Flushing

Flushing

화장실이 어떻게 작동하는지 궁금한 적이 있습니까? 사실 꽤 복잡합니다. 손잡이를 밀면 물이 용기를 채우기 시작합니다. 용기의 유체 레벨이 트랩 상단 (보울 뒤) 위로 올라가면 위어 유형의 흐름이 시작됩니다. 흐름이 충분히 빠르면 트랩 상단에 거품이 형성되어 사이펀이 생성됩니다. 그 시점에서 사이펀은 용기에서 물을 빼내고 변기가 내립니다.

많은 지역에서 물 절약은 중요한 문제이며 가정과 상업용 모두에 저 유량 화장실이 필요합니다. 그러나 화장실이 첫 번째 시도에서 작업을 완료하지 못하면 물 절약 목표가 실패합니다. FLOW-3D는 최적의 결과를 얻기 위해 다양한 설계를 모델링하는 데 사용할 수 있습니다.

Toilet Flushing Examples

아래 3D 애니메이션에서 FLOW-3D는 물 동작의 세척 순서를 보여줍니다. 물의 두 영역이 공과 함께 초기화됩니다. 공은 6 자유도의 완전 결합 유체-고체 모션을 시뮬레이션하기 위해 움직이는 물체 모델(GMO)을 사용하여 모델링됩니다. 중력은 수세식 탱크에서 물을 용기로 밀어 넣습니다. 분석은 정체 영역과 공이 영역을 벗어나는 기간을 나타내는 흐름 프로파일과 압력 윤곽을 보여줍니다. 공 대신 다른 질량과 모양을 사용할 수 있습니다. 플러싱 과정에서 잔여 물도 분석 할 수 있습니다.

아래의 횡단면 플롯은 수조의 흐름 재순환과 상세한 흐름 프로필을 보여줍니다. Collision 모델은 규정된 반발 및 마찰 계수를 기반으로 바운싱을 예측하는 공을 시뮬레이션하는 데 사용되었습니다. 물과 공기 사이의 일시적인 예리한 경계면은 FLOW-3D의 TruVOF 방법을 사용하여 잘 유지됩니다.

Liquid Metal 3D Printing

Liquid Metal 3D Printing

This article was contributed by V.Sukhotskiy1,2, I. H. Karampelas3, G. Garg 1, A. Verma1, M. Tong 1, S. Vader2, Z. Vader2, and E. P. Furlani1
1
University at Buffalo SUNY, 2Vader Systems, 3Flow Science, Inc.

이 연구의 초점은 3D 고체 금속 구조의 인쇄에 잉크젯 기술의 확장에 있습니다 [3, 4]. 현재 대부분의 3D 금속 인쇄 프로그램에는 금속 물체를 형성하는 레이저 [6] 또는 전자빔 [7]과 같은 외부 지향 에너지 소스를 이용한 금속 분말 소결 또는 용해를 포함합니다. 그러나, 이러한 방법은 비용 및 공정 복잡성, 예를 들어, 3D 인쇄 공정에 앞서 분말을 생성하는 시간 및 에너지 집약적 기술에 대한 필요성과 같은 단점을 갖고 있습니다.

이 기사에서는 움직이는 기판에서의 MHD (magnetohydrodynamic) Drop-on-demand 방출 및 액체 방울 증착에 기반한 3D 금속 구조의 첨가제 제조에 대한 새로운 접근 방시에 대해 설명합니다.

이 과정의 각 부분을 연구하기 위해 많은 시뮬레이션을 수행했습니다. 단순화를 위해 이 연구는 두 부분으로 나누었습니다.

첫 번째 부분에서는 MHD 분석을 사용하여 프린트 헤드 내부의 로렌츠 힘 밀도에 의해 생성 된 압력을 추정한 다음 FLOW-3D 모델의 경계 조건으로 사용합니다. 그것은 방울 분사 동력학을 연구하는 데 사용되었습니다.
두 번째 부분에서는 FLOW-3D 파라 메트릭 분석을 수행하여 이상적인 액적 증착 조건을 확인했습니다.

모델링 노력의 결과는 위 그림에 표시된 장치 설계를 가이드하는데 사용되었습니다. 코일은 분사 챔버를 둘러싸고 전기적으로 펄싱되어 액체 금속을 투과시키고, 순환 루프를 유도하는 과도 자기장을 생성합니다. 그것 내의 일시적인 전기장. 전기장은 순환 전류 밀도를 발생 시키며, 이는 일시적인 전계에 다시 커플 링되고 챔버 내에서 마젠 토 히드로 다이나믹 로렌츠 힘 밀도를 생성한다. 힘의 반경 방향 성분은 오리피스에서 금속 액체를 배출하는 역할을하는 압력을 생성합니다. 방출된 금속 액체 방울은 기판으로 이동하여 합체되고 응고되어 확장된 견고한 구조를 형성합니다. 임의 형상의 3 차원 구조는 방출하는 금속 방울의 정확한 패턴화 증착을 가능하게하는 움직이는 기판을 사용하여 층별로 인쇄 할 수 있습니다. 이 기술은 MagnadoJet라는 상품명으로 Vader Systems (www.vadersystems.com)에 의해 특허 및 상용화되었습니다.

MagnetoJet 프린팅 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의 형상의 3D 금속 구조를 인쇄하는 것입니다 [8, 9]. 또한 고유한 금속 입자 구조가 존재하기 때문에 기계적 특성이 개선 된 부품을 인쇄 할 수 있습니다.

프로토타입 디바이스 개발

Vader Systems의 3D 인쇄 시스템의 핵심 구성 요소는 두 부분의 노즐과 솔레노이드 코일로 구성된 프린트 헤드 어셈블리입니다. 액체화는 노즐의 상부에서 발생합니다. 하부에는 직경이 100μm ~ 500μm 인 서브 밀리미터 오리피스가 있습니다. 수냉식 솔레노이드 코일은 위 그림에 표시된 바와 같이 오리피스 챔버를 둘러싸고있습니다 (냉각 시스템은 도시되지 않음). 다수의 프린트 헤드 디자인의 반복적인 개발은 액체 금속 배출 거동뿐만 아니라, 액체 금속 충전 거동에 대한 사출 챔버 기하적인 효과를 분석하기 위해 연구되었습니다. 이 프로토타입 시스템은 일반적인 알루미늄 합금으로 만들어진 견고한 3D 구조를 성공적으로 인쇄했습니다 (아래 그림 참조). 액적 직경, 기하학, 토출 빈도 및 기타 매개 변수에 따라 직경이 50 μm에서 500 μm까지 다양합니다. 짧은 버스트에서 최대 5000 Hz까지 40-1000 Hz의 지속적인 방울 분사 속도가 달성되었습니다.

전산 모델

프로토 타입 디바이스 개발의 일부로서, 프로토 타입 제작에 앞서 계산 시뮬레이션을 수행하여 성능, 즉 액적 방출 동역학, 액적 – 공기 및 액적 – 기판 상호 작용에 대한 설계 개념을 선별했습니다. 분석을 단순화하기 위해 CFD 분석뿐만 아니라, 전산 전자기 (CE)를 사용하는 두 가지 상보 모델이 개발되었습니다. 첫 번째 모델에서는 2 단계 CE 및 CFD 분석을 사용하여 MHD 기반의 액적 방출 동작과 효과적인 압력 생성을 연구했습니다. 두 번째 모델에서, 열 유동성 CFD 분석은 기판상의 물방울의 패터닝, 유착 및 고형화를 연구하기 위해 사용되었습니다.

MHD 분석에 이어 등가 압력 프로파일을 첫 번째 모델에서 추출하고, FLOW-3D 모델의 입력으로 사용하여 액적 배출 및 액적 – 기판 상호 작용의 일시적인 동력학을 탐구하도록 설계되었습니다. 플로우 – 3D 시뮬레이션은 액적 분사에 대한 오리피스 내부 및 주변의 습윤 효과를 이해하기 위해 수행되었습니다. 오리피스 내부 및 외부의 유체 초기화 레벨을 변경하고 펄싱 주파수에 의해 결정된 펄스 사이의 시간 간격을 허용함으로써, 크기 및 속도를 포함하여 방출 된 액 적의 특성 차이를 확인할 수있었습니다.

Droplet 생성

MagnetoJet 인쇄 프로세스에서, 방울은 전압 펄스 매개 변수에 따라 일반적으로 1 – 10m/s 범위의 속도로 배출되고 기판에 충돌하기 전에 비행 중에 약간 냉각됩니다. 기판상의 액적들의 패터닝 및 응고를 제어하는 ​​능력은 정밀한 3D 솔리드 구조의 형성에 중요합니다. 고해상도 3D 모션베이스를 사용하여 패터닝을 위한 정확한 Droplet 배치가 이루어집니다. 그러나 낮은 다공성과 원하지 않는 레이어링 artifacts가 없는 잘 형성된 3D 구조를 만들기 위해 응고를 제어하는 ​​것은 다음과 같은 제어를 필요로하기 때문에 어려움이 있습니다.

  • 냉각시 액체 방울로부터 주변 물질로의 열 확산,
  • 토출된 액 적의 크기,
  • 액적 분사 빈도 및
  • 이미 형성된 3D 물체로부터의 열 확산.

이들 파라미터를 최적화함으로써, 인쇄 된 형상의 높은 공간 분해능을 제공하기에 충분히 작으며, 인접한 액적들 및 층들 사이의 매끄러운 유착을 촉진하기에 충분한 열 에너지를 보유 할 것입니다. 열 관리 문제에 직면하는 한 가지 방법은 가열된 기판을 융점보다 낮지만 상대적으로 가까운 온도에서 유지하는 것입니다. 이는 액체 금속방울과 그 주변 사이의 온도 구배를 감소시켜 액체 금속방울로부터의 열의 확산을 늦춤으로써 유착을 촉진시키고 고형화하여 매끄러운 입체 3D 덩어리를 형성합니다. 이 접근법의 실행 가능성을 탐구하기 위해 FLOW-3D를 사용한 파라 메트릭 CFD 분석이 수행되었습니다.

액체 금속방울 응집과 응고

우리는 액체 금속방울 분사 주파수뿐만 아니라 액체 금속방울 사이의 중심 간 간격의 함수로서 가열된 기판에서 내부 층의 금속방울 유착 및 응고를 조사했습니다. 이 분석에서 액체 알루미늄의 구형 방울은 3mm 높이에서 가열 된 스테인리스 강 기판에 충돌합니다. 액적 분리 거리 (100)로 변화 될 때 방울이 973 K의 초기 온도를 가지고, 기판이 다소 943 K.도 3의 응고 온도보다 900 K로 유지됩니다. 실선의 인쇄 중에 액적 유착 및 응고를 도시 50㎛의 간격으로 500㎛에서 400㎛까지 연속적으로 유지하고, 토출 주파수는 500Hz에서 일정하게 유지 하였습니다.

방울 분리가 250μm를 초과하면 선을 따라 입자가 있는 응고된 세그먼트가 나타납니다. 350μm 이상의 거리에서는 세그먼트가 분리되고 선이 채워지지 않은 간극이 있어 부드러운 솔리드 구조를 형성하는데 적합하지 않습니다. 낮은 온도에서 유지되는 기질에 대해서도 유사한 분석을 수행했습니다(예: 600K, 700K 등). 3D 구조물이 쿨러 기질에 인쇄될 수 있지만, 그것들은 후속적인 퇴적 금속 층들 사이에 강한 결합의 결여와 같은 바람직하지 않은 공예품을 보여주는 것이 관찰되었습니다. 이는 침전된 물방울의 열 에너지 손실률이 증가했기 때문입니다. 기판 온도의 최종 선택은 주어진 용도에 대해 물체의 허용 가능한 인쇄 품질에 따라 결정될 수 있습니다. 인쇄 중에 부품이 커짐에 따라 더 높은 열 확산에 맞춰 동적으로 조정할 수도 있습니다.

FLOW-3D 결과 검증

위 그림은 가열된 기판 상에 인쇄된 컵 구조 입니다. 인쇄 과정에서 가열된 인쇄물의 온도는 인쇄 된 부분의 순간 높이를 기준으로 실시간으로 733K (430 ° C)에서 833K (580 ° C)로 점차 증가했습니다. 이것은 물체 표면적이 증가함에 따라 국부적 인 열 확산의 증가를 극복하기 위해 행해졌습니다. 알루미늄의 높은 열전도율은 국부적 인 온도 구배에 대한 조정이 신속하게 이루어져야하기 때문에 특히 어렵습니다. 그렇지 않으면 온도가 빠르게 감소하고 층내 유착을 저하시킵니다.

결론

시뮬레이션 결과를 바탕으로, Vader System의 프로토 타입 마그네슘 유체 역학 액체 금속 Drop-on-demand 3D 프린터 프로토 타입은 임의의 형태의 3D 솔리드 알루미늄 구조를 인쇄 할 수 있었습니다. 이러한 구조물은 서브 밀리미터의 액체 금속방울을 층 단위로 패턴화하여 성공적으로 인쇄되었습니다. 시간당 540 그램 이상의 재료 증착 속도는 오직 하나의 노즐을 사용하여 달성되었습니다. 이 기술의 상업화는 잘 진행되고 있지만 처리량, 효율성, 해상도 및 재료 선택면에서 최적의 인쇄 성능을 실현하는 데는 여전히 어려움이 있습니다. 추가 모델링 작업은 인쇄 과정 중 과도 열 영향을 정량화하고, 메니스커스 동작뿐만 아니라 인쇄된 부품의 품질을 평가하는 데 초점을 맞출 것입니다.

References
[1] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J. and Boland, T., “Inkjet printing for high-throughput cell patterning,” Biomaterials 25(17), 3707-3715 (2004).

[2] Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P., “High-resolution inkjet printing of all-polymer transistor circuits,” Science 290(5499), 2123-2126 (2000).

[3] Tseng, A.A., Lee, M.H. and Zhao, B., “Design and operation of a droplet deposition system for freeform fabrication of metal parts,” Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology 123(1), 74-84 (2001).

[4] Suter, M., Weingärtner, E. and Wegener, K., “MHD printhead for additive manufacturing of metals,” Procedia CIRP 2, 102-106 (2012).

[5] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D.Q., “Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,” International Journal of Heat and Mass Transfer 80, 288-300 (2015).

[6] Simchi, A., “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A 428(1), 148-158 (2006).

[7] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. and Wicker, R.B., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” Journal of Materials Science & Technology, 28(1), 1-14 (2012).

[8] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors & Actuators: A. Physical, 80(1), 84-89 (2000).

[9] M. Orme and R. F. Smith, “Enhanced aluminum properties by means of precise droplet deposition,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 122(3), 484-493, (2000)

[FLOW-3D 물리모델]Condensation, Evaporation at Free Surfaces / 자유표면에서의 응축, 기화

Condensation/Evaporation at Free Surfaces자유표면에서의 응축/기화

1. Vaporization at Free Surfaces 자유표면에서의 기화

자유표면에서 발생하는 기화효과는 공간에서 정의된 일정 포화상태의 견지에서 모델링 될 수 있다. 이 모델을 활성화하기 위해 Physics>Bubble and phase change models>Constant pressure bubble with vaporization 를 선택한다. Fluids>Properties>Phase Change 에서의 Saturation Temperature 는 공간내의 기포의 포화상태를 정의한다. 기화 잠열은 Fluids>Phase change>Latent Heat of Vapor 에서 지정된다.

유체 에너지 방정식(열전달)은 이 모델(Physics>Heat Transfer)과 함께 해석되어야 한다. Fluids> Properties>Phase Change 에있는 Accommodation coefficient 에 양의 값을 정의한다. 자유 표면상의 액체의 온도가 포화 온도보다 높다면 액체는 다음과 같은 율로 증발할 것이다.

  • α 는 기화율을 조절하는 Accommodation coefficient이다. 이 값은 일반적으로 0.01에서0.1사이이며 1.0을 넘지 말아야 한다.
  • Hv 는 기화 잠열이다.
  • Asur 는 상변화를 위한 유효표면적이다.
  • kf 는 액체의 열전도도이다.
  • Tl 는 표면상 액체 온도이며
  • Tv1는일정한 기포 포화 온도이다
  • h 는 Prandtl 수로 정의된 표면에 있는 액체의 열전도에 대한 특정 길이이다.

여기서

  • xmin 는 (임의의 방향으로)계산 격자의 최소 셀 크기
  • Cv 는 일정 체적시의 기포 비열이며
  • µ1는 유체 #1의 점도이다.

각 표면 셀에서 기화하는 질량 유량은 후처리를 위해 저장되고 Analyze 에서 가시화될 수 있다.

기화는 자유 표면을 포함하는 셀들에서만 발생될 수 있다. 기포 포화온도는 일정 또는 변동압력을 갖는 모든 공간에 대해 일정하며 같다.

2. One Fluid with Thermal Bubbles 열기포를 갖는 하나의 유체

액체-증기 상변화에 의한 질량 전달은 열기포와 주위 액체 사이에 발생할 수 있다. 기포는 유체 #1 이 증기로 차 있다고 가정하고(즉, 기체 성분은 하나다.) 기포는 일정 압력, 온도, 그리고 밀도를 갖는다. 많은 기포 방울들이 있을 수 있고, 각 기포에서의 증기는 체적 변화와 열 및 질량 전달 때문에 고유한 시간에 따라 변하는 상을 갖는다. 유체 분율이0인 지정 압력의 격자 경계와 접하는 기포는 그 경계에서 정의된 기화 상태를 가질 것이다. 기화/응축모델은 Physics>Bubble and phase change models>Thermal bubbles with phase change 에서 활성화된다.

증기의 상태방정식은 이상 기체 방정식이며 절대 압력 P P = (γ − 1) · ρvapCvT 로부터 계산되는데 여기서

  • γ 는 1.285 ≤ γ ≤ 1.667값을 갖는 비열의 비율
  • T 는 절대온도
  • Cv 는 일정 체적에서의 증기의 비열
  • Cp 는 일정 압력에서의 증기의 비열
  • ρvap 는 기포 내의 증기 밀도

기포는 절대 단위로 이들의 초기 압력과 온도를 지정함으로써 초기화된다. 증기는 또한 Cavitation and Bubble Formation (Nucleation)에서 기술된 바와 같이 공동 또는 비등 과정을 통해 유체 내에서 생성될 수 있다. 증기 물성과 포화 곡선은 Fluids>Properties>Phase change 하위 메뉴에서 정의된다. 증기 압력은 사용자가 정의한 포화 곡선을 이용하여 그 지역의 유체 온도의 함수로써 계산된다. 디폴트 포화 곡선은 압력 P 와 온도 T 간의 Clausius-Clapeyron 관련식이다.

여기서

  • PV 1 TV 1(위의 물성치 목록에서 Saturation Pressure Saturation Temperature라고 쓰여있는) 는 포화곡선상의 한 점에서의 압력과 온도이다.
  • TEXPExponent for T-P Curve 로써 입력된다; 이의 값은 일반적으로
  • γ 는 증기의 비열 Gamma
  • Cv 는 일정 체적시의 기체 비열
  • Hv 는 기체의 잠열

형상 요소와 기포 내 증기간의 열전달은 Meshing & Geometry>Geometry>Component>Surface properties 의 component-void간의 열전달 계수에 의해 지정된다. 액체와 기포 내 증기와의 열전달도 마찬가지로 유체-void간의 열전달 계수에 의해 지정되어야 한다. 새로 생성된 증기기포는 heat transfer void type 1로 지정되는 것에 주목한다. Physics>Heat transfer>Fluid to solid heat transfer 가 증기 기포와 고체 요소간의 열전달을 가능하게 하기 위해 활성화되어야 한다.

상 변화는 계산 셀 내의 평균 유체 물성(밀도, 열에너지 그리고 액체분율)에 의존한다. 특히 액체와 증기의 온도는 한 요소에서 같으며, 표면의 얇은 유체막에서의 온도가 아니다. 이런 의미에서 상변화 모델은 현상학적이고 상변화율을 조절하기 위해 accommodation coefficient 의 조정이 필요하다. 1보다 큰 값은 사용되지 않아야 하는데, 이는 이 모델의 수렴이 힘들게 될 수도 있기 때문이다. 사실 일반적으로 사용되는 값들은 0.01과 0.1사이이다.

3. Two-fluid Model 두가지 유체 모델

이 모델은 증기 영역에서 모든 역학이 계산되는 것을 제외하고는 응축/기화 모델 (One Fluid with Thermal Bubbles)과 유사하다. 이 경우 압축 two-fluid 모델(비압축성 유체와 압축성 증기)은 경계면에서 발생하는 액체-증기 상변화가 가능하다. 순수 액체 지역에서의 핵 생성 또는 순수 증기 지역에서의 응축이 또한 가능하다. 유체 #1은 유체의 액상을 그리고 압축성 유체 #2(가스)는 증기를 기술한다. 표준 압축성 유동 모델에서와 같이 증기의 상태 방정식은 이상 기체 방정식, P = RF2 · ρ · T 이며 여기서.

  • RF2 는 증기의 기체상수
  • P 는 압력
  • ρ 는 기체 밀도
  • T 는 증기의 온도

two-fluid 상변화 모델은 Physics >Bubble and phase change models> Two-fluid phase change 에서 초기화되며, Fluids>Properties>Phase change 에서 양의 accommodation coefficient 를 필요로 한다. 상변화율은 직접적으로 accommodation coefficient 에 비례한다. 이 값은 절대적인 제한은 아니지만 일반적으로 0.01에서0.1사이이며 1.0을 넘지 말아야 한다. 증기 물성은 압축성 유체2의 물성으로 정의되며 증기 잠열과 포화곡선은 Fluids>Properties>Phase change 에서 정의된다. 포화 압력과 포화 온도로 정의되며 쌍으로 나타나는 압력-온도는 포화 곡선상의 한 점이어야 한다. T-P 곡선상의 지수는 온도-압력 포화관계의 지수이다. 디폴트 포화곡선은 압력 P 와 온도 T 간의 Clausius-Clapeyron 관련식이다.

여기서

  • PV 1 TV 1(위의 물성 목록에서 Saturation Pressure Saturation Temperature라고 쓰여있는)는 포화 곡선상의 한 점에서의 압력과 온도
  • TEXPExponent for T-P Curve 로써 입력된다; 이 값은 일반적으로 TV EXP = (γ − 1) CLHVCV 2 1
  •  Gamma 는 증기의 비열의 비율
  • CV 2 는 일정 체적시의 기체 비열
  • CLHV 1는 증기 잠열(단위질량당 에너지)

상변화는 유한 체적 내의 평균 유체 물성(밀도, 열에너지 그리고 액체분율)에 의존한다. 특히 액체와 증기의 온도는 한 요소에서 같다. 액체와 증기 경계면에서의 질량 전달율은 국부적 액체의 포화압력과 증기압사이의 차이에 의하여 계산된다.

Mass transfer rate

여기서

  • Pvap 는 증기압
  • Psat(T) 는 위에서 정의된 바와 같이 지역온도에서의 포화압력이다. 사용자가 필요에 따라 변경할 수 있는 subroutine PSAT.F에서 계산된다.
  • RSIZEAccommodation coefficient 이고 일반적으로 0.01과 0.1사이의 값이다.

액체와 증기경계에서 유체 질량의 단위면적당 상변화율이 계산되고, 후처리를 위해 Phase change mass flux 라고 불리는 공간변수로써 저장된다.
양의 값은 증발을 뜻한다:
음의 값은 응축.

액체 체적에서의 상변화는 Superheat temperature 를 지정함으로써 포화온도를 지나서까지 지연될 수 있다. 지역 포화온도보다 큰 Superheat temperature 의 값 때문에 증기 기포가 발생하기 전에 이 온도까지 유체 체적이 가열되는 것이 가능하다. 과열은 선택에따라 0이 아닌 벽의 거칠기를 사용함으로써 고체 벽 가까이에서 발생하지 않도록 할 수 있다.

4. Two Fluids with Non-condensable Gas / 비 응축가스를 갖는 Two Fluids

 

보통, 응축/기화 모델(two-fluid 모델)은 유체 #2가 완전히 액체의 증기상으로 이루어진다고 가정한다. 가스가 증기와 비응축가스(즉, 공기중의 수증기)의 혼합물로 구성되어 있는 경우에 Physics>Bubble and phase change>Two-fluid phase change>Noncondensable gas model 를 선택한다. two-fluid vapor 모델의 추가는 증기와 비응축가스의 기체상수들의 밀도 가중 평균 혼합물의 기체상수의 계산을 포함한다:

여기서

  • ρvap 는 계산된 거시적 증기밀도
  • ρnc 는 계산된 거시적 비응축 기체 밀도
  • RF2는 증기의 기체상수
  • RF 는 평균기체상수

그러므로, 압력은 P = RFρT 로 계산된다. 증기의 포화압력은 상변화(Two-fluid Model), 를 갖는 표준 Two-fluid 모델에서와 같은 방법으로 계산되지만, 질량 유량은 전체 가스압력을 사용하는 것과는 달리 증기의 부분압력을 이용하여 계산된다.

Mass transfer rate

여기서

  • Pvap 는 가스성 유체의 증기의 부분압력
  • Psat(T) 는 사용자가 필요에 따라 변경할 수 있는 subroutine PSAT.F에서 정의되는 Clausius-Clapeyron 방정식으로부터 계산되는 국부 온도에서의 포화압력이다.
  • RSIZEAccommodation coefficient 이고 일반적으로 0.01과 0.1사이의 값이다.

Accommodation coefficient 가 1.0의 값을 가진다면 모델은 한 시간단계에서 평형에 도달하기에 충분한 상변화를 예측하려고 시도할 것이다. 이 속도는 너무 급속해 실제 물리적조건과 비교될 수가 없다. 액체와 가스의 경계면의 경계층 내의 역학은 규모가 너무 작아 이 모델에 포함할 수 없으므로 FLOW-3D 가 정확히 이 계수 없이 상변화율을 예측하는 것은 불가능하다. .

이 모델을 이용하기 위해 Physics>Bubble and phase change models>Non-condensable gas model 의 체크상자를 선택한다. Gas constant Specific heat of the non-condensable gas 를 위한 값을 입력한다. 가스가 영역 경계에서 들어오는 곳에 각 mesh block 경계 조건 입력창에 있는 Non-condensable gas fraction 의 비응축가스의 체적율(0 과 1사이)을 지정한다. 비응축가스를 포함하는 초기 유체지역을 정의하기 위해 Meshing & Geometry>Initial>Global 를 지정한다. 이 양은 또한 각각의 초기유체 영역과 특정 지점에서 지정될 수 있다.

5. Vaporization Residue / 증발 잔류량

MAIN VARIABLES: SCALAR: IRESID, RMXSC
XPUT: IPHCHG

액체용제가 기화할 때 이에 포함되어 있는 용질은 더 농축된다. 마찬가지로 스칼라 농도변수로 모델링 된 용질도 유체문제의 자유표면에서 증발로 인해 자동적으로 농축될 것이다. 표면요소에 액체가 반보다 적게 있을 경우 농축변화가 표면요소의 두께의 반에 해당하는 지역으로 퍼져나가는 크기로 스칼라의 농축이 바로 주위의 표면요소에서도 또한 발생할 것이다.

 증발이 충분히 발생하고 용질의 농도가 커지면 표면에서 발생할 수도 있고 용질이 완전히 증발하면 표면상에 이의 잔류가 생성될 수 있다. 잔류형성은 Physics Bubbles and phase change 에서 활성화되는 Constant pressure bubbles with vaporization, 및 Thermal bubbles with phase change 모델과 함께 시뮬레이션 되어야 한다. 잔류모델은 IRESID = 1로 지정하고 용질 스칼라 ns, RMXSC(ns)를 최대 packing 밀도를 정의함으로써 활성화된다. 일단 용질이 최대 packing 밀도까지 농축되면 더 이상의 농축은 고정(움직이지 않는)된 잔류를 초래한다. 하나 이상의 스칼라 용질이 존재하면 잔류는 모든 용질 전체 잔류를 기록한다.

Note: 용질농도는 Physics Scalars 로부터 FLOW-3D‘s Scalars 모델을 이용하여 입력된다.

Granular Media

Granular 미디어

가공 및 제조 업계에서는 다양한 유형의 세분화된 미디어를 접할 수 있습니다. 특이한 특성 때문에, 미세한 재료는 유용한 목적을 위해 그것을 전송, 혼합 또는 다른 방법으로 조작하고자 하는 엔지니어들에게 종종 어려운 문제를 제기할 수 있습니다. 세분화된 흐름 공정의 좋은 예는 금속 주물 용도의 모래 코어를 만드는 데 있습니다.

Granular미디어 모델링

고도로 농축된 미세한 물질의 흐름을 위한 모델이 개발되었습니다. 이 모델은 “연속적인 “접근 방식을 사용합니다. 즉, 모래의 연속적인 유체 표현에 기초하고 있어 개별 모래 입자를 처리하려는 시도가 없습니다.

모래와 공기의 혼합물은 공기 및 모래 물질이 개별 속도에 따라 흐르지만 압력 및 점성 스트레스로 인한 가속도 교환을 통해 결합되는 2상 흐름입니다. 전형적인 코어 모래의 경우 모래 입자의 지름은 10/10밀리미터이고, 코어 상자에 부어 들어가는 모래의 부피는 일반적으로 50%이상입니다. 이 범위에서 모래와 공기 사이에는 강력한 결합이 존재하므로 혼합물을 단일 복합 유체로 모델링 할 수 있습니다. 두 재료의 속도 차이로 인한 2상 효과는 드리프트-플럭스라고 하는 상대 속도에 대한 근사치를 사용하여 설명됩니다.

이러한 복합 및 상대 속도 접근 방식은 세분화된 매체 모델의 기초로 선택되었습니다. 모래/공기 혼합물은 주변 공기와의 경계에 날카로운 자유 표면이 있는 단일 유체로 표현될 수 있다고 가정합니다. 그러나 복합 유체는 모래 압축 정도에 따라 균일하지 않은 밀도를 가질 수 있습니다. 혼합물의 점도는 밀도와 전단 응력의 함수입니다. 운동량 전달의 대부분은 부분 입자 충돌에 의한 것이기 때문에 모래-공기 혼합물은 전단 두께가 얇은 물질의 특성을 가지고 있습니다.

환기구를 코어 박스에 포함시키기 위해 모든 순수 공기 영역(보이드 영역이라고도 함)은 아디아바틱 버블(adiabatic bubble)로 취급됩니다. 아디아바틱 qjqmf(adiabatic bubble)은 액체나 고체의 벽으로 둘러싸인 공기의 영역이다. 버블의 압력은 버블 볼륨의 함수이며 버블에 의해 점유된 지역 위에 균일한 값을 가지고 있습니다. 코어 상자의 환기구를 통해 버블 내의 공기가 박스 외부로 배출됩니다.

Sand Core Blowing Applications

유체와 달리 입상매질에서는 발생할 수 있는 몇 가지 차이점을 설명하기 위해 간단한 2 차원 쐐기 모양 호퍼가 바닥에 1cm 너비 튜브로 설치되었습니다. 시뮬레이션은 바닥 튜브가 비어있는 채로 시작됩니다.

Granular media model
Figures 1-4 (From left to right): Initial 2D hopper configuration; Time 1.75s — Vectors are black; Time 3.0s; Time 5.0s

모래는 0.63 부피의 근접 포장 한계에서 초기화되었습니다. 배출 튜브 입구의 하단에 있는 모래는 중력의 작용을 받기 시작하지만 그림 1-4에 있는 거의 모든 모래는 정지 상태를 유지합니다. 여기서 색상은 패킹에 의한 흐름 저항입니다( 빨간 색은 완벽하게 견고함). 짧은 시간 안에 지역과 같은 거품이 형성되고 모래의 가장 높은 표면을 향해요. 거품이 꼭대기에 도달할 때까지 거품의 표면 주위를 흐르는 것만이 표면의 붕괴를 일으킨다. 상단 표면의 함몰은 특정한 각도인 34°까지 측면을 감소시키는 현지화된 흐름을 가집니다. 한편 바닥에는 이 패턴을 반복하기 위해 또 다른 거품이 형성된다.

모래 코어 송풍에 이 새로운 모델의 적용을 설명하기 위해 D가 작성한 ” 끊어진 코어와 연체 동물의 설계에서의 시뮬레이션 개발 및 사용”논문의 데이터와 비교하기 위해 시뮬레이션을 수행했습니다( D. Lefebvre, A. Mackenbrock, V.Vidal, V.Pavan, PM. 2004년 12월, Hommes&Fonderie, Haigh). 데이터는 하나의 채우기 포트가 있는 2차원 다이 형상에 대한 것입니다. 다이의 주형 제작은 균일하지 않아서 충전 패턴에 대한 환기구의 영향을 연구할 수 있었습니다.

시뮬레이션 영역(코어 상자)의 크기는 너비 30cm, 높이 15cm, 두께 1cm였다. 밀도 1.508 g/m2cc의 모래/공기 혼합물이 박스 입구에서 절대 2기압의 압력으로 박스 안으로 들어갔습니다. 상자의 오른쪽에는 다섯개의 열린 구멍이 있었고 상자의 아래쪽과 왼쪽에는 여섯개가 더 닫혀 있습니다. 이러한 배치는 비대칭적인 상자 채우기로 이어집니다.

Sand core blowing continuum model simulation
Figure 5:  연속체 모델 시뮬레이션과 실험 데이터의 비교 시뮬레이션 결과는 0.035s, 0.047s 및 0.055s입니다. 색조는 혼합 농도를 나타냅니다.

계산 그리드는 수평으로 80개의 메쉬 셀과 수직으로 40개의 메쉬 셀로 구성되었습니다. 시뮬레이션이 완전히 채워진 코어 상자에 도달하는 데 걸리는 시간은 0.07초였으며 3.2에서 직렬 모드로 실행되는 약 8.7초의 CPU시간이 필요했습니다. GHzPentium4PC컴퓨터(만족스러울 정도로 작지만, 물론 컴퓨터 영역에 3200개의 셀 이 있는 2D케이스에 불과했습니다.)

연속 모델 시뮬레이션 결과와 Lefe브re, 기타 논문의 사진을 비교한 결과는 그림. 5와 같습니다. 시각적 일치는 많은 부분에서 매우 좋은 것으로 보입니다. 시뮬레이션은 왼쪽에 통풍구가 닫혔을 때의 비대칭적인 영향을 보여 줍니다.

For more information about this model, download the Flow Science Report on Granular Media.

Granular 흐름 / Granular Flow

Granular 흐름 / Granular Flow

중력상태에서의 2 차원 모래시계

작은 검정 선은 속도 벡터입니다.
빨간색은 대부분 모래가 밀집되어있는 모래 밀도를 나타냅니다.

모래가 유리의 상반부에서 초기화되고 하반부로 흐르도록 허용되는 2 차원 모래 시계 형상의 시뮬레이션을 통해 액체와 입상 흐름 사이의 차이를 잘 이해할 수 있습니다.

좌측 스냅 샷은 14 초 후에 계산된 흐름을 보여줍니다. 해당 애니메이션은 전체 흐름의 기록을 포함하여 유리의 아래쪽 절반에 있는 모든 모래로 연결됩니다.
모래시계 유리의 높이는 49.0cm이며, 허리 부분에 직경 1.0cm의 구멍이 있습니다. 모래는 0.045cm의 균일 한 입자 직경을 가지고 있으며 34 °의 안식각을 갖도록 규정되어 있습니다. 총 시뮬레이션 시간은 40 초 였으므로 싱글 프로세서 데스크톱 컴퓨터에서 6.5 분의 CPU 시간이 필요했습니다.
스냅 샷 플롯에서 몇 가지 중요한 관찰을 할 수 있습니다.

가장 중요한 것은 흐르는 작은 모래 (짧은 벡터로 표시됨)가 상단과 하단의 모래 표면에 있다는 것입니다. 표면에서 멀리 떨어진 곳에서는 모래가 완전히 포장되어 흐를 수 없습니다. 둘째로 바닥 부분에있는 모래는 액체가 바닥을 가로 질러 흘러 나오지 않고 흘러 들어감에 따라 흘러 나오지 않습니다. 모래가 위로 쌓여지면서 불안정한 눈사태와 유사한 더미 표면에 흐름이 있습니다. 이 흐름은 바닥에 파일 더미가 느리게 바깥쪽으로 퍼지게합니다. 유실이 끝날 때 하부 섹션의 말뚝 각도는 지정된 안식 각에 가깝습니다.

이 모델에 대한 자세한 내용은 Flow Science Report on Granular Media를 다운로드하십시오.

FLOW-3D/MP Software Overview

FLOW-3D/MP Overview

FLOW-3D/MP 는 엔지니어가 계산할 도메인이 매우 크거나 시뮬레이션 실행 시간이 너무 많이 소요될 것 같은 문제를 해결 하기 위해 고성능 컴퓨팅 클러스터에서 실행되도록 설계한 FLOW-3D의 분산 메모리 버전입니다. FLOW-3D/MP는 클러스터의 컴퓨팅 노드에서 여러 CPU 코어에 계산 속도를 높이기 위해 병렬화하는 하이브리드 MPI-OpenMP의 방법을 사용합니다. 시뮬레이션 도메인에 따라서 그들 사이의 연산 작업을 분할 클러스터의 연산 노드에 분산된 여러 서브 도메인으로 분할됩니다. 다른 서브 도메인의 결과의 동기화는 메시지 교환 인터페이스 (MPI) 라이브러리를 통 이용하여 노드 사이에서 데이터를 교환함으로써 수행됩니다. 각각의 하위 도메인 내에서의 OpenMP 스레드는 계산을 더욱 병렬화하게 됩니다. 솔버의 성능을 강화하는 MPI와 OpenMP 병렬 처리 결과의 조합은 매우 오래 걸리는 시뮬레이션의 실행 시간을 줄이는 효과가 큽니다.

Why use FLOW-3D/MP?

현재 하드웨어가 멀티 코어, 멀티 CPU 노드 (즉 ccNUMA 공유 메모리)인 고성능 컴퓨팅 (HPC)인 경우 구성은 Infiniband와 같은 고속 네트워크 인프라 스트럭처를 통해 연결됩니다.
더 좋은 연산 성능과 효율의 장점, 전력소비 절감과 비용 감소 및 우수한 유연성을 위해 멀티코어 클러스터 시스템은 과학분야와 같은 고성능 컴퓨팅이 필요한 분야에서 널리사용되고 있습니다.

사용자 지원을 강화하고 멀티 코어 클러스터 솔루션의 정확성을 향상시키기 위해 그리드 해상도를 높이는 등 더 많은 기능을 강화시키고 있습니다.
FLOW-3D/MP는 설계 및 솔루션 정확도를 유지하고 실행시간을 크게 감소시키는 등 클러스터 시스템에서 최고의 기능을 발휘할 수 있도록 최적화되었습니다.
마지막으로, 독립형 스테이션의 메모리 제한은 FLOW-3D / MP의 분산 메모리 접근방식으로 해결 될 수 있습니다.

What kind of performance can I expect?

물론, FLOW-3D/MP의 실제 성능은 시뮬레이션에 따라 다르지만, 솔버는 금속 주조, 물, 환경, 미세 유체 및 항공 우주 등 다양한 애플리케이션을 위해 512 코어까지 확장하여 보여 주었습니다. 여러가지 경우에 대한 성능 그래프와 함께 세부 사항은 벤치 마크의 페이지에 제시했습니다.

How to use FLOW-3D/MP?

FLOW-3D/MP는 일반적으로 클러스터 컴퓨터에 설치되고 실행됩니다. 클러스터 계산은 슈퍼 컴퓨팅 시설의 독립 실행 형 클러스터 또는 일부가 될 수 있습니다. FLOW-3D/ MP와 함께 제공되는 그래픽 사용자 인터페이스는 사용자가 쉽게 설정하고 시뮬레이션을 실행할 수 있습니다. PBS, Torque, SGE와 같은 작업 스케줄러를 사용하여 실행되는 대규모 클러스터 시뮬레이션의 경우, 사용자는 highly configurable 및 독립적인 작업 스케줄러 제출 유틸리티에 액세스 할 수 있습니다.

What’s in FLOW-3D/MP v6.1?

FLOW-3D/MP V6.1은 FLOW-3D v11.1을 기반으로합니다. 일부 주요 기능은 새로운 입자 모델(particle model), 스퀴즈 핀 모델( squeeze pins model), 계류 라인(mooring lines)과 활성화된 시뮬레이션 제어를 포함합니다. 모든 모델은 FLOW-3D/MP에 대해 하이브리드 MPI-OpenMP의 방법론과 호환됩니다. FLOW-3D / MP의 계산 부하 균형은 매우 중요하고 솔버의 성능에 크게 영향을 미칩니다. 로드 밸런싱은 정적(시뮬레이션이 시작되기 전) 및 동적(시뮬레이션 진행중)으로 분류 될 수있습니다.
정적로드 밸런싱을 달성하기 위해, FLOW-3D/MP는 여러 하위 도메인 (MPI 도메인)에 있는 하나의 계산 도메인을 분할하는 자동 분해 도구를 제공하여, 그들 사이를 균등하게 활성화된 cells을 배분합니다. 서브 도메인 사이의 동기화 시간을 최소화하는 것은 성능을 향상시킵니다.
V6.1에서 상기 분해 단계는 사용자의 경험을 반영하여 셋업에서 중단을 피하기 위해 해석 단계와 결합되었습니다. 동적로드 균형을 달성하기 위해, 동적 스레드 밸런싱 기능은 시뮬레이션 과정 동안의 OpenMP 스레드를 조정하는데 사용될 수있습니다. one-fluid에서, 자유 표면 시뮬레이션은 최대 20 %의 성능 향상이 이 기능을 사용하여 달성되었습니다.
V6.1의 다른 중요한 개선은 복잡한 지형 모델링 홍수 이벤트에 사용하여 GMRES 압력 솔버, 일괄 처리 및 보고서 생성의 최적화, 래스터 데이터 인터페이스를 포함합니다. 새로운 모델과 기능에 대한 자세한 내용은 FLOW-3D의 v11.1 페이지를 참조하십시오. * 성능 메트릭은 시뮬레이션은 24 시간에서 실행될 수있는 횟수로 정의된다. 높은 막대가 더 나은 성능을 나타냅니다.