겠지만, 일반적으로는 비용 대비 가장 큰 효과를 제공하는 그래픽 카드를 원한다.

컴퓨터가 새 그래픽 카드를 지원하는 적절한 하드웨어인지 확인한다. 

사용자가 겪는 가장 일반적인 문제는 부적절한 파워 서플라이(power supply)다. 충분한 전력을 공급할 수 없거나 사용 가능한 PCI-E 전원 커넥터가 충분하지 않을 수 있다. 필자의 경험상 파워 서플라이는 적어도 제조업체에서 권장하는 파워 서플라이의 요구 사항을 충족해야 한다. 예를 들어, 350W를 소비하는 지포스 GTX 3090을 구입했다면 8핀 전원 커넥터 한 쌍과 함께 엔비디아에서 제안한 최소 750W의 전력 공급 장치를 갖춰야 한다. 

현재 파워 서플라이가 얼마나 많은 전력을 제공하는지 알아보려면 PC 본체를 열고 모든 파워 서플라이에 기본 정보가 나열된 표준 식별 스티커를 확인하면 된다. 또한 사용 가능한 6핀 및 8핀 PCI-E 커넥터의 수를 확인할 수 있다. 

ⓒ Thomas Ryan 파워서플라이
ⓒ Thomas Ryan 파워서플라이

마지막으로 본체 내부에 새 그래픽 카드를 넣을 충분한 공간이 있는지 확인한다. 일부 고급 그래픽 카드는 길이가 상당히 길어 30Cm 이상일 수 있으며, 확장 슬롯이 2개 또는 3개가 될 수 있다. 해당 그래픽 카드의 실제 크기는 제조업체 웹사이트에서 찾을 수 있다. 

여기까지 해결했다면 이제 본격적으로 설치 작업에 착수한다. 


생각보다 간단한 그래픽 카드 설치 작업

그래픽 카드 설치에는 새 그래픽 카드, 컴퓨터, 그리고 십자 드라이버 3가지만 있으면 된다. 설치하기 전 PC를 끄고 전원 플러그를 뽑는다. 

기존 GPU를 제거해야 하는 경우가 아니면, 먼저 프로세서의 방열판에 가장 가까운 긴 PCI-E x16 슬롯을 찾아야 한다. 이 슬롯은 메인보드의 첫 번째 또는 두 번째 확장 슬롯이다. 

이 슬롯에 접근을 차단하는 느슨한 전선이 없는지 확인한다. 기존 그래픽 카드를 교체하는 경우, 연결된 케이블을 모두 분리하고, PC 본체 후면 내부에 고정 브래킷에서 나사를 제거한 다음, 카드를 제거한다. 대부분의 메인보드에는 그래픽 카드를 제자리에 고정하는 PCI-E 슬롯 끝에 작은 플라스틱 걸쇠(latch)가 있다. 이 걸쇠를 눌러 이전 그래픽 카드의 잠금을 해제하고 분리한다.

ⓒ Thomas Ryan PCI-E x16 슬롯에 설치
ⓒ Thomas Ryan PCI-E x16 슬롯에 설치

이제 새 그래픽 카드를 개방형 PCI-E x16 슬롯에 설치할 수 있다. 카드를 슬롯에 완전히 삽입한 다음, PCI-E 슬롯 끝에 있는 플라스틱 걸쇠를 눌러 제자리에 고정한다. 그런 다음 나사를 사용해 그래픽 카드의 금속 고정 브래킷을 PC 본체에 고정한다. 덮개 브래킷 또는 이전 그래픽 카드를 고정했던 나사를 재사용할 수 있다. 

ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결
ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결

대부분의 게임용 그래픽 카드에는 추가 전원 커넥터가 필요하다. 추가 전원이 필요한 경우, 해당 PCI-E 전원 케이블을 연결했는지 확인한다. 전원이 제대로 공급되지 않으면 그래픽 카드가 제대로 작동하지 않는다. 이 PCI-E 전원 케이블을 연결하지 않으면 PC 자체가 부팅되지 않을 수 있다.  

그래픽 카드를 고정하고 난 후, 전원을 켠 상태에서 본체 측면 패널을 제자리로 밀어넣고 디스플레이 케이블을 새 그래픽 카드에 연결해 작업을 완료한다. 이제 컴퓨터를 켠다. 

이제 그래픽 카드의 소프트웨어를 업그레이드할 단계가 왔다. 

새 그래픽 카드가 이전 카드와 동일한 브랜드일 경우에는 절차가 간단하다. 제조업체의 웹사이트로 이동해 운영체제에 맞는 최신 드라이버 패키지를 다운로드한다. 그래픽 드라이버는 일반적으로 약 500MB로, 상당히 크다. 인터넷 연결 속도에 따라 다운로드하는 데 시간이 걸릴 수도 있다. 드라이버를 설치하고 컴퓨터를 다시 시작하면 이제 새 그래픽 카드가 제공하는 부드럽고 매끄러운 프레임 속도를 즐길 수 있다.
  
그래픽 카드 제조업체가 바뀐 경우(인털에서 AMD로, 혹은 AMD에서 인텔로), 새 그래픽 카드용 드라이버를 설치하기 전에 이전 그래픽 드라이버를 제거하고 컴퓨터를 다시 시작해야 한다. 이전 드라이버를 제거하지 않으면 새 드라이버와 충돌할 수 있다. 

editor@itworld.co.kr 기사 일부 발췌 인용

그래픽 카드 GPU 온도 확인하는 방법

그래픽 카드 온도 확인은 아주 쉽다. 윈도우에서 바로 온도를 확인할 수 있는 내장 도구도 추가됐다. 또한, 무료 GPU 모니터링 도구가 많이 있고 그중 대다수가 온도를 측정해준다. 조금 더 자세히 알아보자.

ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인
ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인

마이크로소프트가 윈도우 10 2020년 5월 업데이트에서 GPU 온도 모니터링 툴을 작업 관리자에 추가했다. 무려 24년이나 걸렸다.

Ctrl+Shift+Esc를 열어 작업 관리자 대화창을 열거나 Ctrl+Alt+Delete에서 ‘작업 관리자’를 선택하거나 윈도우 시작 메뉴 아이콘을 오른쪽 클릭해서 ‘작업 관리자’를 선택한다. 여기에서 ‘성능’ 탭으로 들어가면 왼쪽에 GPU를 확인할 수 있을 것이다. 윈도우 10 2020년 5월 업데이트 혹은 그 이후 버전의 윈도우가 설치되어 있을 때만 사용할 수 있는 기능이다.

하지만 이 기능은 매우 단순하다. 시간 흐름에 따른 온도 변화를 추적하지 않고, 현재의 온도만을 보여준다. 그리고 업무를 하거나 오버클럭 조정 중에 작업 관리자를 여는 것도 귀찮을 수 있다. 마침내 윈도우에 GPU 온도를 확인할 수 있는 기능이 들어간 것은 환영하지만, 뒤이어 설명할 서드파티 도구가 훨씬 더 나은 GPU 온도 확인 옵션을 제공한다.

AMD 라데온 그래픽 카드 사용자가 라데온 세팅(Radeon Setting) 앱을 최신 버전으로 유지하고 있다면 방법은 쉽다. 2017년 AMD는 시각 설정을 변경할 수 있는 라데온 오버레이(Radeon Overlay)를 출시했다. 여기에도 GPU 온도와 다른 중요한 정보를 확인할 수 있는 성능 모니터 기능이 있다.

프로그램을 활성화하려면 Alt+R 키를 눌러 라데온 오버레이를 불러온다. 성능 모니터링 섹션에서 원하는 탭을 선택한다. Ctrl+Shift + 0을 눌러서 성능 모니터링 도구 설정을 단독으로 불러올 수 있다.

라데온 세팅 앱에서 오버클럭 도구인 와트맨(Wattman)으로 이동해 GPU 온도를 확인할 수 있다. 윈도우 바탕 화면을 우클릭하고, 라데온 설정을 선택한 후 게이밍(Gaming) > 글로벌 세팅(Global Setting) > 글로벌 와트맨(Global Wattman) 항목으로 이동한다. 도구를 사용해 지나친 오버클럭으로 그래픽 카드를 날려버리지 않겠다고 서약한 후에는 와트맨에 액세스하고 GPU 온도, 그리고 그래프 형태로 된 핵심적 통계 수치를 볼 수 있다. 여기까지가 전부다.

라데온 사용자가 아닌 사람도 많을 것이다. 스팀의 하드웨어 설문 조사는 전체 응답자 PC 중 75%가 엔비디아 지포스 그래픽 카드를 탑재했다는 결과를 발표했다. 그리고 지포스 익스피리언스 소프트웨어는 GPU 온도 확인 기능을 제공하지 않아서 서드파티 소프트웨어의 손을 빌려야 한다.

그래픽 카드 제조 업체는 보통 GPU 오버 클럭을 위한 특수한 소프트웨어를 제공한다. 이 도구에는 라데온 오버레이처럼 가장 중요한 측정을 실행할 때 OSD(On-Screen Display)를 지속하는 옵션 등이 있다. 여러 종류 중에서 가장 추천하는 것은 다재다능함을 갖춘 MSI의 애프터버너(Afterburner) 도구다. 이 제품은 오랫동안 인기를 얻었는데 엔비디아 지포스, AMD 라데온 그래픽 카드 두 제품 모두에서 잘 작동하고, 반길 만한 다른 기능도 더했다.

IDG HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램
IDG HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램

GPU 온도에 전혀 관심이 없다면? 그렇다면 시스템의 온도 센서를 보여주는 모니터링 소프트웨어를 설치하면 편리할 것이다. HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램으로, PC의 모든 부품의 가상 스냅샷을 보여준다. 스피드팬(SpeedFan) 과 오픈 하드웨어 모니터(Open Hardware Monitor)도 신뢰할 만한 서드파티 앱이다.

‘착한’ GPU 온도는 몇 도?

이제 그래픽 카드를 모니터링하는 소프트웨어를 갖췄다. 하지만 화면을 채우는 숫자는 맥락이 없이는 아무것도 아니다. 그래픽 카드 온도는 어디까지 괜찮은 것일까?

쉬운 대답은 없다. 제품마다 다르다. 이럴 때는 구글이 친구가 된다. 대다수 칩은 섭씨 90도 중반에도 작동하고, 게이밍 노트북에서도 90도까지 온도가 올라가는 경우가 흔히 있다. 그러나 일반 데스크톱 PC 온도가 90도 이상으로 올라간다면 구조 신호나 다름없다. 공기 흐름이 원활한 GPU 1대 시스템에서는 80도 이상 올라가면 위험하다. 팬이 여러 개 달린 커스텀 그래픽 카드는 무거운 워크로드 하에서도 60~70도가 적당하고, 수냉쿨러가 달린 GPU라면 온도가 더 낮아야 할 것이다.

그래픽 카드가 최근 5년 안에 생산된 제품이고 90도 이상으로 뜨거워진다면, 또는 최근 몇 주간 온도가 급격히 상승했다면 다음의 냉각 방법을 고려해보자.


그래픽 카드 온도 낮추는 법

그래픽 카드 온도가 높아졌을 때 하드웨어 업그레이드에 돈을 들이지 않고 개선하지 않기란 어렵다. 그러나 돈을 쏟아붓기 전에 정말 그래야 하는지 필요성을 점검해 보자. 다시 한번 강조하지만 그래픽 카드는 뜨거운 온도를 버틸 수 있도록 설계되어 있다. PC가 무거운 게임이나 영상 편집 중에 강제 종료되는 경우가 아니라면 아마도 걱정할 필요가 없을 것이다.

우선, 시스템의 케이블을 깨끗하게 정리해 GPU 주변의 공기가 원활하게 순환되는지 확인하라. 케이블이 깔끔하게 정리됐다면 케이스에 팬을 추가하는 것도 고려한다. 모든 PC는 최적의 성능을 위해 공기를 빨아들이고 내보내는 팬이 여럿 달려 있는데, POST PC라면 팬은 더 많아야 한다. 저렴한 팬은 10달러부터 구입할 수 있고, RGB 조명이 붙은 화려한 제품은 조금 더 가격이 높다.

마지막으로, GPU와 히트싱크의 써멀 페이스트가 오래되어 말라 있다면 효율이 떨어질 수 있다. 특히 오래된 그래픽 카드라면 더더욱 그렇다. 그리고 아주 드문 경우지만 품질이 좋지 않은 써멀 페이스트가 발라져서 출시되는 경우도 있다. 다른 방법이 모두 효과가 없다면 써멀 페이스트를 다시 바르는 것을 시도해보자. 그러나 과정이 매우 어려울 수 있고 카드마다 조금씩 다르고, 잘못 손댈 경우 사용자 보증 기한의 보호를 받을 수 없게 된다. 

온도를 확실하게 낮추려면 수랭 쿨러를 위한 쿨링 시스템을 고려한다. 대다수 사용자에게는 지나친 모험이지만 대부분 수냉쿨러는 발열과 노이즈 감소 효과가 확실하고 공기 냉각에 있어 병목 현상도 없다.


“업무 효율 향상의 기본” 멀티 모니터 구축 가이드

듀얼 모니터를 사용하면 업무 생산성이 높아진다는 연구 결과가 있지만, 모니터가 많을수록 생산성이 높아지는지 여부에 대해서는 아직 이렇다 할 근거는 없다. 그러나 업무 생산성을 생각하지 않더라도 모니터를 여러 대(3대~6대까지) 사용하는 것은 멋진 일이며, 많은 화면을 봐야 하는 엔지니어는 정말 필요할지도 모른다.

모니터를 세로로 세워두면 긴 문서를 볼 때 스크롤을 적게 해도 된다는 장점이 있다. 멀티 디스플레이 환경을 구축하기 위해 고려해야 할 모든 것들을 살펴보겠다.

멀티 모니터 구축 가이드(www.itworld.co.kr)
멀티 모니터 구축 가이드(www.itworld.co.kr)

1단계 : 그래픽 카드 확인하기

보조 모니터를 구입하기 전에 컴퓨터가 물리적으로 이 모든 모니터들을 감당할 수 있을지 점검해 봐야 한다. 가장 쉬운 방법은 PC의 뒷면을 보고, 그래픽 포트(DVI, HDMI, 디스플레이포트, VGA 등)가 몇 개나 있는지 확인하는 것이다.

별도의 그래픽 카드가 없다면 포트를 2개밖에 발견하지 못할 것이다. 그래픽이 통합된 대부분의 마더보드는 모니터 2개 밖에 설치하지 못한다. 별도의 그래픽 카드가 있다면, 마더보드의 포트를 제외하고 최소 3개의 포트를 발견할 수 있을 것이다.

팁 : 마더보드와 별도 그래픽 카드의 포트를 모두 이용해서 멀티 모니터를 설치할 수도 있지만, 이 경우 성능 저하와 모니터끼리의 속도 차이가 발생할 것이다. 그래도 이렇게 하고 싶다면, PC의 BIOS에서 Configuration > Video > Integrated graphics 로 진입한 다음, ‘always enable’로 설정한다.

그러나 별도의 그래픽 카드에 3개 이상의 포트가 있다고 해서 이것을 모두 동시에 사용할 수 있다는 의미는 아니다. 예를 들어서 구형 엔비디아 카드는 포트가 2개 이상이어도 하나의 카드에 모니터를 2개 이상 연결할 수 없다. 자신의 그래픽 카드가 멀티 모니터를 지원하는지 판단하는 가장 좋은 방법은 그래픽 카드 모델명을 찾아서 원하는 모니터 개수와 함께 검색하는 것이다. 예를 들어, ‘엔비디아 GTX 1660 모니터 4대’라고 검색하면 된다.

EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG
EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

그래픽 카드가 원하는 만큼 충분히 모니터를 지원할 수 있으면 좋지만, 그렇지 않다면 추가 그래픽 카드를 구입해야 한다. 그래픽 카드를 추가로 구입하기 전 타워 안에 충분한 공간(PCI 슬롯)이 있는지, 전원 공급은 충분한지 확인해야 한다.

멀티 모니터용으로만 그래픽 카드를 구입한다면 최신 그래픽 카드 중에서도 저렴한 옵션을 선택하는 것이 좋다. 

아니면 멀티 스트리밍이 지원되는 디스플레이포트를 탑재한 신형 모니터를 사용하는 방법도 있다. 그래픽 카드의 디스플레이포트 1.2에 연결하고, 디스플레이포트 케이블을 사용해 다음 모니터로 연결하는 것이다. 모니터의 크기나 해상도가 같지 않아도 된다. 뷰소닉(ViewSonic)의 VP2468이 이런 제품 중 하나다. 아마존에서 약 210달러에 판매되는 이 24인치 모니터는 디스플레이포트 아웃 외에도 프리미엄 IPS 스크린, 아주 얇은 베젤 등 멀티 모니터 설정에 이상적인 특징을 제공한다.

2단계 : 모니터 선택하기 

그래픽 카드에 대해서 파악했다면 이제 추가 모니터를 구입할 차례다. 사용자에 따라서 기존에 사용하고 있는 모니터, 책상 크기, 추가 모니터 용도 등에 따라서 완벽한 모니터가 달라질 것이다.

필자의 경우, 이미 24인치 모니터 2대를 가지고 있었기 때문에 중앙에 설치할 더 큰 모니터가 필요해서 27인치 모니터를 선택했다. 게임을 하지 않기 때문에 모니터 크기 차이는 상관없었다. 하지만 사용자에 따라서 멀티 모니터로 POST를 하거나 동영상을 보기 위해서는 이러한 구성보다 같은 모니터를 연결하는 것이 더 좋을 것이다.

모니터를 구입하기 전에 PC와 모니터의 포트 호환성을 설펴야 한다. DVI-HDMI 혹은 디스플레이포트-DVI 등 전환해주는 케이블을 이용할 수도 있지만 다소 귀찮다. 그러나 PC나 모니터에 VGA 포트가 있다면, 교체를 권한다. VGA는 아날로그 커넥터이기 때문에 선명도가 떨어진다.

3단계 : PC설정

모니터를 구입하고 나면 PC에 연결하고 PC의 전원을 켠다. 이것으로 모니터 설치가 끝났다. 하지만 완전히 끝난 것은 아니다.

윈도우가 멀티 모니터 환경에서 잘 동작하게 만들어야 하는데, 윈도우 7이나 윈도우 8 사용자라면 바탕화면에서 오른쪽 클릭하고 ‘화면 해상도’를 선택한다. 윈도우 10 사용자라면 ‘디스플레이 설정’을 클릭한다. 그러면 디스플레이를 정렬할 수 있는 창이 나타난다.

ⓒ ITWorld 디스플레이 설정
ⓒ ITWorld 디스플레이 설정

여기서 모니터들이 모두 탐지되는지 확인할 수 있다. ‘식별’을 클릭하면 각 디스플레이에 큰 숫자가 나타난다. 주 모니터(작업 표시줄과 시작 버튼이 나타나는 모니터)로 사용할 모니터에 1번이 나타나야 하는데, 원하는 것을 선택한 다음 아래 여러 디스플레이 설정에서 ‘이 디스플레이를 주 모니터로 만들기’를 클릭한다. 그 다음 ‘다중 디스플레이’ 드롭다운 메뉴에서 복제할 것인지 확장할 것인지를 선택하면 되는데, 대부분의 경우 ‘디스플레이 확장’이 적합하다.

GPU 제어판에서도 다중 모니터를 설정할 수 있다. 바탕화면에서 오른쪽 클릭을 하고 엔비디아, AMD, 인텔 등 그래픽 제조사의 제어판 메뉴를 열어 윈도우와 유사한 방식으로 디스플레이를 설정할 수 있다.

멀티 디스플레이를 구축할 경우에는 같은 모델을 이용하는 것이 해상도나 선명도, 색보정 등의 문제가 발생하지 않아 ‘끊김 없는’ 경험을 할 수 있다.

Intel CPU i9

FLOW-3D 수치해석용 컴퓨터 CPU에 대한 이해 및 선택 방법

구매전 주요 CPU 비교 내용 알아보기

우리는 해석용 컴퓨터를 구매하기 전에 수많은 선택지를 고민하게 됩니다. 성능과 가격, 컴퓨터 최신 CPU, Memory, Chipset, HDD/SSD, Power Supply 등, 그 중에서도 당연코 선택 고민은 CPU 입니다.

이는 수 많은 검토 요인중에 해석 속도와 매우 밀접한 관계를 가지고 있기 때문입니다. 하지만 우리가 직접 테스트를 해볼 수 없지만, 다행히 아래와 같이 전문적으로 테스트를 수행하여 그 결과를 알려주는 보고서를 참고할 수 있습니다.

<샘플 비교자료>

AMD Ryzen AI 9 HX 370 대 Intel i9-14900HX

아래 두 CPU 모두 작년에 출시(또는 첫 벤치마크)되었고, Intel Core i9-14900HX는 멀티스레드(CPU 마크) 테스트에서 약 22% 더 빠르고, 싱글스레드 테스트에서는 약 7% 더 빠릅니다. 그러나 AMD Ryzen AI 9 HX 370은 훨씬 적은 전력을 사용합니다. 이 비교에서 선택된 CPU는 데스크톱, 노트북과 같은 다른 CPU 클래스에 속합니다. 더 적절한 비교를 위해 유사한 CPU 클래스에서 CPU를 선택하는 것을 고려하세요. 아래 값은 PerformanceTest 소프트웨어와 결과에서 제출된 1202개의 벤치마크를 합친 결과이며, 새로운 제출을 포함하도록 매일 업데이트됩니다.

  • 첫 번째 섹션에서는 선택한 각 CPU에 대한 기본 정보가 표시됩니다.
  • 추가 그래프는 선택된 각 CPU의 CPU 마크 및 단일 스레드 값을 보여줍니다.
  • 가격 데이터가 있는 경우 그래프를 통해 달러당 CPU 마크/스레드 등급을 기준으로 비용 대비 가치를 확인할 수 있습니다.
  • 마지막 섹션에서는 CPU의 대략적인 연간 운영 비용을 보여줍니다.
Item×AMD Ryzen AI 9 HX 370×Intel Core i9-14900HX
PriceSearch Online Search Online 
Socket TypeFP8FCBGA1964
CPU ClassDesktop, LaptopLaptop
Clockspeed2.0 GHz2.2 GHz
Turbo SpeedUp to 5.1 GHzUp to 5.8 GHz
# of Physical Cores12 (Threads: 24)24 (Threads: 32)
CacheL1: 960KB, L2: 12.0MB, L3: 8MBL1: 2,176KB, L2: 32.0MB, L3: 36MB
TDP28W55W
Yearly Running Cost$5.11$10.04
Otherw/ Radeon 890MIntel UHD Graphics for 14th Gen Intel Processors
First Seen on ChartQ3 2024Q1 2024
# of Samples1441058
CPU Value0.067.2
Single Thread Rating(% diff. to max in group)4007(-6.8%)4301(0.0%)
CPU Mark(% diff. to max in group)35487(-22.3%)45647(0.0%)

1 – Last seen price from our affiliates NewEgg.com & Amazon.com.

AMD Ryzen AI 9 HX 37035,487
Intel Core i9-14900HX45,647
PassMark Software © 2008-2024
AMD Ryzen AI 9 HX 370NA
Intel Core i9-14900HX67.2
PassMark Software © 2008-2024
AMD Ryzen AI 9 HX 3704,007
Intel Core i9-14900HX4,301
PassMark Software © 2008-2024

Estimated Energy Usage Cost

Estimated Energy Adjustable Values
Average hours of use per dayAverage CPU Utilization (0-100%)1Power cost, $ per kWh2
825

1Average user usage is typically low and can vary from task to task. An estimate load 25% is nominal.
2Typical power costs vary around the world. Check your last power bill for details. Values of $0.15 to $0.45 per kWh are typical.

AMD Ryzen AI 9 HX 370Intel Core i9-14900HX
Max TDP28W55W
Power consumption per day (kWh)0.060.11
Running cost per day$0.014$0.028
Power consumption per year (kWh)20.440.1
Running cost per year$5.11$10.04

Shown CPU power usage is based on linear interpolation of Max TDP (i.e. max load). Actual CPU power profile may vary.

CPU 성능비교 방법

아래 사이트를 방문하여 구입을 원하는 CPU에 대한 성능을 비교해 볼 수 있습니다. 비교 방법은 아래 그림에서 처럼 “Add other CPU:” 검색창에 원하는 CPU 모델명을 입력한 후 “Compare” 버튼을 클릭하면 아래와 같이 여러개의 CPU 비교 내용을 볼 수 있습니다.

https://www.cpubenchmark.net/singleCompare.php

CPU 성능비교 방법

Item×AMD Ryzen 7 7435HS×Intel Core i7-13620H×Intel Core i5-1235U×Intel Core i9-14900HX
PriceSearch Online Search Online Search Online Search Online 
Socket TypeFP7r2FCBGA1744FCBGA1744FCBGA1964
CPU ClassDesktop, LaptopLaptopLaptop, Mobile/EmbeddedLaptop
Clockspeed3.1 GHz2.4 GHz1.3 GHz2.2 GHz
Turbo SpeedUp to 4.5 GHzUp to 4.9 GHzUp to 4.4 GHzUp to 5.8 GHz
# of Physical Cores8 (Threads: 16)10 (Threads: 16)10 (Threads: 12)24 (Threads: 32)
CacheL1: 512KB, L2: 4.0MB, L3: 16MBL1: 864KB, L2: 9.5MB, L3: 24MBL1: 928KB, L2: 6.5MB, L3: 12MBL1: 2,176KB, L2: 32.0MB, L3: 36MB
TDP45W45W15W55W
Yearly Running Cost$8.21$8.21$2.74$10.04
OtherIntel UHD Graphics for 13th Gen Intel ProcessorsIntel Iris Xe GraphicsIntel UHD Graphics for 14th Gen Intel Processors
First Seen on ChartQ2 2024Q1 2023Q1 2022Q1 2024
# of Samples87104123241058
CPU Value0.049.543.367.2
Single Thread Rating(% diff. to max in group)3228(-25.0%)3689(-14.2%)3218(-25.2%)4301(0.0%)
CPU Mark(% diff. to max in group)23985(-47.5%)24844(-45.6%)13388(-70.7%)45647(0.0%)

CPU에 대한 이해 및 선택 방법

last update : 2021-12-15

자료출처 : 본 기사는 PCWorld Australia의 내용과 www.itworld.co.kr의 기사를 기반으로 일부 가필하여 게재한 내용입니다.

해석용 컴퓨터를 선정하기 위해서는 가장 먼저 선택해야 하는 것이 있다. AMD인가, 인텔인가? 두 업체는 CPU 시장의 양대산맥과도 같다. 인텔이 새롭게 출시한 12세대 앨더 레이크 CPU 시리즈가 벤치마크 기록을 깼지만, 지난해 출시된 AMD의 라이젠 5000 아키텍처를 고수하거나, 다른 신제품을 기다릴만한 이유도 있다. 인텔과 AMD CPU를 자세히 살펴보자.

ⓒ Gordon Mah Ung


비교 대상 제품 

2021.11.09

PC 조립 부품을 예산 기준으로 결정하고, 반도체 수급난에서 CPU를 정가에 구매할 수 있다고 가정했을 때, 인텔과 AMD 제품 선택지를 몇 가지로 압축할 수 있다.

인텔성능/효율 코어쓰레드가격
Core i9 12900K/KF8/824590달러/570달러
Core i7 12700K/KF8/420410달러/390달러
Core i5 12600K/KF6/416290달러/270달러
AMD  성능 코어 쓰레드    가격   
Ryzen 9 5950X1632800달러
Ryzen 9 5900X1224550달러
Ryzen 7 5800X816450달러
Ryzen 5 5600X612300달러

비교적 저렴한 인텔 CPU인 F 시리즈는 통합 그래픽카드가 없어 별도의 GPU가 필요하다. 라이젠 프로세서는 외장 그래픽카드와 짝을 이루어야 한다. 인텔이 ‘한 방’을 노리고 있기 때문에 이 비교에서는 최상급인 16코어 라이젠 9 5950X도 함께 살펴볼 예정이다. 12900KF가 최대 8코어이기 때문에 라이젠 9 5950X와 직접적인 비교 대상은 아니지만, 인텔은 AMD와 꽤 대등하게 싸우고 있다. CPU에만 80만원을 지출할 계획이라면 더 큰 파워 서플라이가 필요하다.

인텔 코어 CPU 에 대한 이해

인텔 코어 CPU에 대한 자료를 찾아보면 쿼드(Quad) 코어, 하이퍼-스레딩(Hyper-Threading), 터보-부스팅(Turbo-Boosting), 캐시(Cache) 크기 같은 용어를 많이 볼 수 있다.
인텔 코어 i3, i5, i7, i9는 각각 어떻게 다를까?
칩셋에는 세대가 있는데, 세대의 의미와 차이는 무엇일까?
하이퍼-스레딩은 무엇이고 클럭 속도는 어느 정도가 적합할까?

새 프로세서를 구입하기 전에 먼저 현재 사용하고 있는 인텔 CPU를 이해해보자.
지금 내 PC 성능이 어느 정도인지 알기 위해서이다.
가장 빠른 방법은 제어판 > 시스템 및 보안 항목에서 시스템을 선택하는 것이다.

여기에서 현재 PC에 설치된 CPU, RAM, 운영체제 정보를 확인할 수 있다.
프로세서 아래에 현재 설치된 인텔 CPU가 무엇인지, 인텔 코어 i7-4790, 인텔 코어 i7-8500U 같은 모델명을 확인할 수 있을 것이다. 또 Ghz가 단위인 CPU 클럭 속도를 알 수 있다. 나중에 이와 관련해 더 자세히 설명을 하겠다.

일단 CPU부터 알아보자.
CPU 모델명에는 숫자가 많아 어려워 보이지만, 이 숫자가 무슨 의미인지 이해하는 것은 어려운 일이 아니다.

모델명의 앞 부분인 “인텔 코어”는 인텔이 만든 코어 시리즈 프로세스 중 하나라는 의미다. 코어는 인텔에서 가장 크고, 인기있는 제품군이다. 따라서 많은 인텔 제품 데스크톱과 노트북 컴퓨터에서 인텔 코어라는 표기를 발견할 수 있다.

참고 : 인텔은 셀룰론(Celeron), 펜티엄(Pentium), 제온(Xeon) 등 다양한 프로세스 제품군을 판매하고 있지만, 이 기사는 인텔 코어 프로세스에 초점을 맞춘다.

그 다음 “i7”은 CPU 내부 마이크로 아키텍처 디자인의 종류이다.
자동차가 클래스와 엔진 종류로 나눠지는 것과 비슷하다. 이들 ‘엔진’이 하는 일은 동일하다. 그러나 차량 브랜드에 따라 일을 하는 방법이 다르다.
인텔의 경우 코어 브랜드 CPU의 클래스인 i3, i5, i7이 각각 사양이 다르다. 여기서 사양이란 코어의 수, 클럭 속도, 캐시 크기, 터보 부스트 2.0과 하이퍼스레딩 같은 고급 기능 지원 여부를 말한다.
코어 i5와 i7 데스크톱 프로세서는 통상 쿼드 코어(코어가 4개)이고, 로우엔드(저가) 코어 i3 데스크톱 프로세스는 듀얼 코어(코어가 2개)다.

이제 SKU와 세대에 대해 알아보자. 앞서 예로 들은 “4790”으로 설명하겠다.
첫 번째 숫자인 “4”는 CPU의 세대이고, “790”는 일종의 일련번호, 또는 ID 번호이다. 즉 인텔 코어 i7이 4세대 CPU라는 이야기이다.

그런데 ‘접미사’가 붙는 경우가 있다. 위에서 예로 든 모델에는 접미사가 없지만 “Intel Core i7-8650U” 같이 끝에 접미사가 붙은 모델이 있다. 여기에서 “U”는 “Ultra Low Power(초저전력)”를 의미한다.
인텔은 모델명에 다양한 접미사를 사용하는데 세대에 따라 의미가 바뀌는 경우가 있다. 따라서 현재 사용하고 있는 CPU 모델을 정확히 해석하려면 링크된 인텔의 ‘접미사 목록’ 페이지를 참고하자.

CPU의 세대는 중요할까?

꽤 중요하다. 간단히 말해, 그리고 일반적으로 세대가 높을 수록, 즉 새로울 수록 더 좋다. 하지만 세대별로 개선된 정도는 각기 다르다.

인텔에 따르면, 최신 8세대 인텔 코어 프로세스는 7세대보다 최대 40%까지 성능이 향상됐다. 물론 비교 대상에 따라 성능 향상치가 크게 다르다. SKU가 세대별로 다를 수 있기 때문이다. 예를 들어, 인텔 코어 i7-8850U는 있지만 인텔 코어 i7-7850U는 없다.

세대가 높을 수록 최신 프로세서라는 것이 기본 원칙이다. 더 발전한 기술과 설계의 이점을 누릴 수 있다는 의미이며, PC 성능도 따라서 향상될 것이다.

코어가 많을 수록 좋을까?
간단히 대답하면, 일반적으로 코어 수가 적은 것보다 많은 것이 좋다. 코어가 1개인 프로세서는 한 번에 스레드 1개만 처리할 수 있다. 그리고 코어가 2개인 프로세서는 2개를, 코어가 4개인 쿼드 코어 프로세서는 4개를 처리할 수 있다.

그렇다면 스레드(Thread)는 무엇일까? 아주 간단히 설명하면, 스레드는 특정 프로그램에서 나와 프로세서를 통과하는 연속된 데이터 데이터 흐름을 말한다. PC의 모든 것은 프로세서를 통과하는 스레드로 귀결된다.

즉, 논리적으로 코어가 많을 수록 한 번에 처리할 수 있는 스레드가 많다. PC가 더 빠르고 효율적으로 데이터를 처리하고 명령을 실행할 수 있다는 이야기이다. 그러나 새 CPU를 조사하면서 코어 수에만 초점을 맞추면 자칫 코어 수만큼 중요한 수치인 클럭 속도를 무시할 위험이 있다.

CPU의 각 코어에는 Ghz가 단위인 클럭 속도가 있다. 클럭 속도는 CPU 실행 속도다. 클럭 속도가 빠를 수록, CPU가 한 번에 처리 및 실행할 수 있는 명령이 많다.

클럭 속도는 통상 높을 수록 더 좋다. 그러나 발열과 관련된 제약 때문에 프로세서의 코어 수가 많을 수록 클럭 속도가 낮은 경향이 있다. 이런 이유로 코어 수가 많은 PC가 최고의 성능을 발휘하지 못하는 경우도 있다.
그렇다면 가장 알맞은 클럭 속도는 어느 정도일까?


클럭 속도는 PC로 하려는 일에 따라 달라진다. 일부 애플리케이션은 싱글스레드로 실행된다. 반면, 여러 스레드를 활용하도록 만들어진 애플리케이션도 있다. 비디오 렌더링이나 일부 게임 환경이 여기에 해당된다. 이 경우, 코어 수가 많은 프로세서가 클럭 속도가 높지만 코어가 하나인 프로세스보다 성능이 훨씬 더 높다.
수치해석의 경우는 계산량이 많은 큰 해석의 경우 멀티코어가 훨씬 유리하다.

웹 브라우징 같은 일상적인 작업에서는 클럭 속도가 높은 i5 프로세서가 i7보다 가격 대비 성능이 훨씬 더 높다는 의미이다. 즉, 코어 수가 많은 프로세서보다 클럭 속도는 높고 코어 수가 적은 프로세서를 구입하는 것이 훨씬 경제적인 대안이 될 수도 있다.

하이퍼-스레딩이란?

앞서 언급했듯, 일반적으로 프로세서 코어 하나가 한 번에 하나의 스레드만 처리할 수 있다. 즉, CPU가 듀얼 코어라면 동시에 처리할 수 있는 스레드가 2개다. 그러나 인텔은 하이퍼-스레딩이라는 기술을 개발해 도입했다. 가상으로 운영체제가 인식하는 코어를 2배 증가시키는 방법으로 하나의 코어가 동시에 여러 스레드를 처리할 수 있는 기술이다.

즉 i5의 물리적 코어 수는 4개이지만, 여러 스레드를 지원하는 애플리케이션을 실행시키면 하이퍼-스레딩이 코어 수를 가상으로 2배 늘려서 성능을 크게 향상하는 방법이다.

터보 부스트(Turbo Boost)란?

인텔의 터보 부스트는 프로세서가 필요한 경우 동적으로 클럭 속도를 높이는 기능이다. 터부 부스트로 높을 수 있는 최대 클럭 속도는 활성 코어의 수, 추정되는 전류 및 전력 소모량, 프로세서 온도에 따라 달라진다.

알기 쉽게 설명하면, 인텔 터보 부스트 기술은 사용자의 프로세서 사용 현황을 모니터링, 프로세서가 ‘열 설계 전력’의 최대치에 얼마나 가까이 도달했는지 판단한 후 적절한 수준으로 클럭 속도를 높인다. 기본적으로 가장 적절하고 우수한 클럭 속도와 코어 수를 제공한다.

현재 터보 부스트 테크놀로지 2.0 버전이 사용되고 있으며, 여러 다양한 7세대 및 8세대 인텔 코어 i7과 i5 CPU에서 이를 지원한다.

i3, i5, i7, i9 프로세서 중 하나를 선택하기 전에 클럭 속도, 코어 수와 함께 기억해야 할 한 가지가 또 있다.

캐시 크기

CPU가 동일한 데이터를 계속 사용하는 경우, CPU는 이 데이터를 프로세서의 일부분인 캐시라는 곳에 저장된다. 캐시는 RAM과 비슷하다. 그러나 메인보드가 아닌 CPU에 구축되어 있어 훨씬 더 빠르다.
캐시 크기가 크면 더 빨리 더 많은 데이터에 액세스 할 수 있다. 클럭 속도 및 코어 수와 다르게, 캐시 크기는 무조건 클 수록 더 좋다. 메모리가 많을 수록 CPU 성능이 향상된다.

7세대 코어 i3 및 코어 i5 프로세서 U 및 Y 시리즈 캐시 크기는 3MB, 4MB이다. 코어 i7의 캐시 크기는 4MB이다. 현재 8세대 프로세서의 캐시 메모리는 6MB, 8MB, 9MB, 12MB이다.

코어 i3, i5, i7, i9의 차이점은 무엇일까?
일반적으로 코어 i7은 코어 i5, 코어 i5는 코어 i3보다 나은 프로세서이다. 코어 i7의 코어 수는 7개가 아니다. 코어 i3 역시 코어 수가 3개가 아니다. 코어 수나 클럭 속도가 아닌 상대적인 연산력의 차이를 알려주는 수치다.

2017년 출시된 코어 i9 시리즈는 고가의 고성능 프로세서이다. 최상급인 코어 i9-7980X의 코어 수와 클럭 속도는 18개와 2.6GHz, 한 번에 처리할 수 있는 스레드는 32개이다. 가장 저렴한 코어 i9-7900X의 경우 각각 10코어, 3.3GHz(기본 클럭 속도), 20 스레드이다.

수치해석 측면에서 구입해야 할 컴퓨터를 고려한다면 CPU 성능은 현재 최신코어인 i7과 i9을 구입하는 것이 원하는 성능을 정확히 제공하는 CPU를 선택하는 방법이지만 예산과 성능이라는 선택의 문제가 존재한다.

editor@itworld.co.kr


AMD CPU 에 대한 이해

썸네일
썸네일

AMD CPU 이름 규칙 및 코드명, 종류, 세대, 소켓 알아보기

AMD 1600, AMD 2400G, Athlon 240GE, AMD 3990X 등 AMD에 다양한 종류의, 다양한 모델명을 가진 cpu들이 있습니다. AMD cpu, apu의 종류와 세대, 소켓에 대해서 알아보도록 하며 이 글에서는 2017년 3월 3일 이후 나온 ‘라이젠’ 시리즈의 cpu, apu에 대해서만 다루도록 하겠습니다.

AMD 라이젠 시리즈는 현재 3세대까지 출시되었으며, 크게 일반 cpu, 하이엔드 cpu(스레드리퍼), 일반 APU, 모바일 APU으로 나뉩니다. 또한 소켓은 현재까지 나온 cpu 중 하이엔드 cpu를 제외한 cpu는 모두 am4소켓입니다.

AMD CPU 이름 규칙

이름 규칙

 

이름 규칙

AMD 라이젠 시리즈는 ‘AMD 라이젠 7 1700X’를 예로 들면, 앞의 ‘AMD’는 회사 이름을 나타내며

뒤에 ‘라이젠 7’은 성능을 나타냅니다.
‘라이젠 3’은 메인스트림,
‘라이젠 5’는 고성능,
‘라이젠 7’은 최고 성능입니다.

그리고 뒤에 ‘1’은 세대를 나타냅니다.
‘1700’은 Zen 1세대이며,
‘AMD 라이젠 5 2400G’와 같이 APU는 기존 세대에 비해 조금 개선되긴 했지만, 다음 세대 정도까지에 개선은 아니라서 세대는 같지만, ‘400G’앞에 붙는 숫자는 1이 더해져서 나옵니다.

그리고 두번째 자리 ‘7’은 성능을 나타냅니다.
‘2,3’은 메인스트림,
‘4,5,6’은 고성능,
‘7,8’은 최고 성능입니다.

그리고 세네번째 자리는 세세한 기능의, 세세한 성능의 변화 정도로 생각하시면 됩니다.

출처: https://minikupa.com/52 [미니쿠파]

 

인텔 코어 i9-12900K 리뷰 | 왕좌 탈환 노리는 ‘인텔의 귀환’

2021.11.09

Gordon Mah Ung | PCWorld구원 서사를 좋아하지 않는 사람은 없다. 인텔 12세대 코어 i9-12900K는 오랫동안 회자될 귀환 이야기의 주인공이다. 한때 강력하고 득의양양했던 챔피언은 수 년 전 부활한 AMD 라이젠 프로세서의 손에 굴욕적인 패배를 겪었고 어떻게 해서든 다시 한번 싸울 방법을 찾아 마침내 승리를 외치려고 한다. 이제 카메라가 페이드아웃 되면서 엔딩 크레딧으로 넘어간 셈이다.

인생이나 기술은 그런 헐리우드식 결말을 맺기 어렵지만, 인텔 코어 i9-12900K는 그런 드라마의 주인공 역할을 상당히 잘 해낸 것 같다. 지난 몇 년 동안 AMD 프로세서에 두들겨 맞은 후 태어난 12900K는 경쟁 제품인 라이젠 9 5950X보다 훨씬 더 나은 CPU로 더 많은 사용자에게 활용 가능성을 안겼다. 화끈한 KO 승리를 거둔 것은 전혀 아니지만, 인텔 12세대 앨더 레이크 프로세서의 뛰어난 장점과 기능을 고려할 때 바로 오늘 구입할 수 있는 하이엔드 데스크톱 프로세서다. 

ⓒ Gordon Mah Ung


12세대 앨더 레이크는 어떤 CPU?

인텔 12세대 앨더 레이크는 근본적으로 인텔 7 공정을 기반으로 만들어진 하이브리드 CPU 설계다. 사실 이것만으로도 엄청난 일이다. 14나노 트랜지스터 기술에 5년 이상을 허비한 끝에, 앨더 레이크는 마침내 하나의 노드를 뛰어넘었다. (기존 10나노 공정이 리브랜드된 후 인텔 7이라는 이름으로 불린다.)

새롭게 설계된 고성능 CPU 코어와 더 작아진 효율 코어를 혼합하여 성능 대 전력 비율의 균형을 최적화했다. 완전히 재설계된 큰 코어를 가진 인텔의 첫 번째 인텔 7 프로세스 데스크톱 CPU라고 이해하는 것이 가장 쉽다. 그리고 여기에 더해 여러 개의 나머지 효율성 코어 성능이 이전 10세대 코어만큼 우수하다. 또한, 12세대 앨더 레이크는 PCIe 5.0, DDR5 메모리, LGA1700 소켓을 비롯해 새로운 표준을 다수 지원한다.

ⓒ Intel

CPU 렌더링 성능

인텔의 전통점 강점이 아니었던 3D 렌더링과 모델링부터 시작하자. 지금까지는 PC에서 3D 모델링 애플리케이션 실사용자가 많지 않아서, 이들 전문 애플리케이션의 실행 성능에 큰 의미를 두지 않았다는 것이 인텔의 주장이었다. 라이젠 CPU의 눈부신 성능에 뒤지는 경우에만 렌더링 성능에서 피벗을 뺐다는 점에 주목하는 사람도 많다.

맥슨 시네벤치 R23부터 시작한다. 맥슨 시네마4D 애플리케이션에 사용되는 렌더링 엔진 테스트이며, 같은 렌더링 엔진이 일부 어도비 애플리케이션에도 내장되어 있다.

최신 버전은 10분 쓰로틀링 테스트를 기본값으로 제안한다. 인텔 10세대, 11세대 칩과 윈도우 11 환경을 테스트한 결과는 없지만, 윈도우 10과 10코어 코어 i9-10900K가 1만 4,336점을 받았고 8코어 코어 i9-11900K는 1만 6,264점을 받았다. 사실 둘 다 2만 2,168점을 받은 AMD 12코어 라이젠 9 5900X과는 상대가 되지 않는다. 그래서 굳이 16코어 라이젠 9 5950X와 비교할 필요가 없었다.

눈길을 끄는 것은 코어 i9-12900K의 긴 파란 막대다. 인텔이 앨더 레이크에서 추구한 하이브리드 설계를 추구하는 것에 여러 가지 말이 많았지만, 12900K는 오랫동안 라이젠의 홈그라운드였던 렌더링 벤치마크에서 AMD의 1, 2위 CPU를 아주 약간이나마 능가해 호사가의 입을 단속한다.

ⓒ IDG

하지만 인텔이 옳다. 모든 CPU 코어와 쓰레드를 다 쓰는 애플리케이션을 사용하는 사람은 그다지 많지 않다. 따라서 시네벤치로 단일 쓰레드 성능을 살펴보는 것도 중요하다. 시네벤치 멀티코어 성능은 라이트룸 클래식 올코어 영상 인코딩이나 사진 내보내기 성능을 알려주고, 시네벤치 R23 단일 쓰레드 성능은 그보다는 오피스나 포토샵 실행에 조금 더 가깝다. 다시 한번 강조하지만, 코어 i9-10900K와 윈도우 11 결과는 없지만, 10세대 제품의 기존 점수는 1,325점, 11세대 제품은 1,640점을 기록한 AMD 라이젠과 비슷한 수준이다.

그러나 인텔 최신 성능 코어는 라이젠 9 5950X보다 성능이 19% 높고, 구형 10세대 칩보다 31%나 나아져 당혹스러울 정도였다. 맥북 프로 M1 맥스와 앨더 레이크를 비교하면 어떨지를 궁금해 하는 이에게 알려주자면, 앨더 레이크가 우세하다. 모바일 칩과 데스크톱 칩을 비교하는 단일 쓰레드 성능 테스트에서 12세대 앨더 레이크 CPU는 애플 최신 M1 칩보다 약 20%나 더 빨랐다. 물론 인텔 제품은 노트북용 칩이 아니었지만, 인텔 12세대 CPU를 탑재한 노트북이 출시되면 충분히 맥북 프로의 경쟁자가 될 것이다.

ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG

압축 성능

CPU의 압축 성능은 인기있고 무료인 7-Zip 내부 벤치마크로 측정했다. 벤치마크는 CPU 쓰레드 수를 살펴보고 테스트하면서 자체적으로 여러 번 스풀링을 반복한다. 압축 테스트에서는 코어를 전부 사용하는 경우 압축 성능에서 24%, 압축 해제 성능에서 35% 더 높은 수치를 보여준 라이젠이 가장 큰 승자다.

7-cpu.com에 따르면, 압축 측면에서는 메모리 지연 시간, 데이터 캐시의 크기 및 TLB(translation look ahead buffer)가 중요한 반면, 압축을 풀 때는 정수 및 분기 예측 실패 패널티(branch misprediction penalties)가 중요하다. 결국, 실제 애플리케이션으로 파일 압축하거나 압축을 푸는 것은 보통 단일 쓰레드에 의존하기 때문에 멀티 쓰레드 성능과의 상관 관계는 이론에 그친다고 할 수 있다.

12세대 코어 i9의 문제는 심지어 압축 성능도 화려하지 않다는 것이다. 실제로 11세대 코어 i9은 윈도우 10 단일 쓰레드 성능에서 7,916으로 약간 더 빠르다. 간단히 요약하면 라이젠 9이 7-zip 테스트에서 압축 성능 우위를 유지했다. 이견은 있을 수 없다. 일부는 초기 DDR5 메모리의 지연 시간과 7-Zip이 특별한 명령을 사용하지 않는 이유도 있겠지만, 어쨌든 압축 테스트에서는 라이젠이 승리했다.

ⓒ IDG

인코딩 성능

CPU 인코딩 테스트는 무료이자 오픈소스인 핸드브레이크 트랜스코더/인코더를 사용하여 무료이자 오픈소스인 4K 티어스 오브 스틸(Tears of Steel) 영상을 H.265 코덱과 1080p 해상도로 변환하는 작업을 수행한다. 라이젠 9은 인코딩을 약 6% 더 빨리 끝내면서 다시 1위를 차지했다. 압도적인 승리는 아니지만 어쨌거나 1등이다. 

ⓒ IDG

합성 테스트

이제 긱벤치 5로 옮겨간다. 이 테스트는 21개의 작은 개별 루프로 구성된 합성 벤치마크인데, 개발자인 프라이메이트 랩스(Primate Labs)는 텍스트 렌더링에서 HDR, 기계 언어 및 암호화 성능에 이르기까지 모든 분야에서 인기있는 애플리케이션을 모델링했다고 한다. 긱벤치는 과거 논란의 중심에 있었지만, 여전히 인기가 높은 벤치마크다. 3D 렌더링과 압축, 인코딩 등에서 순위가 오르내렸던 코어 i9-12900K는 라이젠 9 5950X보다 8%가량 

긱벤치 벤치마크는 과거에 논란의 대상이 되었지만, 오늘날에는 비난받지 않고서 어떤 테스트를 유지하는 것이 어렵다. 하지만 이 제품은 어리석게도 인기가 있고, 당신이 긱벤치 5에 대해 어떻게 생각하든 간에, 사람들은 CPU가 거기에서 어떻게 작동하는지 보고 싶어한다. 3D 렌더링, 압축 및 인코딩을 어느 정도 반복한 결과, 인텔 코어 i9-12900K가 라이젠 9 5950X보다 약 8% 앞서는 것으로 나타났다.

ⓒ IDG
ⓒ IDG

콘텐츠 제작 성능 

전체 점수는 코어 i9-12900K가 라이젠 9 59050X에 비해 4% 더 앞선다. 프로시언 2.0은 이미지 보정(retouch)와 일괄 내보내기라는 2가지 방식으로 결과를 나눈다. 프로시언에 따르면, 이미지 보정에서는 기본적으로 12세대 코어 i9과 라이젠 9이 동점이었다. 주로 라이트룸 클래식 사진 내보내기 성능을 시험한 일괄 처리에서는 코어 i9가 최대 5%까지 앞섰다. 라이트룸 사진 내보내기가 멀티코어 성능에 의존하는 경향이 크기 때문에 마지막 결과에 놀랐다. 라이젠 9의 승리를 예상했기 때문이다. 결과는 그렇지 않았다. 

ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG

AI 성능

ⓒ IDG
ⓒ IDG

실생활 성능

비싼 컴퓨터로 인디 영화를 위한 특수 효과를 만들거나 이국적인 여행에서 찍은 사진을 편집하는 것을 상상하기 쉽지만, 세상 일의 대다수는 청구서를 지불하는 지루한 작업과 더 연관이 깊다. 따라서 마이크로소프트 오피스 성능을 UL의 프로시언 2.0 오피스 생산성 테스트를로 측정했다. 어도비와 마찬가지로, 다루는 마이크로소프트 워드, 엑셀, 파워포인트 및 아웃룩에서 고품질 미디어를 많이 다루는 작업을 대상으로 한다. 현실이 지루한 것처럼, 이런 작업이 가장 현실적이라고 할 수 있을 것이다.

오피스나 사무적이고 딱딱한 아웃룩 성능에 열광하는 사람에게는 라이젠보다 16% 빠른 코어 i9-12900K가 유리한 것으로 나타났다. 개별 애플리케이션을 결과에 따르면 12세대 코어 i9는 워드에서 14%, 엑셀에서 19%, 파워포인트에서 10%, 아웃룩에서 19% 더 빠르다. 

ⓒ IDG
ⓒ IDG

게이밍 성능

첫 번째 차트의 수직 축 눈금은 60와트에서 340와트까지를 표시하며, 0은 시간 수평 축을 의미한다. 먼저 모든 코어를 사용하여 시네벤치 R20을 실행했는데, 12900K(빨간색) 막대가 320와트의 총소비량까지 올라간 것을 볼 수 있다. 이것은 거의 라이젠 9 5950X(보라색)의 최대치보다 거의 100와트 더 많다. 약 45% 더 많은 양이다. 일단 모든 코어에 대해 두 칩 모두 시네벤치를 완료하면, 단일 코어나 쓰레드를 사용하여 칩을 실행한다. 이제 115와트 범위의 12세대 코어 i9의 총 시스템 전력을 볼 수 있는데, 라이젠 9가 약 10와트를 더 소비한다. 코어 i9가 테스트를 더 빨리 끝내고 라이젠 9 시스템보다 더 적은 전력을 사용한 것도 확인할 수 있다. 

ⓒ IDG

전력 소비

ⓒ IDG
ⓒ IDG

쓰레드 스케일링

인텔의 11세대부터 12세대까지의 세대별 성능 변화는 경이롭다. 단일 쓰레드를 사용함으로써 코어 i9-12900K는 이전 제품보다 42% 더 빠르며 그 속도에서 조금 올라간다. 8개 쓰레드에서 최신 세대의 코어 i9 최대치를 기록할 때 12세대 코어 i9은 놀랍게도 82% 더 빠르다. 지난 3월 출시된 11세대 칩과 비교하면 완전히 놀라운 변화다. 직접 전력 양을 추적해보지는 않았지만, 이전 11세대 코어 i9-11900K는 시네벤치 R20 실행에 거의 380와트 가까이를 사용한 반면, 12세대 코어 i9는 약 320와트를 사용했다. 따라서, 12세대 코어는 훨씬 적은 전력을 사용하면서도 훨씬 더 빠르다.

ⓒ IDG
ⓒ IDG

인텔 코어 i9-12900K, 결론

조금 의외일지도 모르겠다. 최고의 CPU라는 것은 존재하지 않는다는 것이 결론이다.

그보다는 특정 요구에 가장 적합한 CPU가 곧 최고의 CPU다. 이 긴 벤치마크는 각 요구사항을 6개 부문으로 나눠 각 분야에서 어떤 칩이 승리했는지를 확인했다. 인텔에 좋은 소식은 거의 모든 부문에서 좋은 위치를 차지하고 있다는 것이다.

렌더링 / 하이쓰레드 카운트 
하이 쓰레드 카운트 애플리케이션 및 렌더링에서 코어 i9-12900K는 시네벤치 R23 테스트에서 가까스로 승리라는 결과를 냈지만, 다른 CPU 렌더링 테스트에서는 훨씬 미묘한 결과가 나왔다. 솔직히 90% 렌더링 PC용 칩을 선택한다면, 라이젠 9 5950X가 아마 더 나은 선택일 것이다. 
승리 : 라이젠 9 5950X.

콘텐츠 제작
앞서 살펴본 바와 같이, 콘텐츠 제작은 단순히 쓰레드가 제일 많기만 하면 되는 작업이 아니고, 12세대 코어 i9은 라이젠 9 5950X보다 더 많은 역량을 증명했다. 포토샵, 라이트룸 클래식, 프리미어 프로를 주로 다룬다면 인텔이 더 나은 선택이 될 것이다. 
승리 : 코어 i9-12900K.

실생활
오피스 생산성과 크롬의 벤치마크를 통해 반응성이 더 높은 것이 인텔 CPU라는 점을 확인했다. 물론 결과에 동의하지만 동시에 라이젠 9 5950X도 두 사용례를 모두 잘 처리할 수 있다고도 믿는다. 아웃룩, 워드 실행이나 인터넷 검색이 주 작업인 하이엔드 데스크톱을 조립할 경우 약간 등급을 낮춰도 될 것 같다.
승리: 코어 i9-12900K.

게이밍
실제 게임 플레이에서 차이를 보려면 CPU보다 GPU에 더 집중해야 한다. 그렇지만 게임 테스트에서 인텔 12세대 코어 i9은 분명히 라이젠보다 점수가 높거나 거의 동점이었다. 의심의 여지없이 최고의 게임용 CPU다. 하지만 어느 쪽을 택해도 좋은 선택이다.
승리 : 코어 i9-12900K.

기능
인텔 12세대 플랫폼은 PCIe 5.0 및 DDR5 메모리라는 새로운 세계를 열었다. 또한, 필요한 경우 썬더볼트를 사용할 수 있고 와이파이 6E까지도 통합되어 있다. 물론, DDR5의 가치가 없다고 말하는 이들도 있고 그런 주장에도 이유가 있겠지만, 인텔로서는 충분히 새로운 점이 있다. 
승리 : 코어 i9-12900K.

가치
아직도 AMD 라이젠 9 5950X가 그리 대단한 가치가 없다고 생각하는 사람도 있고, 그 전 해에 2,000달러나 했던 CPU와 성능이 동등한데도 가격이 750달러에 불과한 것을 칭찬하는 사람도 있다. 만약 라이젠 9의 가격이 터무니없이 저렴하다고 생각하는 쪽이라면, 589달러라는 코어 i9-12900K의 공격적인 가격표를 보고 당장 구매하겠다고 소리칠 것이다. 하지만 이 가격은 대량 구매시 적용되는 값이다. 그렇지만 전통적으로 대량구매 가격은 초기 수요가 확정되면 시중가와 몇 달러 차이 나지 않는다. 그렇다. 여기서 가격 대비 가치가 높은 제품은 인텔이다. 그야말로 해가 서쪽에서 뜰 기세다.
승리 : 코어 i9-12900K.

코어 i9-12900K는 위대한 과거 명성을 회복하고 다시 왕좌를 탈환하려고 나섰다. 앨더 레이크는 기다릴 가치가 충분했다. 인텔에게 박수를 보낸다, 브라보. editor@itworld.co.kr 

Fig. 9 From: An Investigation on Hydraulic Aspects of Rectangular Labyrinth Pool and Weir Fishway Using FLOW-3D

An Investigation on Hydraulic Aspects of Rectangular Labyrinth Pool and Weir Fishway Using FLOW-3D

Abstract

웨어의 두 가지 서로 다른 배열(즉, 직선형 웨어와 직사각형 미로 웨어)을 사용하여 웨어 모양, 웨어 간격, 웨어의 오리피스 존재, 흐름 영역에 대한 바닥 경사와 같은 기하학적 매개변수의 영향을 평가했습니다.

유량과 수심의 관계, 수심 평균 속도의 변화와 분포, 난류 특성, 어도에서의 에너지 소산. 흐름 조건에 미치는 영향을 조사하기 위해 FLOW-3D® 소프트웨어를 사용하여 전산 유체 역학 시뮬레이션을 수행했습니다.

수치 모델은 계산된 표면 프로파일과 속도를 문헌의 실험적으로 측정된 값과 비교하여 검증되었습니다. 수치 모델과 실험 데이터의 결과, 급락유동의 표면 프로파일과 표준화된 속도 프로파일에 대한 평균 제곱근 오차와 평균 절대 백분율 오차가 각각 0.014m와 3.11%로 나타나 수치 모델의 능력을 확인했습니다.

수영장과 둑의 흐름 특성을 예측합니다. 각 모델에 대해 L/B = 1.83(L: 웨어 거리, B: 수로 폭) 값에서 급락 흐름이 발생할 수 있고 L/B = 0.61에서 스트리밍 흐름이 발생할 수 있습니다. 직사각형 미로보 모델은 기존 모델보다 무차원 방류량(Q+)이 더 큽니다.

수중 흐름의 기존 보와 직사각형 미로 보의 경우 Q는 각각 1.56과 1.47h에 비례합니다(h: 보 위 수심). 기존 웨어의 풀 내 평균 깊이 속도는 직사각형 미로 웨어의 평균 깊이 속도보다 높습니다.

그러나 주어진 방류량, 바닥 경사 및 웨어 간격에 대해 난류 운동 에너지(TKE) 및 난류 강도(TI) 값은 기존 웨어에 비해 직사각형 미로 웨어에서 더 높습니다. 기존의 웨어는 직사각형 미로 웨어보다 에너지 소산이 더 낮습니다.

더 낮은 TKE 및 TI 값은 미로 웨어 상단, 웨어 하류 벽 모서리, 웨어 측벽과 채널 벽 사이에서 관찰되었습니다. 보와 바닥 경사면 사이의 거리가 증가함에 따라 평균 깊이 속도, 난류 운동 에너지의 평균값 및 난류 강도가 증가하고 수영장의 체적 에너지 소산이 감소했습니다.

둑에 개구부가 있으면 평균 깊이 속도와 TI 값이 증가하고 풀 내에서 가장 높은 TKE 범위가 감소하여 두 모델 모두에서 물고기를 위한 휴식 공간이 더 넓어지고(TKE가 낮아짐) 에너지 소산율이 감소했습니다.

Two different arrangements of the weir (i.e., straight weir and rectangular labyrinth weir) were used to evaluate the effects of geometric parameters such as weir shape, weir spacing, presence of an orifice at the weir, and bed slope on the flow regime and the relationship between discharge and depth, variation and distribution of depth-averaged velocity, turbulence characteristics, and energy dissipation at the fishway. Computational fluid dynamics simulations were performed using FLOW-3D® software to examine the effects on flow conditions. The numerical model was validated by comparing the calculated surface profiles and velocities with experimentally measured values from the literature. The results of the numerical model and experimental data showed that the root-mean-square error and mean absolute percentage error for the surface profiles and normalized velocity profiles of plunging flows were 0.014 m and 3.11%, respectively, confirming the ability of the numerical model to predict the flow characteristics of the pool and weir. A plunging flow can occur at values of L/B = 1.83 (L: distance of the weir, B: width of the channel) and streaming flow at L/B = 0.61 for each model. The rectangular labyrinth weir model has larger dimensionless discharge values (Q+) than the conventional model. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q is proportional to 1.56 and 1.47h, respectively (h: the water depth above the weir). The average depth velocity in the pool of a conventional weir is higher than that of a rectangular labyrinth weir. However, for a given discharge, bed slope, and weir spacing, the turbulent kinetic energy (TKE) and turbulence intensity (TI) values are higher for a rectangular labyrinth weir compared to conventional weir. The conventional weir has lower energy dissipation than the rectangular labyrinth weir. Lower TKE and TI values were observed at the top of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall. As the distance between the weirs and the bottom slope increased, the average depth velocity, the average value of turbulent kinetic energy and the turbulence intensity increased, and the volumetric energy dissipation in the pool decreased. The presence of an opening in the weir increased the average depth velocity and TI values and decreased the range of highest TKE within the pool, resulted in larger resting areas for fish (lower TKE), and decreased the energy dissipation rates in both models.

1 Introduction

Artificial barriers such as detour dams, weirs, and culverts in lakes and rivers prevent fish from migrating and completing the upstream and downstream movement cycle. This chain is related to the life stage of the fish, its location, and the type of migration. Several riverine fish species instinctively migrate upstream for spawning and other needs. Conversely, downstream migration is a characteristic of early life stages [1]. A fish ladder is a waterway that allows one or more fish species to cross a specific obstacle. These structures are constructed near detour dams and other transverse structures that have prevented such migration by allowing fish to overcome obstacles [2]. The flow pattern in fish ladders influences safe and comfortable passage for ascending fish. The flow’s strong turbulence can reduce the fish’s speed, injure them, and delay or prevent them from exiting the fish ladder. In adult fish, spawning migrations are usually complex, and delays are critical to reproductive success [3].

Various fish ladders/fishways include vertical slots, denil, rock ramps, and pool weirs [1]. The choice of fish ladder usually depends on many factors, including water elevation, space available for construction, and fish species. Pool and weir structures are among the most important fish ladders that help fish overcome obstacles in streams or rivers and swim upstream [1]. Because they are easy to construct and maintain, this type of fish ladder has received considerable attention from researchers and practitioners. Such a fish ladder consists of a sloping-floor channel with series of pools directly separated by a series of weirs [4]. These fish ladders, with or without underwater openings, are generally well-suited for slopes of 10% or less [12]. Within these pools, flow velocities are low and provide resting areas for fish after they enter the fish ladder. After resting in the pools, fish overcome these weirs by blasting or jumping over them [2]. There may also be an opening in the flooded portion of the weir through which the fish can swim instead of jumping over the weir. Design parameters such as the length of the pool, the height of the weir, the slope of the bottom, and the water discharge are the most important factors in determining the hydraulic structure of this type of fish ladder [3]. The flow over the weir depends on the flow depth at a given slope S0 and the pool length, either “plunging” or “streaming.” In plunging flow, the water column h over each weir creates a water jet that releases energy through turbulent mixing and diffusion mechanisms [5]. The dimensionless discharges for plunging (Q+) and streaming (Q*) flows are shown in Fig. 1, where Q is the total discharge, B is the width of the channel, w is the weir height, S0 is the slope of the bottom, h is the water depth above the weir, d is the flow depth, and g is the acceleration due to gravity. The maximum velocity occurs near the top of the weir for plunging flow. At the water’s surface, it drops to about half [6].

figure 1
Fig. 1

Extensive experimental studies have been conducted to investigate flow patterns for various physical geometries (i.e., bed slope, pool length, and weir height) [2]. Guiny et al. [7] modified the standard design by adding vertical slots, orifices, and weirs in fishways. The efficiency of the orifices and vertical slots was related to the velocities at their entrances. In the laboratory experiments of Yagci [8], the three-dimensional (3D) mean flow and turbulence structure of a pool weir fishway combined with an orifice and a slot is investigated. It is shown that the energy dissipation per unit volume and the discharge have a linear relationship.

Considering the beneficial characteristics reported in the limited studies of researchers on the labyrinth weir in the pool-weir-type fishway, and knowing that the characteristics of flow in pool-weir-type fishways are highly dependent on the geometry of the weir, an alternative design of the rectangular labyrinth weir instead of the straight weirs in the pool-weir-type fishway is investigated in this study [79]. Kim [10] conducted experiments to compare the hydraulic characteristics of three different weir types in a pool-weir-type fishway. The results show that a straight, rectangular weir with a notch is preferable to a zigzag or trapezoidal weir. Studies on natural fish passes show that pass ability can be improved by lengthening the weir’s crest [7]. Zhong et al. [11] investigated the semi-rigid weir’s hydraulic performance in the fishway’s flow field with a pool weir. The results showed that this type of fishway performed better with a lower invert slope and a smaller radius ratio but with a larger pool spacing.

Considering that an alternative method to study the flow characteristics in a fishway with a pool weir is based on numerical methods and modeling from computational fluid dynamics (CFD), which can easily change the geometry of the fishway for different flow fields, this study uses the powerful package CFD and the software FLOW-3D to evaluate the proposed weir design and compare it with the conventional one to extend the application of the fishway. The main objective of this study was to evaluate the hydraulic performance of the rectangular labyrinth pool and the weir with submerged openings in different hydraulic configurations. The primary objective of creating a new weir configuration for suitable flow patterns is evaluated based on the swimming capabilities of different fish species. Specifically, the following questions will be answered: (a) How do the various hydraulic and geometric parameters relate to the effects of water velocity and turbulence, expressed as turbulent kinetic energy (TKE) and turbulence intensity (TI) within the fishway, i.e., are conventional weirs more affected by hydraulics than rectangular labyrinth weirs? (b) Which weir configurations have the greatest effect on fish performance in the fishway? (c) In the presence of an orifice plate, does the performance of each weir configuration differ with different weir spacing, bed gradients, and flow regimes from that without an orifice plate?

2 Materials and Methods

2.1 Physical Model Configuration

This paper focuses on Ead et al. [6]’s laboratory experiments as a reference, testing ten pool weirs (Fig. 2). The experimental flume was 6 m long, 0.56 m wide, and 0.6 m high, with a bottom slope of 10%. Field measurements were made at steady flow with a maximum flow rate of 0.165 m3/s. Discharge was measured with magnetic flow meters in the inlets and water level with point meters (see Ead et al. [6]. for more details). Table 1 summarizes the experimental conditions considered for model calibration in this study.

figure 2
Fig. 2

Table 1 Experimental conditions considered for calibration

Full size table

2.2 Numerical Models

Computational fluid dynamics (CFD) simulations were performed using FLOW-3D® v11.2 to validate a series of experimental liner pool weirs by Ead et al. [6] and to investigate the effects of the rectangular labyrinth pool weir with an orifice. The dimensions of the channel and data collection areas in the numerical models are the same as those of the laboratory model. Two types of pool weirs were considered: conventional and labyrinth. The proposed rectangular labyrinth pool weirs have a symmetrical cross section and are sized to fit within the experimental channel. The conventional pool weir model had a pool length of l = 0.685 and 0.342 m, a weir height of w = 0.141 m, a weir width of B = 0.56 m, and a channel slope of S0 = 5 and 10%. The rectangular labyrinth weirs have the same front width as the offset, i.e., a = b = c = 0.186 m. A square underwater opening with a width of 0.05 m and a depth of 0.05 m was created in the middle of the weir. The weir configuration considered in the present study is shown in Fig. 3.

figure 3
Fig. 3

2.3 Governing Equations

FLOW-3D® software solves the Navier–Stokes–Reynolds equations for three-dimensional analysis of incompressible flows using the fluid-volume method on a gridded domain. FLOW -3D® uses an advanced free surface flow tracking algorithm (TruVOF) developed by Hirt and Nichols [12], where fluid configurations are defined in terms of a VOF function F (xyzt). In this case, F (fluid fraction) represents the volume fraction occupied by the fluid: F = 1 in cells filled with fluid and F = 0 in cells without fluid (empty areas) [413]. The free surface area is at an intermediate value of F. (Typically, F = 0.5, but the user can specify a different intermediate value.) The equations in Cartesian coordinates (xyz) applicable to the model are as follows:

�f∂�∂�+∂(���x)∂�+∂(���y)∂�+∂(���z)∂�=�SOR

(1)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�x+�x

(2)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�y+�y

(3)

∂�∂�+1�f(��x∂�∂�+��y∂�∂�+��z∂�∂�)=−1�∂�∂�+�z+�z

(4)

where (uvw) are the velocity components, (AxAyAz) are the flow area components, (Gx, Gy, Gz) are the mass accelerations, and (fxfyfz) are the viscous accelerations in the directions (xyz), ρ is the fluid density, RSOR is the spring term, Vf is the volume fraction associated with the flow, and P is the pressure. The kε turbulence model (RNG) was used in this study to solve the turbulence of the flow field. This model is a modified version of the standard kε model that improves performance. The model is a two-equation model; the first equation (Eq. 5) expresses the turbulence’s energy, called turbulent kinetic energy (k) [14]. The second equation (Eq. 6) is the turbulent dissipation rate (ε), which determines the rate of dissipation of kinetic energy [15]. These equations are expressed as follows Dasineh et al. [4]:

∂(��)∂�+∂(����)∂��=∂∂��[������∂�∂��]+��−�ε

(5)

∂(�ε)∂�+∂(�ε��)∂��=∂∂��[�ε�eff∂ε∂��]+�1εε��k−�2ε�ε2�

(6)

In these equations, k is the turbulent kinetic energy, ε is the turbulent energy consumption rate, Gk is the generation of turbulent kinetic energy by the average velocity gradient, with empirical constants αε = αk = 1.39, C1ε = 1.42, and C2ε = 1.68, eff is the effective viscosity, μeff = μ + μt [15]. Here, μ is the hydrodynamic density coefficient, and μt is the turbulent density of the fluid.

2.4 Meshing and the Boundary Conditions in the Model Setup

The numerical area is divided into three mesh blocks in the X-direction. The meshes are divided into different sizes, a containing mesh block for the entire spatial domain and a nested block with refined cells for the domain of interest. Three different sizes were selected for each of the grid blocks. By comparing the accuracy of their results based on the experimental data, the reasonable mesh for the solution domain was finally selected. The convergence index method (GCI) evaluated the mesh sensitivity analysis. Based on this method, many researchers, such as Ahmadi et al. [16] and Ahmadi et al. [15], have studied the independence of numerical results from mesh size. Three different mesh sizes with a refinement ratio (r) of 1.33 were used to perform the convergence index method. The refinement ratio is the ratio between the larger and smaller mesh sizes (r = Gcoarse/Gfine). According to the recommendation of Celik et al. [17], the recommended number for the refinement ratio is 1.3, which gives acceptable results. Table 2 shows the characteristics of the three mesh sizes selected for mesh sensitivity analysis.Table 2 Characteristics of the meshes tested in the convergence analysis

Full size table

The results of u1 = umax (u1 = velocity component along the x1 axis and umax = maximum velocity of u1 in a section perpendicular to the invert of the fishway) at Q = 0.035 m3/s, × 1/l = 0.66, and Y1/b = 0 in the pool of conventional weir No. 4, obtained from the output results of the software, were used to evaluate the accuracy of the calculation range. As shown in Fig. 4x1 = the distance from a given weir in the x-direction, Y1 = the water depth measured in the y-direction, Y0 = the vertical distance in the Cartesian coordinate system, h = the water column at the crest, b = the distance between the two points of maximum velocity umax and zero velocity, and l = the pool length.

figure 4
Fig. 4

The apparent index of convergence (p) in the GCI method is calculated as follows:

�=ln⁡(�3−�2)(�2−�1)/ln⁡(�)

(7)

f1f2, and f3 are the hydraulic parameters obtained from the numerical simulation (f1 corresponds to the small mesh), and r is the refinement ratio. The following equation defines the convergence index of the fine mesh:

GCIfine=1.25|ε|��−1

(8)

Here, ε = (f2 − f1)/f1 is the relative error, and f2 and f3 are the values of hydraulic parameters considered for medium and small grids, respectively. GCI12 and GCI23 dimensionless indices can be calculated as:

GCI12=1.25|�2−�1�1|��−1

(9)

Then, the independence of the network is preserved. The convergence index of the network parameters obtained by Eqs. (7)–(9) for all three network variables is shown in Table 3. Since the GCI values for the smaller grid (GCI12) are lower compared to coarse grid (GCI23), it can be concluded that the independence of the grid is almost achieved. No further change in the grid size of the solution domain is required. The calculated values (GCI23/rpGCI12) are close to 1, which shows that the numerical results obtained are within the convergence range. As a result, the meshing of the solution domain consisting of a block mesh with a mesh size of 0.012 m and a block mesh within a larger block mesh with a mesh size of 0.009 m was selected as the optimal mesh (Fig. 5).Table 3 GCI calculation

Full size table

figure 5
Fig. 5

The boundary conditions applied to the area are shown in Fig. 6. The boundary condition of specific flow rate (volume flow rate-Q) was used for the inlet of the flow. For the downstream boundary, the flow output (outflow-O) condition did not affect the flow in the solution area. For the Zmax boundary, the specified pressure boundary condition was used along with the fluid fraction = 0 (P). This type of boundary condition considers free surface or atmospheric pressure conditions (Ghaderi et al. [19]). The wall boundary condition is defined for the bottom of the channel, which acts like a virtual wall without friction (W). The boundary between mesh blocks and walls were considered a symmetrical condition (S).

figure 6
Fig. 6

The convergence of the steady-state solutions was controlled during the simulations by monitoring the changes in discharge at the inlet boundary conditions. Figure 7 shows the time series plots of the discharge obtained from the Model A for the three main discharges from the numerical results. The 8 s to reach the flow equilibrium is suitable for the case of the fish ladder with pool and weir. Almost all discharge fluctuations in the models are insignificant in time, and the flow has reached relative stability. The computation time for the simulations was between 6 and 8 h using a personal computer with eight cores of a CPU (Intel Core i7-7700K @ 4.20 GHz and 16 GB RAM).

figure 7
Fig. 7

3 Results

3.1 Verification of Numerical Results

Quantitative outcomes, including free surface and normalized velocity profiles obtained using FLOW-3D software, were reviewed and compared with the results of Ead et al. [6]. The fourth pool was selected to present the results and compare the experiment and simulation. For each quantity, the percentage of mean absolute error (MAPE (%)) and root-mean-square error (RMSE) are calculated. Equations (10) and (11) show the method used to calculate the errors.

MAPE(%)100×1�∑1�|�exp−�num�exp|

(10)

RMSE(−)1�∑1�(�exp−�num)2

(11)

Here, Xexp is the value of the laboratory data, Xnum is the numerical data value, and n is the amount of data. As shown in Fig. 8, let x1 = distance from a given weir in the x-direction and Y1 = water depth in the y-direction from the bottom. The trend of the surface profiles for each of the numerical results is the same as that of the laboratory results. The surface profiles of the plunging flows drop after the flow enters and then rises to approach the next weir. The RMSE and MAPE error values for Model A are 0.014 m and 3.11%, respectively, indicating acceptable agreement between numerical and laboratory results. Figure 9 shows the velocity vectors and plunging flow from the numerical results, where x and y are horizontal and vertical to the flow direction, respectively. It can be seen that the jet in the fish ladder pool has a relatively high velocity. The two vortices, i.e., the enclosed vortex rotating clockwise behind the weir and the surface vortex rotating counterclockwise above the jet, are observed for the regime of incident flow. The point where the jet meets the fish passage bed is shown in the figure. The normalized velocity profiles upstream and downstream of the impact points are shown in Fig. 10. The figure shows that the numerical results agree well with the experimental data of Ead et al. [6].

figure 8
Fig. 8
figure 9
Fig. 9
figure 10
Fig. 10

3.2 Flow Regime and Discharge-Depth Relationship

Depending on the geometric shape of the fishway, including the distance of the weir, the slope of the bottom, the height of the weir, and the flow conditions, the flow regime in the fishway is divided into three categories: dipping, transitional, and flow regimes [4]. In the plunging flow regime, the flow enters the pool through the weir, impacts the bottom of the fishway, and forms a hydraulic jump causing two eddies [220]. In the streamwise flow regime, the surface of the flow passing over the weir is almost parallel to the bottom of the channel. The transitional regime has intermediate flow characteristics between the submerged and flow regimes. To predict the flow regime created in the fishway, Ead et al. [6] proposed two dimensionless parameters, Qt* and L/w, where Qt* is the dimensionless discharge, L is the distance between weirs, and w is the height of the weir:

��∗=���0���

(12)

Q is the total discharge, B is the width of the channel, S0 is the slope of the bed, and g is the gravity acceleration. Figure 11 shows different ranges for each flow regime based on the slope of the bed and the distance between the pools in this study. The results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22] were used for this comparison. The distance between the pools affects the changes in the regime of the fish ladder. So, if you decrease the distance between weirs, the flow regime more likely becomes. This study determined all three flow regimes in a fish ladder. When the corresponding range of Qt* is less than 0.6, the flow regime can dip at values of L/B = 1.83. If the corresponding range of Qt* is greater than 0.5, transitional flow may occur at L/B = 1.22. On the other hand, when Qt* is greater than 1, streamwise flow can occur at values of L/B = 0.61. These observations agree well with the results of Baki et al. [21], Ead et al. [6] and Dizabadi et al. [22].

figure 11
Fig. 11

For plunging flows, another dimensionless discharge (Q+) versus h/w given by Ead et al. [6] was used for further evaluation:

�+=��ℎ�ℎ=23�d�

(13)

where h is the water depth above the weir, and Cd is the discharge coefficient. Figure 12a compares the numerical and experimental results of Ead et al. [6]. In this figure, Rehbock’s empirical equation is used to estimate the discharge coefficient of Ead et al. [6].

�d=0.57+0.075ℎ�

(14)

figure 12
Fig. 12

The numerical results for the conventional weir (Model A) and the rectangular labyrinth weir (Model B) of this study agree well with the laboratory results of Ead et al. [6]. When comparing models A and B, it is also found that a rectangular labyrinth weir has larger Q + values than the conventional weir as the length of the weir crest increases for a given channel width and fixed headwater elevation. In Fig. 12b, Models A and B’s flow depth plot shows the plunging flow regime. The power trend lines drawn through the data are the best-fit lines. The data shown in Fig. 12b are for different bed slopes and weir geometries. For the conventional weir and the rectangular labyrinth weir at submerged flow, Q can be assumed to be proportional to 1.56 and 1.47h, respectively. In the results of Ead et al. [6], Q is proportional to 1.5h. If we assume that the flow through the orifice is Qo and the total outflow is Q, the change in the ratio of Qo/Q to total outflow for models A and B can be shown in Fig. 13. For both models, the flow through the orifice decreases as the total flow increases. A logarithmic trend line was also found between the total outflow and the dimensionless ratio Qo/Q.

figure 13
Fig. 13

3.3 Depth-Averaged Velocity Distributions

To ensure that the target fish species can pass the fish ladder with maximum efficiency, the average velocity in the fish ladder should be low enough [4]. Therefore, the average velocity in depth should be as much as possible below the critical swimming velocities of the target fishes at a constant flow depth in the pool [20]. The contour plot of depth-averaged velocity was used instead of another direction, such as longitudinal velocity because fish are more sensitive to depth-averaged flow velocity than to its direction under different hydraulic conditions. Figure 14 shows the distribution of depth-averaged velocity in the pool for Models A and B in two cases with and without orifice plates. Model A’s velocity within the pool differs slightly in the spanwise direction. However, no significant variation in velocity was observed. The flow is gradually directed to the sides as it passes through the rectangular labyrinth weir. This increases the velocity at the sides of the channel. Therefore, the high-velocity zone is located at the sides. The low velocity is in the downstream apex of the weir. This area may be suitable for swimming target fish. The presence of an opening in the weir increases the flow velocity at the opening and in the pool’s center, especially in Model A. The flow velocity increase caused by the models’ opening varied from 7.7 to 12.48%. Figure 15 illustrates the effect of the inverted slope on the averaged depth velocity distribution in the pool at low and high discharge. At constant discharge, flow velocity increases with increasing bed slope. In general, high flow velocity was found in the weir toe sidewall and the weir and channel sidewalls.

figure 14
Fig. 14
figure 15
Fig. 15

On the other hand, for a constant bed slope, the high-velocity area of the pool increases due to the increase in runoff. For both bed slopes and different discharges, the most appropriate path for fish to travel from upstream to downstream is through the middle of the cross section and along the top of the rectangular labyrinth weirs. The maximum dominant velocities for Model B at S0 = 5% were 0.83 and 1.01 m/s; at S0 = 10%, they were 1.12 and 1.61 m/s at low and high flows, respectively. The low mean velocities for the same distance and S0 = 5 and 10% were 0.17 and 0.26 m/s, respectively.

Figure 16 shows the contour of the averaged depth velocity for various distances from the weir at low and high discharge. The contour plot shows a large variation in velocity within short distances from the weir. At L/B = 0.61, velocities are low upstream and downstream of the top of the weir. The high velocities occur in the side walls of the weir and the channel. At L/B = 1.22, the low-velocity zone displaces the higher velocity in most of the pool. Higher velocities were found only on the sides of the channel. As the discharge increases, the velocity zone in the pool becomes wider. At L/B = 1.83, there is an area of higher velocities only upstream of the crest and on the sides of the weir. At high discharge, the prevailing maximum velocities for L/B = 0.61, 1.22, and 1.83 were 1.46, 1.65, and 1.84 m/s, respectively. As the distance between weirs increases, the range of maximum velocity increases.

figure 16
Fig. 16

On the other hand, the low mean velocity for these distances was 0.27, 0.44, and 0.72 m/s, respectively. Thus, the low-velocity zone decreases with increasing distance between weirs. Figure 17 shows the pattern distribution of streamlines along with the velocity contour at various distances from the weir for Q = 0.05 m3/s. A stream-like flow is generally formed in the pool at a small distance between weirs (L/B = 0.61). The rotation cell under the jet forms clockwise between the two weirs. At the distances between the spillways (L/B = 1.22), the transition regime of the flow is formed. The transition regime occurs when or shortly after the weir is flooded. The rotation cell under the jet is clockwise smaller than the flow regime and larger than the submergence regime. At a distance L/B = 1.83, a plunging flow is formed so that the plunging jet dips into the pool and extends downstream to the center of the pool. The clockwise rotation of the cell is bounded by the dipping jet of the weir and is located between the bottom and the side walls of the weir and the channel.

figure 17
Fig. 17

Figure 18 shows the average depth velocity bar graph for each weir at different bed slopes and with and without orifice plates. As the distance between weirs increases, all models’ average depth velocity increases. As the slope of the bottom increases and an orifice plate is present, the average depth velocity in the pool increases. In addition, the average pool depth velocity increases as the discharge increases. Among the models, Model A’s average depth velocity is higher than Model B’s. The variation in velocity ranged from 8.11 to 12.24% for the models without an orifice plate and from 10.26 to 16.87% for the models with an orifice plate.

figure 18
Fig. 18

3.4 Turbulence Characteristics

The turbulent kinetic energy is one of the important parameters reflecting the turbulent properties of the flow field [23]. When the k value is high, more energy and a longer transit time are required to migrate the target species. The turbulent kinetic energy is defined as follows:

�=12(�x′2+�y′2+�z′2)

(15)

where uxuy, and uz are fluctuating velocities in the xy, and z directions, respectively. An illustration of the TKE and the effects of the geometric arrangement of the weir and the presence of an opening in the weir is shown in Fig. 19. For a given bed slope, in Model A, the highest TKE values are uniformly distributed in the weir’s upstream portion in the channel’s cross section. In contrast, for the rectangular labyrinth weir (Model B), the highest TKE values are concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value in Models A and B is 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%). In the downstream portion of the conventional weir and within the crest of the weir and the walls of the rectangular labyrinth, there was a much lower TKE value that provided the best conditions for fish to recover in the pool between the weirs. The average of the lowest TKE for bottom slopes of 5 and 10% in Model A is 0.041 and 0.056 J/kg, and for Model B, is 0.047 and 0.064 J/kg. The presence of an opening in the weirs reduces the area of the highest TKE within the pool. It also increases the resting areas for fish (lower TKE). The highest TKE at the highest bottom slope in Models A and B with an orifice is 0.208 and 0.191 J/kg, respectively.

figure 19
Fig. 19

Figure 20 shows the effect of slope on the longitudinal distribution of TKE in the pools. TKE values significantly increase for a given discharge with an increasing bottom slope. Thus, for a low bed slope (S0 = 5%), a large pool area has expanded with average values of 0.131 and 0.168 J/kg for low and high discharge, respectively. For a bed slope of S0 = 10%, the average TKE values are 0.176 and 0.234 J/kg. Furthermore, as the discharge increases, the area with high TKE values within the pool increases. Lower TKE values are observed at the apex of the labyrinth weir, at the corner of the wall downstream of the weir, and between the side walls of the weir and the channel wall for both bottom slopes. The effect of distance between weirs on TKE is shown in Fig. 21. Low TKE values were observed at low discharge and short distances between weirs. Low TKE values are located at the top of the rectangular labyrinth weir and the downstream corner of the weir wall. There is a maximum value of TKE at the large distances between weirs, L/B = 1.83, along the center line of the pool, where the dip jet meets the bottom of the bed. At high discharge, the maximum TKE value for the distance L/B = 0.61, 1.22, and 1.83 was 0.246, 0.322, and 0.417 J/kg, respectively. In addition, the maximum TKE range increases with the distance between weirs.

figure 20
Fig. 20
figure 21
Fig. 21

For TKE size, the average value (TKEave) is plotted against q in Fig. 22. For all models, the TKE values increase with increasing q. For example, in models A and B with L/B = 0.61 and a slope of 10%, the TKE value increases by 41.66 and 86.95%, respectively, as q increases from 0.1 to 0.27 m2/s. The TKE values in Model B are higher than Model A for a given discharge, bed slope, and weir distance. The TKEave in Model B is higher compared to Model A, ranging from 31.46 to 57.94%. The presence of an orifice in the weir reduces the TKE values in both weirs. The intensity of the reduction is greater in Model B. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, an orifice reduces TKEave values by 60.35 and 19.04%, respectively. For each model, increasing the bed slope increases the TKEave values in the pool. For example, for Model B with q = 0.18 m2/s, increasing the bed slope from 5 to 10% increases the TKEave value by 14.34%. Increasing the distance between weirs increases the TKEave values in the pool. For example, in Model B with S0 = 10% and q = 0.3 m2/s, the TKEave in the pool increases by 34.22% if you increase the distance between weirs from L/B = 0.61 to L/B = 0.183.

figure 22
Fig. 22

Cotel et al. [24] suggested that turbulence intensity (TI) is a suitable parameter for studying fish swimming performance. Figure 23 shows the plot of TI and the effects of the geometric arrangement of the weir and the presence of an orifice. In Model A, the highest TI values are found upstream of the weirs and are evenly distributed across the cross section of the channel. The TI values increase as you move upstream to downstream in the pool. For the rectangular labyrinth weir, the highest TI values were concentrated on the sides of the pool, between the top of the weir and the side wall of the channel, and along the top of the weir. Downstream of the conventional weir, within the apex of the weir, and at the corners of the walls of the rectangular labyrinth weir, the percentage of TI was low. At the highest discharge, the average range of TI in Models A and B was 24–45% and 15–62%, respectively. The diversity of TI is greater in the rectangular labyrinth weir than the conventional weir. Fish swimming performance is reduced due to higher turbulence intensity. However, fish species may prefer different disturbance intensities depending on their swimming abilities; for example, Salmo trutta prefers a disturbance intensity of 18–53% [25]. Kupferschmidt and Zhu [26] found a higher range of TI for fishways, such as natural rock weirs, of 40–60%. The presence of an orifice in the weir increases TI values within the pool, especially along the middle portion of the cross section of the fishway. With an orifice in the weir, the average range of TI in Models A and B was 28–59% and 22–73%, respectively.

figure 23
Fig. 23

The effect of bed slope on TI variation is shown in Fig. 24. TI increases in different pool areas as the bed slope increases for a given discharge. For a low bed slope (S0 = 5%), a large pool area has increased from 38 to 63% and from 56 to 71% for low and high discharge, respectively. For a bed slope of S0 = 10%, the average values of TI are 45–67% and 61–73% for low and high discharge, respectively. Therefore, as runoff increases, the area with high TI values within the pool increases. A lower TI is observed for both bottom slopes in the corner of the wall, downstream of the crest walls, and between the side walls in the weir and channel. Figure 25 compares weir spacing with the distribution of TI values within the pool. The TI values are low at low flows and short distances between weirs. A maximum value of TI occurs at long spacing and where the plunging stream impinges on the bed and the area around the bed. TI ranges from 36 to 57%, 58–72%, and 47–76% for the highest flow in a wide pool area for L/B = 0.61, 1.22, and 1.83, respectively.

figure 24
Fig. 24
figure 25
Fig. 25

The average value of turbulence intensity (TIave) is plotted against q in Fig. 26. The increase in TI values with the increase in q values is seen in all models. For example, the average values of TI for Models A and B at L/B = 0.61 and slope of 10% increased from 23.9 to 33.5% and from 42 to 51.8%, respectively, with the increase in q from 0.1 to 0.27 m2/s. For a given discharge, a given gradient, and a given spacing of weirs, the TIave is higher in Model B than Model A. The presence of an orifice in the weirs increases the TI values in both types. For example, in Models A and B with L/B = 0.61 and q = 0.1 m2/s, the presence of an orifice increases TIave from 23.9 to 37.1% and from 42 to 48.8%, respectively. For each model, TIave in the pool increases with increasing bed slope. For Model B with q = 0.18 m2/s, TIave increases from 37.5 to 45.8% when you increase the invert slope from 5 to 10%. Increasing the distance between weirs increases the TIave in the pool. In Model B with S0 = 10% and q = 0.3 m2/s, the TIave in the pool increases from 51.8 to 63.7% as the distance between weirs increases from L/B = 0.61 to L/B = 0.183.

figure 26
Fig. 26

3.5 Energy Dissipation

To facilitate the passage of various target species through the pool of fishways, it is necessary to pay attention to the energy dissipation of the flow and to keep the flow velocity in the pool slow. The average volumetric energy dissipation (k) in the pool is calculated using the following basic formula:

�=����0��

(16)

where ρ is the water density, and H is the average water depth of the pool. The change in k versus Q for all models at two bottom slopes, S0 = 5%, and S0 = 10%, is shown in Fig. 27. Like the results of Yagci [8] and Kupferschmidt and Zhu [26], at a constant bottom slope, the energy dissipation in the pool increases with increasing discharge. The trend of change in k as a function of Q from the present study at a bottom gradient of S0 = 5% is also consistent with the results of Kupferschmidt and Zhu [26] for the fishway with rock weir. The only difference between the results is the geometry of the fishway and the combination of boulders instead of a solid wall. Comparison of the models shows that the conventional model has lower energy dissipation than the rectangular labyrinth for a given discharge. Also, increasing the distance between weirs decreases the volumetric energy dissipation for each model with the same bed slope. Increasing the slope of the bottom leads to an increase in volumetric energy dissipation, and an opening in the weir leads to a decrease in volumetric energy dissipation for both models. Therefore, as a guideline for volumetric energy dissipation, if the value within the pool is too high, the increased distance of the weir, the decreased slope of the bed, or the creation of an opening in the weir would decrease the volumetric dissipation rate.

figure 27
Fig. 27

To evaluate the energy dissipation inside the pool, the general method of energy difference in two sections can use:

ε=�1−�2�1

(17)

where ε is the energy dissipation rate, and E1 and E2 are the specific energies in Sects. 1 and 2, respectively. The distance between Sects. 1 and 2 is the same. (L is the distance between two upstream and downstream weirs.) Figure 28 shows the changes in ε relative to q (flow per unit width). The rectangular labyrinth weir (Model B) has a higher energy dissipation rate than the conventional weir (Model A) at a constant bottom gradient. For example, at S0 = 5%, L/B = 0.61, and q = 0.08 m3/s.m, the energy dissipation rate in Model A (conventional weir) was 0.261. In Model B (rectangular labyrinth weir), however, it was 0.338 (22.75% increase). For each model, the energy dissipation rate within the pool increases as the slope of the bottom increases. For Model B with L/B = 1.83 and q = 0.178 m3/s.m, the energy dissipation rate at S0 = 5% and 10% is 0.305 and 0.358, respectively (14.8% increase). Figure 29 shows an orifice’s effect on the pools’ energy dissipation rate. With an orifice in the weir, both models’ energy dissipation rates decreased. Thus, the reduction in energy dissipation rate varied from 7.32 to 9.48% for Model A and from 8.46 to 10.57 for Model B.

figure 28
Fig. 28
figure 29
Fig. 29

4 Discussion

This study consisted of entirely of numerical analysis. Although this study was limited to two weirs, the hydraulic performance and flow characteristics in a pooled fishway are highlighted by the rectangular labyrinth weir and its comparison with the conventional straight weir. The study compared the numerical simulations with laboratory experiments in terms of surface profiles, velocity vectors, and flow characteristics in a fish ladder pool. The results indicate agreement between the numerical and laboratory data, supporting the reliability of the numerical model in capturing the observed phenomena.

When the configuration of the weir changes to a rectangular labyrinth weir, the flow characteristics, the maximum and minimum area, and even the location of each hydraulic parameter change compared to a conventional weir. In the rectangular labyrinth weir, the flow is gradually directed to the sides as it passes the weir. This increases the velocity at the sides of the channel [21]. Therefore, the high-velocity area is located on the sides. In the downstream apex of the weir, the flow velocity is low, and this area may be suitable for swimming target fish. However, no significant change in velocity was observed at the conventional weir within the fish ladder. This resulted in an average increase in TKE of 32% and an average increase in TI of about 17% compared to conventional weirs.

In addition, there is a slight difference in the flow regime for both weir configurations. In addition, the rectangular labyrinth weir has a higher energy dissipation rate for a given discharge and constant bottom slope than the conventional weir. By reducing the distance between the weirs, this becomes even more intense. Finally, the presence of an orifice in both configurations of the weir increased the flow velocity at the orifice and in the middle of the pool, reducing the highest TKE value and increasing the values of TI within the pool of the fish ladder. This resulted in a reduction in volumetric energy dissipation for both weir configurations.

The results of this study will help the reader understand the direct effects of the governing geometric parameters on the hydraulic characteristics of a fishway with a pool and weir. However, due to the limited configurations of the study, further investigation is needed to evaluate the position of the weir’s crest on the flow direction and the difference in flow characteristics when combining boulders instead of a solid wall for this type of labyrinth weir [26]. In addition, hydraulic engineers and biologists must work together to design an effective fishway with rectangular labyrinth configurations. The migration habits of the target species should be considered when designing the most appropriate design [27]. Parametric studies and field observations are recommended to determine the perfect design criteria.

The current study focused on comparing a rectangular labyrinth weir with a conventional straight weir. Further research can explore other weir configurations, such as variations in crest position, different shapes of labyrinth weirs, or the use of boulders instead of solid walls. This would help understand the influence of different geometric parameters on hydraulic characteristics.

5 Conclusions

A new layout of the weir was evaluated, namely a rectangular labyrinth weir compared to a straight weir in a pool and weir system. The differences between the weirs were highlighted, particularly how variations in the geometry of the structures, such as the shape of the weir, the spacing of the weir, the presence of an opening at the weir, and the slope of the bottom, affect the hydraulics within the structures. The main findings of this study are as follows:

  • The calculated dimensionless discharge (Qt*) confirmed three different flow regimes: when the corresponding range of Qt* is smaller than 0.6, the regime of plunging flow occurs for values of L/B = 1.83. (L: distance of the weir; B: channel width). When the corresponding range of Qt* is greater than 0.5, transitional flow occurs at L/B = 1.22. On the other hand, if Qt* is greater than 1, the streaming flow is at values of L/B = 0.61.
  • For the conventional weir and the rectangular labyrinth weir with the plunging flow, it can be assumed that the discharge (Q) is proportional to 1.56 and 1.47h, respectively (h: water depth above the weir). This information is useful for estimating the discharge based on water depth in practical applications.
  • In the rectangular labyrinth weir, the high-velocity zone is located on the side walls between the top of the weir and the channel wall. A high-velocity variation within short distances of the weir. Low velocity occurs within the downstream apex of the weir. This area may be suitable for swimming target fish.
  • As the distance between weirs increased, the zone of maximum velocity increased. However, the zone of low speed decreased. The prevailing maximum velocity for a rectangular labyrinth weir at L/B = 0.61, 1.22, and 1.83 was 1.46, 1.65, and 1.84 m/s, respectively. The low mean velocities for these distances were 0.27, 0.44, and 0.72 m/s, respectively. This finding highlights the importance of weir spacing in determining the flow characteristics within the fishway.
  • The presence of an orifice in the weir increased the flow velocity at the orifice and in the middle of the pool, especially in a conventional weir. The increase ranged from 7.7 to 12.48%.
  • For a given bottom slope, in a conventional weir, the highest values of turbulent kinetic energy (TKE) are uniformly distributed in the upstream part of the weir in the cross section of the channel. In contrast, for the rectangular labyrinth weir, the highest TKE values were concentrated on the sides of the pool between the crest of the weir and the channel wall. The highest TKE value for the conventional and the rectangular labyrinth weir was 0.224 and 0.278 J/kg, respectively, at the highest bottom slope (S0 = 10%).
  • For a given discharge, bottom slope, and weir spacing, the average values of TI are higher for the rectangular labyrinth weir than for the conventional weir. At the highest discharge, the average range of turbulence intensity (TI) for the conventional and rectangular labyrinth weirs was between 24 and 45% and 15% and 62%, respectively. This reveals that the rectangular labyrinth weir may generate more turbulent flow conditions within the fishway.
  • For a given discharge and constant bottom slope, the rectangular labyrinth weir has a higher energy dissipation rate than the conventional weir (22.75 and 34.86%).
  • Increasing the distance between weirs decreased volumetric energy dissipation. However, increasing the gradient increased volumetric energy dissipation. The presence of an opening in the weir resulted in a decrease in volumetric energy dissipation for both model types.

Availability of data and materials

Data is contained within the article.

References

  1. Katopodis C (1992) Introduction to fishway design, working document. Freshwater Institute, Central Arctic Region
  2. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C.: Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 63, 88–101 (2014). https://doi.org/10.1016/j.ecoleng.2013.12.010Article Google Scholar 
  3. Dasineh, M.; Ghaderi, A.; Bagherzadeh, M.; Ahmadi, M.; Kuriqi, A.: Prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods. Mathematics 9, 3135 (2021)Article Google Scholar 
  4. Silva, A.T.; Bermúdez, M.; Santos, J.M.; Rabuñal, J.R.; Puertas, J.: Pool-type fishway design for a potamodromous cyprinid in the Iberian Peninsula: the Iberian barbel—synthesis and future directions. Sustainability 12, 3387 (2020). https://doi.org/10.3390/su12083387Article Google Scholar 
  5. Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A.: Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: effect of boulder density and fishway discharge. Ecol. Eng. 73, 335–344 (2014). https://doi.org/10.1016/j.ecoleng.2014.09.065Article Google Scholar 
  6. Ead, S.; Katopodis, C.; Sikora, G.; Rajaratnam, N.J.J.: Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 3, 379–390 (2004)Article Google Scholar 
  7. Guiny, E.; Ervine, D.A.; Armstrong, J.D.: Hydraulic and biological aspects of fish passes for Atlantic salmon. J. Hydraul. Eng. 131, 542–553 (2005)Article Google Scholar 
  8. Yagci, O.: Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 36, 36–46 (2010). https://doi.org/10.1016/j.ecoleng.2009.09.007Article Google Scholar 
  9. Dizabadi, S.; Hakim, S.S.; Azimi, A.H.: Discharge characteristics and structure of flow in labyrinth weirs with a downstream pool. Flow Meas. Instrum. 71, 101683 (2020). https://doi.org/10.1016/j.flowmeasinst.2019.101683Article Google Scholar 
  10. Kim, J.H.: Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 16, 425–433 (2001). https://doi.org/10.1016/S0925-8574(00)00125-7Article Google Scholar 
  11. Zhong, Z.; Ruan, T.; Hu, Y.; Liu, J.; Liu, B.; Xu, W.: Experimental and numerical assessment of hydraulic characteristic of a new semi-frustum weir in the pool-weir fishway. Ecol. Eng. 170, 106362 (2021). https://doi.org/10.1016/j.ecoleng.2021.106362Article Google Scholar 
  12. Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5Article Google Scholar 
  13. Roache, P.J.: Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 1994(116), 405–413 (1994)Article Google Scholar 
  14. Guo, S.; Chen, S.; Huang, X.; Zhang, Y.; Jin, S.: CFD and experimental investigations of drag force on spherical leak detector in pipe flows at high Reynolds number. Comput. Model. Eng. Sci. 101(1), 59–80 (2014)Google Scholar 
  15. Ahmadi, M.; Kuriqi, A.; Nezhad, H.M.; Ghaderi, A.; Mohammadi, M.: Innovative configuration of vertical slot fishway to enhance fish swimming conditions. J. Hydrodyn. 34, 917–933 (2022). https://doi.org/10.1007/s42241-022-0071-yArticle Google Scholar 
  16. Ahmadi, M.; Ghaderi, A.; MohammadNezhad, H.; Kuriqi, A.; Di Francesco, S.J.W.: Numerical investigation of hydraulics in a vertical slot fishway with upgraded configurations. Water 13, 2711 (2021)Article Google Scholar 
  17. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. Trans. ASME (2008). https://doi.org/10.1115/1.2960953Article Google Scholar 
  18. Li, S.; Yang, J.; Ansell, A.: Evaluation of pool-type fish passage with labyrinth weirs. Sustainability (2022). https://doi.org/10.3390/su14031098Article Google Scholar 
  19. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)Article Google Scholar 
  20. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T.: Pool-type fishways: two different morpho-ecological cyprinid species facing plunging and streaming flows. PLoS ONE 8, e65089 (2013). https://doi.org/10.1371/journal.pone.0065089Article Google Scholar 
  21. Baki, A.B.M.; Zhu, D.Z.; Harwood, A.; Lewis, A.; Healey, K.: Rock-weir fishway I: flow regimes and hydraulic characteristics. J. Ecohydraulics 2, 122–141 (2017). https://doi.org/10.1080/24705357.2017.1369182Article Google Scholar 
  22. Dizabadi, S.; Azimi, A.H.: Hydraulic and turbulence structure of triangular labyrinth weir-pool fishways. River Res. Appl. 36, 280–295 (2020). https://doi.org/10.1002/rra.3581Article Google Scholar 
  23. Faizal, W.M.; Ghazali, N.N.N.; Khor, C.Y.; Zainon, M.Z.; Ibrahim, N.B.; Razif, R.M.: Turbulent kinetic energy of flow during inhale and exhale to characterize the severity of obstructive sleep apnea patient. Comput. Model. Eng. Sci. 136(1), 43–61 (2023)Google Scholar 
  24. Cotel, A.J.; Webb, P.W.; Tritico, H.: Do brown trout choose locations with reduced turbulence? Trans. Am. Fish. Soc. 135, 610–619 (2006). https://doi.org/10.1577/T04-196.1Article Google Scholar 
  25. Hargreaves, D.M.; Wright, N.G.: On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 95, 355–369 (2007). https://doi.org/10.1016/j.jweia.2006.08.002Article Google Scholar 
  26. Kupferschmidt, C.; Zhu, D.Z.: Physical modelling of pool and weir fishways with rock weirs. River Res. Appl. 33, 1130–1142 (2017). https://doi.org/10.1002/rra.3157Article Google Scholar 
  27. Romão, F.; Quaresma, A.L.; Santos, J.M.; Amaral, S.D.; Branco, P.; Pinheiro, A.N.: Multislot fishway improves entrance performance and fish transit time over vertical slots. Water (2021). https://doi.org/10.3390/w13030275Article Google Scholar 

Download references

Fig. 2 Model Test System

경로점을 가지는 해상풍력 석션버켓 기초의 기울기 제어 모형실험

Model tests for tilting control of suction bucket foundation for offshore wind turbine with path points

J. Korean Soc. Hazard Mitig. 2021;21(3):125-132

Publication date (electronic) : 2021 June 30

doi : https://doi.org/10.9798/KOSHAM.2021.21.3.125

You-Seok Kim*Jong-Pil Lee**

김유석*, 이종필**

* 정회원, ㈜대우건설 기술연구원 수석연구원(E-mail: youseok.kim@daewooenc.com)

* Member, Chief Research Engineer, Daewoo Institute of Construction Technology, DAEWOO E&C

** ㈜대우건설 기술연구원 과장

** Manager, Daewoo Institute of Construction Technology, DAEWOO E&C

* 교신저자, 정회원, ㈜대우건설 기술연구원 수석연구원(Tel: +82-2-2288-1050, Fax: +82-2-2288-4094, E-mail: youseok.kim@daewooenc.com)

Abstract

해상풍력단지개발에서 단일형 석션버켓 기초의 기울기 제어는 중요한 문제이다. 단일형 석션버켓 기초의 경우에는 내부에 격실을 마련하고 각 격실의 압력을 제어하는 것으로부터 기초의 기울기 제어가 가능하다. 단 각 격실의 압력은 미세하게 제어가 가능하여야 한다. 이에 대한 연구들이 수행되었으나 기울기 제어에 대한 방법론에 대해서는 구체적으로 언급이 되지 않고 있다. 본 연구에서는 3개의 내부격실을 둔 단일형 석션버켓 기초의 기울기 제어에 대한 모형실험을 실시하였다. 모형석션 기초의 기울기 제어를 위해서 격실내부압력을 각기 제어하여 실험을 수행하였다. 모형은 실제크기의 1:100으로 제작하였고 모래지반으로 수행하였다. 각 격실별로 부압 및 정압을 4가지로 조합하여 모형기초의 기울기 제어 실험을 수행하였다. 실험결과 시공 중 및 운용 중에 대해서 5°의 기울기 제어가 가능하였다. 운용중의 경우에는 부압만으로는 모형기초의 기울기 제어가 한계가 있어 정압을 조합하여 5°의 기울기 제어를 실현하였다.

In offshore wind farms, tilting control based on a single-basket suction bucket foundation is a significant problem. In a single-basket suction bucket foundation, the tilting control of the foundation is possible by arranging the cells inside and controlling the pressure of each cell. However, the pressure of each cell must be finely controlled. Studies on this topic have been conducted, but no specific tilting control method has been developed. This paper presents experimental model results for tilting control obtained during the installation of a suction bucket foundation consisting of three internal cells. Tilting control was performed by independently controlling the internal pressure of each cell. A 1:100 scale model was used, and the ground condition was sandy. Four cases of tilting control tests for the model foundation were used with multiple combinations of internal positive, negative, or both pressures of each cell. It was found that the tilting control was within 5° during the installation and operation stages. There was a tilting control limit for operation based on the model with only negative pressure; therefore, 5° tilting control was achieved by combining the positive pressure.

Keywords

1. 서 론

해상풍력발전기가 원활한 발전을 하기 위해서는 일정각도 이내의 기울기가 확보되어야 한다. 석션버켓 기초 형식은 기초하부가 단단한 암반층에 놓이지 않는다. 따라서 석션버켓 기초를 가지는 해상풍력 발전기는 조류력, 풍력, 파력 그리고 세굴 등에 의해 기울어질 수 있다. 우리나라의 경우 유럽과 달리 태풍과 같은 변수도 작용한다. 이를 극복하기 위해서는 설치단계나 운용단계에서 기울기를 보정하는 것이 중요하다. 특히 단일형 석션버켓 기초의 경우 내부에 격실을 두고 격실 내 압력을 제어하여 기울기를 보정하게 된다. 이 경우 각 격실에 부여하는 압력에 따라 기울기 보정이 이루어 질것이나 구체적으로 기울기보정을 위한 압력제어방법에 대해서는 구체적인 언급이 없는 형편이다.

Universal Foundation은 북해 Round 3에 대하여 단일형 석션버켓 기초에 대한 시험시공을 실시하였으며 수직도를 0.1° 미만으로 달성한 바 있다(Universal-foundation, 2014).

중국에서는 해상풍력 발전기용 단일형 석션버켓 기초에 내부격실을 적용하였으며 기초를 prestressed 콘크리트로 만든바 있다(Lian et al., 2011Lian et al., 2012Zhang et al., 2015). Zhang et al. (2016)에 따르면, 내부격실은 6각형이 모여있는 벌집형태를 가지며 실험은 Jiangsu성 풍력단지 예정지에서 가져온 실트질 모래로 지반을 조성하였다. 총 7개의 내부격실을 개별적으로 제어하였으나 최종 수직도는 명확하게 기술하지 않았다. 작은 기울기에 대해서는 부압을 통하여 조정하고, 큰 기울기에 대해서는 정압과 부압을 조합하여 제어를 완료하였다. 단일형 석션버켓 기초의 수직도에 대한 연구이나 구체적 절차가 언급되어 있지 않고, 격실별 정압⋅부압의 조합으로 인한 효과 등에 대해서도 자세하게 언급하지 않았다.

국내에서는 Kwag et al. (2012)은 군산항 앞바다에 단일형 석션버켓 기초를 시험 시공하였다. 단일형 석션버켓 기초를 최대 0.5° 이내의 오차로 설치가 완료하였다. 또한, Kim and Bae (2016)는 내부격실을 가지는 단일형 석션버켓 기초에 대한 기울기 보정방법을 제안하였다. 석션버켓 기초의 내부를 동일한 크기로 한가운데를 기준으로 방사형으로 3개 또는 4개의 격실로 나누고, 격실별 석션압을 제어하여 기울기를 제어하는 기술을 제안하였다. Kim et al. (2017)은 3개의 내부격실을 갖는 실내모형실험에서 시공중 1° 이상의 기울기 제어가 가능하였으며, 운용 중에는 0.25°의 기울기 제어가 가능한 것을 확인하였다. 운용단계에서는 정압을 부여하여야 큰 기울기 보정이 가능함을 밝혔다.

Kim et al. (2017)의 연구에서는 펌프구동압 제어문제로 임의 방위각을 가지는 단일형 석션버켓 기초의 실험을 수행하지 못하였고, 일방향 제어에 의한 기울기 제어의 실험이 수행되었다. 실험은 펌프구동압이 제어되지 못하여 보일링이 발생하는 문제가 있었다.

본 연구에서는 Kim et al. (2017)의 기존 연구를 보완하여 3개의 격실을 가지는 단일형 석션버켓 기초모형을 가지고 격실내부 압력을 각기 제어하여 기울기를 보정하는 실험연구를 수행하였다. 4개의 실험들은 초기에 동일한 경사각을 가지도록 하였고 이를 펌프구동에 의해 0.25° 이하가 되도록 하였으며, 기울어진 점이 내부격실위치에 상관없이 임의 방위각을 가지도록 배치하여 개별 격실내부에 부압과 정압을 조합하는 조건에서 해상풍력 발전기 시공단계 중 2가지와 운용 중 2가지에 대해서 기울기 보정실험을 수행하였다. 1개의 해상풍력기초의 경우는 수동에 의한 기울기 보정이 가능하다고 보여 지나, 해상풍력단지는 다수의 기초로 구성되며, 자동화를 위한 알고리즘 개발은 중요한 문제이다. 일련의 실험들은 동일한 방식에 의해 모형기초의 기울기 제어가 되도록 하였다. 동일한 알고리즘이 적용되는 경우에 단일형 석션버켓 기초로 이루어진 해상풍력단지 개발에 적용이 가능할 것으로 사료된다.

2. 실험방법 및 장비

본 연구에서는 Kim and Bae (2016)가 제안한 방법을 실험적으로 구현하였다. 이를 위해 Kim et al. (2017)의 시스템에서 문제가 되었던 펌프의 압력을 제어하기 위해 비례제어밸브를 추가 하였고, 임의 방위각으로 기울어진 모형석션버켓 기초를 기울기 보정하기 위해 총 6개의 펌프를 설치하였다. 펌프에 의한 격실 내 압력제어는 모형기초의 기울기를 미세하게 자세제어하기 위해서 필요하다. Kim et al. (2017)에서 사용한 펌프는 작은 용량이었으나 보일링이 일어나는 문제가 있었다. 따라서 압력을 제어하기 위해서 펌프자체의 속도를 저감하는 방법이 필요하였다. 채택된 펌프용량이 작아서 인버터와 같은 펌프속도에 맞는 속도제어기를 구하지 못하였다. 이에 따라 압력제어를 위하여 격실에 연결되는 호스 중간에 비례제어밸브를 채택하게 되었다. 비례제어밸브는 수백단계의 각도를 미세하게 제어가 가능하며 전압이나 전류 값을 입력하여 밸브의 여닫힘 제어가 가능하다. 본 실험에서 사용된 비례제어밸브는 전압제어 방식으로 0에서 5 V DC전압으로 밸브 폐쇄부터 완전개방까지를 제어할 수 있다. 본 실험에서는 제어기와 비례제어밸브간 거리가 상대적으로 멀지 않았기 때문에 제어가 쉬운 DC전압제어를 사용하였으나, 5 m 이상 거리가 먼 경우에는 전압강하 등에 의한 문제가 없는 전류 값으로도 제어가 가능한 제품을 사용하였다. Kim and Bae (2016)가 제안한 방법의 기본개념은 Fig. 1(a)와 같다. 그림에서 보는 바와 같이 각 격실의 압력을 제어하여 초기위치 pt4를 기울기원점(기울기 0°) pt0로 보내는 것으로 2번의 경로를 통하여 원점으로 보내게 된다. 여기에는 각 격실의 압력부여에 따라 3가지 방법이 있다. 우선 격실2번에 부압을 주면 pt1으로 보내고 다음 단계로 격실 2번 및 3번에 부압을 주어 pt0로 보내는 방법1, 격실3에 부압을 주어 pt2로 보낸 다음 격실 2에 부압을 주어 pt0로 보내는 방법2, 마지막으로 격실 2 및 3에 부압을 주어 pt3으로 보낸 다음 격실2에 부압을 주어 pt0로 보내는 방법3다. 이 3가지 방법 중에서 중간의 경로점 pt1, pt2, pt3와 최종위치 pt0와의 거리가 가장 짧은 쪽을 선택하는 것이 가장 효율적인 방법이다. 본 연구에서는 pt4(방위각 55°)에서 pt3를 거쳐 pt0로 보내는 방법(case 1)과 pt4의 대각선에 위치한다고 가정한(방위각 235°) pt5에서 pt0로 이동시키는 방법(case 2)에 대해 모형실험을 실시하였다(Fig. 1(b) 참조). 또한 해상풍력발전기가 운영중인 것으로 모사하기 위해 내부격실이 모래지반으로 채워져서 부압만으로는 기울기보정이 안 되는 것으로 가정하여 case 1과 case 2와 동일한 방위각 및 기울기에서 정압도 부여하는 방법(case 3, 4)에 대하여 실험을 실시하였다. Kim et al. (2017)에 의하면 3개의 격실 중 1개의 격실 만에도 내부에 모래지반으로 채워져 물로만 되어 있는 공간이 없는 경우는 더 이상 기울기 제어가 거의 되지 않았음을 확인한 바 있다. 초기 기울기각은 5°로 하였으며 방위각은 Fig. 1(b)에서와 같이 55° 및 235°에 대하여 실시하였다. 방위각 55°의 경우 위에서 언급한 격실 2와 3에 부압을 주는 경우(Fig. 1(c) 참조)가 가장 효율적이며 방위각 235°의 경우는 격실 1에 부압을 주는 방법(Fig. 1(d) 참조)이 가장 효율적이다.

Fig. 1 Basic Concept of Tilting Control Method
Fig. 1 Basic Concept of Tilting Control Method

이와 같이 동일한 방식으로 자동화를 이루면 단일형 석션버켓 기초로 이루어진 해상풍력단지에서 일정각도 이상 기울어진 경우에 자동적으로 기울기가 보정 가능할 것으로 사료된다.

실험장비는 Fig. 2와 같이 모형토조, 모형기초 내부의 부압 및 정압을 부여하는 펌프, 모형석션버켓 기초, 펌프압을 제어하는 비례제어밸브, 레이저변위용 센서거치대, 데이터 수집장비 및 실시간데이터를 볼 수 있는 PC로 구성된다. 모형토조 제원은 내경 580 mm, 내측 높이 454 mm이며 두께 10 mm의 원형아크릴로 제작되었다. 데이터 수집장비는 레이저변위계 및 압력계를 계측할 수 있는 측정장비를 사용하였고 계측간격은 초당 2회로 하였다.

Fig. 2 Model Test System
Fig. 2 Model Test System

Model Test System

모형석션버켓 기초는 두께 3 mm의 아크릴로 제작되었으며, 이의 제원은 Fig. 3(a)와 같이 지름 170 mm, 높이 130 mm이다. 내부격실은 두께 3 mm, 격실높이 78 mm로 모형석션버켓 벽체높이의 60%로 설치하였다. 모형석션버켓 기초는 원형(prototype) 구조물의 1:100의 크기로 제작되었다. 모형석션버켓 기초 내부에 격실 내부의 압력을 측정하는 압력계를 부착하였다(Figs. 3(b) and 3(e) 참조). 격실내부의 압력계는 간극수압의 측정을 위하여 격실내부에 있는 모래지반이 부압에 의하여 융기하여 격실내부천장에 있는 압력센서에 닿지 않도록 빈 공간을 두었으며 물만 유입이 되도록 가는 철망을 씌웠다. 사용된 압력계는 50 kPa의 압력까지를 측정할 수 있는 것으로 2 m 깊이의 수조에 물을 넣고 수위를 조절하여 실험에 사용된 모든 센서를 검정하여 사용하였다. 실험 중 변위는 연직변위 측정을 위하여 레이저변위계로 측정되었으며, 총 1개가 사용되었다. 모형기초의 중앙상부에 반사판을 설치하였고, 센서거치대에는 막대를 설치하고 막대 끝에 레이저변위계를 수직 Z축 방향으로 부착하였다(Figs. 3(a) and 3(c) 참조). 레이저변위계에는 변위값이 표시되며 운용중 단계인 실험 Case 3 및 Case 4에서 부압에 의해 연직변위가 더 이상 발생하지 않는 것을 확인하는 용도로 설치하였다(Fig. 3(d) 참조). 모형석션버켓 기초의 기울기 측정을 위해 경사계를 모형상부에 설치하였다. 경사계는 X, Y 2개축의 기울기를 각각 -40°~40°까지 측정가능하며, DC 전압으로 출력된다. 이를 Data logger에서 계측하고 다시 방위각 및 경사각을 계산하여 PC상에서 실시간으로 보여줄 수 있도록 하였다.

Fig. 3

Instrumented Model Suction Bucket

펌프는 일 방향으로만 구동되는 로터리식 펌프로 물이 한 방향으로만 들어가고 반대방향으로 물이 나오는 구조의 펌프이다. 펌프는 220 V AC로 구동되며 용량은 80 W이다. 사용된 펌프는 총 6개로 모든 격실에 각각 2개씩 연결되어, 격실별 제어를 하였다. 실험 case별로 각 격실별 압력이 부압인지 정압인지에 따라서, 사용되는 펌프가 다르게 하여 실험을 수행하였다.

모형석션버켓 기초는 30 mm까지는 수동으로 관입시켰으며, 이후 모형석션버켓의 매입깊이가 20 mm가 남겨질 때까지 각 격실에 부압을 작용시키면서 관입시켰다. 35 mm가 남겨진 이후에는 초기기울기를 부여하기 위해 각 격실별로 부압을 달리하였다. 마지막단계에서는 초기기울기를 모든 실험에서 동일하게 설정하기 위해 3개의 격실에 각기 다른 부압을 작동시키면서 X축으로부터 방위각 55°(또는 235°) 및 기울기가 5°가 되도록 기초상부를 강제변위를 부여하여 위치시켰다. 방위각 및 기울기는 컴퓨터화면에서 실시간으로 볼 수 있도록 하였다. Kim et al. (2017)에서는 펌프압의 크기를 제어하지 못하여 실재적인 기울기 모사가 어려워서 한쪽방향으로만 움직이게 하는 기울기 제어 실험을 실시한바 있다. 본 연구에서는 이러한 문제점을 개선하고자 펌프를 3개 추가하여 총 6개를 설치하였으며, 모든 펌프에는 비례제어밸브를 설치하여 컴퓨터프로그램으로 비례제어밸브의 여닫는 각도를 제어할 수 있도록 하여 임의 방위각을 가진 기울어진 모형석션버켓 기초의 수직도제어가 가능하도록 시스템을 개선하였다. 사용된 비례제어밸브는 600단계의 여닫힘 각도제어가 가능하다. 각 격실별로 부압펌프 1개 및 정압펌프 1개를 설치하였다. 실험조건은 설치단계에 대한 모사로서 모형석션버켓의 설치모사단계로 X축을 기준으로 55° 또는 235°의 방위각에 기울기 5°를 기준으로 하여 동일한 기초배치시 격실의 부압 및 정압제어를 실시하는 2가지 조건으로 하였다(case 1, 2). 또한 운전 중인 상태를 고려하되 앞의 조건과 동일한 방위각 55° 및 235°에 대한 2가지 실험을 실시하였다. 기초 설치시의 조건인 경우에는 격실내부에 물만 있는 공간이 있는 경우이고, 운전 중인 조건은 격실내부에 부압을 작용시켜도 모형석션버켓 기초가 움직이지 않는 경우로 가정하였다(case 3, 4). 이를 위해 3개의 격실중 적어도 하나의 격실에 모래지반으로 채워져서 부압을 가하여도 모형석션버켓이 움직이지 않아 기울기 제어가 안 되는 조건을 인위적으로 조성하였다. 따라서 운전 중인 경우에는 내부에 모래가 차있는 격실에 정압을 부여하여 인위적으로 내부공간을 만들면서 기울기를 제어하도록 하였다. 기울기 제어 실험케이스는 Table 1과 같다.

Table 1

Cases of Experiment

격실의 압력은 실험 시작 전 초기에 설정한 비례제어밸브의 열림정도를 결정하고 수행하였으며, 격실압력이 이웃격실로 전이되거나 보일링이 발생되는 경우에는 실험을 중단하였고, 비례제어밸브값을 수정하여 초기 압력을 다시 설정하였다. 또한 실험중간에 비례제어밸브를 미세하게 제어할 수 있도록 프로그램화 하였으며 PC에서 실시간으로 제어하여 기울기의 변화를 살펴가면서 기울기가 0.25 이하가 나올 때까지 제어하였다. 계측은 격실 내 압력 및 모형석션버켓의 최상단에 변위계를 설치하여 변위를 측정하였다. 사용된 지반은 모래이고 Kim et al. (2017)에서 수행한 실험과 동일한 모래를 사용하였으며 내부마찰각은 39.1°이었으며 상대밀도는 59%이었다. 모래지반조성은 강사기를 사용하였으며, 토조 하부에 관을 매설하여 물을 주입할 수 있도록 하였으며 지반조성 후 포화 시 지반의 교란이 최소가 되도록 하였다. 본 연구에서는 연구목적이 Kim et al. (2017)이 수행한 실험과의 연계 및 내부격실을 이용하여 기울기 제어 가능성을 판단하기 위한 것이기 때문에, 모래지반만을 대상으로 연구를 수행하였다. 각 격실 상부에는 부압용라인과 정압용라인, 초기 압입 시 발생되는 내압을 제거하기 위한 밸브가 같이 부착되어 있다. Kim et al. (2017)에서는 모형석션버켓 기초의 평형을 맞춘 상태로 기울기 제어 실험을 실시하였으나, 본 연구에서는 초기에 정해진 방위각 및 기울기를 확보하고자, 각 격실에 압력을 제어하면서 최종적으로는 수동으로 방위각 및 기울기를 조정하였다. 격실 내 모래가 다 차있는 공용 중 기울기 모사실험을 모사하기 위해서는 하나 또는 두 개의 격실에 다른 격실보다 큰 부압을 부여하여 보일링이 발생토록 유도하였다. 부압발생에 따른 추가적인 변위발생이 없는지를 상부에 설치된 레이저변위계의 수치를 보면서 초기 모형석션버켓 기초설치를 완료 하였다.

3. 실험결과 및 토의

실험결과를 제시한 그래프에서 측정된 격실내부 수압은 초기값을 0으로 설정하고 압력이 부여된 상태에 대한 상대 압력을 도시하였다. 경사계는 토조를 상부에서 바라볼 때 오른쪽이 X축으로 앞쪽을 Y축으로 정하였으며 방위각은 X축을 기준으로 반시계방향으로 정하였다. 경사계로 얻은 경사각은 실험 전 기초를 5°(±0.1° 이내)가 되도록 기울여 설정하였으며, 격실1에 설치된 상대압력 값은 P1으로 나머지 격실 2와 3의 상대압력은 P2와 P3으로 각각 표시하였다. 각 격실은 X축을 방위각 0°로 하여 방위각 120°까지가 격실 1, 그 다음 240°까지가 격실 2, 나머지 360°까지를 격실 3으로 하였다. 실험결과 그래프에 격실별 위치를 나타내는 모형석션버켓 기초의 평면도를 삽입하였다. 평면도에서 작은 점은 실험을 시작하기 전의 모형석션기초의 기울어진 위치이다. 둥근 원은 모형석션기초의 기울어진 경사각 5°를 뜻한다.

3.1 시공단계 기울기 제어 모사실험

3.1.1 2격실에 부압 적용한 기울기 제어 : Case 1

Case 1 실험은 Fig. 1(c)에서와 같이 3개의 격실 중 격실 2 및 3의 2개 격실에 부압을 작용시켜 모형 기초의 기울기를 보정하는 1단계 및 현 기울기 위치가 X축을 기준으로 방위각 0°에 이르면 2번 격실에 부압을 작용시켜 기울기가 0.25° 이하가 되도록 하는 2단계 실험이다. 격실내부의 수압변화와 모형석션버켓 기초의 경사각변화는 Fig. 4와 같다. Fig. 4에서 보는 바와 같이, 부압을 가한 격실에서 측정된 압력 P2 및 P3이 낮아졌으며, 아무런 압력을 가하지 않은 격실 1에서 측정된 압력 P1도 따라서 낮아 졌으나 그 값은 작았으며 보일링도 발생하지 않았다. 방위각이 0°에 가까워지면 비례제어밸브 열림 정도를 작게 하면서 격실 3 펌프를 정지시켰다. 그리고 격실 2에 연결된 펌프의 압력을 낮추기 위해 연결된 비례제어밸브의 열림 정도를 작게 조종하였으며 최종적으로 경사각은 0.25° 이하가 유지되어 기울기가 조정됨을 확인 하였다.

Fig. 4

Variations in Pressures of Internal Cells and Inclined Angle for Case 1

3.1.2 1격실에 부압 적용한 기울기 제어 : Case 2

Fig. 5는 실험결과 Case 2의 격실 내 압력변화와 경사각을 같이 도시한 그림이다. 2격실 부압 적용 조건인 Case 1과 마찬가지로 부압에 의해 경사각 변화가 발생하는 것을 확인하였으며 2개 격실에 부압이 적용된 Case 1보다 기울기보정시간이 길었다. Case 1과 마찬가지로 나머지 격실에 부압이 발생하였으나 값은 크지 않았다. Case 1과 마찬가지로 경로마다 비례제어밸브도 제어하였으며 최종적으로는 펌프를 정지시켰다. Case 2에서도 경사각 0.25° 이하로 제어가 가능함을 확인하였다.

Fig. 5

Variations in Pressures of Internal Cells and Inclined Angle for Case 2

3.2 시공완료 후 해상풍력 발전기 운용단계 모사실험

3.2.1 부압2격실 및 정압1격실에 적용한 기울기 제어 : Case 3

Case 3의 실험결과는 Fig. 6과 같다. Case 3에서는 격실 1이 모래로 차있기 때문에 격실내 부압 제어만으로는 기울기 제어각도가 제한된다. Kim et al. (2017)에 의하면 부압에 의해서는 0.25°의 기울기 보정이 가능하였다. 따라서 격실 안에 모래로 차있는 격실에 정압을 부여하여 격실 내 상부판과 모래지반상부와의 공간을 확보하면서 기울기를 제어하였다. 또한 반대편에 부압을 작용시켜 기울기가 빠르게 보정되도록 하였다. Case 3의 경우도 경사각 5°에 대한 기울기 제어가 가능함을 확인하였다.

Fig. 6

Variations in Pressures of Internal Cells and Inclined Angle of Case 3

3.2.2 부압1격실 및 정압2격실에 적용한 기울기 제어 : Case 4

시공완료 후 조건에 따라 사전에 격실 2 및 격실 3에 모래가 차도록 부압을 발생시켜둔 상태로 부압만으로는 기울기 제어가 안되기 때문에 격실 2 및 격실 3에 정압을 발생시키고 반대편 격실 1에는 부압을 부여하였다. Fig. 7 결과에 의하면 Case 3보다는 Case 4에서 기울기 보정시간이 단축되었는데, Case 3에서는 정압부여 격실이 1개 인데 비하여 Case 4에서는 정압부여 격실이 2개이기 때문으로 사료된다. Case 4에서도 기울기 0.25°로 달성 가능함을 확인하였다.

Fig. 7

Variations in Pressures of Internal Cells and Inclined Angle for Case 4

3.3 실험케이스별 모형석션버켓 기초의 최종 경사각과 도달시간

Table 2는 실험 중 경사각을 정리하였다. 시공 중 및 운용 중에 대한 4개의 실험들에서 설정된 초기 기울기가 5° 인 경우에 최종기울기가 0.25° 이하로의 기울기 보정이 가능함을 확인하였다. 또한, 방위각과 격실배치에 상관없이 임의각도로 기울어져도 격실에 부압과 정압을 부여하면 기울기 제어가 가능함을 확인 하였다. 운용중인 경우는 부압만으로 기울기 제어가 곤란함을 이전 실험연구에서 확인하였는바 이번 연구에서는 격실에 정압을 부여함으로서 기울기 제어가 가능함을 확인하였다.

Table 2

Final Results of Tilting Control

4. 결 론

단일형 석션버켓 기초를 사용하는 해상풍력 발전기의 하부기초에 대하여 3개의 내부격실을 적용한 형식으로 임의 방향의 기울기 제어가 가능함을 확인하는 모형실험을 수행하였다. 각 격실에는 부압용 및 정압용 펌프를 각기 연결하였다. 또한 각 펌프에 비례제어밸브를 추가하여 압력을 제어하였다. 모래지반에서 원형(prototype) 구조물의 1:100 크기로 된 모형석션버켓을 이용한 4개의 실험결과로 부터 다음과 같은 결론을 얻었다.

  • 1. 내부격실 내 여유 공간이 있는 시공단계 중을 모사한 단일형 석션버켓 모형실험에서 초기 설정한 5°의 기울기 제어가 가능하였다. 단일형 석션버켓 기초에 3개의 내부격실을 둠으로서 격실내부압력변화로 부터 기울기 제어가 가능한 것을 확인하였다.
  • 2. 격실 내 상판이 지표면에 맞닿은 조건이 되는 경우로 가정한 운용단계실험에서 정압을 부여하여 내부에 공간을 확보하면서 이웃격실에 부압을 부여하면 기 설정된 5°의 기울기 제어가 가능함을 확인하였다. 3개 격실 모두에 여유 공간이 없는 경우도 기울기 제어가 가능할 것으로 사료되나 내부격실 모두에 정압을 부여하면 풍력발전기전체가 상승하게 되어 이에 대해서는 세심한 기울기 제어가 필요할 것으로 사료된다.
  • 3. 이전 연구에서 펌프압력을 제어하기 어려웠던 것에 비하여 본 연구에서는 비례제어밸브를 사용하여 압력을 기존실험에서보다 낮게 제어하여 격실내부의 압력이 이웃격실로 새어나가는 것을 방지 할 수 있었으며 이를 통하여 2단계 경로제어가 가능하였다. 다만, 동일한 압력제어가 매 실험마다 구현되지 않는 문제가 있었으며, 이를 극복하기 위해서는 모형축척을 보다 크게 할 필요가 있다고 사료된다.
  • 4. 해상풍력 발전기 기초에 단일형 석션버켓 기초가 적용되는 경우 시공단계에서 펌프속도를 제어하는 장치가 각 펌프별로 필요할 것으로 판단된다. 또한 발생된 압력을 알기 위해서는 설치단계별 격실 내 압력을 측정하는 것도 중요하다. 운용 시에는 일정깊이에서 유사한 압력만 제어하면 가능하기 때문에 상대적으로 간단한 제어방식을 사용하는 것도 가능할 것으로 사료된다. 다만, 실험결과와 같이 기울기 보정각이 큰 경우에는 격실 내 정압력도 부여해야 하는 문제가 있기 때문에 격실 내 공간확보를 위한 부양높이를 기울기 제어가 가능한 범위내로 제한할 필요가 있다.
  • 5. 단일형 석션버켓기초는 해상풍력단지 건설시 및 운용시 수직도의 유지가 중요하며, 이 경우 동일한 알고리즘을 가지는 수직도제어방법의 개발이 필요하다고 사료된다. 따라서 이를 자동화하기 위한 알고리즘의 개발이 선행되어야 할 것으로 판단된다. 본 연구에서는 기 개발된 알고리즘이 구현되는지를 실험적으로 규명하였다. 본 연구에서는 2단계 경로를 가지는 방법을 제안하였으나 정밀한 기울기 제어가 가능한 경우에 단일경로로 제어하는 방법도 가능할 것으로 사료된다.
  • 6. 본 연구에서는 격실매입깊이에 따른 상한 및 하한 압력을 결정하고 이에 맞는 압력을 부여하는 실험까지는 수행하지 못하였으며 향 후 보다 정밀한 자세제어기법 개발을 위해서는 상하한 압력도표를 적용한 알고리즘의 개발이 필요하다고 사료된다.
그림 1 하천횡단구조물 하류부 횡단구조물 파괴

유입조건에 따른압력변이로 인한하천횡단구조물 하류물받이공 및 바닥보호공설계인자 도출최종보고서

주관연구기관 / 홍익대학교 산학협력단
공동연구기관 / 한국건설기술연구원
공동연구기관 / 주식회사 지티이

연구의 목적 및 내용

하천횡단구조물이 하천설계기준(2009)대로 설계되었음에도 불구하고, 하류부에서 물받이공 및 바닥보호공의 피해가 발생하여, 구조물 본체에 대한 안전성이 현저하 게 낮아지고 있는 실정이다. 하천설계기준이 상류부의 수리특성을 반영하였다고 하나 하류부의 수리특성인 유속의 변동 성분 또는 압력의 변동성분까지 고려하고 있지는 않다. 현재 많은 선행연구에서 이러한 난류적 특성이 구조물에 미치는 영 향에 대해 제시하고 있는 실정이며, 국내 하천에서의 피해 또한 이와 관련이 있다 고 판단된다. 이에 본 연구에서는 난류성분 특히 압력의 변동성분이 물받이공과 바닥보호공에 미치는 영향을 정량적으로 분석하여, 하천 횡단구조물의 치수 안전 성 증대에 기여하고자 한다. 물받이공과 바닥보호공에 미치는 압력의 변동성분 (pressure fluctuation) 영향을 분석하기 위해 크게 3가지로 연구내용을 분류하였 다. 첫 번째는 압력의 변동으로 순간적인 음압구배(adversed pressure gradient) 가 발생할 경우 바닥보호공의 사석 및 블록이 이탈하는 것이다. 이를 확인하기 위 해 정밀한 압력 측정장치를 통해 압력변이를 측정하여, 사석의 이탈 가능성을 검 토할 것이며, 최종적으로 이탈에 대한 한계조건을 도출할 것이다. 두 번째는 압력 의 변동이 물받이공의 진동을 유발시켜 이를 지지하고 있는 지반에 다짐효과를 가 져와 물받이공과 지반사이에 공극이 발생하는 경우이다. 이러한 공극으로 물받이 공은 자중 및 물의 압력을 받게 되어, 결국 휨에 의한 파괴가 발생할 가능성이 있 게 된다. 본 연구에서는 실험을 통하여 압력의 변동과 물받이공의 진동을 동시에 측정하여, 진동이 발생하지 않을 최소 두께를 제시할 것이다. 세 번째는 압력변이 로 인한 물받이공의 진동이 피로파괴로 연결되는 경우이다. 이 현상 또한 수리실 험을 통해 압력변이-피로파괴의 관계를 정량적으로 분석하여, 한계 조건을 제시할 것이다. 본 연구는 국내 보 및 낙차공에서 발생하는 다양한 Jet의 특성을 수리실 험으로 재현해야 하며, 이를 위해 평면 Jet 분사기(plane Jet injector)를 고안/ 제작하여, 효율적인 수리실험을 수행할 것이다. 또한 3차원 수치해석을 통해 실제 스케일에 적용함으로써 연구결과의 활용도 및 적용성을 높이고자 한다.

Keywords

압력변이, 물받이공, 바닥보호공, 난류, 진동

 그림 1 하천횡단구조물 하류부 횡단구조물 파괴
그림 1 하천횡단구조물 하류부 횡단구조물 파괴
그림 2. 시간에 따른 압력의 변동 양상 및 정의
그림 2. 시간에 따른 압력의 변동 양상 및 정의
 그림 3. 하천횡단구조물 하류부 도수현상시 발생하는 압력변이 분포도, Fr=8.0 상태이며, 바닥(slab)에 양압과 음압이 지속적으로 작용한다. (Fiorotto & Rinaldo, 2010)
그림 3. 하천횡단구조물 하류부 도수현상시 발생하는 압력변이 분포도, Fr=8.0 상태이며, 바닥(slab)에 양압과 음압이 지속적으로 작용한다. (Fiorotto & Rinaldo, 2010)
 그림 4. 파괴 개념
그림 4. 파괴 개념
그림 6. PIV 측정 원리(www.photonics.com)
그림 6. PIV 측정 원리(www.photonics.com)
그림 7. LED회로판 및 BIV기법 기본개념
그림 7. LED회로판 및 BIV기법 기본개념
그림 8. BIV측정기법을 적용한 순간이미지 (Lin et al., 2012)
그림 8. BIV측정기법을 적용한 순간이미지 (Lin et al., 2012)
그림 9. 감세공의 분류
그림 9. 감세공의 분류
그림 17 수리실헐 수로시설: (a) 전체수로전경, (b) Weir 보를 포함한 측면도, (c) 도수조건 실험전경
그림 17 수리실헐 수로시설: (a) 전체수로전경, (b) Weir 보를 포함한 측면도, (c) 도수조건 실험전경
그림 18 수리실험 개요도
그림 18 수리실험 개요도
그림 127 난류모형별 압력 Data (측정위치는 그림 125 참조)
그림 127 난류모형별 압력 Data (측정위치는 그림 125 참조)
그림 128 RNG 모형을 이용한 수치모의 결과
그림 128 RNG 모형을 이용한 수치모의 결과
그림 129 LES 모형을 이용한 수치모의 결과
그림 129 LES 모형을 이용한 수치모의 결과
그림 130 압력 Data의 필터링
그림 130 압력 Data의 필터링
그림 134 Case 1의 흐름특성 분포도 및 그래프
그림 134 Case 1의 흐름특성 분포도 및 그래프

참고문헌

국토기술연구센터 (1998) 하상유지공의 구조설계 지침.

감사원 (2013) 감사원 결과보고서- 4대강살리기 사업 주요시설물 품질 밑 수질관리 실태.

국토해양부 (2009) 전국 하천횡단 구조물 설치현황 및 어도 실태조사 보고서. 국토해양부 (2010). 낙동강 살리기 사업 24공구(성주칠곡지구) 실시설계보고서.

국토해양부 (2012) 보도자료-준공대비 점검결과, 4대강 보 안전 재확인.

국토해양부 (2012) 국가 및 지방하천 종합정비 마스터플랜.

국토교통성 (2008) 하천사방기술기준.

농림부 (1996). 농업생산기반정비사업계획 설계기준. 류권규(역자) (2009). 난류의 수치모의(원저자 : 梶島岳夫, 1999).

류권규, 마리안 머스테, 로버트 에테마, 윤병만 (2006). “난류 중 부유사의 속도 지체 측정.” 한국수자원학회논문집, 제39권, 제2호, pp.99-108.

배재현, 이경훈, 신종근, 양용수, 이주희 (2011). “입자영상유속계를 이용한 은어의 유영능력 측정.” 제47권, 제4호, pp.411-418.

우효섭 (2001). 하천수리학. 청문각.

한국수자원학회 (2009). 하천설계기준해설.

한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발

한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가
기법에 대한 원천기술개발

국토기술연구센터 (1998) 하상유지공의 구조설계 지침.

감사원 (2013) 감사원 결과보고서- 4대강살리기 사업 주요시설물 품질 밑 수질관리 실태. 국토해양부 (2009) 전국 하천횡단 구조물 설치현황 및 어도 실태조사 보고서.

국토해양부 (2012) 보도자료-준공대비 점검결과, 4대강 보 안전 재확인. 국토해양부 (2012) 국가 및 지방하천 종합정비 마스터플랜.

국토교통성 (2008) 하천사방기술기준.

농림부 (1996). 농업생산기반정비사업계획 설계기

류권규(역자) (2009). 난류의 수치모의(원저자 : 梶島岳夫, 1999).
류권규, 마리안 머스테, 로버트 에테마, 윤병만 (2006). “난류 중 부유사의 속도 지체 측정.” 한국수자원학회논문집, 제39권, 제2호, pp.99-108.
배재현, 이경훈, 신종근, 양용수, 이주희 (2011). “입자영상유속계를 이용한 은어의 유영능력 측정.” 제47권, 제4호, pp.411-418.
우효섭 (2001). 하천수리학. 청문각. 한국수자원학회 (2009). 하천설계기준해설. 한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발
한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가
기법에 대한 원천기술개발

Adrian, R. J., Meinhart, C. D., & Tomkins, C. D. (2000). Vortex organization in the outer
region of the turbulent boundary layer. Journal of Fluid Mechanics, 422, 1-54.
Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American
statistical association, 49(268), 765-769.
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate
bankruptcy. The journal of finance, 23(4), 589-609.
Barjastehmaleki, S., Fiorotto, V., & Caroni, E. (2016). Spillway stilling basins lining design
via Taylor hypothesis. Journal of Hydraulic Engineering, 142(6), 04016010.
Beheshti, M. R., Khosrojerdi, A., & Borghei, S. M. (2013). Experimental study of air-water
turbulent flow structures on stepped spillways. International Journal of Physical Sciences,
8(25), 1362-1370.
Bligh, W. G. (1910). Dams, barrages and weirs on porous foundations. Engineering News, 64(26),
708-710.
Bowers, C. E., &Tsai, F. Y. (1969). Fluctuating pressure in spillway stilling basins. Journal
of the Hydraulics Division, 95(6), 2071-2080.
Brater, E. F., King, H. W., Lindell, J. E., & Wei, C. Y. (1976). Handbook of hydraulics for
the solution of hydraulic engineering problems (Vol. 7). New York: McGraw-Hill.
Castillo, L. G., Carrillo, J. M., & Sordo-Ward, Á. (2014). Simulation of overflow nappe
impingement jets. Journal of Hydroinformatics, 16(4), 922-940

Lin, C., Hsieh, S. C., Lin, I. J., Chang, K. A., & Raikar, R. V. (2012). Flow property and
self-similarity in steady hydraulic jumps. Experiments in Fluids, 53(5), 1591-1616

Chanson, H. (1999). The Hydraulics of Open Channel Flow: An Introduction. Physical Modelling
of Hydraulics.
Chow, V. T. (1959). Open-Channel Hydraulics, McGraw Hill Book Company, Inc., New York.
Christensen, B. A. (1984). “Analysis of Partially Filled Circular Storm Sewers.” J. of
Hydraulic Engineering, ASCE, Vol. 110, No. 8.
El-Ragaby, A., El-Salakawy, E., and Benmokrane, B., “Fatigue Life Evaluation of Concrete
Bridge Deck Slabs Reinforced with Glass FRP Composite Bars,” Journal of Composites for
Construction, ASCE, Vol. 11, No. 3, 2007, pp. 258-268. (doi: http://dx.doi.org/10.1061/(ASCE)
1090-0268(2007)11:3(258),
Fiorotto, V., & Rinaldo, A. (1992). Turbulent pressure fluctuations under hydraulic jumps.
Journal of Hydraulic Research, 30(4), 499-520.
Flow Science (2015). FLOW-3D User Manual(Release 11.1.0), Los Alamos, New Mexico.
González-Betancourt, M. (2016). Uplift force and momenta on a slab subjected to hydraulic
jump. Dyna, 83(199), 124-133.
Grinstein, L., & Lipsey, S. I. (2001). Encyclopedia of mathematics education. Routledge.
Grubbs, F. E., & Beck, G. (1972). Extension of sample sizes and percentage points for
significance tests of outlying observations. Technometrics, 14(4), 847-854.
Gylltoft K. (1983): Fracture mechanics models for fatigue in concrete structures. Doctoral
thesis / Tekniska högskolan i Luleå, 25D, Luleå, 210 pp.
Herlina, H. and Jirka, G. H. (2008). “Experiments on gas transfer near the air-water
interface in a grid-stirred tank.” Journal of Fluid Mechanics, 594, pp.183-208.
IACWD (Interagency Advisory Committee on Water Data). (1982). Guidelines for determining flood
flow frequency. Bulletin 17B.
JIRKA, G. H. (2008). Experiments on gas transfer at the air–water interface induced by
oscillating grid turbulence. Journal of Fluid Mechanics, 594, 183-208.
Kadota, A., Suzuki, K., Rummel, A. C., Weitbrecht, V., & Jirka, G. H. (2007). Shallow flow
visualization around a single groyne. In Proc. of 7th International Symposium of Particle
Image Velocimetry (CD-ROM).
Kazemi, F., Khodashenas, S. R., & Sarkardeh, H. (2016). Experimental study of pressure
fluctuation in stilling basins. International Journal of Civil Engineering, 14(1), 13-21.
Klowak, C., Memon, A., and Mufti, A., “Static and fatigue investigation of second generation
steel-free bridge decks,” Cement & Concrete Composites, ScienceDirect, Elsevier, Vol. 28, No.

10, 2006, pp. 890-897. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2006.07.019),
Koca, K., Noss, C., Anlanger, C., Brand, A., & Lorke, A. (2017). Performance of the Vectrino
Profiler at the sediment–water interface. Journal of Hydraulic Research, 55(4), 573-581.
Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital.
Attuari, Giorn., 4, 83-91.
Leon, A., & Alnahit, A. (2016). A Remotely Controlled Siphon System for Dynamic Water Storage
Management.
Lin, C., Hsieh, S., Chang, K. and Raikar, R. (2012). “Flow property and self-similarity in
steady hydraulic jumps.” Experiments in Fluid, 53, pp. 1591-1616.
Lopardo, R., Fattor, C. A., Casado, J. M. and Lopardo, M. C. (2004). “Aspects of vibration
and fatigue of materials related to coherent structures of macroturbulent flows”
International Conference on Hydraulic of Dams and River Structures.
Lopardo, R. A., & Romagnoli, M. (2009). Pressure and velocity fluctuations in stilling basins.
In Advances in Water Resources and Hydraulic Engineering (pp. 2093-2098). Springer, Berlin,
Heidelberg.
Sanchez, P. A., Ramirez, G. E., Vergara, R., & Minguillo, F. (1973). Performance of
Sulfur-Coated Urea Under Intermittently Flooded Rice Culture in Peru 1. Soil Science Society
of America Journal, 37(5), 789-792.
Matsui, S., Tokai, D., Higashiyama, H., and Mizukoshi, M., “Fatigue Durability of Fiber
Reinforced Concrete Decks Under Running Wheel Load,” Proceedings 3rd International Conference
on Concrete Under Severe Conditions, Ed. N. Banthia, Vancouver, Canada, 2001, pp. 982-991.,
Mohammadi, S. F., Galgoul, N. S., Starossek, U., & Videiro, P. M. (2016). An efficient time
domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore
jacket structure. Marine Structures, 49, 97-115.
Pothof, I. (2011). Co-current air-water flow in downward sloping pipes. Stichting Deltares
Pothof, I. W. M., & Clemens, F. H. L. R. (2011). Experimental study of air–water flow in
downward sloping pipes. International journal of multiphase flow, 37(3), 278-292.
Ryu, Y., Chang, K. A., & Lim, H. J. (2005). Use of bubble image velocimetry for measurement of
plunging wave impinging on structure and associated greenwater. Measurement Science and
Technology, 16(10), 1945.
Sanjou, M., & Nezu, I. (2009). Turbulence structure and coherent motion in meandering compound
open-channel flows. Journal of Hydraulic Research, 47(5), 598-610.
Sargison, J. E., & Percy, A. (2009). Hydraulics of broad-crested weirs with varying side
slopes. Journal of irrigation and drainage engineering, 135(1), 115-118.

Sobani, A. (2014). Pressure fluctuations on the slabs of stilling basins under hydraulic jump.
Song, Y., Chang, K, Ryu, Y. and Kwon, S. (2013). “ Experimental study on flow kinematics and
impact pressure in liquid sloshing.”, Experiments in Fluid, 54, pp. 1592.
Stagonas, D., Lara, J. L., Losada, I. J., Higuera, P., Jaime, F. F., & Muller, G. (2014).
Large scale measurements of wave loads and mapping of impact pressure distribution at the
underside of wave recurves. In Proceedings of the HYDRALAB IV Joint User Meeting.
Toso, J. W., & Bowers, C. E. (1988). Extreme pressures in hydraulic-jump stilling basins.
Journal of Hydraulic Engineering, 114(8), 829-843.
Youn, S. G. and Chang, S. P., “Behavior of Composite Bridge Decks Subjected to Static and
Fatigue Loading,” Structural Journal, ACI Technical paper, Title No. 95-S23, 1998, pp.
249-258. (doi: http://dx.doi.org/10.14359/543),

Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

레이저 파우더 베드 융합 오버행 영역에서 표면 거칠기의 원인에 대한 실험 및 수치 조사

Shaochuan Feng,Amar M. Kamat,Soheil Sabooni &Yutao PeiPages S66-S84 | Received 18 Jan 2021, Accepted 25 Feb 2021, Published online: 10 Mar 2021

ABSTRACT

Surface roughness of laser powder bed fusion (L-PBF) printed overhang regions is a major contributor to deteriorated shape accuracy/surface quality. This study investigates the mechanisms behind the evolution of surface roughness (Ra) in overhang regions. The evolution of surface morphology is the result of a combination of border track contour, powder adhesion, warp deformation, and dross formation, which is strongly related to the overhang angle (θ). When 0° ≤ θ ≤ 15°, the overhang angle does not affect Ra significantly since only a small area of the melt pool boundaries contacts the powder bed resulting in slight powder adhesion. When 15° < θ ≤ 50°, powder adhesion is enhanced by the melt pool sinking and the increased contact area between the melt pool boundary and powder bed. When θ > 50°, large waviness of the overhang contour, adhesion of powder clusters, severe warp deformation and dross formation increase Ra sharply.

레이저 파우더 베드 퓨전 (L-PBF) 프린팅 오버행 영역의 표면 거칠기는 형상 정확도 / 표면 품질 저하의 주요 원인입니다. 이 연구 는 오버행 영역에서 표면 거칠기 (Ra ) 의 진화 뒤에 있는 메커니즘을 조사합니다 . 표면 형태의 진화는 오버행 각도 ( θ ) 와 밀접한 관련이있는 경계 트랙 윤곽, 분말 접착, 뒤틀림 변형 및 드로스 형성의 조합의 결과입니다 . 0° ≤  θ  ≤ 15° 인 경우 , 용융풀 경계의 작은 영역 만 분말 베드와 접촉하여 약간의 분말 접착이 발생하기 때문에 오버행 각도가 R a에 큰 영향을 주지 않습니다 . 15° < θ 일 때  ≤ 50°, 용융 풀 싱킹 및 용융 풀 경계와 분말 베드 사이의 증가된 접촉 면적으로 분말 접착력이 향상됩니다. θ  > 50° 일 때 오버행 윤곽의 큰 파형, 분말 클러스터의 접착, 심한 휨 변형 및 드 로스 형성이 Ra 급격히 증가 합니다.

KEYWORDS: Laser powder bed fusion (L-PBF), melt pool dynamics, overhang region, shape deviation, surface roughness

1. Introduction

레이저 분말 베드 융합 (L-PBF)은 첨단 적층 제조 (AM) 기술로, 집중된 레이저 빔을 사용하여 금속 분말을 선택적으로 융합하여 슬라이스 된 3D 컴퓨터 지원에 따라 층별로 3 차원 (3D) 금속 부품을 구축합니다. 설계 (CAD) 모델 (Chatham, Long 및 Williams 2019 ; Tan, Zhu 및 Zhou 2020 ). 재료가 인쇄 층 아래에 ​​존재하는지 여부에 따라 인쇄 영역은 각각 솔리드 영역 또는 돌출 영역으로 분류 될 수 있습니다. 따라서 오버행 영역은 고체 기판이 아니라 분말 베드 바로 위에 건설되는 특수 구조입니다 (Patterson, Messimer 및 Farrington 2017). 오버행 영역은지지 구조를 포함하거나 포함하지 않고 구축 할 수 있으며, 지지대가있는 돌출 영역의 L-PBF는 지지체가 더 낮은 밀도로 구축된다는 점을 제외 하고 (Wang and Chou 2018 ) 고체 기판의 공정과 유사합니다 (따라서 기계적 강도가 낮기 때문에 L-PBF 공정 후 기계적으로 쉽게 제거 할 수 있습니다. 따라서지지 구조로 인쇄 된 오버행 영역은 L-PBF 공정 후 지지물 제거, 연삭 및 연마와 같은 추가 후 처리 단계가 필요합니다.

수평 내부 채널의 제작과 같은 일부 특정 경우에는 공정 후 지지대를 제거하기가 어려우므로 채널 상단 절반의 돌출부 영역을 지지대없이 건설해야합니다 (Hopkinson and Dickens 2000 ). 수평 내부 채널에 사용할 수없는지지 구조 외에도 내부 표면, 특히 등각 냉각 채널 (Feng, Kamat 및 Pei 2021 ) 에서 발생하는 복잡한 3D 채널 네트워크의 경우 표면 마감 프로세스를 구현하는 것도 어렵습니다 . 결과적으로 오버행 영역은 (i) 잔류 응력에 의한 변형, (ii) 계단 효과 (Kuo et al. 2020 ; Li et al. 2020 )로 인해 설계된 모양에서 벗어날 수 있습니다 .) 및 (iii) 원하지 않는 분말 소결로 인한 향상된 표면 거칠기; 여기서, 앞의 두 요소는 일반적으로 mm 길이 스케일에서 ‘매크로’편차로 분류되고 후자는 일반적으로 µm 길이 스케일에서 ‘마이크로’편차로 인식됩니다.

열 응력에 의한 변형은 오버행 영역에서 발생하는 중요한 문제입니다 (Patterson, Messimer 및 Farrington 2017 ). 국부적 인 용융 / 냉각은 용융 풀 내부 및 주변에서 큰 온도 구배를 유도하여 응고 된 층에 집중적 인 열 응력을 유발합니다. 열 응력에 의한 뒤틀림은 고체 영역을 현저하게 변형하지 않습니다. 이러한 영역은 아래의 여러 레이어에 의해 제한되기 때문입니다. 반면에 오버행 영역은 구속되지 않고 공정 중 응력 완화로 인해 상당한 변형이 발생합니다 (Kamat 및 Pei 2019 ). 더욱이 용융 깊이는 레이어 두께보다 큽니다 (이전 레이어도 재용 해되어 빌드 된 레이어간에 충분한 결합을 보장하기 때문입니다 [Yadroitsev et al. 2013 ; Kamath et al.2014 ]),응고 된 두께가 설계된 두께보다 크기 때문에형태 편차 (예 : 드 로스 [Charles et al. 2020 ; Feng et al. 2020 ])가 발생합니다. 마이크로 스케일에서 인쇄 된 표면 (R a 및 S a ∼ 10 μm)은 기계적으로 가공 된 표면보다 거칠다 (Duval-Chaneac et al. 2018 ; Wen et al. 2018 ). 이 문제는고형화 된 용융 풀의 가장자리에 부착 된 용융되지 않은 분말의 결과로 표면 거칠기 (R a )가 일반적으로 약 20 μm인 오버행 영역에서 특히 심각합니다 (Mazur et al. 2016 ; Pakkanen et al. 2016 ).

오버행 각도 ( θ , 빌드 방향과 관련하여 측정)는 오버행 영역의 뒤틀림 편향과 표면 거칠기에 영향을 미치는 중요한 매개 변수입니다 (Kamat and Pei 2019 ; Mingear et al. 2019 ). θ ∼ 45 ° 의 오버행 각도 는 일반적으로지지 구조없이 오버행 영역을 인쇄 할 수있는 임계 값으로 합의됩니다 (Pakkanen et al. 2016 ; Kadirgama et al. 2018 ). θ 일 때이 임계 값보다 크면 오버행 영역을 허용 가능한 표면 품질로 인쇄 할 수 없습니다. 오버행 각도 외에도 레이저 매개 변수 (레이저 에너지 밀도와 관련된)는 용융 풀의 모양 / 크기 및 용융 풀 역학에 영향을줌으로써 오버행 영역의 표면 거칠기에 영향을줍니다 (Wang et al. 2013 ; Mingear et al . 2019 ).

용융 풀 역학은 고체 (Shrestha 및 Chou 2018 ) 및 오버행 (Le et al. 2020 ) 영역 모두에서 수행되는 L-PBF 공정을 포함한 레이저 재료 가공의 일반적인 물리적 현상입니다 . 용융 풀 모양, 크기 및 냉각 속도는 잔류 응력으로 인한 변형과 ​​표면 거칠기에 모두 영향을 미치므로 처리 매개 변수와 표면 형태 / 품질 사이의 다리 역할을하며 용융 풀을 이해하기 위해 수치 시뮬레이션을 사용하여 추가 조사를 수행 할 수 있습니다. 거동과 표면 거칠기에 미치는 영향. 현재까지 고체 영역의 L-PBF 동안 용융 풀 동작을 시뮬레이션하기 위해 여러 연구가 수행되었습니다. 유한 요소 방법 (FEM)과 같은 시뮬레이션 기술 (Roberts et al. 2009 ; Du et al.2019 ), 유한 차분 법 (FDM) (Wu et al. 2018 ), 전산 유체 역학 (CFD) (Lee and Zhang 2016 ), 임의의 Lagrangian-Eulerian 방법 (ALE) (Khairallah and Anderson 2014 )을 사용하여 증발 반동 압력 (Hu et al. 2018 ) 및 Marangoni 대류 (Zhang et al. 2018 ) 현상을포함하는 열 전달 (온도 장) 및 물질 전달 (용융 흐름) 프로세스. 또한 이산 요소법 (DEM)을 사용하여 무작위 분산 분말 베드를 생성했습니다 (Lee and Zhang 2016 ; Wu et al. 2018 ). 이 모델은 분말 규모의 L-PBF 공정을 시뮬레이션했습니다 (Khairallah et al. 2016) 메조 스케일 (Khairallah 및 Anderson 2014 ), 단일 트랙 (Leitz et al. 2017 )에서 다중 트랙 (Foroozmehr et al. 2016 ) 및 다중 레이어 (Huang, Khamesee 및 Toyserkani 2019 )로.

그러나 결과적인 표면 거칠기를 결정하는 오버행 영역의 용융 풀 역학은 문헌에서 거의 관심을받지 못했습니다. 솔리드 영역의 L-PBF에 대한 기존 시뮬레이션 모델이 어느 정도 참조가 될 수 있지만 오버행 영역과 솔리드 영역 간의 용융 풀 역학에는 상당한 차이가 있습니다. 오버행 영역에서 용융 금속은 분말 입자 사이의 틈새로 아래로 흘러 용융 풀이 다공성 분말 베드가 제공하는 약한 지지체 아래로 가라 앉습니다. 이것은 중력과 표면 장력의 영향이 용융 풀의 결과적인 모양 / 크기를 결정하는 데 중요하며, 결과적으로 오버행 영역의 마이크로 스케일 형태의 진화에 중요합니다. 또한 분말 입자 사이의 공극, 열 조건 (예 : 에너지 흡수,2019 ; Karimi et al. 2020 ; 노래와 영 2020 ). 표면 거칠기는 (마이크로) 형상 편차를 증가시킬뿐만 아니라 주기적 하중 동안 미세 균열의 시작 지점 역할을함으로써 기계적 강도를 저하시킵니다 (Günther et al. 2018 ). 오버행 영역의 높은 표면 거칠기는 (마이크로) 정확도 / 품질에 대한 엄격한 요구 사항이있는 부품 제조에서 L-PBF의 적용을 제한합니다.

본 연구는 실험 및 시뮬레이션 연구를 사용하여 오버행 영역 (지지물없이 제작)의 미세 형상 편차 형성 메커니즘과 표면 거칠기의 기원을 체계적이고 포괄적으로 조사합니다. 결합 된 DEM-CFD 시뮬레이션 모델은 경계 트랙 윤곽, 분말 접착 및 뒤틀림 변형의 효과를 고려하여 오버행 영역의 용융 풀 역학과 표면 형태의 형성 메커니즘을 나타 내기 위해 개발되었습니다. 표면 거칠기 R의 시뮬레이션 및 단일 요인 L-PBF 인쇄 실험을 사용하여 오버행 각도의 함수로 연구됩니다. 용융 풀의 침몰과 관련된 오버행 영역에서 분말 접착의 세 가지 메커니즘이 식별되고 자세히 설명됩니다. 마지막으로, 인쇄 된 오버행 영역에서 높은 표면 거칠기 문제를 완화 할 수 있는 잠재적 솔루션에 대해 간략하게 설명합니다.

The shape and size of the L-PBF printed samples are illustrated in Figure 1
The shape and size of the L-PBF printed samples are illustrated in Figure 1
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).

References

  • Cai, Chao, Chrupcala Radoslaw, Jinliang Zhang, Qian Yan, Shifeng Wen, Bo Song, and Yusheng Shi. 2019. “In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior.” Powder Technology 342: 73–84. doi:10.1016/j.powtec.2018.09.088. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Wei Shian Tey, Jiayao Chen, Wei Zhu, Xingjian Liu, Tong Liu, Lihua Zhao, and Kun Zhou. 2021. “Comparative Study on 3D Printing of Polyamide 12 by Selective Laser Sintering and Multi Jet Fusion.” Journal of Materials Processing Technology 288 (August 2020): 116882. doi:10.1016/j.jmatprotec.2020.116882. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Dong Qiu Chua, Chen Nan Sun, Jie Liu, Qingsong Wei, and Yusheng Shi. 2020. “Selective Laser Melting of Near-α Titanium Alloy Ti-6Al-2Zr-1Mo-1V: Parameter Optimization, Heat Treatment and Mechanical Performance.” Journal of Materials Science and Technology 57: 51–64. doi:10.1016/j.jmst.2020.05.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Charles, Amal, Ahmed Elkaseer, Lore Thijs, and Steffen G. Scholz. 2020. “Dimensional Errors Due to Overhanging Features in Laser Powder Bed Fusion Parts Made of Ti-6Al-4V.” Applied Sciences 10 (7): 2416. doi:10.3390/app10072416. [Crossref], [Google Scholar]
  • Chatham, Camden A., Timothy E. Long, and Christopher B. Williams. 2019. “A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing.” Progress in Polymer Science 93: 68–95. doi:10.1016/j.progpolymsci.2019.03.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Du, Yang, Xinyu You, Fengbin Qiao, Lijie Guo, and Zhengwu Liu. 2019. “A Model for Predicting the Temperature Field during Selective Laser Melting.” Results in Physics 12 (November 2018): 52–60. doi:10.1016/j.rinp.2018.11.031. [Crossref], [Web of Science ®], [Google Scholar]
  • Duval-Chaneac, M. S., S. Han, C. Claudin, F. Salvatore, J. Bajolet, and J. Rech. 2018. “Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM).” Precision Engineering 54 (July 2017): 1–6. doi:10.1016/j.precisioneng.2018.03.006. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Shijie Chen, Amar M. Kamat, Ru Zhang, Mingji Huang, and Liangcai Hu. 2020. “Investigation on Shape Deviation of Horizontal Interior Circular Channels Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 36 (December): 101585. doi:10.1016/j.addma.2020.101585. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Chuanzhen Huang, Jun Wang, Hongtao Zhu, Peng Yao, and Zhanqiang Liu. 2017. “An Analytical Model for the Prediction of Temperature Distribution and Evolution in Hybrid Laser-Waterjet Micro-Machining.” Precision Engineering 47: 33–45. doi:10.1016/j.precisioneng.2016.07.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Amar M. Kamat, and Yutao Pei. 2021. “Design and Fabrication of Conformal Cooling Channels in Molds: Review and Progress Updates.” International Journal of Heat and Mass Transfer. doi:10.1016/j.ijheatmasstransfer.2021.121082. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Flow-3D V11.2 Documentation. 2016. Flow Science, Inc. [Crossref], [Google Scholar]
  • Foroozmehr, Ali, Mohsen Badrossamay, Ehsan Foroozmehr, and Sa’id Golabi. 2016. “Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed.” Materials and Design 89: 255–263. doi:10.1016/j.matdes.2015.10.002. [Crossref], [Web of Science ®], [Google Scholar]
  • “Geometrical Product Specifications (GPS) — Surface Texture: Profile Method — Rules and Procedures for the Assessment of Surface Texture (ISO 4288).” 1996. International Organization for Standardization. https://www.iso.org/standard/2096.html. [Google Scholar]
  • Günther, Johannes, Stefan Leuders, Peter Koppa, Thomas Tröster, Sebastian Henkel, Horst Biermann, and Thomas Niendorf. 2018. “On the Effect of Internal Channels and Surface Roughness on the High-Cycle Fatigue Performance of Ti-6Al-4V Processed by SLM.” Materials & Design 143: 1–11. doi:10.1016/j.matdes.2018.01.042. [Crossref], [Web of Science ®], [Google Scholar]
  • Hopkinson, Neil, and Phill Dickens. 2000. “Conformal Cooling and Heating Channels Using Laser Sintered Tools.” In Solid Freeform Fabrication Conference, 490–497. Texas. doi:10.26153/tsw/3075. [Crossref], [Google Scholar]
  • Hu, Zhiheng, Haihong Zhu, Changchun Zhang, Hu Zhang, Ting Qi, and Xiaoyan Zeng. 2018. “Contact Angle Evolution during Selective Laser Melting.” Materials and Design 139: 304–313. doi:10.1016/j.matdes.2017.11.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Hu, Cheng, Kejia Zhuang, Jian Weng, and Donglin Pu. 2019. “Three-Dimensional Analytical Modeling of Cutting Temperature for Round Insert Considering Semi-Infinite Boundary and Non-Uniform Heat Partition.” International Journal of Mechanical Sciences 155 (October 2018): 536–553. doi:10.1016/j.ijmecsci.2019.03.019. [Crossref], [Web of Science ®], [Google Scholar]
  • Huang, Yuze, Mir Behrad Khamesee, and Ehsan Toyserkani. 2019. “A New Physics-Based Model for Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing): From Single-Track to Multi-Track and Multi-Layer.” Optics & Laser Technology 109 (August 2018): 584–599. doi:10.1016/j.optlastec.2018.08.015. [Crossref], [Web of Science ®], [Google Scholar]
  • Kadirgama, K., W. S. W. Harun, F. Tarlochan, M. Samykano, D. Ramasamy, Mohd Zaidi Azir, and H. Mehboob. 2018. “Statistical and Optimize of Lattice Structures with Selective Laser Melting (SLM) of Ti6AL4V Material.” International Journal of Advanced Manufacturing Technology 97 (1–4): 495–510. doi:10.1007/s00170-018-1913-1. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamat, Amar M, and Yutao Pei. 2019. “An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion.” Additive Manufacturing 29 (March): 100796. doi:10.1016/j.addma.2019.100796. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamath, Chandrika, Bassem El-Dasher, Gilbert F. Gallegos, Wayne E. King, and Aaron Sisto. 2014. “Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers up to 400 W.” International Journal of Advanced Manufacturing Technology 74 (1–4): 65–78. doi:10.1007/s00170-014-5954-9. [Crossref], [Web of Science ®], [Google Scholar]
  • Karimi, J., C. Suryanarayana, I. Okulov, and K. G. Prashanth. 2020. “Selective Laser Melting of Ti6Al4V: Effect of Laser Re-Melting.” Materials Science and Engineering A (July): 140558. doi:10.1016/j.msea.2020.140558. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., and Andy Anderson. 2014. “Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder.” Journal of Materials Processing Technology 214 (11): 2627–2636. doi:10.1016/j.jmatprotec.2014.06.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., Andrew T. Anderson, Alexander Rubenchik, and Wayne E. King. 2016. “Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones.” Edited by Adedeji B. Badiru, Vhance V. Valencia, and David Liu. Acta Materialia 108 (April): 36–45. doi:10.1016/j.actamat.2016.02.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2020. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. doi:10.1080/17452759.2019.1698967. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Le, K. Q., C. H. Wong, K. H. G. Chua, C. Tang, and H. Du. 2020. “Discontinuity of Overhanging Melt Track in Selective Laser Melting Process.” International Journal of Heat and Mass Transfer 162 (December): 120284. doi:10.1016/j.ijheatmasstransfer.2020.120284. [Crossref], [Web of Science ®], [Google Scholar]
  • Lee, Y. S., and W. Zhang. 2016. “Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 12: 178–188. doi:10.1016/j.addma.2016.05.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Leitz, K. H., P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L. S. Sigl. 2017. “Multi-Physical Simulation of Selective Laser Melting.” Metal Powder Report 72 (5): 331–338. doi:10.1016/j.mprp.2016.04.004. [Crossref], [Google Scholar]
  • Li, Jian, Jing Hu, Yi Zhu, Xiaowen Yu, Mengfei Yu, and Huayong Yang. 2020. “Surface Roughness Control of Root Analogue Dental Implants Fabricated Using Selective Laser Melting.” Additive Manufacturing 34 (September 2019): 101283. doi:10.1016/j.addma.2020.101283. [Crossref], [Web of Science ®], [Google Scholar]
  • Li, Yingli, Kun Zhou, Pengfei Tan, Shu Beng Tor, Chee Kai Chua, and Kah Fai Leong. 2018. “Modeling Temperature and Residual Stress Fields in Selective Laser Melting.” International Journal of Mechanical Sciences 136 (February): 24–35. doi:10.1016/j.ijmecsci.2017.12.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Mazur, MacIej, Martin Leary, Matthew McMillan, Joe Elambasseril, and Milan Brandt. 2016. “SLM Additive Manufacture of H13 Tool Steel with Conformal Cooling and Structural Lattices.” Rapid Prototyping Journal 22 (3): 504–518. doi:10.1108/RPJ-06-2014-0075. [Crossref], [Web of Science ®], [Google Scholar]
  • Mingear, Jacob, Bing Zhang, Darren Hartl, and Alaa Elwany. 2019. “Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators.” Additive Manufacturing 27 (October 2018): 565–575. doi:10.1016/j.addma.2019.03.027. [Crossref], [Web of Science ®], [Google Scholar]
  • Pakkanen, Jukka, Flaviana Calignano, Francesco Trevisan, Massimo Lorusso, Elisa Paola Ambrosio, Diego Manfredi, and Paolo Fino. 2016. “Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys.” Metallurgical and Materials Transactions A 47 (8): 3837–3844. doi:10.1007/s11661-016-3478-7. [Crossref], [Web of Science ®], [Google Scholar]
  • Patterson, Albert E., Sherri L. Messimer, and Phillip A. Farrington. 2017. “Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need.” Technologies 5 (4): 15. doi:10.3390/technologies5020015. [Crossref], [Web of Science ®], [Google Scholar]
  • Roberts, I. A., C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors. 2009. “A Three-Dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing.” International Journal of Machine Tools and Manufacture 49 (12–13): 916–923. doi:10.1016/j.ijmachtools.2009.07.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Shrestha, Subin, and Kevin Chou. 2018. “Computational Analysis of Thermo-Fluid Dynamics with Metallic Powder in SLM.” In CFD Modeling and Simulation in Materials Processing 2018, edited by Laurentiu Nastac, Koulis Pericleous, Adrian S. Sabau, Lifeng Zhang, and Brian G. Thomas, 85–95. Cham, Switzerland: Springer Nature. doi:10.1007/978-3-319-72059-3_9. [Crossref], [Google Scholar]
  • Sing, S. L., and W. Y. Yeong. 2020. “Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments.” Virtual and Physical Prototyping 15 (3): 359–370. doi:10.1080/17452759.2020.1779999. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Šmilauer, Václav, Emanuele Catalano, Bruno Chareyre, Sergei Dorofeenko, Jérôme Duriez, Nolan Dyck, Jan Eliáš, et al. 2015. Yade Documentation. 2nd ed. The Yade Project. doi:10.5281/zenodo.34073. [Crossref], [Google Scholar]
  • Tan, Pengfei, Fei Shen, Biao Li, and Kun Zhou. 2019. “A Thermo-Metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V.” Materials & Design 168 (April): 107642. doi:10.1016/j.matdes.2019.107642. [Crossref], [Web of Science ®], [Google Scholar]
  • Tan, Lisa Jiaying, Wei Zhu, and Kun Zhou. 2020. “Recent Progress on Polymer Materials for Additive Manufacturing.” Advanced Functional Materials 30 (43): 1–54. doi:10.1002/adfm.202003062. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Xiaoqing, and Kevin Chou. 2018. “Effect of Support Structures on Ti-6Al-4V Overhang Parts Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing.” Journal of Materials Processing Technology 257 (February): 65–78. doi:10.1016/j.jmatprotec.2018.02.038. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Di, Yongqiang Yang, Ziheng Yi, and Xubin Su. 2013. “Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process.” International Journal of Advanced Manufacturing Technology 65 (9–12): 1471–1484. doi:10.1007/s00170-012-4271-4. [Crossref], [Web of Science ®], [Google Scholar]
  • Wen, Peng, Maximilian Voshage, Lucas Jauer, Yanzhe Chen, Yu Qin, Reinhart Poprawe, and Johannes Henrich Schleifenbaum. 2018. “Laser Additive Manufacturing of Zn Metal Parts for Biodegradable Applications: Processing, Formation Quality and Mechanical Properties.” Materials and Design 155: 36–45. doi:10.1016/j.matdes.2018.05.057. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu, Yu-che, Cheng-hung San, Chih-hsiang Chang, Huey-jiuan Lin, Raed Marwan, Shuhei Baba, and Weng-Sing Hwang. 2018. “Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation.” Journal of Materials Processing Technology 254 (November 2017): 72–78. doi:10.1016/j.jmatprotec.2017.11.032. [Crossref], [Web of Science ®], [Google Scholar]
  • Yadroitsev, I., P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov. 2013. “Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track from Metallic Powder.” Journal of Materials Processing Technology 213 (4): 606–613. doi:10.1016/j.jmatprotec.2012.11.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Yu, Wenhui, Swee Leong Sing, Chee Kai Chua, and Xuelei Tian. 2019. “Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581. doi:10.1016/j.jallcom.2019.04.017. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhang, Dongyun, Pudan Zhang, Zhen Liu, Zhe Feng, Chengjie Wang, and Yanwu Guo. 2018. “Thermofluid Field of Molten Pool and Its Effects during Selective Laser Melting (SLM) of Inconel 718 Alloy.” Additive Manufacturing 21 (100): 567–578. doi:10.1016/j.addma.2018.03.031. [Crossref], [Web of Science ®], [Google Scholar]
A new dynamic masking technique for time resolved PIV analysis

A new dynamic masking technique for time resolved PIV analysis

시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술

물체 가시성을 허용하기 위해 형광 코팅과 결합 된 새로운 프리웨어 레이 캐스팅 도구

Journal of Visualization ( 2021 ) 이 기사 인용

Abstract

Time resolved PIV encompassing moving and/or deformable objects interfering with the light source requires the employment of dynamic masking (DM). A few DM techniques have been recently developed, mainly in microfluidics and multiphase flows fields. Most of them require ad-hoc design of the experimental setup, and may spoil the accuracy of the resulting PIV analysis. A new DM technique is here presented which envisages, along with a dedicated masking algorithm, the employment of fluorescent coating to allow for accurate tracking of the object. We show results from measurements obtained through a validated PIV setup demonstrating the need to include a DM step even for objects featuring limited displacements. We compare the proposed algorithm with both a no-masking and a static masking solution. In the framework of developing low cost, flexible and accurate PIV setups, the proposed algorithm is made available through a freeware application able to generate masks to be used by an existing, freeware PIV analysis package.

광원을 방해하는 이동 또는 변형 가능한 물체를 포함하는 시간 해결 PIV는 동적 마스킹 (DM)을 사용해야 합니다. 주로 미세 유체 및 다상 흐름 분야에서 몇 가지 DM 기술이 최근 개발되었습니다. 대부분은 실험 설정의 임시 설계가 필요하며 결과 PIV 분석의 정확도를 떨어 뜨릴 수 있습니다. 여기에는 전용 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수있는 새로운 DM 기술이 제시되어 있습니다. 제한된 변위를 특징으로 하는 물체에 대해서도 DM 단계를 포함해야 하는 필요성을 보여주는 검증 된 PIV 설정을 통해 얻은 측정 결과를 보여줍니다. 제안 된 알고리즘을 no-masking 및 static masking 솔루션과 비교합니다. 저비용, 유연하고 정확한 PIV 설정 개발 프레임 워크에서 제안 된 알고리즘은 기존 프리웨어 PIV 분석 패키지에서 사용할 마스크를 생성 할 수 있는 프리웨어 애플리케이션을 통해 사용할 수 있습니다.

Keywords

  • Time resolved PIV, Dynamics masking, Image processing, Vibration inducers, Fluorescent coating

그래픽 개요

소개

PIV (입자 영상 속도계)의 사용은 70 년대 후반 (Archbold 및 Ennos 1972 )이 반점 계측의 확장 (Barker and Fourney 1977 ) 으로 도입된 이래 실험 유체 역학에서 중심적인 역할을 했습니다 . PIV 기술의 기본 아이디어는 유체에 주입된 입자의 속도를 측정하여 유동장을 재구성하는 것입니다. 입자의 크기와 밀도는 확실하게 선택되고 유동을 만족스럽게 따르게 됩니다.

흐름은 레이저 / LED 소스를 통해 조명되고 입자에 의해 산란 된 빛은 추적을 허용합니다. 독자는 리뷰 작품 Grant ( 1997 ), Westerweel et al. ( 2013 년)에 대한 자세한 설명을 참조하십시오. 기본 2D 기술은 고유한 설정으로 발전했으며, 가장 진보 된 것은 단일 / 다중 평면 입체 PIV (Prasad 2000 ) 및 체적 / 단층 PIV (Scarano 2013 )입니다. 광범위한 유동장의 비 침습적 측정이 필요한 산업 및 연구 응용 분야에서 광범위하게 사용되었습니다.

조사된 유동장이 단단한 서있는 경계의 영향을 받는 경우 정적 마스킹 (SM) 접근 방식을 사용하여 PIV 분석을 수행하는 영역에서 솔리드 객체와 그림자가 차지하는 영역을 빼기 위해 주의를 기울여야 합니다. 실제로 이러한 영역에서는 파종 입자를 식별 할 수 없으므로 유속 재구성을 수행 할 수 없습니다. 제대로 처리되지 않으면 이 마스킹 단계는 잘못된 예측으로 이어질 수 있으며, 불행히도 그림자 영역 경계의 근접성에 국한되지 않습니다.

PIV 기술은 획득 프레임 속도를 관심있는 시간 척도로 조정하여 정상 상태 또는 시간 변화 흐름에 적용 할 수 있습니다. 시간의 가변성이 고체 물체의 위치 / 모양과 관련된 경우 이미지를 동적으로 마스킹하기 위해 추가 노력이 필요합니다. 고체 물체뿐만 아니라 다른 유체 단계도 가려야한다는 점에 유의해야합니다 (Foeth et al. 2006). 

이 프로세스는 고체 물체의 움직임이 선험적으로 알려진 경우 비교적 쉬우므로 SM 알고리즘에 대한 최소한의 수정이 목적에 부합 할 수 있습니다. 그러나 고체 물체의 위치 및 / 또는 모양이 알려지지 않은 방식으로 시간에 따라 변할 경우 물체를 동적으로 추적 할 수 있는 마스킹 기술이 필요합니다. PIV 분석을위한 동적 마스킹 (DM) 접근 방식은 현재 상당한 주목을 받고 있습니다 (Sanchis and Jensen 2011 , Masullo 및 Theunissen 2017 , Anders et al. 2019 ) . 시간 분해 PIV 시스템의 확산 덕분에 고속 카메라의 가용성이 높아집니다. 

DM 기술의 주요 발전은 마이크로 PIV 분야에서 비롯됩니다 (Lindken et al. 2009) 마이크로 및 나노 스위 머 (Ergin et al. 2015 ) 및 다상 흐름 (Brücker 2000 , Khalitov 및 Longmire 2002 ) 주변의 유동장을 조사 하려면 정확하고 유연한 알고리즘이 필요합니다. DM 기술은 상용 PIV 분석 소프트웨어 패키지 (TSI Instruments 2014 , DantecDynamics 2018 )에 포함되어 있습니다. 최근 개발 (Vennemann 및 Rösgen 2020 )은 신경망 자동 마스킹 기술의 적용을 예상하지만, 네트워크를 훈련하려면 합성 데이터 세트를 생성해야합니다.

많은 알고리즘은 이미지 처리 기술을 사용하여 개체를 추적하며, 대부분 사용자는 획득 한 이미지에서 추적 할 개체를 강조 표시 할 수있는 임시 실험 설정을 개발해야합니다. 따라서 실험 설정의 설계는 알고리즘의 최종 정확도에 영향을줍니다.

몇 가지 해결책을 구상 할 수 있습니다. 다음에서는 간단한 2D PIV 설정을 참조하지만 대부분의 고려 사항은 더 복잡한 설정으로 확장 할 수 있습니다. PIV 설정에서 객체를 쉽고 정확하게 추적 할 수 있도록 렌더링하는 가장 간단한 방법은 일반적으로 PIV 레이저 시트에 대략 수직 인 카메라를 향한 반사를 최대화하는 방향을 가리키는 추가 광원을 사용하여 조명하는 것입니다. 이 순진한 솔루션과 관련된 주요 문제는 PIV의 ROI (관심 영역)를 비추 지 않고는 광원을 움직이는 물체에만 겨냥하는 것이 사실상 불가능하여 시딩에 의해 산란 된 레이저 광 사이의 명암비를 감소 시킨다는 것입니다. 입자와 어두운 배경.

카메라의 프레임 속도가 높을수록 센서에 닿는 빛의 양이 적다는 사실로 인해 상황이 가혹 해집니다. 고체 물체의 움직임과 유동 입자가 모두 사용 된 설정의 획득 속도에 비해 충분히 느리다면, 가능한 해결책은 레이저 펄스 쌍 사이에 단일 확산 광 샷을 삽입하는 것입니다 (반드시 대칭 삽입은 아님). 그리고 카메라 샷을 둘 모두에 동기화합니다. 각 레이저 커플에서 물체의 위치는 확산 광에 의해 생성 된 이전 샷과 다음 샷의 두 위치를 보간하여 결정될 수 있습니다. 이 접근 방식에는 레이저, 카메라 및 빛을 제어 할 수있는 동기화 장치가 필요합니다.

이 문제에 대한 해결책이 제안되었으며 유체 인터페이스 (Foeth et al. 2006 ; Dussol et al. 2016 ) 의 밝은 반사를 활용 하여 이미지에서 많은 양의 산란 레이저 광을 획득 할 수 있습니다. 고체 표면에는 효과를 높이기 위해 반사 코팅이 제공 될 수 있습니다. 그런 다음 물체는 비정상적으로 큰 입자로 식별되고 경계를 쉽게 추적 할 수 있습니다. 이 솔루션의 단점은 물체 표면에서 산란 된 빛이 레이저 시트에 있지 않은 많은 시딩 입자를 비추어 PIV 분석의 정확도를 점진적으로 저하 시킨다는 것입니다.

위의 접근 방식의 개선은 다른 파장 의 두 번째 동일 평면 레이저 시트 (Driscoll et al. 2003 )를 사용합니다. 첫 번째 레이저 파장을 중심으로 한 좁은 반사 대역. 전체 설정은 매우 비쌀 수 있습니다. 파장 방출의 차이를 이용하여 설정을 저렴하게 만들 수 있습니다. 서로 다른 필터가 장착 된 두 대의 카메라를 적용하면 인터페이스로부터의 반사와 독립적으로 형광 시드 입자를 식별 할 수 있습니다 (Pedocchi et al. 2008 ).

객체의 변위가 작을 때 기본 솔루션은 실제 시간에 따라 변하는 음영 영역에 가장 근접한 하나의 정적 마스크를 추출하는 것입니다. 일반적인 경험 법칙은 예상되는 음영 영역보다 약간 더 크게 마스크를 그려 분석에 포함 된 조명 영역의 양을 단순화하고 최소화하는 것 사이의 최상의 균형을 찾는 것입니다.

본 논문에서는 PIV 분석을위한 DM 문제에 대한 새로운 실험적 접근법을 제안합니다. 우리의 방법은 형광 페인팅을 사용하여 물체를 쉽게 추적 할 수 있도록 하는 기술과 시변 마스크를 생성 할 수있는 특정 오픈 소스 알고리즘을 포함합니다. 이 접근법은 레이저 광에 불투명 한 물체의 큰 변위를 허용함으로써 효과적인 것으로 입증되었습니다. 

우리의 방법인 NM (no-masking)과 SM (static masking) 접근 방식을 비교합니다. 우리의 접근 방식의 타당성을 입증하는 것 외에도 이 백서는 마스킹 단계가 정확한 결과를 얻기 위해 가장 중요하다는 것을 확인합니다. 실제로 물체의 변위가 무시할 수 없는 경우 DM에 대한 리조트는 필수이며 SM 접근 방식은 음영 처리 된 영역의 주변 환경에 국한되지 않는 부정확성을 유발합니다. 

논문의 구조는 다음과 같습니다. 먼저 형광 코팅 기술과 마스킹 소프트웨어를 설명하는 제안된 접근법의 근거를 소개합니다. 그런 다음 PIV 설정에 대한 설명 후 두 벤치 마크 사례를 통해 전체 PIV 체인 분석의 신뢰성을 평가합니다. 그런 다음 제안 된 DM 방법의 결과를 NM 및 SM 솔루션과 비교합니다. 마지막으로 몇 가지 결론이 도출됩니다.

행동 양식

제안 된 DM 기술은 PIV 분석을 위해 캡처 한 동일한 이미지에서 쉽고 정확한 추적 성을 허용하기 위해 움직이는 물체 표면의 형광 코팅을 구상합니다. 물체가 가시화되면 특정 알고리즘이 물체 추적을 수행하고 레이저 위치가 알려지면 (그림 1 참조  ) 음영 영역의 마스킹을 수행합니다.

형광 코팅

코팅은 구조적 매트릭스 에 시판되는 형광 분말 (fluorescein (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018 )) 의 분산액으로 구성됩니다 . 단단한 물체의 경우 매트릭스는 폴리 에스터 / 에폭시 (대상 재료와의 화학적 호환성에 따라) 투명 수지 일 수 있습니다. 변형 가능한 물체의 경우 매트릭스는 투명한 실리콘 고무로 만들 수 있습니다. 형광 코팅 된 물체는 실행 중에 지속적으로 빛을 방출하기 위해 실험 전에 충분히 오랫동안 조명을 비춰 야합니다. 우리는 4W LED 소스 (그림 2 에서 볼 수 있음)에 20 초 긴 노출이  실험 실행 (몇 초)의 짧은 기간 동안 일관된 형광 방출을 제공하기에 충분하다는 것을 발견했습니다.

우리 실험에서 물체와 입자 크기 사이의 상당한 차이를 감안할 때 전자를 식별하는 것은 간단합니다. 그림  3 은 씨 뿌리기 입자와 물체 모양이 서로 다른 세 번에 겹쳐진 모습을 보여줍니다 (색상은 다른 순간을 나타냄).

대신, 이러한 크기 기반 분류가 가능하지 않은 경우 입자와 물체의 파장을 분리해야합니다. 이러한 분리는 시드 입자에 의해 산란 된 빛과 현저하게 다른 파장에서 방출되는 형광 코팅을 선택하여 달성 할 수 있습니다. 또는 레이저에서 멀리 떨어진 대역에서 방출되는 형광 입자를 이용하는 것 (Pedocchi et al. 2008 ). 두 경우 모두 컬러 이미지 획득의 채널 분리 또는 멀티 카메라 설정의 애드혹 필터링은 물체 식별을 크게 촉진 할 수 있습니다. 우리의 경우에는 그러한 파장 분리를 달성 할 필요가 없습니다. 실제로 형광 코팅의 방출 스펙트럼의 피크는 540nm입니다 (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018), 사용 된 레이저의 532 nm에 매우 가깝습니다.

마스킹 소프트웨어

DM 용으로 개발 된 알고리즘 은 무료 PIV 분석 패키지 PIVlab (Thielicke 2020 , Thielicke 및 Stamhuis 2014 ) 과 함께 작동하도록 고안된 오픈 소스 프리웨어 GUI 기반 도구 (Prestininzi 및 Lombardi 2021 )입니다. 이것은 세 단계의 순차적 실행으로 구성됩니다 (그림 1 에서 a–b–c라고 함 ). 첫 번째 단계 (a)는 장면에서 레이저 위치를 찾는 데 사용됩니다 (즉, 소스의 좌표를 계산합니다. 장애물에 부딪히는 빛); 두 번째 항목 (b)은 개체 위치를 추적하고 각 프레임의 음영 영역을 계산합니다. 세 번째 항목 (c)은 추적 된 개체 영역과 음영 처리 된 개체 영역을 PIV 알고리즘을위한 단일 마스크로 병합합니다.

각 단계에 대한 자세한 내용은 다음과 같습니다.

  1. (ㅏ)레이저 위치는 프레임 (즉, 획득 한 프레임의 시야 (FOV)) 내에서 가시적 일 수도 있고 아닐 수도 있습니다. 전자의 경우 사용자는 GUI에서 레이저 소스를 클릭하여 찾기 만하면됩니다. 후자의 경우, 사용자는 음영 영역의 경계에 속하는 두 개의 세그먼트 (두 쌍의 점)를 그리도록 요청받습니다. 그러면 FOV 외부에있는 레이저 위치가 두 선의 교차점으로 계산됩니다. 세그먼트로 구성됩니다. 개체 그림자는 ROI 프레임 상자에 도달하는 것으로 간주됩니다.
  2. (비)레이저 위치가 알려지면 물체 추적은 다음과 같이 수행됩니다. 각 프레임의 하나의 채널 (이 경우 RGB 색상 공간이 사용되기 때문에 녹색 채널이지만 GUI는 선호하는 채널을 지정할 수 있음)은 다음과 같습니다. 로컬 적응 임계 값을 사용하여 이진화 됨 (Bradley and Roth 2007), 후자는 이웃 주변의 로컬 평균 강도를 사용하여 각 픽셀에 대해 계산됩니다. 그런 다음 입자와 물체로 구성된 이진 이미지가 영역으로 변환됩니다. 우리 실험에 존재하는 유일한 장애물은 모든 입자에 비해 더 큰 크기를 기준으로 식별됩니다. 다른 전략은 이전에 논의되었습니다. 그런 다음 장애물 영역의 경계 다각형은 사용자 정의 포인트 밀도로 결정됩니다. 여기에서는 그림자 결정을 위해 광선 투사 (RC) 접근 방식을 채택했습니다. RC는 컴퓨터 그래픽을 기반으로하는 “경 운송 모델링”의 틀에 속합니다. 수치 적으로 정확한 그림자를 제공하기 때문에 여기에서 선택됩니다. 정확도는 떨어지지 만 주로 RC의 계산 부하를 줄이는 것을 목표로하는 몇 가지 다른 방법이 개발되었습니다.2015 ), 여기서 간략히 회상합니다. 각 프레임 (명확성을 위해 여기에 색인화되지 않음)에 대해 광선아르 자형나는 j아르 자형나는제이레이저 위치 L 에서 i 번째 정점 으로 캐스트됩니다.피나는 j피나는제이의 J 오브젝트의 경계 다각형 일; 목표는피나는 j피나는제이 하위 집합에 속 ㅏ제이ㅏ제이 레이저에 의해 직접 조명되는 경계 정점의 피나는 j피나는제이 에 추가됩니다 ㅏ제이ㅏ제이 만약 아르 자형나는 j아르 자형나는제이 적어도 한쪽을 교차 에스k j에스케이제이( j 번째 개체 경계 다각형 의 모든면에 걸쳐있는 k )피나는 j피나는제이 (그것이 교차로 큐나는 j k큐나는제이케이 레이저 위치와 정점 사이에 있지 않습니다. 피나는 j피나는제이). 두 개의 광선, 즉ρ1ρ1 과 ρ2ρ2추가면을 가로 지르지 않는는 저장됩니다.
  3. (씨)일단 정점 세트, 즉 ㅏ제이ㅏ제이 레이저에 의해 직접 비춰지고 식별되었으며 ROI 프레임 상자의 음영 부분은 후자와 교차하여 결정됩니다. ρ1ρ1 과 ρ2ρ2. 두 교차점은 다음에 추가됩니다.ㅏ제이ㅏ제이. 점으로 둘러싸인 영역ㅏ제이ㅏ제이 마침내 마스크로 변환됩니다.

레이저 소스가 여러 개인 경우 각각에 RC 알고리즘을 적용해야하며 음영 영역의 결합이 수행됩니다. 레이 캐스팅 절차의 의사 코드는 Alg에보고됩니다. 1.

그림
그림 1
그림 1

DM 검증

이 섹션에서는 제안 된 DM으로 수행 된 PIV 측정과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM) 간의 비교를 제시합니다.

그림 2
그림 2
그림 3
그림 3

실험 설정

진동 유도기 (VI)의 성능을 분석하기 위해 PIV 설정을 설계하고 현재 DM 기술을 개발했습니다 (Curatolo et al. 2019 , 2020 ). 후자는 비 맥동 ​​유체 흐름에서 역류에 배치 된 캔틸레버의 규칙적이고 넓은 진동을 유도 할 수있는 윙렛입니다. 이러한 VI는 캔틸레버의 끝에 장착되며 (그림 2 참조   ) 진동 운동의 어느 지점에서든 캔틸레버의 중립 구성을 향해 양력을 생성 할 수있는 두 개의 오목한 날개가 있습니다.

VI는 캔틸레버 표면에 장착 된 압전 패치를 사용하여 고정 유체 흐름에서 기계적 에너지 추출을 향상시킬 수 있습니다. 그림 2 에서 강조된 날개의 전체 측면 가장자리는  Sect에 설명 된 사양에 따라 형광 페인트로 코팅되어 있습니다. 2.1 . 실험은 Roma Tre University 공학부 수력 학 실험실의 자유 표면 채널에서 수행됩니다. 10.8cm 길이의 캔틸레버는 채널의 중심선에 배치되고 상류로 향하며 수직-세로 평면에서 진동합니다. 세라믹 페 로브 스카이 트 (PZT) 압전 패치 (7××캔틸레버의 윗면에는 Physik Instrumente (PI)에서 만든 3cm)가 부착되어 있습니다. 흐름 유도 진동 하에서 변형으로 인해 AC 전압 차이를 제공합니다. VI 왼쪽 날개의 수직 중앙면에있는 2D 속도 필드는 수제 수중 PIV 장비를 통해 얻었습니다.각주1 연속파, 저비용, 저전력 (150mW), 녹색 (532nm) 레이저 빔이 2mm 두께의 부채꼴 시트에 퍼집니다.120∘120∘그림 2 와 같이 VI의 한쪽 날개를 절반으로 교차 합니다. 물은 평균 직경이 100 인 폴리 아미드 입자로 시드됩니다.μμm 및 1016 Kg / m의 밀도삼삼. 레이저 소스는 VI의 15cm 위쪽 (자유 표면 아래 약 4cm)과 VI의 하류 5cm에 경사지게 배치됩니다.5∘5∘상류. 위의 설정은 주로 날개의 후류를 조사하기 위해 고안되었습니다. 날개의 상류면과 하류 부분의 일부는 레이저 시트에 직접 맞지 않습니다. 레이저 시트에 수직으로 촬영하는 고속 상용 카메라 (Sony RX100 M5)를 사용하여 동영상을 촬영합니다. 후자는 1920의 프레임 크기로 500fps의 높은 프레임 속도 모드로 기록됩니다.×× 1080px, 나중에 더 작은 655로 잘림 ××이미지 분석 중에 분석 할 850px ROI. 시간 해결, 프리웨어, 오픈 소스, MatLab 용 PIV 분석 도구가 사용됩니다 (Thielicke and Stamhuis 2014 ). 이 도구는 질의 영역 (IA) 변형 (우리의 경우 64×× 64, 32 ×× 32 및 26 ××26). 각 패스에서 각 IA의 경계와 모서리에서 추가 변위 정보를 얻기 위해 인접한 IA 사이에 50 %의 중첩이 허용됩니다. 첫 번째 통과 후, 입자 변위 정보가 보간되어 IA의 모든 픽셀의 변위를 도출하고 그에 따라 변형됩니다.

시딩 입자 수 밀도는 첫 번째 패스에서 IA 당 약 5입니다. Keane과 Adrian ( 1992 )에 따르면 이러한 밀도 값은 95 % 유효한 탐지 확률을 보장합니다. IA는 프레임 커플 내에서 입자의 충분한 영구성을 보장하기 위해 크기가 조정됩니다. 분석 된 유동 역학은 0.4 ~ 0.7m / s 범위의 유동 속도를 특징으로합니다. 따라서 입자는 권장 최소값 인 2 프레임 (Keane and Adrian 1992 ) 보다 큰 약 3-4 프레임의 세 번째 패스 IA에 나타납니다 .

PIV 체인 분석 평가

사용 된 PIV 알고리즘의 정확성은 이전에 문헌에서 광범위하게 평가되었습니다 (예 : Guérin et al. ( 2020 ), Vennemann and Rösgen ( 2020 ), Mohammadshahi et al. ( 2020 ), Narayan et al. ( 2020 )). 그러나 PIV 측정의 물리적 일관성을 보장하기 위해 두 가지 벤치 마크 사례가 여기에 나와 있습니다.

첫 번째는 Sect에 설명 된 동일한 PIV 설정을 통해 측정 된 세로 유속의 수직 프로파일을 비교합니다. 3.1 분석 기준 용액이있는 실험 채널에서. 후자는 플로팅 트레이서로 수행되는 PTV (입자 추적 속도계) 측정을 통해 보정되었습니다. 분석 속도 프로파일은 Eq. 1 (Keulegan 1938 ).u ( z) =유∗[5.75 로그(지δ) +8.5];유(지)=유∗[5.75로그⁡(지δ)+8.5];(1)

여기서 u 는 수평 유속 성분, z 는 수직 좌표,δδ 침대 거칠기 및 V∗V∗ 균일 한 흐름 공식에 의해 주어진 것으로 가정되는 마찰 속도, 즉 유∗= U/ C유∗=유/씨; U 는 깊이 평균 유속이고 C 는 다음 과 같이 주어진 마찰 계수입니다.씨= 5.75로그( 13.3에프R / δ)씨=5.75로그⁡(13.3에프아르 자형/δ), R = 0.2아르 자형=0.2 m은 유압 반경이고 에프= 0.92에프=0.92유한 폭 채널의 형상 계수. 그림  4 는 4 초의 시간 창에 걸쳐 순간 값을 평균화하여 얻은 분석 프로필과 PIV 측정 간의 비교를 보여줍니다. 국부적 인 변동은 대략 0.5 초의 시간 척도에서 진화하는 것으로 밝혀졌습니다. PTV 결과에 가장 적합하면 다음과 같은 값이 산출됩니다.δ= 1δ=1cm, 베드 거칠기의 경우 Eq. 1 , 실험 채널 침대 표면의 실제 조건과 호환됩니다. VI의 휴지 구성 위치에서 유속의 분석 값은 그림에서 검은 색 십자가로 표시됩니다. 비교는 놀라운 일치를 보여 주므로 실험 설정과 PIV 알고리즘의 조합이 분석 된 설정에 대해 신뢰할 수있는 것으로 간주 될 수 있음을 증명합니다.

두 번째 벤치 마크는 VI 뒷면에 재 부착 된 흐름의 양을 비교합니다. 실제로 이러한 장치의 높은 캠버를 고려할 때 흐름은 하류 표면에서 분리되어 결국 다시 연결됩니다. 첨부 흐름을 나타내는 표면의 양 (Curatolo 외. 발견 2020 ) 흥미로운 압전 패치 (즉, 효율이 큰 경우에 더 빠르게 진동이 유발되는 것이다)에서 VI의 효율과 상관된다. 여기에서는 PIV 분석을 통해 측정 된 진동의 상사 점에서 재 부착 된 흐름의 길이를 CFD (전산 유체 역학) 상용 코드 FLOW-3D® (Flow Science 2019 )로 예측 한 길이와 비교하여 RANS를 해결합니다. 결합 식 (비어 스톡스 레이놀즈 평균) 케이 -ϵϵ구조화 된 그리드의 난류 폐쇄 (시뮬레이션을 위해 1mm 간격이 선택됨). 다운 스트림 측면의 흐름은 이러한 높은 캠버 VI를 위해 여러 위치에서 분리 및 재 부착됩니다. 이 벤치 마크에서 비교 된 양은 VI의 앞쪽 가장자리와 가장 가까운 흐름 재 부착 위치 사이의 호 길이입니다. 그림 5를 참조  하면 CFD 모델에 의해 예측 된 호의 길이는 측정 된 호의 길이보다 10 % 더 큽니다. 이 작업에 제시된 DM 기술을 사용하는 PIV 분석은 물리적으로 건전한 측정을 제공하는 것으로 입증됩니다. 후류의 유체 역학에 대한 자세한 분석과 VI의 전반적인 효율성과의 상관 관계는 현재 진행 중이며 향후 작업의 대상이 될 것입니다.

그림 4
그림 4
그림 5
그림 5

결과

그림 6을 참조하여  순간 유속 장의 관점에서 세 가지 접근법의 결과를 비교합니다. 선택한 순간은 진동의 상사 점에 해당합니다.

제안 된 DM (그림 6 의 패널 a  )은 부드러운 유동장을 생성하여 후류에서 일관된 소용돌이 구조를 나타냅니다.

NM 접근법 (그림 6 의 패널 b1  )도 후류의 와류 구조를 정확하게 예측하지만 음영 영역에서 대부분 부정확 한 값을 산출합니다. 또한 비교에서 합리적인 기준을 추론 할 수 없기 때문에 획득 한 유동장 의 사후 필터링이 실현 가능하지 않다는 것이 분명합니다 . 실제로 유속은 그림 6 의 패널 c1에서 볼 수 있듯이 가장 큰 오류가 생성되는 위치에서도 “합리적인”크기를 갖습니다. , DM 및 NM 접근 방식으로 얻은 속도 필드 간의 차이가 표시됩니다. 더욱이 후류에서 발생하는 매우 불안정한 소용돌이 운동이 이러한 위치에 가깝게 이동하기 때문에 그럴듯한 흐름 방향을 가정하더라도 필터링 기준을 공식화 할 수 없습니다. 모델러가 그러한 부정확성을 알고 있었다하더라도 NM 접근법은 “합리적”이지만 여전히 날개의 내부 현과 그 바로 아래에있는 유동장의 대부분은 부정확합니다. 이러한 행동은 매우 오해의 소지가 있습니다.

그림 6 의 패널 b2는  SM 접근법으로 얻은 유속 장을 보여주고 패널 c2는 SM과 DM 접근법으로 얻은 결과 간의 차이를 보여줍니다. SM 접근법은 NM 대응 물에 비해 전반적으로 더 나은 정확도를 명확하게 보여 주지만, 이는 레이저 소스의 위치가 진동 중에 음영 영역이 많이 움직이지 않기 때문입니다 (그림 3 참조). 한 번의 진동 동안 VI가 경험 한 최대 변위를 육안으로 검사합니다. 즉, 분석 된 사례의 경우 정적 마스크를 그리기위한 중립 구성을 선택하면 NM 접근 방식보다 낮은 오류를 얻을 수 있습니다. 더 큰 물체 변위를 포함하는 실험 설정은 NM이 일관되게 더 정확해질 수 있기 때문에 NM보다 SM의 우월성은 일반화 될 수 없음을 강조하고 싶습니다.

그림  6 은 분석 된 접근법에 의해 생성 된 차이를 철저히 보여 주지만 결과에 대한보다 정량적 인 평가를 제공하기 위해 오류의 빈도 분포를 계산했습니다. 그림 7 에서 이러한 분포를  살펴보면 SM 접근법이 NM보다 전체적인 예측이 더 우수하고 SM 분포가 더 정점에 있음을 확인합니다. 그럼에도 불구하고 SM은 여전히 ​​비정상적인 강도의 스파이크를 생성합니다. 분포의 꼬리로 표시되는 이러한 값은 정적 마스크 범위의 과대 평가 (왼쪽 꼬리) 및 과소 평가 (오른쪽 꼬리)에 연결됩니다. 그러나 주파수의 크기는 고려되는 경우에 SM과 NM의 적용 가능성을 배제하여 DM에 대한 리조트를 의무적으로 만듭니다.

그림 6
그림 6
그림 7
그림 7

결론

이 작업에서는 PIV 분석 도구에 DM (Dynamic Masking) 모듈을 제공하기위한 새로운 실험 기법을 제시합니다. 동적 마스킹은 유체 흐름에 잠긴 불투명 이동 / 변형 가능한 물체를 포함하는 시간 해결 PIV 설정에서 필요한 단계입니다. 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수 있습니다. 우리는 제안 된 DM과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM)을 비교하여 자체적으로 설계된 저비용 PIV 설정을 통해 수행 된 측정을 제시합니다. 분석 된 유동 역학은 고체 물체의 제한된 변위를 포함하지만 정량적 비교는 DM 기술을 채택해야하는 필수 필요성을 보여줍니다. 여기에서 정확성이 입증 된 현재의 실험적 접근 방식은

메모

  1. 1.실험 데이터 세트는 PIV 분석의 복제를 허용하기 위해 요청시 제공됩니다.

참고 문헌

  1. Anders S, Noto D, Seilmayer M, Eckert S (2019) 스펙트럼 랜덤 마스킹 : 다상 흐름에서 piv를위한 새로운 동적 마스킹 기술. Experim 유체 60 (4) : 1–6 Google 학술 검색 
  2. Archbold E, Ennos A (1972) 이중 노출 레이저 사진에서 변위 측정. Optica Acta Int J Opt 19 (4) : 253–271 Google 학술 검색 
  3. Barker D, Fourney M (1977) 얼룩 패턴으로 유체 속도 측정. Opt Lett 1 (4) : 135–137 Google 학술 검색 
  4. Bradley D, Roth G (2007) 적분 이미지를 사용한 적응 형 임계 값. J 그래프 도구 12 (2) : 13–21 Google 학술 검색 
  5. Brücker C (2000) Piv의 다상 흐름. 입자 이미지 유속계 및 관련 기술, 강의 시리즈, p 1
  6. Case N (2015) 시력 및 조명. GitHub 저장소. https://github.com/ncase/sight-and-light
  7. Curatolo M, La Rosa M, Prestininzi P (2019) 바이 모르 프 압전 캔틸레버의 굽힘에서 평면 상태 가정의 타당성. J Intell Mater Syst Struct 30 (10) : 1508–1517 Google 학술 검색 
  8. Curatolo M, Lombardi V, Prestininzi P (2020) 얇은 압전 캔틸레버의 유동 유도 진동 향상 : 실험 분석. In : River Flow 2020— 유체 유압에 관한 국제 회의 절차
  9. DantecDynamics : DynamicStudio 6.4 (2018) https://www.dantecdynamics.com/dynamicstudio-6-4-release-with-new-dynamic-masking-add-on/
  10. Driscoll K, Sick V, Gray C (2003) 고밀도 연료 ​​스프레이에서 동시 공기 / 연료 위상 piv 측정. Experim 유체 35 (1) : 112–115 Google 학술 검색 
  11. Dussol D, Druault P, Mallat B, Delacroix S, Germain G (2016) 불안정한 인터페이스, 거품 및 움직이는 구조를 포함하는 piv 이미지에 대한 자동 동적 마스크 추출. Comptes Rendus Mécanique 344 (7) : 464–478 Google 학술 검색 
  12. Ergin F, Watz B, Wadhwa N (2015) 장거리 micropiv를 사용하여 작은 평영 수영 선수 주변의 픽셀 정확도 동적 마스킹 및 흐름 측정. 에서 : 입자 이미지 유속계 -PIV15에 관한 제 11 회 국제 심포지엄. 캘리포니아 주 산타 바바라, 9 월, 14 ~ 16 쪽
  13. Flow Science I (2019) FLOW-3D, 버전 12.0. 산타페, NM https://www.flow3d.com/
  14. Foeth EJ, Van Doorne C, Van Terwisga T, Wieneke B (2006) 시간은 3d 시트 캐비테이션의 piv 및 유동 시각화를 해결했습니다. Experim 유체 40 (4) : 503–513 Google 학술 검색 
  15. Grant I (1997) 입자 이미지 속도 측정 : 리뷰. Proc Inst Mech Eng CJ Mech Eng Sci 211 (1) : 55–76 Google 학술 검색 
  16. Guérin A, Derr J, Du Pont SC, Berhanu M (2020) 흐르는 물막에 의해 생성 된 Streamwise 용해 패턴. Phys Rev Lett 125 (19) : 194502 Google 학술 검색 
  17. Keane RD, Adrian RJ (1992) piv 이미지의 상호 상관 분석 이론. Appl Sci Res 49 (3) : 191–215 Google 학술 검색 
  18. Keulegan GH (1938) 열린 수로에서 난류의 법칙, vol. 21. 미국 표준 국 (National Bureau of Standards)
  19. Khalitov D, Longmire EK (2002) 2 개 매개 변수 위상 차별에 의한 동시 2 상 piv. Experim 유체 32 (2) : 252–268 Google 학술 검색 
  20. Lindken R, Rossi M, Große S, Westerweel J (2009) 미세 입자 영상 속도계 (piv) : 최근 개발, 응용 및 지침. 랩 칩 9 (17) : 2551–2567 Google 학술 검색 
  21. Masullo A, Theunissen R (2017) 픽셀 강도 통계를 기반으로 한 piv 이미지 분석을위한 자동화 된 마스크 생성. Experim 유체 58 (6) : 70 Google 학술 검색 
  22. Mohammadshahi S, Samsam-Khayani H, Cai T, Kim KC (2020) 수로에서 진동하는 제트의 흐름 특성과 열 전달에 대한 실험 및 수치 연구. Int J 열 유체 흐름 86 : 108701 Google 학술 검색 
  23. Narayan S, Moravec DB, Dallas AJ, Dutcher CS (2020) 4 채널 미세 유체 유체 역학 트랩에서 물방울 모양 이완. Phys Rev Fluids 5 (11) : 113603 Google 학술 검색 
  24. Pedocchi F, Martin JE, García MH (2008) 입자 이미지 속도계를 사용하는 대규모 실험을위한 저렴한 형광 입자. Experim 유체 45 (1) : 183–186 Google 학술 검색 
  25. Prasad AK (2000) 입체 입자 영상 유속계. Experim 유체 29 (2) : 103–116 Google 학술 검색 
  26. Prestininzi P, Lombardi V (2021) DM @ PIV. https://it.mathworks.com/matlabcentral/fileexchange/75398-dm-piv . MATLAB Central 파일 교환. 2021 년 5 월 6 일 확인
  27. Sanchis A, Jensen A (2011) 자유 표면 흐름에서 라돈 변환을 사용한 piv 이미지의 동적 마스킹. Experim 유체 51 (4) : 871–880 Google 학술 검색 
  28. Scarano F (2013) Tomographic piv : 원리와 실행. Meas Sci Technol 24 (1)
  29. Taniguchi M, Lindsey JS (2018) photochemcad에 사용하기위한> 300 개의 일반적인 화합물의 흡수 및 형광 스펙트럼 데이터베이스. Photochem Photobiol 94 (2) : 290–327 Google 학술 검색 
  30. Taniguchi M, Du H, Lindsey JS (2018) Photochemcad 3 : 다중 스펙트럼 데이터베이스를 사용한 광 물리 계산을위한 다양한 모듈. Photochem Photobiol 94 (2) : 277–289 Google 학술 검색 
  31. Thielicke W (2020) PIVlab (2020). https://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool . MATLAB Central 파일 교환. 5 월 8 일 확인
  32. Thielicke W, Stamhuis E (2014) PIVlab-matlab의 사용자 친화적이고 저렴하며 정확한 디지털 입자 이미지 속도계를 지향합니다. J Open Res Softw 2 (1)
  33. TSI Instruments (2014) PIV 이미지에 대한 동적 마스킹. TSI Incorporated 애플리케이션 노트 PIV-018
  34. Vennemann B, Rösgen T (2020) 컨볼 루션 오토 인코더를 사용하는 입자 이미지 속도 측정을위한 동적 마스킹 기술. Experim 유체 61 (7) : 1–11 Google 학술 검색 
  35. Westerweel J, Elsinga GE, Adrian RJ (2013) 복잡하고 난류 흐름에 대한 입자 이미지 유속계. Ann Rev Fluid Mech 45 (1) : 409–436. https://doi.org/10.1146/annurev-fluid-120710-101204MathSciNet  수학 Google 학술 검색 

참조 다운로드

자금

CRUI-CARE 계약에 따라 Università degli Studi Roma Tre가 제공하는 오픈 액세스 자금.

작가 정보

제휴

  1. 이탈리아 Roma, Università Roma Tre 공학과Valentina Lombardi, Michele La Rocca, Pietro Prestininzi

교신 저자

Valentina Lombardi에 대한 서신 .

추가 정보

발행인의 메모

Springer Nature는 출판 된지도 및 기관 소속의 관할권 주장과 관련하여 중립을 유지합니다.

오픈 액세스이 기사는 크리에이티브 커먼즈 저작자 표시 4.0 국제 라이선스에 따라 사용이 허가되었습니다.이 라이선스는 귀하가 원저자와 출처에 대해 적절한 크레딧을 제공하는 한 모든 매체 또는 형식으로 사용, 공유, 개작, 배포 및 복제를 허용합니다. 크리에이티브 커먼즈 라이센스에 대한 링크를 제공하고 변경 사항이 있는지 표시합니다. 이 기사의 이미지 또는 기타 제 3 자 자료는 자료에 대한 크레딧 라인에 달리 명시되지 않는 한 기사의 크리에이티브 커먼즈 라이선스에 포함됩니다. 자료가 기사의 크리에이티브 커먼즈 라이센스에 포함되어 있지 않고 의도 된 사용이 법적 규정에 의해 허용되지 않거나 허용 된 사용을 초과하는 경우 저작권 보유자로부터 직접 허가를 받아야합니다. 이 라이센스의 사본을 보려면 다음을 방문하십시오.http://creativecommons.org/licenses/by/4.0/ .

재판 및 허가

이 기사에 대해

이 기사 인용

Lombardi, V., Rocca, ML & Prestininzi, P. 시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술. J Vis (2021). https://doi.org/10.1007/s12650-021-00756-0

인용 다운로드

이 기사 공유

다음 링크를 공유하는 사람은 누구나이 콘텐츠를 읽을 수 있습니다.공유 가능한 링크 받기

Springer Nature SharedIt 콘텐츠 공유 이니셔티브 제공

키워드

  • 시간 해결 PIV
  • 역학 마스킹
  • 이미지 처리
  • 진동 유도제
  • 형광 코팅
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.

Modelling of Pool-Type Fishways Flows: Efficiency and Scale Effects Assessment

by Ana L. Quaresma *OrcID andAntónio N. PinheiroOrcID
CERIS—Civil Engineering for Research and Innovation for Sustainability, Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal*
Author to whom correspondence should be addressed.
Academic Editor: Bommanna Krishnappan
Water 2021, 13(6), 851; https://doi.org/10.3390/w13060851
Received: 16 January 2021 / Revised: 8 March 2021 / Accepted: 18 March 2021 / Published: 20 March 2021
(This article belongs to the Special Issue Ecohydraulics of Pool-Type Fishways)

Abstract

이 연구에서는 전산 유체 역학 (CFD) 소프트웨어 (FLOW-3D®)를 사용하여 바닥 오리피스가 있는 풀형 어로에서 흐름의 3D 수치 모델링을 수행했습니다. 수치 결과는 음향 도플러 속도계 (ADV) 및 입자 이미지 속도계 (PIV) 측정에서 얻은 실험 데이터와 비교되었습니다.

흐름 깊이, 흐름 패턴, 수속, 난류 운동 에너지, Reynolds 수직 응력 및 바닥 구성 요소에 평행한 Reynolds 전단 응력과 같이 어로 효율에 영향을 미치는 여러 유체 역학적 변수를 정성 및 정량적으로 비교했습니다.

수치 모델은 복잡한 유동장을 정확하게 재현하여 수치 모델 예측과 분석 된 변수에 대한 실험 데이터 사이에 전반적으로 좋은 일치를 보여줍니다. 분석중인 모든 매개 변수에 대한 수치 모델 검증 수행의 중요성이 강조되었습니다.

또한 프로토 타입 어로의 업 스케일 된 수치 모델을 실행하여 스케일링 효과를 분석했습니다. 스케일 효과의 증거없이 실제 모델과 프로토 타입 치수 모두에 대해 유사한 정확도로 모델을 수행했습니다.

현재 연구는 CFD 모델 (즉, FLOW-3D®)이 새로운 수영장 유형 어로 형상을 위한 적절하고 효율적인 설계 및 분석 도구로 사용될 수 있으며 물리적 모델 테스트를 줄이고 보완 할 수 있다고 결론지었습니다.

In this study, the 3D numerical modelling of flow in a pool-type fishway with bottom orifices was performed using computational fluid dynamics (CFD) software (FLOW-3D®). Numerical results were compared with experimental data obtained from acoustic Doppler velocimetry (ADV) and particle image velocimetry (PIV) measurements. Several hydrodynamic variables that influence fishways efficiencies, such as flow depths, flow patterns, water velocity, turbulent kinetic energy, Reynolds normal stresses, and Reynolds shear stress parallel to the bottom component, were qualitatively and quantitatively compared. The numerical model accurately reproduced the complex flow field, showing an overall good agreement between the numerical model predictions and the experimental data for the analysed variables. The importance of performing a numerical model validation for all the parameters under analyses was highlighted. Additionally, scaling effects were analysed by running an upscaled numerical model of the prototype fishway. The model performed with similar accuracy for both physical model and prototype dimensions with no evidence of scale effects. The present study concludes that CFD models (namely FLOW-3D®) may be used as an adequate and efficient design and analysis tool for new pool-type fishways geometries, reducing and complementing physical model testing.Keywords: pool-type fishways3D numerical modellingLESscale effectsflow patternsCFD model assessment

Introduction

강의 종단 연결성을 복원하는 것은 담수 생태계의 회복에있어 여전히 중요한 문제입니다 [1,2]. 잘 설계되고 건설된 경우 어로는 물고기가 댐과 둑을 지나 계속 이동할 수 있는 경로를 제공합니다.

물고기 통과 효율성에 대한 검토에서 Noonan et al. [3]은 기존의 많은 어로의 설계 특성이 어종의 요구를 적절하게 충족시키지 못했지만, 풀형 어로가 모든 어류 그룹에 대해 가장 높은 효율성을 보여 주었다는 것을 발견했습니다.
여러 어종에 적합한 수영 조건을 제공하는 것은 어항의 흐름과 난류 패턴이 성공에 중요한 역할을 하기 때문에 다소 어려운 일입니다 [2,4,5,6,7,8,9,10,11,12].

물리적 모델링은 풀형 유형 어로의 유체 역학을 연구하기 위한 주요 접근 방식이었습니다 (예 : [13,14,15,16,17,18,19,20,21,22]). 그러나 물리적 실험은 비용과 시간이 많이 소요됩니다. 따라서 컴퓨터 기술의 발전으로 인해 물리적 모델 테스트를 줄이기 위해 복잡한 기하학적 구조를 가진 유압 구조의 흐름 패턴을 분석하는 데 전산 유체 역학 (CFD) 3 차원 (3D) 모델이 점점 더 많이 사용되고 있습니다 [23,24].

따라서 이러한 모델은 어로 유체 역학 연구 및 효율적인 어로 설계에 필수적인 역할을 할 수 있습니다.
어로에 대한 수치 모델링 연구는 주로 수직 슬롯 어로에 초점을 맞추고 있습니다 [12,25,26,27,28,29,30,31,32,33,34,35,36,37]. 수영장의 주요 부분에서 수직 슬롯 어로 흐름은 거의 2 차원 (2D)이고 수직 속도 구성 요소가 수평 요소 [26]보다 훨씬 작기 때문에 이러한 연구의 대부분은 2D 모델을 사용했습니다.

바닥 오리피스가있는 수영장 유형 어로에서는 흐름이 매우 복잡하고 3D이므로 정확한 유동장 특성화를 얻기 위해 3D 모델을 사용해야합니다. 이 어로 구성을 모델링하는 것은 높은 속도 구배, 높은 와도 및 높은 전단 영역을 포함하기 때문에 다소 어렵습니다.

이 연구에서는 FLOW-3D® (Flow Science, Inc., Santa Fe, NM, USA)를 사용하여 바닥 오리피스가 있는 수영장 유형 어로의 3D 수치 시뮬레이션을 수행하여 흐름 깊이, 속도 및 난류 패턴을 예측하는 능력을 평가했습니다. .

최근 몇 년 동안 실내에 가까운 프로토 타입 수영장 형 어로가 사이프 린드 종의 행동과 움직임을 연구하는데 사용되었습니다 [1,7,8,11,38,39,40,41,42,43]. Silva et al. [38]은 노치, 급락 및 스트리밍에 대한 두 가지 다른 유동 체제와 관련하여 조정 가능한 치수를 가진 침수된 오리피스와 표면 노치의 동시 존재에 대한 Iberian barbel Luciobarbus bocagei (Steindachner, 1864)의 반응을 평가했습니다.

이 연구의 결과는 이베리아 바벨이 어로를 협상하기 위해 오리피스 (76 %)를 선호했으며 어로에 들어가는 데 걸리는 시간도 오리피스에 비해 훨씬 적다는 것을 보여주었습니다.

Silva et al. [39] 오프셋 및 직선 오리피스가있는 수영장 유형 어로의 이베리아 바벨에 대한 적합성을 테스트했습니다. 이 연구는 오프셋 구성이 직선 오리피스 레이아웃 (28 %)에 비해 물고기 통과 성공률 (68 %)이 훨씬 더 높음을 발견했습니다. 어로를 성공적으로 협상하는 데 걸리는 시간도 오프셋 구성, 특히 작은 성인의 경우 훨씬 더 낮았습니다.

이 연구에서는 유속과 난류 매개 변수가 물고기 수영 성능에 미치는 영향을 분석했습니다. 수영장의 유동장을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다.

이 연구의 결과에 따르면 레이놀즈 전단 응력은 어로 내 이베리아 미늘의 움직임에 가장 큰 영향을 미치는 매개 변수임이 입증되었습니다. Branco et al. [40] 두 가지 다른 흐름을 가진 오리피스와 노치가 있는 풀형 유형 어로에서 형태 학적 및 생태학적 특성이 다른 두 종, 바닥 지향 이베리아 바벨 Luciobarbus bocagei 및 물기둥 수영 자 Iberian chub Squalius pyrenaicus의 거동과 성능을 평가했습니다.

풀의 유체 역학을 특성화하기 위해 음향 도플러 속도계가 사용되었습니다. 결과는 두 종 모두 흐름 흐름이있는 노치를 선호했으며 이 흐름 체제로 상류로 이동하는데 더 성공적이었습니다.
이 연구에서는 이 시설의 1 : 2.5 스케일 어로 모델을 사용하여 Silva et al.에 의해 테스트된 바닥 오리피스 구성이 있는 풀형 유형 어로의 속도와 난류를 측정했습니다.

[7,38] 효과가 입증된 바벨 사용. 2D 입자 이미지 속도계 (PIV) 시스템 및 음향 도플러 속도계 (ADV)를 사용하여 순간 속도의 광범위한 측정을 수행하고, 후 처리하고, 수치 모델 정확도를 평가하는 데 사용했습니다.

Haque et al. [44] 대부분의 경우 수치 모델의 검증에 사용할 수있는 실험 데이터 세트에 높은 측정 오류가 있고 / 또는 측정 메시가 너무 거칠어 서 이들의 예측 기능을 올바르게 평가할 수없는 문제를 언급했습니다.

모델. Blocken과 Gualtieri [23]는 검증 및 검증 연구가 필수적이며 CFD 연구를 검증하기위한 데이터를 제공하기 위해 고품질 실험이 필요하다고 언급합니다.

Fuentes-Pérez et al. [35]는 특히 난류 메트릭에 대한 어로 연구에서 수치 모델 검증 데이터를 찾는 데 어려움을 언급합니다. 두 가지 측정 기술을 사용하고 상당한 양의 실험 데이터를 얻었기 때문에 이 연구에서는 이러한 문제를 극복했습니다.

물리적 모델은 종종 Froude 수 유사성을 기반으로하며, 두 유사성 법칙을 모두 충족하는 데 어려움이있어 무시되는 레이놀즈 수 유사성입니다. 프로토 타입 레이놀즈 수가 일반적으로 훨씬 더 크기 때문에 레이놀즈 수 관련 스케일 효과가 도입될 수 있습니다.

레이놀즈 수 증가는 속도 분포와 경계층 속성에 영향을 미칠 수 있습니다 [45]. 척도 효과를 평가하기 위해 수치 시뮬레이션을 사용할 수 있습니다 [46,47]. 따라서 본 연구에서는 바닥 오리피스 흐름이있는 풀형어도에 대한 스케일 효과를 분석하기 위해 두 가지 크기의 수치 모델을 개발했습니다.

프로토 타입 치수의 대형 모델과 물리적 모델 치수의 스케일 된 소형 모델입니다. .
바닥 오리피스가있는 수영장 형 어로의 유동장은 수직 슬롯 어로 (VSF)의 유동장보다 매우 3 차원 적이며 훨씬 더 복잡합니다. 이는 어로 수치 모델 검증에 대한 이전 연구에서 더 자주 고려 된 설계입니다 [26, 27,28,29,35].

저자가 아는 한, 이것은 바닥 오리피스가있는 풀형 어로에 대한 최초의 CFD 연구이며, 여기에는 실험 속도 데이터와 풀형 어로에 대한 3 차원 수치 모델링 결과 간의 가장 광범위한 비교도 포함됩니다. 두 가지 다른 측정 기술 (PIV 및 ADV)이 사용되어 자세한 비교가 가능하고 이러한 유형의 유동장에 대한 CFD 시뮬레이션 결과에 대한 확신을 제공합니다.

이 연구는 다른 어로 유형의 이전 수치 모델 연구에서 제시되지 않았던 난류 매개 변수를 포함하여 수치 모델 결과와 측정 간의 일치에 대한 통계적 테스트를 통해 정성적 비교 뿐만 아니라 상세한 정량적 비교도 제공합니다. 스케일 효과도 다룹니다.

따라서 이 연구는 전 세계적으로 가장 많이 사용되는 풀 유형 어로의 CFD 모델 검증을 원활하게 할 것이며 [10] 설계자들의 사용을 장려 할 것입니다.
또한 새로운 풀 유형 어로 형상을 위한 설계 도구로 CFD 모델 (즉, FLOW 3D®)을 사용하는 방법에 대해 설명합니다.

Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 1. Experimental flume used (a) Side view of the flume; (b) Pool detail.
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 2. Three dimensional representations of a pool showing the measurement planes and the acoustic Doppler velocimetry (ADV) measurement grid (a) measurement planes parallel to the flume bottom; (b) vertical measurement planes (ADV measurement grid is only shown in one plane).
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 3. Computational domain, showing Pool 3 mesh block.
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 4. Streamlines of time-averaged velocities (left: PIV; right: mesh Amodel): (a,b) plane 2 (z = 0.088 m); (c,d) plane 5 (y = 0.20 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 5. Longitudinal variation of velocity components: (a,c,e) planes 1 and 6 intersection (y = 0.36 m and z = 0.04 m); (b,d,f) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).
Figure 6. Longitudinal variation of Reynolds normal stress components and Reynolds shear stress parallel to the bottom component: (a,c,e,g) planes 1 and 6 intersection (y = 0.36 m and z = 0.04m); (b,d,f,h) planes 2 and 5 intersection (y = 0.20 m and z = 0.088 m).

References

  1. Santos, J.M.; Branco, P.J.; Silva, A.T.; Katopodis, C.; Pinheiro, A.N.; Viseu, T.; Ferreira, M.T. Effect of two flow regimes on the upstream movements of the Iberian barbel (Luciobarbus bocagei) in an experimental pool-type fishway. J. Appl. Ichthyol. 2012, 29, 425–430. [CrossRef]
  2. Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thinking like a fish: A key ingredient for development of
    effective fish passage facilities at river obstructions. River Res. Appl. 2012, 28, 407–417. [CrossRef]
  3. Noonan, M.J.; Grand, J.W.A.; Jackson, C.D. A quantitative assessment of fish passage efficiency. Fish Fish. 2012, 13, 450–464. [CrossRef]
  4. Haro, A.; Kynard, B. Video Evaluation of Passage Efficiency of American Shad and Sea Lamprey in a Modified Ice Harbor Fishway. N. Am. J. Fish. Manag. 1997, 17, 981–987. [CrossRef]
  5. Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish; Contract no. 00000022, Project no. 200005700 (BPA Report DOE/BP-00000022-1); Report to the Bonneville Power
    Administration: Portland, Oregon, 2002.
  6. Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juveniles of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [CrossRef]
  7. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [CrossRef]
  8. Silva, A.T.; Katopodis, C.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N. Cyprinid swimming behaviour in response to turbulent flow. Ecol. Eng. 2012, 44, 314–328. [CrossRef]
  9. Lacey, R.W.J.; Neary, V.S.; Liao, J.C.; Enders, E.C.; Tritico, H.M. The IPOS framework: Linking fish swimming performance in altered flows from laboratory experiments to rivers. River Res. Appl. 2012, 28, 429–443. [CrossRef]
  10. Santos, J.M.; Silva, A.T.; Katopodis, C.; Pinheiro, P.J.; Pinheiro, A.N.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: Getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [CrossRef]
  11. Branco, P.J.; Santos, J.M.; Katopodis, C.; Pinheiro, A.N.; Ferreira, M.T. Effect of flow regime hydraulics on passage performance of Iberian chub (Squalius pyrenaicus) (Günther, 1868) in an experimental pool-and-weir fishway. Hydrobiologia 2013, 714,
    145–154. [CrossRef]
  12. Gao, Z.; Andersson, H.I.; Dai, H.; Jiang, F.; Zhao, L. A new Eulerian-Lagrangian agent method to model fish paths in a vertical slot fishways. Ecol. Eng. 2016, 88, 217–225. [CrossRef]
  13. Rajaratnam, N.; Katopodis, C.; Mainali, M. Pool-orifice and pool-orifice-weir fishways. Can. J. Civ. Eng. 1989, 16, 774–777. [CrossRef]
  14. Wu, S.; Rajaratnam, N.; Katopodis, C. Structure of flow in vertical slot fishway. J. Hydraul. Eng. 1999, 125, 351–360. [CrossRef]
  15. Kim, J.H. Hydraulic characteristics by weir type in a pool-weir fishway. Ecol. Eng. 2001, 16, 425–433. [CrossRef]
  16. Ead, S.A.; Katopodis, C.; Sikora, G.J.; Rajaratnam, N. Flow regimes and structure in pool and weir fishways. J. Environ. Eng. Sci. 2004, 3, 379–390. [CrossRef]
  17. Puertas, J.; Pena, L.; Teijeiro, T. Experimental approach to the hydraulics of vertical slot fishways. J. Hydraul. Eng. 2004, 130,10–23. [CrossRef]
  18. Liu, M.; Rajaratnam, N.; Zhu, D.D. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132,765–777. [CrossRef]
  19. Yagci, O. Hydraulic aspects of pool-weir fishways as ecologically friendly water structure. Ecol. Eng. 2010, 36, 36–46. [CrossRef]
  20. Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [CrossRef]
  21. Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [CrossRef]
  22. Ballu, A.; Calluaud, D.; Pineau, G.; David, L. Experimental study of the influence of macro-roughnesses on vertical slot fishway flows. La Houille Blanche 2017, 2, 9–14. [CrossRef]
  23. Blocken, B.; Gualtieri, C. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for
    environmental fluid mechanics. Environ. Model. Softw. 2012, 33, 1–22. [CrossRef]
  24. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection
    technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58, 71–85. [CrossRef]
  25. Khan, L.A. A Three-Dimensional Computational Fluid Dynamics (CFD) Model Analysis of Free Surface Hydrodynamics and Fish Passage Energetics in a Vertical-Slot Fishway. N. Am. J. Fish. Manag. 2006, 26, 255–267. [CrossRef]
  26. Cea, L.; Pena, L.; Puertas, J.; Vazquez-Cendon, M.E.; Peña, E. Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J. Hydraul. Eng. 2007, 133, 160–172. [CrossRef]
  27. Barton, A.F.; Keller, R.J.; Katopodis, C. Verification of a numerical model for the prediction of low slope vertical slot fishway hydraulics. Aust. J. Water Res. 2009, 13, 53–60. [CrossRef]
  28. Chorda, J.; Maubourguet, M.M.; Roux, H.; George, J.; Larinier, M.; Tarrade, L.; David, L. Two-dimensional free surface flow numerical model for vertical slot fishways. J. Hydraul. Res. 2010, 48, 141–151. [CrossRef]
  29. Bombaˇc, M.; Novak, G.; Rodiˇc, P.; Cetina, M. Numerical and physical model study of a vertical slot fishway. ˇ J. Hydrol. Hydromech.
    2014, 62, 150–159. [CrossRef]
  30. Bombaˇc, M.; Novak, G.; Mlacnik, J.; Cetina, M. Extensive field measurements of flow in vertical slot fishway as data for validation ˇ of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [CrossRef]
  31. Bombaˇc, M.; Cetina, M.; Novak, G. Study on flow characteristics in vertical slot fishways regarding slot layout optimization. ˇ Ecol.
    Eng. 2017, 107, 126–136. [CrossRef]
  32. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [CrossRef]
  33. Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Cooke, S.J.; Katopodis, C. The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada. Ecol. Eng. 2016, 90, 190–202. [CrossRef]
  34. Quaranta, E.; Katopodis, C.; Revelli, R.; Comoglio, C. Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway. River Res. Appl. 2017, 33, 1295–1305. [CrossRef]
  35. Fuentes-Pérez, J.F.; Silva, A.T.; Tuhtan, J.A.; García-Vega, A.; Carbonell-Baeza, R.; Musall, M.; Kruusmaa, M. 3D modelling of
    non-uniform and turbulent flow in vertical slot fishways. Environ. Model. Softw. 2018, 99, 156–169. [CrossRef]
  36. Stamou, A.; Mitsopoulos, G.; Rutschmann, P.; Bui, M. Verification of a 3D CFD model for vertical slot fish-passes. Environ. Fluid
    Mech. 2018, 18, 1435–1461. [CrossRef]
  37. Sanagiotto, D.; Rossi, J.; Bravo, J. Applications of computational fluid dynamics in the design and rehabilitation of nonstandard
    vertical slot fishways. Water 2019, 11, 199. [CrossRef]
  38. Silva, A.T.; Santos, J.M.; Franco, A.C.; Ferreira, M.T.; Pinheiro, A.N. Selection of Iberian barbel Barbus bocagei (Steindachner, 1864)
    for orifices and notches upon different hydraulic configurations in an experimental pool-type fishway. J. Appl. Ichthyol. 2009, 25,
    173–177. [CrossRef]
  39. Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Passage efficiency of offset and straight orifices for upstream movements of Iberian barbel in a pool-type fishway. River Res. Appl. 2012, 28, 529–542. [CrossRef]
  40. Branco, P.; Santos, J.M.; Katopodis, C.; Pinheiro, A.; Ferreira, M.T. Pool-Type Fishways: Two Different Morpho-Ecological Cyprinid Species Facing Plunging and Streaming Flows. PLoS ONE 2013, 8, e65089. [CrossRef]
  41. Romão, F.; Quaresma, A.L.; Branco, P.; Santos, J.M.; Amaral, S.; Ferreira, M.T.; Katopodis, C.; Pinheiro, A.N. Passage performance
    of two cyprinids with different ecological traits in a fishway with distinct vertical slot configurations. Ecol. Eng. 2017, 105, 180–188. [CrossRef]
  42. Romão, F.; Branco, P.; Quaresma, A.L.; Amaral, S.; Pinheiro, A.N. Effectiveness of a multi-slot vertical slot fishway versus a standard vertical slot fishway for potamodromous cyprinids. Hydrobiologia 2018, 816, 153–163. [CrossRef]
  43. Romão, F.; Quaresma, A.L.; Santos, J.M.; Branco, P.; Pinheiro, A.N. Cyprinid passage performance in an experimental multislot fishway across distinct seasons. Mar. Freshw. Res. 2019, 70, 881–890. [CrossRef]
  44. Haque, M.M.; Constantinescu, G.; Weber, L. Validation of a 3D RANS model to predict flow and stratification effects related to fish passage at hydropower dams. J. Hydraul. Res. 2007, 45, 787–796. [CrossRef]
  45. Dargahi, B. Flow characteristics of bottom outlets with moving gates. J. Hydraul. Res. 2010, 48, 476–482. [CrossRef]
  46. Huang, W.; Yang, Q.; Xiao, H. CFD modelling of scale effects on turbulence flow and scour around bridge piers. Comput. Fluids 2009, 38, 1050–1058. [CrossRef]
  47. Heller, V. Scale effects in physical hydraulic engineering models. J. Hydraul. Res. 2011, 49, 293–306. [CrossRef]
  48. Larinier, M. Pool fishways, pre-barrages and natural bypass channels. Bull. Français de la Pêche et de la Piscic. 2002, 364, 54–82. [CrossRef]
  49. Quaresma, A.L.; Ferreira, R.M.L.; Pinheiro, A.N. Comparative analysis of particle image velocimetry and acoustic Doppler
    velocimetry in relation to a pool-type fishway flow. J. Hydraul. Res. 2017, 55, 582–591. [CrossRef]
  50. Flow Science, Inc. Flow-3D Version 11.2 User Manual; Flow Science, Inc.: Los Alamos, NM, USA, 2016.
  51. Hirt, C.W.; Sicilian, J.M. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the International Conference on Numerical Ship Hydrodynamics, Washington, DC, USA, 4 September 1985.
  52. Savage, B.M.; Johnson, M.C. Flow over ogee spillway: Physical and numerical model case study. J. Hydraul. Eng. 2001, 127, 640–649. [CrossRef]
  53. Abad, J.D.; Rhoads, B.L.; Güneralp, I.; García, M.H. Flow structure at different stages in a meander-bend with bendway weirs. J. Hydraul. Eng. 2008, 134, 1052–1063. [CrossRef]
  54. Bombardelli, F.A.; Meireles, I.; Matos, J. Laboratory measurements and multi-block numerical simulations of the mean flow and
    turbulence in the non-aerated skimming flow region of steep stepped spillways. Environ. Fluid Mech. 2011, 11, 263–288. [CrossRef]
  55. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
  56. Duguay, J.M.; Lacey, R.W.J.; Gaucher, J. A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D. Ecol. Eng. 2017, 103, 31–42. [CrossRef]
  1. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comp. Phys. 1981, 39, 201–225. [CrossRef]
  2. Van Leer, B. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comp. Phys. 1977, 23, 276–299. [CrossRef]
  3. Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for Estimation and Reporting of Uncertainty Due
    to Discretization in CFD Applications. J. Fluids Eng. 2008, 130, 078001 (4pages). [CrossRef]
  4. Smagorinsky, J. General circulation experiments with the primitive equations: I. The Basic Experiment. Mon. Weather Rev. 1963,
    91, 99–164. [CrossRef]
  5. Meyers, J.; Geurts, B.J.; Baelmans, M. Database analysis of errors in large-eddy simulation. Phys. Fluids 2003, 15, 2740–2755.[CrossRef]
  6. Celik, I.B.; Cehreli, Z.N.; Yavuz, I. Index of Resolution Quality for Large Eddy Simulations. J. Fluids Eng. 2005, 127, 949–958. [CrossRef]
  7. Freitag, M.; Klein, M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering. J. Turbul. 2006, 7, 1–11. [CrossRef]
  8. Gousseau, P.; Blocken, B.; van Heijst, G.J.F. Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: Validation and solution verification. Comput. Fluids 2013, 79, 120–133. [CrossRef]
  9. Celik, I.; Li, J.; Hu, G.; Shaffer, C. Limitations of Richardson Extrapolation and Some Possible Remedies. J. Fluids Eng. 2005, 127, 795–805. [CrossRef]
  10. Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000.
  11. Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [CrossRef]
  12. Bennett, N.D.; Crok, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newhama, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [CrossRef]
  13. Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [CrossRef]
  14. Lane, S.N.; Richards, K.S. The “validation” of hydrodynamic models: Some critical perspectives. In Model Validation for Hydrological
    and Hydraulic Research; Bates, P.D., Anderson, M.G., Eds.; John Wiley: Hoboken, NJ, USA, 2001; pp. 413–438.
  15. Bradbrook, K.F.; Biron, P.M.; Lane, S.N.; Richards, K.S.; Roy, A.G. Investigation of controls on secondary circulation in a simple confluence geometry using a three-dimensional numerical model. Hydrol. Process. 1998, 12, 1371–1396. [CrossRef]
  16. Bradbrook, K.F.; Lane, S.N.; Richards, K.S.; Biron, P.M.; Roy, A.G. Role of bed discordance at asymmetrical river confluences. J. Hydraul. Eng. 2001, 127, 351–368. [CrossRef]
  17. Ferguson, R.I.; Parsons, D.R.; Lane, S.N.; Hardy, R.J. Flow in meander bends with recirculation at the inner bank. Water Resour. Res. 2003, 39, 1322–1334. [CrossRef]
  18. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Predicting equilibrium scour-hole geometry near angled stream deflectors using a three-dimensional numerical flow model. J. Hydraul. Eng. 2007, 133, 983–988. [CrossRef]
  19. Haltigin, T.W.; Biron, P.M.; Lapointe, M.F. Three-dimensional numerical simulation of flow around stream deflectors: The effects of obstruction angle and length. J. Hydraul. Res. 2007, 45, 227–238. [CrossRef]
  20. Han, S.S.; Biron, P.M.; Ramamurthy, A.S. Three-dimensional modelling of flow in sharp open-channel bends with vanes. J. Hydraulic Res. 2011, 49, 64–72. [CrossRef]
  21. Klein, M. An Attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 2005, 75, 131–147. [CrossRef]
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics

연구자 : Yu-Ren Chen
지도교수 : Dr John R C Hsu
June 2012

기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.

이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.

짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.

중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.

이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.

연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.

요약

서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.

대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.

반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.

예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.

격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.

해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.

바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.

그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.

위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.

최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.

또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.

圖1. 1  南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 2  障礙高度與分層流體厚度關係之示意圖
圖1. 2 障礙高度與分層流體厚度關係之示意圖
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 3  實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場

圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)
圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)

Reference

Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.

Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460

82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Figure 1: PAC-UPC laboratory canal bend in operation.

1D, 2D AND 3D MODELING OF A PAC-UPC LABORATORY CANAL BEND

PAC-UPC 실험실 운하 굴곡의 1D, 2D 및 3D 모델링

Manuel Gómez, FLUMEN Research Institute. Technical University of Catalonia. Jordi Girona, 1-3. 08034
Barcelona. Spain. Phone: +00 (34) 93 401 64 75
manuel.gomez@upc.edu
Eduardo Martínez1
, FLUMEN Research Institute. Technical University of Catalonia. Jordi Girona, 1-3.
08034 Barcelona. Spain. Phone: +00 (34) 93 401 64 75
eduardo.martinez-gomariz@upc.edu

KEY WORDS
Irrigation Canals 3D, 2D and 1D computation, gate, weir, curved reach.

ABSTRACT 

개요 본 연구는 카탈로니아 공과 대학의 Campus Nord에 위치한 PAC-UPC 운하의 수력 학적 거동을 분석하기 위해 수행되었습니다. 이것은 실제 관개 운하의 모델을 구성하며, 2003 년에 건설 된 이후 관개 운하 및 제어 알고리즘과 관련된 다양한 연구 및 박사 논문에 사용되었습니다. 점유 공간을 최소화하기 위해 뱀 모양의 운하는 자체를 따라 약간의 굴곡을 생성하여 뚜렷한 수면 수준이 상승합니다. 아 임계 체제가 있어도 세부 사항을 완벽하게 분석해야하는 명확하게 관찰 할 수 있습니다. 이러한 접근 방식을 수행하기 위해 각각 1D, 2D 및 3D 분석을 고려하는 방식이 제안되었습니다. 고려 된 코드는 Hec-Ras (1D), Iber (2D) 및 Flow 3D로 각 코드의 결과를 비교 연구했습니다. 이 비교는 각각의 한계를 강조합니다. 이전에 알려진 바와 같이 3D 결과는 흐름 거동에 대한 훨씬 더 많은 정보를 제공하여 z 방향으로 형성된 재순환 영역과 소용돌이를 분석 할 수도 있습니다. 흐름 분석 후 최종 결과는 예를 들어 계측기 (레벨 센서)의 최적 위치 또는 구조의 형상에 대한 수정과 관련하여 향후 작업 및 연구를 위해 운하에서 가능한 개선을 제안합니다.

INTRODUCTION AND SCOPE OF THE STUDY

자유 표면 흐름은 특히 수로 및 하강 역학과 관련하여 수력 학에서 광범위하게 연구되는 흐름 유형입니다. 그들의 연구는 1D, 2D 또는 3D 수치 모델링을 통해 이루어질 수 있으며, 이는 하천 또는 수로의 수력 분석을 수행하는 가장 일반적인 1D 모델링입니다. 더 높은 계산 비용을 가정하더라도 2 차원 분석이 점점 더 많이 구현되지만 아직 3D 분석은 너무 자주 고려되지 않습니다. 2 차원 분석은 두 방향의 속도 성분이 세 번째 영역 (예 : 델타 영역)보다 우세한 영역에서 수행되고 3 차원 분석은 명확하게 3 차원 효과 (테디 및 복잡한 현상)가있는 국소 영역에서 수행됩니다. 더 높은 계산 비용이 필요합니다. 현재 바르셀로나의 Campus Nord 수압 연구소에는 제어 알고리즘을 테스트하는 운하 인 PAC-UPC 운하가 있습니다. 이 운하는 문과 배설물이있는 실제 관개 운하의 측면을 재현하려고합니다. 2003 년에 지어졌으며 그 이후로 관개 운하와 관련된 여러 박사 및 석사 논문이 발표되었으며 특히 운하 제어 알고리즘의 개발과 함께 발표되었습니다. 이러한 알고리즘은 수로 수 문의 자동화를 목표로하여 모든 수로 도달 흐름에서 수위를 선택한 지점에서 규정 할 수 있으며 수문은 선택한 지점 (오프 테이크)에서 원하는 수위와 수위를 보장하기 위해 이동합니다.

처음부터 굽힘 영역에서 국부적 인 과도 상승이 관찰되었습니다. 운하가 실제 관개 운하와 실제 관개 운하 제어 문제를 재현하는 것을 목표로하기 때문에 이러한 과도 상승을 연구하고 운하 시설에 대한 결과를 확인해야했습니다. 이러한 흐름 거동은 시각적으로 명확하게 관찰 할 수 있으며 이는 낮은 속도에서도 유압 현상이 발생 함을 시사합니다. 수문 아래를 통과하기 전에 수평면의 굽힘을 따라 급격한 변화가있는 흐름 궤적과 수직면에서 유선의 90 ° 회전이 생성됩니다. 이러한 경로는 속도 성분이 세 방향 모두에서 중요하며 한 방향 (1D) 또는 두 방향 (2D)에서만 널리 퍼져 있음을 나타냅니다.

Figure 1: PAC-UPC laboratory canal bend in operation.
Figure 1: PAC-UPC laboratory canal bend in operation.

그림 1은 자유 표면에서 발생하는 불규칙성을 보여줍니다. 대부분은 굴곡 옆에 있고 하류 수문과 둑의 영향으로 나타납니다. 유압 문제에 적용되는 수치 적 방법은 점점 더 많은 컴퓨팅 파워를 제공하며 시장에는 많은 오픈 소스를 포함하여 다양한 소프트웨어가 있습니다. 3D 문제의 모델링 및 시뮬레이션을위한 강력한 도구는 Flow-3D 프로그램입니다. 이 도구는이 연구에서보고 된 연구에 사용되었으며 분석은 Hec-Ras 및 Iber와 같은 오픈 소스 소프트웨어로 보완되었습니다 [6]. 따라서 1 차원, 2 차원 및 3 차원 코드를 통해 상세한 흐름 분석을 수행했습니다. 이 연구의 주요 목적은 흐름이 굴곡, 위어 및 하류 수문을 만날 때이 운하의 흐름 패턴을 자세히 이해하는 것입니다. 분명히 이러한 유동 거동 지식은 필요한 경우 측정 기기의 재배치 또는 유동 거동에 필요한 경우 굽힘 형태의 복원과 같은 2 차적이지만 덜 중요한 목표로 이어질 수 있습니다. 1D, 2D 및 3D 수치 모델링 도구를 사용하면 이러한 도구의 결과를 비교하고 각 접근 방식의 장단점을 연구 할 수 있습니다. 따라서 이 연구의 목표는

요약 :

-PAC-UPC 실험실 운하 곡선 도달에서 발생하는 흐름의 수력학적 거동을 자세히 이해합니다.
-1D, 2D 및 3D 모델링 비교 및 필요에 따라 적합성 분석.
-해석, 흐름의 수력 학적 거동, 수로 계기 재배치 가능성 및 수로 구조의 모양 수정.

  1. 운하 설명
    Canal PAC-UPC는 “Canal de Pruebas de Algoritmos de Control (Test Canal Algorithms Control)-Universitat Politècnica de Catalunya (Technical University of Catalonia)”의 머리 글자입니다. 이름에서 알 수 있듯이 관개 운하 제어, 운하 계측, 운하 모델링, 수질 측정 등의 기본 및 응용 연구를 위해 특별히 설계된 실험실 운하입니다. Campus Nord UPC의 물리적 모델 실험실에서 구현됩니다.

그 구조는 실제 관개 운하의 특성을 재현하여 나타날 수 있는 문제를 제어하기 위한 것입니다. 이러한 이유로 최대 시간 지연을 생성하기 위해 가능한 최대 길이와 경사가 0 인 운하가 건설되었습니다. 점유 면적을 최적화 하는 현재 뱀 모양을 만들기 위해 실험실의 제한된 공간이 필요하게 되었습니다. 길이 220m, 폭 44cm, 높이 1m의 직사각형 단면으로, 총 바닥 면적은 약 22.5m x 5.4m입니다.

Figure 2: Detailed scheme of the whole PAC-UPC canal.
Figure 2: Detailed scheme of the whole PAC-UPC canal.

As shown in Figure 2, the elements of the installation are as follows:

  • A header reservoir
  • 3 vertical sluice gates (G1, G3 and G5)
  • 4 rectangular weirs (W1, W2, W3 and W4)
  • 9 Level sensors (LS1 to LS9)
  • 1 control room

GENERAL APPROACH TO THE PROBLEM

3.1 소개

PAC-UPC 운하 및보다 구체적으로 위어 (W1) 및 수문 (G3)이 위치한 운하 굴곡에 대한 연구, 그림 2에 따라.
계측 요구, 특히 레벨 센서의 배치는 이러한 근관 굴곡 연구에 특별한 관심을 가졌습니다. 이 운하 설계를 사용하면 유선이 유속이 더 높을수록 운하 곡선 도달을 통해 복잡한 경로를 수행하고 수위가 국부적으로 증가하고 제어하기가 어렵고 세부 사항이없는 한 정확성을 결정하기가 어렵습니다. 연구가 이루어집니다. PAC-UPC 운하의 이러한 굴곡에서 유동의 불확실한 거동과 레벨 센서의 최상의 배치에 대한 연구를 기반으로 데이터 수집 실험 캠페인이 수행되었습니다. 이것은 10 가지 다른 조합 (흐름, 수문 개구부 및 위어의 높이)에 대한 운하 굴곡 전체에 걸쳐 10 개 지점의 깊이 측정으로 구성되었습니다. 이러한 실험 데이터는이 연구에 제시된 모델을 보정하고 검증하는 데 기본적이고 필수적입니다. 1D, 2D 및 3D 수치 모델링은 다음과 같은 두 가지 목적으로 제안됩니다. 1)이 굴곡 영역을 자세히 연구하여 운하 전체에 기기 배치를보다 정확하게 결정할 수 있습니다. 2) 1D, 2D 및 3D 모델 결과를 비교 분석하여이 사례 연구에 가장 좋은 정보를 제공하는 모델을 결정합니다.

3.2 연구 구역 설명

4 개의 굴곡부 중 3 개는 직사각형 위어 (W1, W2 및 W3)를 포함하여 운하의 한쪽에 있습니다. 위어를 보여주는 굴곡은 더 복잡한 흐름 패턴을 생성하는 굴곡이므로 (위어가 작동중인 경우) 자세한 연구가 더 흥미롭습니다. 이 경우 W1 weir가있는 굽힘이 선택되었습니다. 이 연구의 결과는 다른 굴곡에 대해 외삽 될 것이라는 점을 언급해야 합니다. 그림 2는 수위 측정과 유압 및 계측 요소가 있는 연구 영역을 강조 표시합니다. 또한 부드러운 곡선은 없지만 둥근 모서리 없이 90º에서 갑자기 방향이 변경됩니다. 연구 영역은 2D 및 3D 모델 도면으로 재현 되었으며, 각각 Iber 및 Flow-3D 프로그램으로 내보내졌습니다. 그림 3은 측정 지점의 위치와 상세한 3D 도면이 포함 된 2D 플랜트 맵을 보여줍니다.

Figure 3: Study zone. Measurement points in 2D drawing (left) and 3D drawing (right).
Figure 3: Study zone. Measurement points in 2D drawing (left) and 3D drawing (right).

3.3 Case Studies

이하 내용은 원문을 참고하시기 바랍니다.

자유 표면 모델링 방법

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Free Surface Modeling Methods

An interface between a gas and liquid is often referred to as a free surface. The reason for the “free” designation arises from the large difference in the densities of the gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density means that its inertia can generally be ignored compared to that of the liquid. In this sense the liquid moves independently, or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.

자유 표면 모델링 방법

기체와 액체 사이의 계면은 종종 자유 표면이라고합니다.  ‘자유’라는 호칭이 된 것은 기체와 액체의 밀도가 크게 다르기 때문입니다 (예를 들어, 물 공기에 대한 밀도 비는 1000입니다).  기체의 밀도가 낮다는 것은 액체의 관성에 비해 기체의 관성은 일반적으로 무시할 수 있다는 것을 의미합니다.  이러한 의미에서, 액체는 기체에 대해 독립적으로, 즉 자유롭게 움직입니다.  기체의 유일한 효과는 액체의 표면에 대한 압력입니다.  즉, 기체와 액체의 표면은 제약되어있는 것이 아니라 자유롭다는 것입니다.

In heat-transfer texts the term ‘Stephen Problem’ is often used to describe free boundary problems. In this case, however, the boundaries are phase boundaries, e.g., the boundary between ice and water that changes in response to the heat supplied from convective fluid currents.

열전달에 관한 문서는 자유 경계 문제를 묘사할 때 “Stephen Problem’”라는 용어가 자주 사용됩니다.  그러나 여기에서 경계는 상(phase) 경계, 즉 대류적인 유체의 흐름에 의해 공급된 열에 반응하여 변화하는 얼음과 물 사이의 경계 등을 말합니다.

Whatever the name, it should be obvious that the presence of a free or moving boundary introduces serious complications for any type of analysis. For all but the simplest of problems, it is necessary to resort to numerical solutions. Even then, free surfaces require the introduction of special methods to define their location, their movement, and their influence on a flow.

이름이 무엇이든, 자유 또는 이동 경계가 존재한다는 것은 어떤 유형의 분석에도 복잡한 문제를 야기한다는 것은 분명합니다. 가장 간단한 문제를 제외한 모든 문제에 대해서는 수치 해석에 의존할 필요가 있습니다. 그 경우에도 자유 표면은 위치, 이동 및 흐름에 미치는 영향을 정의하기 위한 특별한 방법이 필요합니다.

In the following discussion we will briefly review the types of numerical approaches that have been used to model free surfaces, indicating the advantages and disadvantages of each method. Regardless of the method employed, there are three essential features needed to properly model free surfaces:

  1. A scheme is needed to describe the shape and location of a surface,
  2. An algorithm is required to evolve the shape and location with time, and
  3. Free-surface boundary conditions must be applied at the surface.

다음 설명에서는 자유 표면 모델링에 사용되어 온 다양한 유형의 수치적 접근에 대해 간략하게 검토하고 각 방법의 장단점을 설명합니다. 어떤 방법을 사용하는지에 관계없이 자유롭게 표면을 적절히 모델화하는 다음의 3 가지 기능이 필요합니다.

  1. 표면의 형상과 위치를 설명하는 방식
  2. 시간에 따라 모양과 위치를 업데이트 하는 알고리즘
  3. 표면에 적용할 자유 표면 경계 조건

Lagrangian Grid Methods

Conceptually, the simplest means of defining and tracking a free surface is to construct a Lagrangian grid that is imbedded in and moves with the fluid. Many finite-element methods use this approach. Because the grid and fluid move together, the grid automatically tracks free surfaces.

라그랑주 격자 법

개념적으로 자유 표면을 정의하고 추적하는 가장 간단한 방법은 유체와 함께 이동하는 라그랑주 격자를 구성하는 것입니다. 많은 유한 요소 방법이 이 접근 방식을 사용합니다. 격자와 유체가 함께 움직이기 때문에 격자는 자동으로 자유 표면을 추적합니다.

At a surface it is necessary to modify the approximating equations to include the proper boundary conditions and to account for the fact that fluid exists only on one side of the boundary. If this is not done, asymmetries develop that eventually destroy the accuracy of a simulation.

표면에서 적절한 경계 조건을 포함하고 유체가 경계의 한면에만 존재한다는 사실을 설명하기 위해 근사 방정식을 수정해야합니다. 이것이 수행되지 않으면 결국 시뮬레이션의 정확도를 훼손하는 비대칭이 발생합니다.

The principal limitation of Lagrangian methods is that they cannot track surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE) method. References 1970 and 1974 may be consulted for early examples of these approaches.

라그랑지안 방법의 주요 제한은 분리되거나 교차하는 표면을 추적 할 수 없다는 것입니다. ALE (Arbitrary-Lagrangian-Eulerian) 방법과 같은 격자 재생성 기법을 도입하지 않으면 진폭이 큰 표면 움직임도 추적하기 어려울 수 있습니다. 이러한 접근법의 초기 예를 보려면 참고 문헌 1970 및 1974를 참조하십시오.

The remaining free-surface methods discussed here use a fixed, Eulerian grid as the basis for computations so that more complicated surface motions may be treated.

여기에서 논의된 나머지 자유 표면 방법은 보다 복잡한 표면 움직임을 처리할 수 있도록 고정된 오일러 그리드를 계산의 기준으로 사용합니다.

Surface Height Method

Low amplitude sloshing, shallow water waves, and other free-surface motions in which the surface does not deviate too far from horizontal, can be described by the height, H, of the surface relative to some reference elevation. Time evolution of the height is governed by the kinematic equation, where (u,v,w) are fluid velocities in the (x,y,z) directions. This equation is a mathematical expression of the fact that the surface must move with the fluid:

표면 높이 법

낮은 진폭의 슬로 싱, 얕은 물결 및 표면이 수평에서 너무 멀리 벗어나지 않는 기타 자유 표면 운동은 일부 기준 고도에 대한 표면의 높이 H로 설명 할 수 있습니다. 높이의 시간 진화는 운동학 방정식에 의해 제어되며, 여기서 (u, v, w)는 (x, y, z) 방향의 유체 속도입니다. 이 방정식은 표면이 유체와 함께 움직여야한다는 사실을 수학적으로 표현한 것입니다.

Finite-difference approximations to this equation are easy to implement. Further, only the height values at a set of horizontal locations must be recorded so the memory requirements for a three-dimensional numerical solution are extremely small. Finally, the application of free-surface boundary conditions is also simplified by the condition on the surface that it remains nearly horizontal. Examples of this technique can be found in References 1971 and 1975.

이 방정식의 유한 차분 근사를 쉽게 실행할 수 있습니다.  또한 3 차원 수치 해법의 메모리 요구 사항이 극도로 작아지도록 같은 높이의 위치 값만을 기록해야합니다.  마지막으로 자유 표면 경계 조건의 적용도 거의 수평을 유지하는 표면의 조건에 의해 간소화됩니다.  이 방법의 예는 참고 문헌의 1971 및 1975을 참조하십시오.

Marker-and-Cell (MAC) Method

The earliest numerical method devised for time-dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method (see Ref. 1965). This scheme is based on a fixed, Eulerian grid of control volumes. The location of fluid within the grid is determined by a set of marker particles that move with the fluid, but otherwise have no volume, mass or other properties.

MAC 방법

시간 의존성을 가지는 자유 표면 흐름의 문제에 대해 처음 고안된 수치 법이 MAC (Marker-and-Cell) 법입니다 (참고 문헌 1965 참조).  이 구조는 컨트롤 볼륨 고정 오일러 격자를 기반으로합니다.  격자 내의 유체의 위치는 유체와 함께 움직이고, 그 이외는 부피, 질량, 기타 특성을 갖지 않는 일련의 마커 입자에 의해 결정됩니다.

Grid cells containing markers are considered occupied by fluid, while those without markers are empty (or void). A free surface is defined to exist in any grid cell that contains particles and that also has at least one neighboring grid cell that is void. The location and orientation of the surface within the cell was not part of the original MAC method.

마커를 포함한 격자 셀은 유체로 채워져있는 것으로 간주되며 마커가 없는 격자 셀은 빈(무효)것입니다.  입자를 포함하고, 적어도 하나의 인접 격자 셀이 무효인 격자의 자유 표면은 존재하는 것으로 정의됩니다.  셀 표면의 위치와 방향은 원래의 MAC 법에 포함되지 않았습니다.

Evolution of surfaces was computed by moving the markers with locally interpolated fluid velocities. Some special treatments were required to define the fluid properties in newly filled grid cells and to cancel values in cells that are emptied.

표면의 발전(개선)은 국소적으로 보간된 유체 속도로 마커를 이동하여 계산되었습니다.  새롭게 충전된 격자 셀의 유체 특성을 정의하거나 비어있는 셀의 값을 취소하거나 하려면 특별한 처리가 필요했습니다.

The application of free-surface boundary conditions consisted of assigning the gas pressure to all surface cells. Also, velocity components were assigned to all locations on or immediately outside the surface in such a way as to approximate conditions of incompressibility and zero-surface shear stress.

자유 표면 경계 조건의 적용은 모든 표면 셀에 가스 압력을 할당하는 것으로 구성되었습니다. 또한 속도 성분은 비압축성 및 제로 표면 전단 응력의 조건을 근사화하는 방식으로 표면 위 또는 외부의 모든 위치에 할당되었습니다.

The extraordinary success of the MAC method in solving a wide range of complicated free-surface flow problems is well documented in numerous publications. One reason for this success is that the markers do not track surfaces directly, but instead track fluid volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces may appear, merge or disappear as volumes break apart or coalesce.

폭넓게 복잡한 자유 표면 흐름 문제 해결에 MAC 법이 놀라운 성공을 거두고 있는 것은 수많은 문헌에서 충분히 입증되고 있습니다.  이 성공 이유 중 하나는 마커가 표면을 직접 추적하는 것이 아니라 유체의 체적을 추적하는 것입니다.  표면은 체적의 경계에 불과하며, 그러한 의미에서 표면은 분할 또는 합체된 부피로 출현(appear), 병합, 소멸 할 가능성이 있습니다.

A variety of improvements have contributed to an increase in the accuracy and applicability of the original MAC method. For example, applying gas pressures at interpolated surface locations within cells improves the accuracy in problems driven by hydrostatic forces, while the inclusion of surface tension forces extends the method to a wider class of problems (see Refs. 1969, 1975).

다양한 개선으로 인해 원래 MAC 방법의 정확성과 적용 가능성이 증가했습니다. 예를 들어, 셀 내 보간 된 표면 위치에 가스 압력을 적용하면 정 수력으로 인한 문제의 정확도가 향상되는 반면 표면 장력의 포함은 방법을 더 광범위한 문제로 확장합니다 (참조 문헌. 1969, 1975).

In spite of its successes, the MAC method has been used primarily for two-dimensional simulations because it requires considerable memory and CPU time to accommodate the necessary number of marker particles. Typically, an average of about 16 markers in each grid cell is needed to ensure an accurate tracking of surfaces undergoing large deformations.

수많은 성공에도 불구하고 MAC 방법은 필요한 수의 마커 입자를 수용하기 위해 상당한 메모리와 CPU 시간이 필요하기 때문에 주로 2 차원 시뮬레이션에 사용되었습니다. 일반적으로 큰 변형을 겪는 표면의 정확한 추적을 보장하려면 각 그리드 셀에 평균 약 16 개의 마커가 필요합니다.

Another limitation of marker particles is that they don’t do a very good job of following flow processes in regions involving converging/diverging flows. Markers are usually interpreted as tracking the centroids of small fluid elements. However, when those fluid elements get pulled into long convoluted strands, the markers may no longer be good indicators of the fluid configuration. This can be seen, for example, at flow stagnation points where markers pile up in one direction, but are drawn apart in a perpendicular direction. If they are pulled apart enough (i.e., further than one grid cell width) unphysical voids may develop in the flow.

마커 입자의 또 다른 한계는 수렴 / 발산 흐름이 포함된 영역에서 흐름 프로세스를 따라가는 작업을 잘 수행하지 못한다는 것입니다. 마커는 일반적으로 작은 유체 요소의 중심을 추적하는 것으로 해석됩니다. 그러나 이러한 유체 요소가 길고 복잡한 가닥으로 당겨지면 마커가 더 이상 유체 구성의 좋은 지표가 될 수 없습니다. 예를 들어 마커가 한 방향으로 쌓여 있지만 수직 방향으로 떨어져 있는 흐름 정체 지점에서 볼 수 있습니다. 충분히 분리되면 (즉, 하나의 그리드 셀 너비 이상) 비 물리적 공극이 흐름에서 발생할 수 있습니다.

Surface Marker Method

One way to limit the memory and CPU time consumption of markers is to keep marker particles only on surfaces and not in the interior of fluid regions. Of course, this removes the volume tracking property of the MAC method and requires additional logic to determine when and how surfaces break apart or coalesce.

표면 마커 법

마커의 메모리 및 CPU 시간의 소비를 제한하는 방법 중 하나는 마커 입자를 유체 영역의 내부가 아니라 표면에만 보존하는 것입니다.  물론 이는 MAC 법의 체적 추적 특성이 배제되기 때문에 표면이 분할 또는 합체하는 방식과 시기를 특정하기위한 논리를 추가해야합니다.

In two dimensions the marker particles on a surface can be arranged in a linear order along the surface. This arrangement introduces several advantages, such as being able to maintain a uniform particle spacing and simplifying the computation of intersections between different surfaces. Surface markers also provide a convenient way to locate the surface within a grid cell for the application of boundary conditions.

2 차원의 경우 표면 마커 입자는 표면을 따라 선형으로 배치 할 수 있습니다.  이 배열은 입자의 간격을 균일하게 유지할 수있는 별도의 표면이 교차하는 부분의 계산이 쉽다는 등 몇 가지 장점이 있습니다.  또한 표면 마커를 사용하여 경계 조건을 적용하면 격자 셀의 표면을 간단한 방법으로 찾을 수 있습니다.

Unfortunately, in three-dimensions there is no simple way to order particles on surfaces, and this leads to a major failing of the surface marker technique. Regions may exist where surfaces are expanding and no markers fill the space. Without markers the configuration of the surface is unknown, consequently there is no way to add markers. Reference 1975 contains examples that show the advantages and limitations of this method.

불행히도 3 차원에서는 표면에 입자를 정렬하는 간단한 방법이 없으며 이로 인해 표면 마커 기술이 크게 실패합니다. 표면이 확장되고 마커가 공간을 채우지 않는 영역이 존재할 수 있습니다. 마커가 없으면 표면의 구성을 알 수 없으므로 마커를 추가 할 방법이 없습니다.
참고 문헌 1975이 방법의 장점과 한계를 보여주는 예제가 포함되어 있습니다.

Volume-of-Fluid (VOF) Method

The last method to be discussed is based on the concept of a fluid volume fraction. The idea for this approach originated as a way to have the powerful volume-tracking feature of the MAC method without its large memory and CPU costs.

VOF (Volume-of-Fluid) 법

마지막으로 설명하는 방법은 유체 부피 분율의 개념을 기반으로합니다. 이 접근 방식에 대한 아이디어는 대용량 메모리 및 CPU 비용없이 MAC 방식의 강력한 볼륨 추적 기능을 갖는 방법에서 시작되었습니다.

Within each grid cell (control volume) it is customary to retain only one value for each flow quantity (e.g., pressure, velocity, temperature, etc.) For this reason it makes little sense to retain more information for locating a free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction in each grid cell, is consistent with the resolution of the other flow quantities.

각 격자 셀 (제어 체적) 내에서 각 유량 (예 : 압력, 속도, 온도 등)에 대해 하나의 값만 유지하는 것이 일반적입니다. 이러한 이유로 자유 표면을 찾기 위해 더 많은 정보를 유지하는 것은 거의 의미가 없습니다. 이러한 추론에 따라 각 격자 셀의 유체 부피 분율인 단일 수량의 사용은 다른 유량의 해상도와 일치합니다.

If we know the amount of fluid in each cell it is possible to locate surfaces, as well as determine surface slopes and surface curvatures. Surfaces are easy to locate because they lie in cells partially filled with fluid or between cells full of fluid and cells that have no fluid.

각 셀 내의 유체의 양을 알고 있는 경우, 표면의 위치 뿐만 아니라  표면 경사와 표면 곡률을 결정하는 것이 가능합니다.  표면은 유체 가 부분 충전 된 셀 또는 유체가 전체에 충전 된 셀과 유체가 전혀없는 셀 사이에 존재하기 때문에 쉽게 찾을 수 있습니다.

Slopes and curvatures are computed by using the fluid volume fractions in neighboring cells. It is essential to remember that the volume fraction should be a step function, i.e., having a value of either one or zero. Knowing this, the volume fractions in neighboring cells can then be used to locate the position of fluid (and its slope and curvature) within a particular cell.

경사와 곡률은 인접 셀의 유체 체적 점유율을 사용하여 계산됩니다.  체적 점유율은 계단 함수(step function)이어야 합니다, 즉, 값이 1 또는 0 인 것을 기억하는 것이 중요합니다.  이 것을 안다면, 인접 셀의 부피 점유율을 사용하여 특정 셀 내의 유체의 위치 (및 그 경사와 곡률)을 찾을 수 있습니다.

Free-surface boundary conditions must be applied as in the MAC method, i.e., assigning the proper gas pressure (plus equivalent surface tension pressure) as well as determining what velocity components outside the surface should be used to satisfy a zero shear-stress condition at the surface. In practice, it is sometimes simpler to assign velocity gradients instead of velocity components at surfaces.

자유 표면 경계 조건을 MAC 법과 동일하게 적용해야 합니다.  즉, 적절한 기체 압력 (및 대응하는 표면 장력)을 할당하고, 또한 표면에서 제로 전단 응력을 충족 시키려면 표면 외부의 어떤 속도 성분을 사용할 필요가 있는지를 확인합니다.  사실, 표면에서의 속도 성분 대신 속도 구배를 지정하는 것이보다 쉬울 수 있습니다.

Finally, to compute the time evolution of surfaces, a technique is needed to move volume fractions through a grid in such a way that the step-function nature of the distribution is retained. The basic kinematic equation for fluid fractions is similar to that for the height-function method, where F is the fraction of fluid function:

마지막으로, 표면의 시간 변화를 계산하려면 분포의 계단 함수의 성질이 유지되는 방법으로 격자를 통과하고 부피 점유율을 이동하는 방법이 필요합니다.  유체 점유율의 기본적인 운동학방정식은 높이 함수(height-function) 법과 유사합니다.  F는 유체 점유율 함수입니다.

A straightforward numerical approximation cannot be used to model this equation because numerical diffusion and dispersion errors destroy the sharp, step-function nature of the F distribution.

이 방정식을 모델링 할 때 간단한 수치 근사는 사용할 수 없습니다.  수치의 확산과 분산 오류는 F 분포의 명확한 계단 함수(step-function)의 성질이 손상되기 때문입니다.

It is easy to accurately model the solution to this equation in one dimension such that the F distribution retains its zero or one values. Imagine fluid is filling a column of cells from bottom to top. At some instant the fluid interface is in the middle region of a cell whose neighbor below is filled and whose neighbor above is empty. The fluid orientation in the neighboring cells means the interface must be located above the bottom of the cell by an amount equal to the fluid fraction in the cell. Then the computation of how much fluid to move into the empty cell above can be modified to first allow the empty region of the surface-containing cell to fill before transmitting fluid on to the next cell.

F 분포가 0 또는 1의 값을 유지하는 같은 1 차원에서이 방정식의 해를 정확하게 모델링하는 것은 간단합니다.  1 열의 셀에 위에서 아래까지 유체가 충전되는 경우를 상상해보십시오.  어느 순간에 액체 계면은 셀의 중간 영역에 있고, 그 아래쪽의 인접 셀은 충전되어 있고, 상단 인접 셀은 비어 있습니다.  인접 셀 내의 유체의 방향은 계면과 셀의 하단과의 거리가 셀 내의 유체 점유율과 같아야 한다는 것을 의미합니다.  그 다음 먼저 표면을 포함하는 셀의 빈 공간을 충전 한 후 다음 셀로 유체를 보내도록 위쪽의 빈 셀에 이동하는 유체의 양의 계산을 변경할 수 있습니다.

In two or three dimensions a similar procedure of using information from neighboring cells can be used, but it is not possible to be as accurate as in the one-dimensional case. The problem with more than one dimension is that an exact determination of the shape and location of the surface cannot be made. Nevertheless, this technique can be made to work well as evidenced by the large number of successful applications that have been completed using the VOF method. References 1975, 1980, and 1981 should be consulted for the original work on this technique.

2 차원과 3 차원에서 인접 셀의 정보를 사용하는 유사한 절차를 사용할 수 있지만, 1 차원의 경우만큼 정확하게 하는 것은 불가능합니다.  2 차원 이상의 경우의 문제는 표면의 모양과 위치를 정확히 알 수없는 것입니다.  그래도 VOF 법을 사용하여 달성 된 다수의 성공 사례에서 알 수 있듯이 이 방법을 잘 작동시킬 수 있습니다.  이 기법에 관한 초기의 연구 내용은 참고 문헌 1975,1980,1981를 참조하십시오.

The VOF method has lived up to its goal of providing a method that is as powerful as the MAC method without the overhead of that method. Its use of volume tracking as opposed to surface-tracking function means that it is robust enough to handle the breakup and coalescence of fluid masses. Further, because it uses a continuous function it does not suffer from the lack of divisibility that discrete particles exhibit.

VOF 법은 MAC 법만큼 강력한 기술을 오버 헤드없이 제공한다는 목표를 달성 해 왔습니다.  표면 추적이 아닌 부피 추적 기능을 사용하는 것은 유체 질량의 분할과 합체를 처리하는 데 충분한 내구성을 가지고 있다는 것을 의미합니다.  또한 연속 함수를 사용하기 때문에 이산된 입자에서 발생하는 숫자를 나눌 수 없는 문제를 겪지 않게 됩니다.

Variable-Density Approximation to the VOF Method

One feature of the VOF method that requires special treatment is the application of boundary conditions. As a surface moves through a grid, the cells containing fluid continually change, which means that the solution region is also changing. At the free boundaries of this changing region the proper free surface stress conditions must also be applied.

VOF 법의 가변 밀도 근사

VOF 법의 특수 처리가 필요한 기능 중 하나는 경계 조건의 적용입니다.  표면이 격자를 통과하여 이동할 때 유체를 포함하는 셀은 끊임없이 변화합니다.  즉, 계산 영역도 변화하고 있다는 것입니다.  이 변화하고있는 영역의 자유 경계에는 적절한 자유 표면 응력 조건도 적용해야합니다.

Updating the flow region and applying boundary conditions is not a trivial task. For this reason some approximations to the VOF method have been used in which flow is computed in both liquid and gas regions. Typically, this is done by treating the flow as a single fluid having a variable density. The F function is used to define the density. An argument is then made that because the flow equations are solved in both liquid and gas regions there is no need to set interfacial boundary conditions.

유체 영역의 업데이트 및 경계 조건의 적용은 중요한 작업입니다.  따라서 액체와 기체의 두 영역에서 흐름이 계산되는 VOF 법에 약간의 근사가 사용되어 왔습니다.  일반적으로 가변 밀도를 가진 단일 유체로 흐름을 처리함으로써 이루어집니다.  밀도를 정의하려면 F 함수를 사용합니다.  그리고, 흐름 방정식은 액체와 기체의 두 영역에서 계산되기 때문에 계면의 경계 조건을 설정할 필요가 없다는 논증이 이루어집니다.

Unfortunately, this approach does not work very well in practice for two reasons. First, the sensitivity of a gas region to pressure changes is generally much greater than that in liquid regions. This makes it difficult to achieve convergence in the coupled pressure-velocity solution. Sometimes very large CPU times are required with this technique.

공교롭게도 이 방법은 두 가지 이유로 인해 실제로는 그다지 잘 작동하지 않습니다.  하나는 압력의 변화에 대한 기체 영역의 감도가 일반적으로 액체 영역보다 훨씬 큰 것입니다.  따라서 압력 – 속도 결합 해법 수렴을 달성하는 것은 어렵습니다.  이 기술은 필요한 CPU 시간이 매우 커질 수 있습니다.

The second, and more significant, reason is associated with the possibility of a tangential velocity discontinuity at interfaces. Because of their different responses to pressure, gas and liquid velocities at an interface are usually quite different. In the Variable-Density model interfaces are moved with an average velocity, but this often leads to unrealistic movement of the interfaces.

두 번째 더 중요한 이유는 계면에서 접선 속도가 불연속이되는 가능성에 관련이 있습니다.  압력에 대한 반응이 다르기 때문에 계면에서 기체와 액체의 속도는 일반적으로 크게 다릅니다.  가변 밀도 모델은 계면은 평균 속도로 동작하지만, 이는 계면의 움직임이 비현실적으로 되는 경우가 많습니다.

Even though the Variable-Density method is sometimes referred to as a VOF method, because is uses a fraction-of-fluid function, this designation is incorrect. For accurately tracking sharp liquid-gas interfaces it is necessary to actually treat the interface as a discontinuity. This means it is necessary to have a technique to define an interface discontinuity, as well as a way to impose the proper boundary conditions at that interface. It is also necessary to use a special numerical method to track interface motions though a grid without destroying its character as a discontinuity.

가변 밀도 방법은 유체 분율 함수를 사용하기 때문에 VOF 방법이라고도하지만 이것은 올바르지 않습니다. 날카로운 액체-가스 인터페이스를 정확하게 추적하려면 인터페이스를 실제로 불연속으로 처리해야합니다. 즉, 인터페이스 불연속성을 정의하는 기술과 해당 인터페이스에서 적절한 경계 조건을 적용하는 방법이 필요합니다. 또한 불연속성으로 특성을 훼손하지 않고 격자를 통해 인터페이스 동작을 추적하기 위해 특수한 수치 방법을 사용해야합니다.

Summary

A brief discussion of the various techniques used to numerically model free surfaces has been given here with some comments about their relative advantages and disadvantages. Readers should not be surprised to learn that there have been numerous variations of these basic techniques proposed over the years. Probably the most successful of the methods is the VOF technique because of its simplicity and robustness. It is this method, with some refinement, that is used in the FLOW-3D program.

여기에서는 자유 표면을 수치적으로 모델링 할 때 사용하는 다양한 방법에 대해 상대적인 장점과 단점에 대한 설명을 포함하여 쉽게 설명하였습니다.  오랜 세월에 걸쳐 이러한 기본적인 방법이 많이 제안되어 온 것을 알고도 독자 여러분은 놀라지 않을 것입니다.  아마도 가장 성과를 거둔 방법은 간결하고 강력한 VOF 법 입니다.  이 방법에 일부 개량을 더한 것이 현재 FLOW-3D 프로그램에서 사용되고 있습니다.

Attempts to improve the VOF method have centered on better, more accurate, ways to move fluid fractions through a grid. Other developments have attempted to apply the method in connection with body-fitted grids and to employ more than one fluid fraction function in order to model more than one fluid component. A discussion of these developments is beyond the scope of this introduction.

VOF 법의 개선은 더 나은, 더 정확한 방법으로 유체 점유율을 격자를 통과하여 이동하는 것에 중점을 두어 왔습니다.  기타 개발은 물체 적합 격자(body-fitted grids) 관련 기법을 적용하거나 여러 유체 성분을 모델링하기 위해 여러 유체 점유율 함수를 채용하기도 했습니다.  이러한 개발에 대한 논의는 여기에서의 설명 범위를 벗어납니다.

References

1965 Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible Flow, Phys. Fluids 8, 2182.

1969 Daly, B.J., Numerical Study of the Effect of Surface Tension on Interface Instability, Phys. Fluids 12, 1340.

1970 Hirt, C.W., Cook, J.L. and Butler, T.D., A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface, J. Comp. Phys. 5, 103.

1971 Nichols, B.D. and Hirt, C.W.,Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures, J. Comp. Phys. 12, 234.

1974 Hirt, C.W., Amsden, A.A., and Cook, J.L.,An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds, J. Comp. Phys., 14, 227.

1975 Nichols, B.D. and Hirt, C.W., Methods for Calculating Multidimensional, Transient Free Surface Flows Past Bodies, Proc. of the First International Conf. On Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23.

1980 Nichols, B.D. and Hirt, C.W., Numerical Simulation of BWR Vent-Clearing Hydrodynamics, Nucl. Sci. Eng. 73, 196.

1981 Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, 201.

A vertical jet flowing into a moving cross stream

공기 유입 / Air Entrainment

Air Entrainment / 공기 유입

FLOW-3D 의 공기 혼입 모델(air entrainment model)은 자유 표면에서 용해되지 않은 공기 혼입을 시뮬레이션하는 강력한 도구입니다. 제트 및 방수로 충돌시 관찰되는 국부적이고 난류가없는 자유 표면 혼입 기능이 있습니다. 이러한 기능은 엔지니어가 설계시 공기 유입을 예측하고, 공기유입이 안전하게 작동하도록 적절한 수정을 할 수 있게 합니다.

Spillway hydraulics / 여수로 수리장치

여수로 구조는 다양한 작동 조건을 처리 할 수 ​​있도록 설계되어야 합니다. 유동 조건이 설계 범위의 상단에 도달하면 여수로 표면의 불규칙성으로 인해 유동이 분리 될 수 있습니다. 이는 여수로 표면의 압력이 캐비테이션을 일으킬 정도로 낮아지게 합니다. 캐비테이션은 구조물의 강도에 매우 해로우며 치명적인 손상을 초래할 수 있습니다.

공기 유입은 캐비테이션의 가능성을 줄이는 수단입니다. 물이 공기에 존재하면 캐비테이션 영역의 붕괴하는 기포에 감쇠 효과를 추가하여 캐비테이션 손상을 줄입니다. 여수로의 속도가 충분히 높으면 공기를 동반시키고 캐비테이션을 줄이기 위해 폭기 장치를 추가해야합니다.

폭기 흐름의 시뮬레이션과 폭기 장치에서 포획된 공기의 예측.

왼쪽 이미지는 거시적 인 밀도에 의해 착색됩니다. 오른쪽 그래프는 폭기 장치에 유입 된 수분의 일정한 부피와 폭기 장치 이후의 수분 및 공기의 양을 비교 한 것입니다.

아래 동영상은 FLOW-3D에서 공기 유입 과정을 시뮬레이션하는 방법을 보여줍니다. 여기에는 공기혼입 및 드리프트 플럭스 모델의 이론에 대한 세부 정보와 FLOW-3D에서 기본 공기혼입 시뮬레이션을 설정하는 방법에 대한 데모가 포함되어 있습니다.

Fish passage design / 물고기 개체수 유지를 위한 어도 설계

공기가 물로 혼입되면 미생물의 성장을 유지하고 건강한 어류 개체군의 생존을 보장 할 수 있습니다. 그러나 과포화 상태의 용존 기체는 수생 생물에 부정적인 영향을 미치는 수질 문제가 됩니다. 공기 동반 모델의 또 다른 용도는 강의 하류로 방출되는 배수로에서 동반되는 공기의 농도를 결정하기 위해 해양 생물학에서 사용됩니다.
이 모델에 대한 더 자세한 정보는 Air Entrainment 의 Flow Science Report를 다운로드하십시오.

Culvert Application / 암거 시설물

Culvert Applications / 암거 시설물 유동해석 개요

Brain Fox / CFD Engineer, Flow Science, inc

근래 이상기후에 의한 강우량 증대와 도시화에 따른 첨두 유출량의 증대 및 도달시간의 단축은 하류지점의 빈번한 범람을 유발하여, 이러한 문제들의 해결을 위해 저류지와 같은 우수 유출 저감시설 구축을 추진하고 있습니다.

Culvert 시설물의 최적 설계 또는 기존 시설물의 개선을 통한 문제점 해결에 필요한 3차원 유동 해석은 FLOW-3D를 활용하여 도움을 받을 수 있습니다.

암거 흐름은 지형 및 수리조건에 따라 복잡하고 다양한 흐름 특성을나타내고 있으며, 이로 인해 암거의 3차원 유동해석(CFD)이 점점 더 필수적인 업무 과정이 되어 가고 있습니다.

기본 Culvert 유동

FLOW-3D를 이용한 Culvert 유동해석

Overtopping

None-Liner

Energy Dissipiration

Fish Passage / 어도

Sedimentation / Outlet Scour

Multi-ballel culvert

Moning Glory Spillway

Air entrainment

FLOW-3D를 이용한 실제 해석

초기 해석 조건

해석시간

Validation of a 3D Dam Breaking Problem

3D 댐 붕괴 문제 검증

이 기사는영국에서 Peter Arnold, Minerva Dynamics, The Guildhall, High Street Bath에 의해 기고되었다.

자유 표면 흐름 시뮬레이션을 위한 FLOW-3D 성능을 평가하기 위해, 장애물 구성이 포함된 3D댐을 검증 사례 중 하나로 선정했습니다. 이 문제는 문서화되어 있으며 ERCOFTAC데이터베이스에서 다운로드할 수 있도록 생성된 모든 실험 데이터를 사용하여 쉽게 설정할 수 있습니다[1]. 장애물은 선박 갑판의 녹색 물에 노출된 컨테이너를 대표하는 것으로 선택됩니다. 실험은 0.55 m의 물을 고정하는 슬라이딩 도어를 가진 대형 탱크 그림 1로 구성됩니다. 도어는 중량 감소에 의해 수직으로 위쪽으로 열리고 물이 방출되어 장애물을 침해한 후 탱크 벽으로부터 3회 반사됩니다. 자유 표면 고도는 탱크 중심선을 따라 4개 위치에서 측정되며 8개의 압력 센서가 장애물의 선행 수직 및 수평 표면에 내장되어 있습니다(그림2). FLOW-3D를 사용한 CFD시뮬레이션은 연속적으로 미세한 메쉬를 사용하여 6초간 실시간으로 수행되었으며 다른 주문 번호 체계와 난류 모델을 사용했습니다.

Figure 1. Snapshot of SPH simulation and experiment at 0.56 secs

시뮬레이션 방법론

시뮬레이션은 3.22mx1mx1.5m 크기의 도메인에 대해 설정되었습니다. 즉, 탱크 지붕에 대한 수직 분사를 허용하기 위해 z방향에서 0.5m 더 큰 도메인이 설정되었습니다. 기본 메쉬는 x-방향의 간격 161개, y-방향 50개, z-방향의 경우 75개가 균일하게 수용되는 육각 셀을 가지고 있었습니다. 장애물 및 센서 위치를 방해하므로 총 약 603,750개의 셀이 사용됩니다. 장애물은 그 영역에 들어갔고 모든 벽은 미끄러짐이 없는 것으로 간주되었습니다. 물의 초기 위치와 점도를 규정한 후, 층류 시간에 의존하는 시뮬레이션을 실시간으로 총 6초 동안 점진적으로 미세화하였습니다. 기본 60cm 셀 메시에서 시작하는 메쉬. 단순히 각 방향의 셀의 수를 2개의 큐브 루트에 의해 증가시킴으로써 각 점진적 메쉬에 대해 총 셀 카운트를 2배 증가시키는 것이었습니다. 이렇게 총 네개의 메쉬가 생겼습니다. 그런 다음 네개의 위치에서 자유 표면 고도의 시간 이력과 여덟개의 압력 센서로부터의 압력을 실험 데이터에 대해 도표로 작성했습니다. CPU와 시뮬레이션의 경과 시간또한 기록되었습니다.

Figure 2. Locations of water height and pressure measurements

기본 메쉬만 사용하여, 추진력 유도에 사용된 수치 구별 계획의 효과를 조사하였습니다. 디폴트가 1st order, 2nd order monotonicity preserving 그리고 3rd order schem이 모두 사용되었으며 결과를 비교했습니다. 또한 single 과 double precision의 효과를 비교하였습니다.

난류 변동은 주로 직접 시뮬레이션을 통해 모델링되었지만 FLOW-3D에서 사용할 수있는 두 가지 난류 모델, 즉 RNG (Renormalization Group) 모델과 LES (Large Eddy Simulations) 모델의 결과도 비교했습니다. 모든 모델은 가장 거칠고 기본 메쉬에서만 실행되었습니다. 메쉬 해상도에 대한 과도한 요구로 인해 탱크 벽에서 가장 가까운 노드의 거리에 대한 일반적인 난기류 모델 관련 제약 조건을 충족시키지 못했습니다.

또한 흐름이 크게 혼란스럽고 장애물이 날카로울 때 흐름 분리 효과의 예측은 점진적인 구분에 의해서가 아닌 기하학적 변화에 의해서 주도될 것입니다. 질서 정연한 경계 층의 변형 따라서, 우리는 경계 층의 분해능이 주 흐름 특성을 예측하는 관점에서 도메인 내부의 흐름을 해결하는 것보다 덜 관련된다고 가정했습니다.

자유 표면 결과

그림 3과 4는 장애물의 상류 위치 H2와 하류 위치 H1에서 시간에 대해 플롯 된 실험 및 계산 된 자유 표면 고도를 보여줍니다. 크기와 타이밍에 약간의 차이가 있지만 주요 기능이 잘 표현되어 있는지 확인하는 것이 좋습니다. 그러나 실험 데이터에는 오류 막대가 제공되지 않으며 혼란스럽고 분리 된 유동장에서 프로브를 사용하여 자유 표면 고도를 측정하는 것은 자유 표면 고도가 문제가 될 수 있다고 말해야합니다. 단일 한 시간 함수가 될 수 없습니다. 이것은 아마도 약 1 초의 초기 가파른 상승 단계에서 H1 높이의 불일치를 설명합니다. 나머지 H1 레코드는 실험과 잘 일치합니다. H2 플롯은 특히 초기 물 상승 단계에서 더 나은 일치를 보여주고 궁극적으로 물의 최대 높이를 잘 예측합니다.

모든 그림에는 실험 뒤에 있는 시뮬레이션의 시간 지연 특징이 있습니다. 차이의 원인은 불분명하지만 시뮬레이션을 통해 점진적으로 도입되는 것으로 보입니다.

압력 센서 결과

그림 5는 시간에 대해 플롯 된 바닥에서 가장 가까운 전면 압력 센서 P1을 보여 주며, 일반적으로 실험과 시뮬레이션 간의 양호한 일치를 나타냅니다. 이 센서는 압력 피크의 도달 거리와 크기를 가장 정확하게 추정합니다. 장애물과 왼쪽 벽에서 물이 튀어 나오면서 신호가 안정되면서 약 2초간 도달할 때까지 압력 신호에 상당한 변동이 있습니다. 그리고 시뮬레이션 값은 실험 값과 잘 일치합니다.

그림 6은 상부 수평 얼굴 압력 센서 P7을 보여 줍니다. 1초에서 2초 사이에 압력 변동이 크므로 시뮬레이션과 실험 데이터가 안정되고 합의가 개선됩니다.

메쉬 수리, 수치 구성 순서 및 난류 모델

메쉬 정밀도의 효과 측면에서 볼 때, 수치 솔루션이 고유한 솔루션으로 수렴되고 있다는 증거는 거의 없는 것으로 보입니다. 난류 모델을 사용하는 대신 직접 시뮬레이션을 통해 유동장의 난류를 모델링 하려고 시도해 왔기 때문에 이는 놀라운 일이 아닐 수 있습니다. 이 접근 방식을 사용하면 메쉬가 미세하게 정제되고 초기 조건에서 섭동에 더 민감해 지기 때문에 흐름 필드에서 보다 상세한 정보를 파악할 수 있을 것으로 예상됩니다. 또한 약간 다른 초기 조건을 가진 많은 시뮬레이션의 평균이 메시 정교함으로 평균화된 솔루션으로 수렴될 것으로 예상합니다. 그러나, 실험에 대한 합의의 수준에 있어서는 35배나 더 오래 걸리는 가장 적은 비용과 가장 비싼 해결책 사이에는 차이가 거의 없습니다. 공학적 관점에서 볼 때, 가장 불리한 메쉬 솔루션은 기본 값이 충분히 정확하고 경과된 시뮬레이션이 단지 15분 이상인 것을 고려할 때 매우 좋은 가치를 나타냅니다.

가속도계 숫자 체계 순서의 효과와 단일 또는 이중 정밀도 산술 실행의 효과는 다음과 같이 요약됩니다. 2차 주문과 3차 주문 계획은 매우 유사한 결과를 보여 주는데, 두가지 모두 실험 곡선을 따르는 것이 더 다양한 1차 주문 계획보다 더 가깝습니다. 또한 상위 순서 방식은 보다 정교한 메쉬의 첫번째 순서 방식보다 코어저 기본 메쉬의 실험 곡선을 따르는 것으로 보입니다. 이중 정밀도 곡선은 단일 정밀도 1차 주문 곡선에서 약간 벗어납니다. 높은 순서도와 이중 정밀도 산술을 사용하는 데 드는 상대적으로 적은 비용을 감안할 때 안정성이 훼손되지 않는다면 향후 계산에서 그렇게 하는 것이 합리적일 것입니다.

난류 변동을 모델링 하는 데 사용되는 방법에 대해서는 각 모델의 실험 시간 이력을 보다 정확하게 예측할 수 있는 능력 면에서 확실한 승자가 없습니다. LES모델의 CPU시간을 더 전통적인 RNG제제와 비교할 때 거의 두 배만큼 층류 모델로써 경제적입니다.

결론

FLOW-3D는 매우 까다로운 자유 표면 유동 문제를 시뮬레이션하는 데 사용되었으며 실험 데이터와 정 성적, 양적 계약을 맺었습니다. 주요 불일치는 종종 고유하지 않은 매개 변수의 자유 표면 높이를 측정하는 데 문제가 있기 때문에 쉽게 발생할 수 있습니다. 흐름이 충돌하는 장애물 표면의 압력 예측은 일반적으로 실험 측정과 잘 일치하며, 주 편차는 실험 측정에서 상당한 양의 변동이있는 곳에서 다시 나타납니다. 실험 측정의 반복성은 문헌에서 논의되지 않았지만 적어도 CFD 시뮬레이션의 차이만큼 클 수있다. 또한 4 개의 프로세서를 통한 공유 메모리 구성에서 약 15 분 내에 난류 모델없이 1 차 차분을 사용하여 비교적 거친 메시에서 솔루션을 적절하게 얻을 수 있음을 확인했습니다. 난류 모델이 필요하지 않다는 것은 결과 흐름을 지배하는 난류 구조가이 수준의 메쉬 미세 조정에서 해석 될 수 있음을 시사합니다.

Download a full-length validation study of this work: FLOW-3D Dam Breaking Validation

References

  1. SPH European Research Interest Community SIG, R. Issa and D. Violeau, Test-Case 2 3D dam breaking, http://wimanchester.ac.uk/spheric/index.php/Test2
  2. M.T Kleefsman, Fekken, A.E P Veldman, B. Iwanowski, and B. Buchner, A volume of fluid based simulation method for wave impact problems,J Comp Phs, 206: 363-393, 2005.

FLOW-3D 제품 문의

제품 문의

단기 또는 장기 프로젝트 또는 국책 연구과제 수행시 FLOW-3D, FLOW-3D/MP  또는 FLOW-3D Cast 를 이용하여 특정 문제 해결을 검토하고 계신가요?
다양한 구매조건을 제공하므로 최소의 비용으로 귀하의 프로젝트를 성공리에 수행할 수 있습니다.
이전에 FLOW-3D를 사용해 본 경험이 전혀 없어도, 프로젝트 수행에 지장이 없도록 Input 작성부터 분석방법까지 쉽고 빠르게 당사의 전문 엔지니어가 밀착 지원해 드립니다.
어떤 문제든지 아래 연락처로 문의 주시면 도움을 받을 수 있습니다.
고도로 훈련된 전문 엔지니어 기술지원팀이 여러분을 도울 준비가 되어 있습니다.
연락처 : 02-2026-0442
이메일 : flow3d@stikorea.co.kr

엔지니어링 프로그램 개발 용역

(주)에스티아이씨앤디는 귀사에서 수행중인 업무나 아이디어가 있는데 프로그램으로 구현하지 못한 경우 당사의 전문 개발자가 엔지니어링 소프트웨어 개발을 지원합니다.
이를 통해 귀하께서 당면하고 있는 업무의 자동화나 해결하지 못하는 엔지니어링 문제를 쉽게 해결할 수 있습니다.
특정 문제에 대한 해결을 위해 엔지니어의 방문이 필요하신 경우 언제든지 아래 연락처로 문의 주시기 바랍니다.
연락처 : 02-2026-0455
이메일 : flow3d@stikorea.co.kr

평가 라이선스  요청

FLOW-3D를 평가해 보고 싶은 경우 무료로 단기 라이선스(1개월)를 제공해 드릴 수 있습니다.
제품의 기능과 격자에  제한이 없고,  평가 목적 외에 연구용으로나 상업적인 목적의 프로젝트를 수행할 수 없습니다.
아래 신청서를 다운로드 하신 후 작성하셔서 이메일로 보내주시면 됩니다.
신청서 다운로드 : <다운로드>
연락처 : 02-2026-0455
이메일 : flow3d@stikorea.co.kr

수치해석 담당자가 궁금한 현재 살 수 있는 최강 성능의 PC 하드웨어

수치해석 업무를 담당하는 엔지니어들은 항상 시간에 쫒기며 산다고 해도 과언은 아니다. 새로운 강력한 컴퓨터를 갖는 것이 항상 소원이 되가는 수치해석 엔지니어에게 유용한 정보를 제공합니다.
아래에 한국 ITWORLD에서 PCWorld의 기사를 번역 게시한 기사를 소개합니다.

현재 살 수 있는 최강 성능의 PC 하드웨어

PCWorld
PC의 장점 가운데 하나는 뛰어난 유연성이다. 다양한 형태와 크기, 제조업체 및 모델을 갖춘 수많은 하드웨어가 있기 때문에 구매자가 아무리 돈이 많더라도 혼선이 생기게 마련이다. 이번 기사에서 AMD의 괴물 같은 스레드리퍼(Threadripper) 칩에서부터 지포스 RTX 2080 Ti에 이르기까지 오늘날 구입할 수 있는 최고 성능의 PC 구성 요소를 소개한다.

Credit: Gordon Mah Ung/IDG

CPU
PC의 핵심은 프로세서다. AMD의 32코어, 64 스레드 라이젠 스레드리퍼 2990WX만큼 강력한 CPU는 없다(아마존 1,750달러). 다만 비즈니스 및 데이터센터 장비는 일반 소비자용보다 더 강력하다.

이 CPU는 인텔 18코어 대표작인 코어 i9-7980XE(아마존 2,000달러)보다 거의 2배 많은 코어와 쓰레드를 갖고 있음에도 200달러 이상 싸다. 인텔의 코어는 개별적으로는 더 빠르지만, 2990WX의 엄청난 코어 수를 제대로 활용할 수 있다면 그 어떤 것도 비교할 수 없다.

최상의 PC 게임 성능을 원한다면 코어 i7-8700K(아마존 350달러)가 가장 적합한 프로세스로, 6코어, 12쓰레드는 3.7GHz와 4.7GHz 사이에서 동작하면서 인텔의 18코어보다 훨씬 더 높은 성능이다.

바로 지금 사용할 수 있는 것을 구매한다면, 첫번째 코어 i7-8086K(이 칩은 창립 40주년을 기념해 만들어졌다)은 싱글 쓰레드 애플리케이션에서 5GHz로 출시된 최초의 인텔 칩이다. 또한 수동으로 오버클럭된 경우, 모든 코어에서 5GHz를 기록하는 것이 확실하다. 그러나 표준 성능은 훨씬 저렴한 8700K와 유사하다. 이 칩은 5만 개만 만들어졌다. 뉴에그, 아마존, 베스트바이에서 425달러에 판매하고 있다.

Credit: Gordon Mah Ung

메인보드
프로세서를 골랐다면 메인보드 유형을 알 수 있다. 스레드리퍼 칩은 AMD의 X399 메인보드와 호환된다. 본지는 MSI MEG X399 크리에이션(Creation)(뉴에그 499달러)으로, 스레드리퍼 2990WX를 검토했다. 이 메인보드는 연결성이 좋으며 스틱 형태의 SSD를 냉각할 M.2 프로저 히트싱크, 견고한 전력 공급 시스템을 자랑한다.

여기에서는 간략하게 정리하고 AMD X399 메인보드에 대한 자세한 내용은 여기에서 확인하라.

Credit: MSI

메모리
인텔의 X99 플랫폼은 64GB RAM 한계를 넘어섰으며 DDR4는 이전보다 더 빠른 메모리를 지원한다. 128GB 키트까지 보장하는 3,200MHz 커세어 도미네이터 플레티넘(Corsair Dominator Platinum) 메모리(아마존 1,750달러), 세계에서 가장 큰 RAM 디스크를 만든 이유는 무엇일까. 적절한 속도를 느끼고 싶다면 벤전스(Vengeance) LPX DDR4의 16GB 키트(아마존 430달러)가 적합하다.

이렇게 많은 RAM을 가진 PC를 가질 적절한 이유가 없다는 점에서 이 가격은 단점이 될 수 있다. 용량이 더 작은 키트나 다른 공급업체의 제품을 선택하더라도 DDR3가 아닌 DDR4 메모리여야 한다. X299 메인보드는 최첨단이다.

Credit: Gordon Mah Ung

그래픽 카드
지금 당장 가장 강력한 그래픽 카드를 구입해야 한다면, 대부분의 게임 사용자는 지포스 GTX 1080Ti 또는 EVGA GTX Ti SC2(아마존 670달러)와 같은 맞춤형 오버클럭킹 버전을 선택할 것이다. 이 제품은 GTX 1080보다 25~35% 더 빠르며 4K 해상도로 60fps를 기록할 수 있는 최초의 저렴한 일반 소비자용 그래픽 카드로, 이미 많은 게임에서 적절하게 호환을 이뤘다.

그러나 조금 시간적 여유가 있다면 지금 이를 살 필요는 없다. 엔비디아는 이미 차세대 지포스 RTX 2080 Ti의 예약 구매 신청을 받고 있다. 이는 전작을 날려버릴 준비가 됐다. 2080 Ti 제품의 리뷰는 아직 나오지 않았지만 9월 20일이면 출시된다. 가능한 한 본지의 리뷰를 읽어 검토하고 사전 예약을 해도 늦지 않다.

Credit: Brad Chacos/IDG

모니터
그래픽카드에 큰 돈을 쓸 계획이라면, 하이엔드 디스플레이도 원할 것이다. 하이엔드 디스플레이의 경우, 기본적으로 G싱크(G-Sync) HDR 디스플레이라는 걸출한 제품이 있다.

에이서 프레데터(Acer Predator) X27, 에이수스(Asus) ROG 스위프트(Swift) PG27UQ(뉴에그 각각 2,000달러) 또한 최대 144Hz로, 고급스러운 27인치 4K 패널이다. 말 그대로 이 패널들은 384개 백라이트 영역과 함께 최대 1,000니트의 밝기로 HDR(High-Dynamic Range) 영상을 지원한다. 비-HDR 콘텐츠 또한 아름답게 보인다. 이 모니터는 어도비RGB(AdobeRGB) 색역의 99%를 차지하고 지싱크는 게임 플레이를 부드럽게 해준다.

Credit: Martyn Williams/IDG

주 스토리지
스토리지는 다양한 옵션을 제공한다. 4TB 삼성 860 EVO(아마존 1,400달러)와 WD 골드(아마존 500달러)는 각각 소비자용 SSD와 HDD 시장에서 최고의 성능을 자랑하는데, 본지의 리뷰에서 최고 점수를 받았다.

삼성의 SSD는 분명히 빠르지만 많은 비용이 든다. WD 골드의 7,200rpm 플래터는 기계식 하드드라이브에서 놀라운 엑세스 속도를 제공한다. 이 제품은 같은 가격 제품대에서는 찾아볼 수 없는 엔터프라이즈급 기능으로 자랑한다.

Credit: Western Digital

급속 스토리지
저장 용량과 상관없이 순수하게 속도가 주요 목표라면 좋은 제품이 있다. 약간의 공간에 대한 대가로, 사용자는 M.2 PCI-e NVMe SSD의 엄청난 전송 속도를 즐길 수 있다. 4TB 삼성 960 프로(뉴에그 1,50달러)는 크리스탈디스크마크(CrystalDiskMark) 리뷰에서 읽기 속도가 3.5GBps를 훨씬 웃도는 가장 빠른 드라이브 가운데 하나다.

이 제품을 부팅 드라이브로 삼으면 지연에 대해 걱정할 필요가 없다. 시간 절약을 위해 아주 많은 비용을 투자하는 것이 부담스럽다면 1TB WD 블랙 3D NVMe(아마존 450달러)를 대신 사용하자.

또한 인텔의 혁신적인 옵테인 900P SSD(뉴에그 600달러)는 삼성이 독차지하는 시장에 타격을 가하고 작은 파일을 많이 읽을 때 엄청난 성능을 자랑하지만 280GB 및 480GB 용량으로만 제공한다.

다른 제품을 찾고자 한다면 본지의 “나에게 맞는” SSD 선택 가이드 2018에서 최고의 SSD를 찾을 수 있을 것이다.

Credit: Samsung

사운드카드
PC의 다른 부분에 엄청난 비용을 지불했다면 최고 수준의 오디오에도 투자할 수 있을 것이다. 크리에이티브 테크놀로지의 사운드블라스트(Sound Blaster)X AE-5(아마존 150달러)는 32비트, 384KHz ESS ES9016K2M SABRE32 Ultra DAC 칩셋을 사용한다. 가격은 기본적으로 고가의 전문 사운드 장치에서 볼 수 있는 DAC 수준이다.

이 제품은 최초의 프리미엄 일반 소비자용 사운드카드로, 5.1 아날로그 서라운드 사운드, 600 옴 헤드셋까지 구동할 수 있는 듀얼 앰프 Xamp, RGB 조명 등을 제공한다.

Credit: Gordon Mah Ung/IDG

전원공급장치
현재 인텔 프로세서와 엔비디아 그래픽카드의 놀라운 전력 효율성으로 인해 대부분의 단일 GPU 시스템은 아마도 600W 이상의 전원공급장치를 필요로 하지 않을 것이다.
그러나 이번 기사는 최상의 제품에 관한 것이기에 최고 전원공급장치를 소개한다. 여러 개의 그래픽 카드를 사용하거나 미래 확장을 위해 공간을 확보하길 원한다면, 이 제품을 사용해도 좋다.

커세어(Corsair) AX1500i(아마존 450달러)는 본질적으로 전력 공급에 있어 모범적이다. 요즘 코인 채굴작업으로 인해 수요가 많아 종종 재고가 없을 수 있다. 이 모듈식 커세어 AX1500i PSU는 최첨단 디지털 제어시스템 덕분에 모든 면에서 완벽한 등급을 자랑한다. 최근 커세어는 한단계 진보한 AX1600i(뉴에그 500달러)도 발표했다.

이번 기사에서 설명한 바와 같이 유사한 장비를 설치하고 하나 또는 2개의 그래픽 카드를 사용할 경우, 좀더 낮은 전원 공급장치를 구입할 수 있다.

editor@itworld.co.kr

수치해석 용역 실적

FLOW-3D Case Studies
FLOW-3D Case Studies

수행 실적

주식회사 에스티아이씨앤디의 수치해석 컨설팅 수행회사 입니다. 아래 회사 목록은 많은 회사로부터 기술개발 및 수치해석 컨설팅을 의뢰받아 수행한 회사입니다.

한국수자원공사 ,도화종합기술공사 ,한국수자원공사 ,대우건설 ,도화종합, 삼안건설, 한국종합개발기술공사 ,도화종합, 삼안건설기술공사 ,삼안건설기술공사 ,한국시설안전관리공단 ,한국종합엔지니어링 ,현대엔지니어링 ,SK건설 ,선진엔지니어링 ,엘지건설 ,한국동서발전주식회사 ,한국종합기술개발공사 ,벽산엔지니어링 ,부강테크(GS건설) ,신우엔지니어링 ,유신코퍼레이션 ,한화건설 ,항도엔지니어링(포스코건설) ,(주)삼안 ,건화엔지니어링 ,삼성건설 ,한국전력기술 ,한국지질자원연구원 ,대림기업(주) ,에스케이건설 ,엘지전자 ,포스코 ,한국생산기술연구원 ,한국시설안전기술공단 ,한수테크니컬서비스 ,현대자동차 ,제이슨기술단 ,(주)바셈 ,계룡건설산업 ,(주)건화 ,(주)대우건설 ,(주)도화종합기술공사 ,(주)엔지비 ,(주)유신 ,태영건설 ,도화 ,매탈젠텍(POSCO) ,매탈젠텍(RIST) ,이산 ,코다코(캐스트맨 매출) ,현대기아기술연구소 ,현대제철 ,태성종합기술 ,선진ENG ,그레넥스 ,엔바이로솔루션 ,기아차 ,농어촌공사(충남도본부 예산지사) ,농어촌공사(충남도본부) ,지자체(수원시) ,지자체(전남공흥군) ,해피콜 ,HMK ,국민대학교 ,대림산업 ,도화엔지니어링 ,삼진정밀 ,오투엔비 ,한국건설기술연구원 ,해안해양기술 ,E&H컨설턴트 ,GS칼텍스 ,서울시립대학교 ,선일엔바이로 ,알이디 ,오투앤비 ,전남대학교 ,제이에스테크 ,한국농어촌공사 ,그린텍환경컨설팅 ,제일테크 ,창원대학교(ADD) ,한국종합기술 ,한국항공우주연구원 ,GS건설 ,유신 ,두산중공업 ,세메스 ,(재)포항산업과학연구원 ,(주)그린텍환경컨설팅 ,LG전자(평택) ,LG전자(창원)

 수리/수자원 분야
01 교량 설치에 따른 하천흐름 및 세굴영향 검토
컨설팅내용
  • 교량 설치로 인한 3차원 모형의 수리영향 검토
  • 세굴방지공 설치로 교량의 수리적 안정성 확보
필요데이터
  • 교각 3차원 형상 또는 도면
  • 하천 수심측량 자료 및 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 하천의 유동해석 수행 후 최고유속에 해당하는 교각 선정
  • 선정교각 대상을 중심으로 세굴 모형 적용
결과물
  • 하천 유동흐름, 수위분석
  • 평형세굴심 도달시간
  • 최대세굴심 및 최대퇴적고 등
02 댐체 월류 시 수리/수문 구조적 안정성 검토
컨설팅내용
  • 상류 댐 붕괴 시 급격한 방류로 인하여 하류 댐에 미치는 영향을 검토하기 위해 댐체 월류 시 수리/수문 구조적 안정성검토
필요데이터
  • 공도교 및 수문 구조물 상세 도면
  • 하천 수심측량자료 및 주변 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 상류 댐 붕괴시 홍수위/홍수량 정보입력
  • 구조물/수문 분리 후 취약한 수문 선정
  • 수문 구조해석 및 Total 힘 분석
결과물
  • 수문/구조물 받는 힘 분석
  • 굥도교 월류 여부 및 수위/유속 분포
  • 방류량 및 구조물 부압 등
 수처리 분야
01 정수처리시설 구조물 최적설계
컨설팅내용
  • 정수시설 구조물에 대한 유동, 유량, 압력, 온도분포 분석
  • 수처리과정에 발생하는 현상분석
필요데이터
  • 정수시설 구조물의 제원
  • 분배수로, 침전지 등 도면 및 3D CAD 자료
  • 초기 수위데이터 등
해석방법
  • 정수시설 구조물의 경계조건 설정
  • 형상에 따른 유동흐름 및 유량 등 초기조건 
결과물
  • 정수시설물에 작용하는 압력분포 확인
  • 유동 유입에 따른 유동양상, 유량, 유속데이터 분석
  • 온도변화에 따른 유동 및 침전효율 분석

02 하수처리시설 방류량 및 유동양상 분석
컨설팅내용
  • 토출수조의 수위 및 유동현상검토
  • 각 방류 Box의 방류유량분포 및 유속분석 
필요데이터
  • 구조물관련 설계도면 자료
  • 전체 모형 작성 및 지형데이터
  • 유체 유입량, 초기 수위관련 자료
해석방법
  • 시설 구조물에 따른 경계조건 설정
  • 초기 수위조건 및 유동현상 등 조건 확인
결과물
  • 토출 수조의 수위량 및 유동흐름
  • 유동 유입에 따른 유량, 유속데이터 분석
  • 구조물 단면의 유량흐름 데이터
 
 주조 분야
01 수축 결함최소화를 위한 주조해석
컨설팅내용
  • 주조 시 산화물 혼입방지 설계
  • 조립부 수축결함 최소화 
필요데이터
  • Frame형상 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 용탕 주입시간, 충진속도, 온도 등의 데이터
해석방법
  • 금형형상에 따른 주조해석 경계조건 설정
  • 초기 조건설정에 따른 파라미터분석
결과물
  • 충진시 산화물발생 위치 및 수축공 발생 위치
  • Solidification 확인, 결함부 현상분석
  • Gate, Runner 위치 최적화
         
02 금형 최적설계를 위한 주조해석
컨설팅내용
  • 충진 온도유지 및 제품 결함 최소화를 위한 최적설계
필요데이터
  • 금형관련 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 주조 공정조건 데이터
해석방법
  • 금형형상에 맞는 Runner, Gate 모델링
  • 용탕온도, 속도, 압력 등 조건에 따른 제품 최적설계
결과물
  • 충진시 압력분포 및 산화물 발생 위치분석
  • Solid Fraction, Solidification 등 현상분석
  • 결함부위 최소화를 위한 Gate, Runner 위치 최적화
 코팅 분야
01 Nozzle 분사를 이용한 Slit Coating 해석
컨설팅내용
  • 표면 Coating에 적합한 Nozzle 형상 설계
  • Coating 구동조건 및 압력분포 분석
필요데이터
  • 초기 Nozzle 형상 제원
  • 형상 도면자료 및 3D CAD자료
  • 초기 Coating 도포현상 및 구동조건 데이터
해석방법
  • Nozzle 구동에 따른 Coating 분석
  • 액상조건에 따른 Coating 도포형상 분석
결과물
  • Nozzle 형상 파라미터에 따른 Coating 현상분석
  • Coating 분포에 따른 높이 균일성 확인
  • 액상 온도에 따른 도포량분석
  
 MEMS 분야
01 연료전지 시스템의 최적설계를 위한 유동해석
컨설팅내용
  • 연료전지 내부형상에 따른 유동장변화 데이터
  • 유량분배에 적절한 최적의 형상조건 설계
필요데이터
  • 초기 형상 도면자료 및 3D CAD자료
  • 연료전지의 구동조건 및 물성조건
  • Actuator의 작동, 토출량, 유동 등의 데이터
해석방법
  • Micro-Channel에서의 유동분배 설정
  • 액체의 특성에 따른 토출조건 확인
결과물
  • Actuator의 속도에 따른 유동량 분석
  • Micro-Channel에서의 유동양상
  • 공동현상 최소화를 위한 최적의 구동조건

휴리스틱 분석

Heuristic Analysis

Finite-difference equations may have rapidly growing and oscillating solutions that in no way resemble the solutions expected from the partial differential equations they are meant to approximate. Such solutions are said to exhibit computational instability. Clearly, it is desirable to avoid these numerical disasters. For linear difference equations with constant coefficients, computational stability can be determined using a Fourier method pioneered by von Neumann (see the article in this series “Computational Stability.” Unfortunately, most equations of physical interest are either nonlinear, or have non-constant coefficients, or both.

유한 차분 방정식의 계산 결과에서 본래 근사하는 편미분 방정식에서 예상되는 것과 크게 다르게 급속하게 증가하고 부호가 자주 반전하는 솔루션을 얻을 수 있습니다.  이러한 솔루션이 나타내는 행동을 “계산 불안정성”라고합니다.  물론 이러한 해석은 바람직하지 않습니다.  상수 계수를 따른 선형 차분 방정식의 계산 안정성을 확인하는 방법으로는 von Neumann 의한 푸리에 방법을 사용할 수 있습니다 (본 시리즈 “계산 안정성” 참조).  불행히도, 물리 현상을 나타내는 대부분의 방정식은 비선형이거나 비 상수 계수를 수반하거나 또는 둘 다입니다.

Heuristic Analysis Methods

In this article a simple heuristic analysis method is described for investigating the computational stability of such finite-difference equations. An important by-product of this type of analysis is that it often suggests simple ways to eliminate the instabilities and at the same time increase the accuracy of the approximations.

이 책에서는 위의 유한 차분 방정식의 계산 안정성을 조사하기위한 간단한 휴리스틱 분석 방법에 대해 설명합니다.  이 유형의 분석은 많은 경우에 불안정을 제거하는 방법을 보여뿐만 아니라 근사치의 정확도를 높이는 방법도 보여주는 뛰어난 특징이 있습니다.

The approach described here is called “heuristic” because it is not rigorous or complete, but it often works and can provide a great deal of useful information. Reference [1] is the original publication describing the heuristic stability method from which much of this article has been taken.

여기서 설명하는 방법은 엄격하지도 완전하지도 않은 것으로부터 “추론”이라고되어 있지만, 많은 경우에 유효하고 유용한 정보를 많이 제공합니다.  안정성을 분석하기위한 휴리스틱 기법에 대해 작성된 참고 문헌 [1]은이 책에서 다루고 많은 정보 출처 소스입니다.

Heuristic analysis is based on the rather simple idea of reducing a finite-difference equation back to a partial differential equation by expanding each of its terms in a Taylor series and keeping only terms to a certain order in the expansion. This expansion is in powers of the space and time increments, which are assumed to be small to begin with.

휴리스틱 분석은 유한 차분 방정식을 전개하고 각항을 테일러 급수로 나타내 특정 차수까지의 항만을 남김으로 편미분 방정식에 귀착시키는 비교적 간단한 개념을 기반으로합니다.  이 확장은 처음에는 작은 것으로 예상되는 공간 증가 및 시간 증분의 거듭 제곱으로 표시됩니다.

Certainly such an expansion must, to lowest order, reproduce the original partial differential equation, otherwise, it would not be a good approximation. Oftentimes this requirement is referred to as the “consistency” of the approximation. Terms beyond the lowest order in the expansion are referred to as truncation errors.

이러한 확장은 원래의 미분 방정식을 최소 차수까지 재현하는 것이 필수적입니다.  그렇지 않으면 좋은 근사치를 얻을 수 없습니다.  이 요구 사항은 종종 근사치의 ‘일치 성’이라고 합니다.  전개 된 최소 차수 다음은 절단 오류라고합니다.

The basic concept of a heuristic analysis is that the Taylor-expanded equation is a more accurate representation of the difference equation than the original partial differential equation. Even keeping only a few truncation error terms should result in a partial differential equation that is more closely related to the difference equation. With this in mind, the following discussion will show that an examination of the truncated equation can sometimes reveal properties shared with the difference equation such as stability problems, necessary initial conditions and/or serious inaccuracies.

휴리스틱 분석은 테일러 전개 방정식 쪽이 원래 편미분 방정식보다 차분 방정식을보다 정밀하게 나타내고 있다는 기본 개념을 기반으로합니다.  절단 오차 부분을 일부 남긴 경우에도 항은 차분 방정식에 가까운 편미분 방정식입니다.  이 점을 염두에 두면서 여기에서 계산을 중단 한 식을 조사함으로써 안정성 문제 필요한 초기 조건 심각한 부정확성 등 차등 방정식과 일반적인 특성이 밝혀 질 것을 보여 있습니다.

To begin, we consider the same linear partial differential equation that was discussed in the first article on stability: Computational Stability.

첫째, 안정성에 쓰여진 ” 계산 안정성”에서 사용한 것과 동일한 선형 편미분 방정식 생각합니다.

Linear Equation Example

The equation for one-dimensional advection-diffusion of a variable u(x,t) is

여기에서는 변수 u (x, t)의 1 차의 이류 확산 방정식을 이용합니다.

(1)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}.

The convection velocity c and the diffusion coefficient ν are assumed to be constants. Solutions of this equation are known to be bounded and otherwise well-behaved.

대류 속도 c와 확산 계수 ν은 상수로 간주합니다.  이 방정식의 해는 경계이며, 양호한 거동을 나타내는 것을 알 수 있습니다.

What will be shown here is that the stability of a simple finite-difference approximation to Eq. 1 can be determined from an examination of the truncations errors resulting from a Taylor series expansion of a the difference equation. Not only does this process reveal that there are two basic types of instability, but we shall be able to make a direct comparison between the heuristic method and the von Neumann type of Fourier analysis carried out in Computational Stability. This comparison provides a useful rule-of-thumb for which truncation error terms to keep and which to eliminate from the Taylor expansion in order to evaluate the difference equation’s stability.

여기에서는 차분 방정식의 테일러 급수 전개로 인한 절단 오차를 조사하는 것으로, 식 1에 대한 간단한 유한 차분 근사의 안정성을 판단 할 수있는 것을 나타냅니다.  이 프로세스는 불안정성은 기본적으로 두 가지 유형이 있다는 것을 밝혀 질뿐만 아니라 휴리스틱 기법과 “계산 안정성”에서 이용한 von Neumann 유형의 푸리에 분석을 직접 비교할 수 있게 되는 것 있습니다.  이러한 비교를 통해 차이 방정식의 안정성을 평가하는데 테일러 전개로 인한 절단 오차 중 유지해야 할 항목과 배제 할 부분을 결정하는 데 유용한 경험규칙을 얻을 수 있습니다.

The simple, explicit finite-difference equation approximating Eq. 1 discussed in Computational Stability is

다음 수식은 “계산 안정성”에서 설명한 식 1을 근사하는 간결하고 양적인 유한 차분 방정식입니다.

(2)     \displaystyle \frac{u_{j}^{n+1}-u_{j}^{n}}{\delta t}=-\frac{c}{2\delta x}\left( u_{j+1}^{n}-u_{j-1}^{n} \right)+\frac{\nu }{\delta {{x}^{2}}}\left( u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n} \right)

where, e.g., ujn denotes u(jδx,nδt). This is called a forward-in-time approximation that allows all j location values to be computed at time step n+1, provided all the j values at step n are known. In other words, the difference equation requires one initial condition to start things off, just as the original partial differential equation also requires a single initial condition because it only involves a single time derivative.

여기서, u j n은 u (jδx, nδt)을 나타냅니다.  이것은 시간의 전진 차분 근사라는 것으로, 시간 단계 n의 공간 내의 위치 j 값이 모두 알려진이면 단계 n + 1의 모든 j 값을 계산할 수 있습니다.  즉, 원래의 미분 방정식에서 1 개의 초기 조건이 필요할뿐만 아니라 하나의 시간 미분만을 포함하기 때문에 차분 방정식에서 계산을 시작함에있어서 초기 조건이 하나 필요합니다.

It may be observed that difference equation, Eq. 2, has the property that each space and time location (jδx,nδt) will affect points at time step n+1 at locations j-1, j and j+1. That is, point (jδx,nδt) has a region of influence at later time bounded by lines having slopes ±δx/δt in x-t space. These are similar to characteristic lines along which signals can propagate. For example, the original equation, Eq. 1, has a characteristic line with slope c along which a disturbance advects. In the discrete equation, however, the characteristic lines are not physical characteristics but computational ones defining the region where the difference equation changes data values resulting from a change in value at a particular point.

차분 방정식 2는 공간 위치 및 시간 위치 (jδx, nδt)마다 타임 단계 n + 1의 위치 j-1, j, j + 1의 각 점에 영향을주는 특성을 볼 수 있습니다.  즉, 점 (jδx, nδt)는 현재보다 먼저있는 시간에서, xt 공간에서 기울기 ± δx / δt를 가진 선이 경계가되는 영향 영역을 가지고 있습니다.  이것은 신호의 전달을 나타내는 특성 곡선과 비슷합니다.  예를 들어, 원래 식 1은 교란의 이류를 나타내는 기울기 c의 특성 선을 가지고 있습니다.  그러나 이산 방정식의 특성 선은 물리적 특성을 나타내는 것이 아니라 특정 시점의 값의 변화에 따라 차이 방정식의 데이터 값이 변화하는 영역을 정의하는 계산의 특성을 나타냅니다.

We saw in the Computational Stability article that a Fourier series technique could be used to determine a set of three stability conditions for the difference equation, Eq.2. Here we shall see what can be learned from looking at the truncation errors associated with the approximating equation, Eq. 2.

” 계산 안정성”에서는 푸리에 급수에 의한 방법을 이용하여 차등 방정식 2에 대한 3 개의 안정 조건을 이끌어 낼 것을 알 수있었습니다.  이 책에서는 근사 식 2에 관련된 중단 오차를 조사함으로써 얻은 정보에 대해 설명합니다.

Truncation Error Evaluation

Assume that each term in Eq. 2 is a continuous and differentiable function of x and t. Then, for example, “uj+1,n would be u(xj+δx,tn) and can be expanded about the point (xj,tn) in a Taylor series in powers of δx. Carrying out the expansion in δx and δt for all the terms in Eq.2 yields,

식 2 절은 x 및 t의 연속 미분 가능한 함수로 간주합니다.  그러면 예를 들어, u j + 1, n, n은 u (x j + δx, t n)이되고, 점 (x j, t n)의 주위에 δx의 거듭 제곱에서 테일러 급수 전개를 할 수 있습니다.  식 2의 모든 사항에 대해 δx 및 δt로 확장하면 다음 식을 얻습니다.

(3)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}-\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=-\frac{1}{2}\delta t\frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+O\left( \delta {{x}^{2}},\delta {{t}^{2}} \right).

All second and higher order terms in δx and δt have been lumped into the order symbol O(δx2 ,δt2). This is a consistent approximation because it reduces to the original partial differential equation, Eq. 1, when δx and δt tend to zero.

2 차 이상의 δx 및 δt 절은 주문 기호를 사용하여 O (δx 2, δt 2)라고 기술되어 있습니다.  δx 및 δt가 제로에 접근 할 때, 원래의 편미분 방정식 1로 귀착하기 때문에 이것은 일관성 있는 근사치라고 할 수 있습니다.

Comparison of Fourier and Truncation Error Analysis

In the article Computational Stability a typical Fourier mode of the form

“계산 안정성”에서는 다음과 같은 형식의 전형적인 푸리에 모드

\displaystyle P_{j}^{n}\propto {{r}^{n}}{{e}^{{ikxj}}}

was substituted into the difference equation, Eq.2, to obtain an equation for r,

이를 차등 방정식 2에 대입하면 r을 구하는 식을 얻었습니다.

(4)     \displaystyle r=1-\left( \frac{ic\delta t}{\delta x} \right)\sin \left( k\delta x \right)-\left( \frac{2\nu \delta t}{\delta {{x}^{2}}} \right)\left[ 1-\cos \left( k\delta x \right) \right].

Computational stability of the difference equation requires that the magnitude of r remain less than or equal to 1.0.

차분 방정식의 계산 안정성을 실현하려면 r의 절대 값을 1.0 이하로하는 것이 필요합니다.

If we insert a Fourier mode of the form exp(i(kx+wt)) into the truncated Eq. 3, it will be seen that the result is the same as Eq. 4 with r=exp(iwδt) and then expanded in powers of wδt, plus the sine and cosine expanded in powers of kδx. This confirms that the two results are the same, as they should be to O(δx2,δt2) retained in Eq. 3.

exp (i (kx + wt)) 형식의 푸리에 모드를 계산을 중단 한 식 3에 대입하면 r = exp (iwδt)되고, wδt의 거듭 제곱에서 전개되고 더 sin과 cos는 kδx의 거듭 제곱 전개되고 식 4와 같은 결과를 얻을 수 있는 것을 알 수 있습니다.  식 3에서 개최 된 O (δx 2, δt 2)와 같이 두 결과는 동일하다고 확정됩니다.

However, the comparison also indicates that to keep the basic form of r in Eq. 4, with its real and imaginary parts, we must keep at least the first non-zero terms from the sine and cosine when they are expanded in powers of kδx. The first non-zero term in the imaginary contribution to r comes from sin(kδx) and is proportion to kδx, which corresponds to the first derivative with respect to x in Eq.3. The first non-zero term in the real part of r (other than 1) comes from cos(kδx) and is proportional to (kδx)2, which corresponds to the second derivative with respect to x in Eq. 3.

그러나 이 비교에서는 식 4의 실수 부와 허수 부로 구성된 r의 기본 형식을 유지하려면 kδx의 제곱으로 전개 된 때 적어도 sin과 cos의 첫 번째 non-zero 항을 유지 해야한다고 표시됩니다.  r의 허수 부분의 첫 번째 non-zero 항은 sin (kδx)로부터 유도 된 것으로, kδx에 비례합니다.  이것은 식 3의 x에 대한 1 차 도함수에 대응합니다.  r의 실수 부 최초의 non-zero 항 (1 제외)은 cos (kδx)로부터 유도 된 것으로, (kδx) 2에 비례합니다.  이것은 식 3의 x에 관한 2 차 도함수에 대응합니다.

These observations lead to the rule-of-thumb that for the truncated equation to reproduce the lowest order real and imaginary parts of the amplification factor r, it is necessary to retain the lowest order even and odd derivatives with respect to each independent variable in the truncation error. In Eq. 3 there is only one first order term proportional to δt and it is a second derivative with respect to t. There are no first order terms proportional to δx.

이러한 점에서 계산을 끊은 식으로 진폭 계수 r의 최소 차수의 실수 부와 허수 부를 재현하려면 중단 오차에서 각 독립 변수에 대해 최소 차수의 짝수와 홀수 함수 (도함수) 을 유지해야한다는 경험식을 지도합니다.  식 3에서 δt에 비례하는 1 차 항은 하나만에서 t에 대한 2 차 도함수입니다.  δx에 비례하는 1 차 항은 없습니다.

Examining the Truncated Equation for Stability

Using the above rule-of-thumb, the truncated equation is,

위의 경험식을 사용하면 계산을 중단 한 식은 다음과 같이됩니다.

(5)     \displaystyle \frac{\delta t}{2}\frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+\frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}-\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=0

The first important thing to note is that this is not identical to the original partial differential equation, Eq. 1. The claim made here is that Eq. 5 is a better approximation of the finite-difference equation than Eq. 1 and because of this we can obtain information about the stability properties of the difference equation. This, in fact, is the case.

여기에서 먼저주의해야 할 점은이 표현은 원래 편미분 방정식 1과 동일하지 않다는 것입니다.  여기에서 증명하고 싶은 것은, 식 5 식 1보다 유한 차분 방정식을 양호하게 근사 할 식이며, 따라서 차이 방정식의 안정성을 나타내는 특성에 대한 정보를 얻을 수 있다는 점입니다.  바로 이것이 증명됩니다.

Recall that the difference equation propagated information into a region of influence bounded by lines whose slopes are dx/dt=±δx/δt. Similarly, the truncated Eq. 5 has a hyperbolic (i.e., wave) character because of the second space and second time derivatives, and the effective wave speeds are ±(2ν/δt)½. If the difference equation is to have any hope of approximating the truncated equation then its region of influence must at least encompass the region of influence of the truncated equation, which leads to the condition

전술 한 바와 같이 차등 방정식은 기울기 dx / dt = ± δx / δt를 가진 선이 경계가되는 영향 영역에 정보가 전달됩니다.  마찬가지로 계산을 중단 한 식 5는 공간에 대한 2 차 도함수 및 시간에 대한 2 차 도함수에 의해 쌍곡선 (즉, 파동)의 특성을 가지고 유효한 파동 속도는 ± (2ν / δt ) ½입니다.  차분 방정식으로 계산을 중단 한 식을 근사하려면 그 영향 영역이 적어도 계산을 끊은 식의 영향 영역을 포함하고 있어야합니다.  그러면 다음의 조건이 도출됩니다.

(6)     \displaystyle \frac{2\nu }{\delta t}\le {{\left( \frac{\delta x}{\delta t} \right)}^{2}}   or   \displaystyle \frac{2\nu \delta t}{\delta {{x}^{2}}}\le 1.

Courant, Friedrichs and Lewy [2] used a similar region of influence condition, now called the Courant condition, which restricts the distance a wave travels in one time increment to less than one space increment. A violation of the Courant condition leads to an oscillating and exponentially growing instability. Condition Eq. 6 is precisely one of the stability conditions found from Fourier analysis in Computational Stability.

Courant, Friedrichs 및 Lewy [2]는 유사한 영향 영역에 관한 조건을 사용했습니다.  현재 이것은 “쿨랑 조건”이라고 불리며 하나의 시간 증분 사이에 파도가 전파하는 거리가 하나의 공간 증분 미만으로 제한된다는 것입니다.  쿨랑 조건이 충족되지 않은 경우, 부호의 빈번한 반전이나 기하 급수적 인 증가를 수반 불안정성이 생깁니다.  조건식 6은 바로 ‘ 계산 안정성 “푸리에 분석에서 도출 한 안정 조건의 하나입니다.

A similar Courant-type condition can be inferred from the two first order derivative terms (the advective terms) in the truncated Eq. 5, which propagate information with speed c,

계산을 중단 한 식 5의 2 개의 1 차 도함수 항 (이류 항)에서 다음과 같은 유사한 쿨랑 유형 조건을 추측 할 수 있습니다.  여기에서 정보는 속도 c로 전달합니다.

(7)     \displaystyle \frac{c\delta t}{\delta x}\le 1.

This stability condition, also identified in Computational Stability, likewise leads to an oscillating and growing instability when violated.

이 안정 조건도 “계산 안정성”로 표시 한 것으로, 충족되지 않을 때뿐만 아니라 부호의 반전이나 증가를 수반 불안정성이 생깁니다.

To uncover a third stability condition we must first rewrite the truncated equation by converting the δt term to have space instead of time derivatives, but in a way that still maintains the first order of the expansion. This is done by differentiating Eq. 3 by t and neglecting all first and higher order terms,

세 번째 안정 조건을 도출 먼저, δt 항을 변환하여 계산을 중단 한 식을 다시 작성합니다.  이 때 배포 1 차 항이 유지되도록 시간 도함수 대신 공간 도함수를 갖도록 변환합니다.  이것은 식 3을 t로 미분 1 차 이상의 항을 무시합니다.

(8)     \displaystyle \frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+c\frac{\partial }{\partial x}\frac{\partial u}{\partial t}-\nu \frac{{{\partial }^{2}}}{\partial {{x}^{2}}}\frac{\partial u}{\partial t}=O\left( \delta t \right)

Next replace the first time derivative of u by t in this equation using Eq. 1 to obtain

그런 식 1을 이용하여이 식 u / t 시간의 1 차 도함수를 대체하여 다음의 식을 얻는다.

(9)     \displaystyle \frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}={{c}^{2}}\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}-2c\nu \frac{{{\partial }^{3}}u}{\partial {{x}^{3}}}+{{\nu }^{2}}\frac{{{\partial }^{4}}u}{\partial {{x}^{4}}}+O\left( \delta t \right)

Finally, rewrite the truncated Eq.5 using this result for the δt term

마지막으로,이 결과를 이용하여 δt 사항에 대해 계산을 중단 한 식 5를 다시 작성합니다.

(10)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\left( \nu -\frac{{{c}^{2}}\delta t}{2} \right)\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+c\nu \delta t\frac{{{\partial }^{3}}u}{\partial {{x}^{3}}}-\frac{{{\nu }^{2}}\delta t}{2}\frac{{{\partial }^{4}}u}{\partial {{x}^{4}}}.

This result is identical to what would have been obtained by Taylor expanding the original finite-difference equation about the point x=jδx and t=(n+½)δt (and would probably have been easier).

마지막으로 얻어진 수식은 원래 유한 차분 방정식을 점 x = jδx 및 t = (n + ½) δt의 주위에 테일러 전개하고 (아마도 더 쉽게) 제공하는 것과 같은 식입니다.

According to our rule-of-thumb the last two terms on the right side proportional to δt can be dropped because they involve higher order derivatives than what is in the first δt term on the right side, which leaves,

위의 경험칙에서 δt에 비례 우변의 마지막 두 절은 우변의 첫 번째 δt 항에 포함 된 것보다 고차 도함수를 포함하기 때문에 폐기합니다.

(11)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\left( \nu -\frac{{{c}^{2}}\delta t}{2} \right)\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}.

This is an alternative form for the truncated equation that retains only the lowest order (first) truncation errors and only those that contain the lowest even and odd derivatives with respect to each independent variable.

이것은 계산을 끊은 식의 대체 형식으로 최소 차수 (1 차)의 중단 오차와 각 독립 변수에 대해 최소의 짝수와 홀수 함수 (도함수)을 포함 것만을 보유하고 있습니다.

Equation 11 is nearly the same as the original Eq. 1, except for a modified diffusion coefficient. The significant thing here is that the diffusion coefficient can be negative. As long as the diffusion coefficient is positive solutions of Eq. 11 exhibit exponentially damped behavior, but with a negative coefficient solutions have an exponentially growing character, i.e., a computational instability! Thus, a further condition for computational stability is that the diffusion coefficient remains positive,

식 11는 변형 된 확산 계수를 제외하고는 원래의 식 1과 거의 동일합니다.  여기서 중요한 것은, 확산 계수는 마이너스가 될 가능성이있는 것입니다.  확산 계수가 양수로 한 식 11의 해는 기하 급수적으로 감쇠 거동을 나타내지 만 계수가 음수 솔루션은 기하 급수적으로 증가하는 특성을 보인다, 즉 계산의 불안정성이 생깁니다 .  따라서 계산 안정성을 구현하기위한 또 하나의 조건으로 확산 계수가 정의되는 것을 결정합니다.

(12)     \displaystyle \frac{{{c}^{2}}\delta t}{2}\le \nu

In this case the instability is a pure growing one without the oscillations in sign associated with the two earlier region-of-influence conditions. If instability is encountered, knowing whether it is exhibiting an oscillation in sign or not will identify it as either a region-of-influence violation or a negative diffusion coefficient. Having this knowledge makes it easier to find a remedy for the instability.

이 케이스의 불안정성은 전술의 영향 영역에 관한 두 가지 조건에 관련한 부호 반전을 수반하는 것이 아니라 단순히 증가하는 특성입니다.  불안정성이 보여진다 부호의 빈번한 반전을 수반 여부를 파악하여 영향 영역에 관한 조건 또는 음의 확산 계수에 관한 조건 중이 충족되지 않았는지 확인 할 수 있습니다.  이러한 정보를 파악할 수 있으면 불안정을 해소하는 방법을 쉽게 찾을 수 있습니다.

Application to Two-Dimensional Fluid Flow

A two-dimensional example (x,z) of water flowing under a laboratory scale sluice gate offers a test for examining a computational instability arising from non-linearity in the governing equations. The physical problem consists of water held behind a gate with an elevation of 0.9ft. Downstream (right) of the gate there is a water pool of depth 0.14 ft. Gravity is 32.2 ft/s2 in the negative z direction (down). At time t=0 the gate is raised up a distance of 0.125ft and water surges out into the pool. Figure 1 shows the resulting flow obtained with a Navier-Stokes solver [3] at t=0.35s. The solver used for this example has been optimized to automatically eliminate instabilities so none are apparent in this case, but it is possible to force the program to use non-optimum settings.

실험실 규모의 수문 아래를 통과하는 2 차원 (x, z)의 흐름의 예는 지배 방정식의 비선형 성으로 인한 계산 불안정성을 조사 테스트합니다.  이 물리 현상 문제는 0.9 피트 높이까지 물을 막아서있는 수문이 있습니다.  수문 하류 측 (오른쪽)의 수심은 0.14 피트입니다.  중력이 -z 방향 (아래쪽)에 32.2 피트 / s 2입니다.  시간 t = 0에 수문은 0.125 피트 상승하고 물이 하류로 흘러갑니다.  그림 1은 나비에 스톡스 솔버[3]을 이용하여 얻은 t = 0.35s의 흐름을 나타냅니다.  이 예에서 사용 된 솔버는 불안정성을 자동으로 제거하도록 최적화되어 있기 때문에이 경우에는 불안정성은 볼 수 없습니다.  그러나 프로그램에 최적화되지 않은 설정을 강제로 실행할 수 있습니다.

Computational stability issues

Figure 1 (left). Flow under a sluice gate. No unstable behavior is observed.
Figure 2 (right). Flow instability developing when computed with small time step and no viscosity.

To demonstrate some unstable behavior we first examine a heuristic analysis performed on the vertical velocity equation used in the simulation. Focus is on the effective diffusion coefficients for the z direction velocity w, while all other truncation errors are ignored,

불안정한 거동을 실례로 설명하기 위해 먼저 시뮬레이션에 사용 된 수직 속도 식에 대해 수행 한 휴리스틱 분석을 고찰합니다.  여기에서 z 방향 속도 w에 대한 효과적인 확산 계수에 초점을 맞추고 있으며, 다른 모든 중단 오차는 무시합니다.

(13)     \displaystyle \frac{\partial w}{\partial t}+u\frac{\partial w}{\partial x}+w\frac{\partial w}{\partial z}+\frac{\partial }{\partial z}\left( \frac{p}{\rho } \right)+g=\left( \nu +\frac{\alpha u\delta x}{2}-\frac{{{u}^{3}}\delta t}{2}-\frac{\delta {{x}^{2}}}{4}\frac{\partial u}{\partial x} \right)\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\left( \nu +\frac{\alpha w\delta z}{2}-\frac{{{w}^{2}}\delta t}{2}-\frac{\delta {{z}^{2}}}{2}\frac{\partial w}{\partial z} \right)\frac{{{\partial }^{2}}w}{\partial {{z}^{2}}}

The diffusion of w in the x and z directions are expressed by the two terms on the right side of Eq. 13, where ν is the fluid viscosity and α is a parameter that modifies the numerical approximation of the term describing the u advection of w, i.e., the second term on the left side of the above equation. When α=0 the finite-difference advection approximation is said to be centered about the location of w, but when α=1 an upstream or “donor cell” approximation is used.

x 및 z 방향의 w의 확산은 식 13의 우변의 두 항으로 표현되어 있습니다.  여기서, v는 유체 점성, α는 w의 u 이류를 나타내는 항 (식 13의 좌변의 제 2 항)의 수치 근사를 수정하는 매개 변수입니다.  α = 0 일 때, 이류의 유한 차분 근사 w의 위치를 중심으로 한 근사하지만, α = 1 일 때, 상류 측 또는 “도나세루」에 의한 근사를 사용합니다.

The first thing to notice is that if ν=0 and a centered difference approximation is also used (α=0) then the lowest order term in the two effective viscosity coefficients are proportional to δt and are negative. This clearly leads to unstable behavior, and is a well known property of the central difference approximation. Adding enough viscosity to keep the diffusion coefficient positive is also an established procedure to gain stability, but at the possible cost of introducing too much diffusion. The upstream difference option, α=1, is a reasonable compromise; provided the condition wδt<δx is maintained, the diffusion coefficients are positive (provided the δx2 and δz2 terms are small) and the simulation will be stable.

먼저 주의해야 할 점은 ν = 0이고 중심 차분 근사를 사용하는 경우 (α = 0), 2 개의 유효 점성 계수의 최소 차수의 항은 δt에 비례하고, 부가됩니다.  이것은 분명 불안정한 거동을 이끌 것으로, 중심 차분 근사의 잘 알려진 특성입니다.  확산 계수를 양수 유지하기 위해 충분한 점성을 추가 수법도 안정성을 얻는 데에서 확립 된 방법이지만, 확산이 커질 위험성도 있습니다.  상류 측에서 차분 옵션 α = 1은 합리적인 타협이다.  조건 wδt <δx이 충족되는 한, 확산 계수는 양이며 (δx 2 및 δz 2 항이 작은 경우) 시뮬레이션도 안정됩니다.

If the δx2 and δz2 terms in the diffusion coefficients are not small there is a possibility of unstable behavior. To demonstrate this we set the viscosity to zero and reduce the amount of upstream differencing by setting α=0.05. To keep the negative δt term less than the a term a very small time step δt=0.00025 is used. With these settings the resulting simulation is shown in Fig. 2. An instability in the z velocity has developed just upstream of the sluice gate, which is shown close up in Fig. 3 (where color indicates the z velocity magnitude).

확산 계수의 δx 2 및 δz 2 항이 작지 않은 경우 불안정한 거동이 발생할 수 있습니다.  이를 설명하기 위해 점성을 0으로 설정하고 상류의 차이 량을 α = 0.05로 줄입니다.  부정적인 δt 항이 a 항보다 작아 지도록 매우 작은 시간 단계 δt = 0.00025을 사용합니다.  이러한 설정에서 실행 된 시뮬레이션을 그림 2에 나타냅니다.  수문 상류 측에서 z 속도의 불안정성이 발생하고 있습니다.  그림 3은 그 확대도를 나타냅니다 (색상은 z 속도의 크기를 나타낸다).

This instability is a result of a negative x-direction diffusion coefficient, which is coming from the δx2 term. A negative value results from the fact that the flow upstream of the gate is compressing in the z direction, but expanding in the x direction, which means that the x derivative of u in the δx2 term is positive in this region resulting in a net negative diffusion coefficient.

이 불안정은 δx 2 항에 의하여 부정되었다 x 방향의 확산 계수에 기인합니다.  수문 상류의 흐름은 z 방향으로 압축하고 있습니다 만, x 방향으로 팽창하고 있기 때문에 음수입니다.  즉,이 영역에서는 δx 2 항의 u의 x 방향 도함수는 긍정적이고 순으로 부정적인 확산 계수입니다.

A check on this conclusion can be made by adding in a little viscosity ν=0.0093 to compensate for the negative δx2 term. Figure 4 shows that this change does, indeed, stabilize the flow.

이 결론을 확인하려면 부정적인 δx 2 항을 보정하기 위해 약간 점성을 추가합니다 (ν = 0.0093).  그림 4는이 작은 변화에 의해 흐름이 확실히 안정된 것을 알 수 있습니다.

This example demonstrates that truncation error terms arising from non-linear terms in the original equation influence the computational stability of the difference equation. This type of instability cannot be found by a von Neumann type Fourier analysis. Perhaps most important of all is that when troublesome truncation errors are found to exist this knowledge can be used to alter the finite difference equations to eliminate those errors.

이 예에서는 원래의 방정식의 비선형 항으로 인해 중단 오차 항은 차분 방정식의 계산 안정성에 영향을 미치는 것으로 나타했습니다.  이 유형의 불안정은 von Neumann 유형의 푸리에 분석에서 찾을 수 없습니다.  가장 중요한 것은 문제가 될 수있는 중단 오차가 존재하는 것으로 판명 될 때이 지식을 이용하여 유한 차분 방정식을 수정하여 이러한 오차를 제거 할 수 있습니다.

Totally unstable flow versus stable flow

Figure 3 (left). Close up of locally unstable flow caused by negative δx2 term. Color indicates z velocity.
Figure 4 (right). Same as Fig. 3 with a small amount of viscosity added to compensate for negative δx2 term.

Summary

To summarize, it has been shown that all the stability conditions associated with a linear finite-difference equation, Eq.2, can be identified using a heuristic truncation error approach. This approach not only identifies the instabilities, it also indicates what can be done to eliminate them. For instance, for a region-of-influence violation only a reduction in the time-step increment will solve the problem, but if there is a negative diffusion coefficient then adding more diffusion to compensate for the errors is one way to regain stability. Knowing the origin of a negative diffusion error may also suggest how the original finite-difference equation might be modified to avoid this problem.

이 책에서는 선형 유한 차분 방정식Eq.2에 관련된 모든 안정 조건을 중단 오차에 대한 경험적 접근에 의해 특정 할 수 있는지를 보여주었습니다.  이 방법은 불안정성을 특정 할 수있을 뿐만 아니라 그것을 제거하는 방법을 보여줍니다.  예를 들어, 영향 영역에 대한 조건이 충족되지 않을 경우 시간 단계를 줄일 수 밖에 없어 문제를 해결할 수 없지만, 음의 확산 계수가 존재하는 경우는 확산을 확대하고 오차를 보정하여 안정성을 되찾는 방법 도 있습니다.  음의 확산 오차의 원인을 아는 것은이 문제를 해결 할 수 있도록 원래의 유한 차분 방정식을 어떻게 해결 하는가하는 방법을 알려 줄 수 있습니다.

The most significant aspect of the heuristic approach is that it is not limited to linear equations with constant coefficients, as was shown in connection with the example of flow under a sluice gate. No special assumptions were necessary to form the approximating truncated equation. The goal was simply to reverse the procedure of writing a difference equation to approximate a partial differential equation, and instead to write a partial differential equation that approximates the difference equation. A simple rule-of-thumb was described for constructing the truncated equation. This approximating equation was then used to check for region-of-influence violations and for possible negative diffusion coefficients both features that lead to unstable solutions.

휴리스틱 접근법의 가장 중요한 특징은 상수 계수를 따른 선형 방정식에 한정되지 않는다는 점입니다.  이것은 수문 아래를 통과하는 흐름의 예에서 나타났습니다.  계산을 끊은 식의 근사 식을 세우는 데 특별한 가정이 필요하지 않았습니다.  편미분 방정식을 근사하는 차분 방정식을 설명하는 것이 아니라 차분 방정식을 근사하는 편미분 방정식을 기술한다는 단순히 역순를 할 목적이었습니다.  계산을 중단 한 식을 세우기위한 간단한 경험칙에 대해서도 설명했습니다.  이 근사 식을 사용하여 솔루션의 불안정으로 이어질 영향 영역에 대한 조건이 충족되어 있는지, 또한 음의 확산 계수가 존재하는지의 두 관점을 확인했습니다.

Several additional examples involving compressible and incompressible fluid dynamics simulations can be found in the original heuristic stability paper [1], which further show how the heuristic approach can be applied to real, practical, non-linear problems.

안정성에 관한 경험적 분석에 대해 기술 된 참고 문헌 [1]에는 압축 흐름 및 비 압축 흐름을 따른 몇 가지 유체 역학 시뮬레이션 예가 나와 있습니다.  또 경험적 접근을 실제 비선형 문제에 적용하는 방법에 대해 자세히 나와 있습니다.

References

  1. C.W. Hirt, Heuristic Stability Theory for Finite-Difference Equations, J. Comp. Phys., 2, 339 (1968).
  2. R. Courant, K.O. Friedricks and H. Lewy, Math. Ann. 100, 32 (1928).
  3. The commercial software package FLOW-3D from Flow Science, Inc., Santa Fe, NM, USA.

Water Dams Fish Passages

Fish Passages

강 생태와 어류의 이동에 대한 댐의 처리방안은 전 세계적인 관심사입니다. 어도의 활용성이 떨어지는 문제점을 해결하기 위해 전문 설계자와 연구자에게 FLOW-3D는 큰 도움이 됩니다. FLOW-3D는 내부 속도, 혼합, 압력, 난류 강도와 소산, 그리고 자유 표면 프로파일 같은 중요한 매개 변수를 검토하는 3차원 유동해석을 할 수 있습니다. 설계 디자인을 제안하여 특정 지역의 고유한 환경적 특성을 고려하여 설계를 수정하거나, 다른 어류의 생리적 기능 및 활동에 맞는 새로운 설계 방안을 개발하여 기존 어도를 개선하거나 비교해 볼 수 있습니다. FLOW-3D는 모델링 및 저산소 용존수에 대한 폭기 시스템의 설계, 저수지의 방류에서 원치 않는 공기 유입 및 총 용존 가스를 완화하는 데 사용할 수 있습니다.

Simulation of the weir of the Third Dam on Somes Brook. Analysis of the fish passage was performed to appropriately repair structure so that the alewife can navigate it. Image colored by velocity magnitude.

Fish Passages Videos

FLOW-3D 제품 기능 문의 / 구매 문의

제품 기능 문의 / 구매 문의

연락처 : 02-2026-0442
이메일 : flow3d@stikorea.co.kr


엔지니어링 프로그램 개발 문의

연락처 : 02-2026-0451
이메일 : flow3d@stikorea.co.kr


평가 라이선스  요청

FLOW-3D Free Trial 신청하러 가기 : 신청링크

연락처 : 02-2026-0455
이메일 : flow3d@stikorea.co.kr