Mary Kathryn Walker Florida Institute of Technology, mwalker2022@my.fit.edu
Robert J. Weaver, Ph.D. Associate Professor Ocean Engineering and Marine Sciences Major Advisor
Chungkuk Jin, Ph.D. Assistant Professor Ocean Engineering and Marine Sciences
Kelli Z. Hunsucker, Ph.D. Assistant Professor Ocean Engineering and Marine Sciences
Richard B. Aronson, Ph.D. Professor and Department Head Ocean Engineering and Marine Sciences
Abstract
모노파일은 해상 풍력 터빈 건설에 사용되며 일반적으로 설계 수명은 25~50년입니다. 모노파일은 수명 주기 동안 부식성 염수 환경에 노출되어 구조물을 빠르게 분해하는 전기화학적 산화 공정을 용이하게 합니다. 이 공정은 모노파일을 보호 장벽으로 코팅하고 음극 보호 기술을 구현하여 완화할 수 있습니다.
역사적으로 모노파일 설계자는 파일 내부가 완전히 밀봉되고 전기화학적 부식 공정이 결국 사용 가능한 모든 산소를 소모하여 반응을 중단시킬 것이라고 가정했습니다. 그러나 도관을 위해 파일 벽에 만든 관통부는 종종 누출되어 신선하고 산소화된 물이 내부 공간으로 유입되었습니다.
표준 부식 방지 기술을 보다 효과적으로 적용할 수 있는 산소화된 환경으로 내부 공간을 재고하는 새로운 모노파일 설계가 연구되고 있습니다. 이러한 새로운 모노파일은 간조대 또는 조간대 수준에서 벽에 천공이 있어 신선하고 산소화된 물이 구조물을 통해 흐를 수 있습니다.
이러한 천공은 또한 구조물의 파도 하중을 줄일 수 있습니다. 유체 역학적 하중 감소의 크기는 천공의 크기와 방향에 따라 달라집니다. 이 연구에서는 천공의 크기에 따른 모노파일의 힘 감소 분석에서 전산 유체 역학(CFD)의 적용 가능성을 연구하고 주어진 파도의 접근 각도 변화의 효과를 분석했습니다.
모노파일의 힘 감소를 결정하기 위해 이론적 3D 모델을 제작하여 FLOW-3D® HYDRO를 사용하여 테스트했으며, 천공되지 않은 모노파일을 제어로 사용했습니다. 이론적 데이터를 수집한 후, 동일한 종류의 천공이 있는 물리적 스케일 모델을 파도 탱크를 사용하여 테스트하여 이론적 모델의 타당성을 확인했습니다.
CFD 시뮬레이션은 물리적 모델의 10% 이내, 이전 연구의 5% 이내에 있는 것으로 나타났습니다. 물리적 모델과 시뮬레이션 모델을 검증한 후, 천공의 크기가 파도 하중 감소에 뚜렷한 영향을 미치고 주어진 파도의 접근 각도에 대한 테스트를 수행할 수 있음을 발견했습니다.
접근 각도의 변화는 모노파일을 15°씩 회전하여 시뮬레이션했습니다. 이 논문에 제시된 데이터는 모노파일의 방향이 통계적으로 유의하지 않으며 천공 모노파일의 설계 고려 사항이 되어서는 안 된다는 것을 시사합니다.
또한 파도 하중 감소와 구조적 안정성 사이의 균형을 찾기 위해 천공의 크기와 모양에 대한 연구를 계속하는 것이 좋습니다.
Monopiles are used in the construction of offshore wind turbines and typically have a design life of 25 to 50 years. Over their lifecycle, monopiles are exposed to a corrosive saltwater environment, facilitating a galvanic oxidation process that quickly degrades the structure. This process can be mitigated by coating the monopile in a protective barrier and implementing cathodic protection techniques. Historically, monopile designers assumed the interior of the pile would be completely sealed and the galvanic corrosion process would eventually consume all the available oxygen, halting the reaction. However, penetrations made in the pile wall for conduit often leaked and allowed fresh, oxygenated water to enter the interior space. New monopile designs are being researched that reconsider the interior space as an oxygenated environment where standard corrosion protection techniques can be more effectively applied. These new monopiles have perforations through the wall at intertidal or subtidal levels to allow fresh, oxygenated water to flow through the structure. These perforations can also reduce wave loads on the structure. The magnitude of the hydrodynamic load reduction depends on the size and orientation of the perforations. This research studied the applicability of computational fluid dynamics (CFD) in analysis of force reduction on monopiles in relation to size of a perforation and to analyze the effect of variation in approach angle of a given wave. To determine the force reduction on the monopile, theoretical 3D models were produced and tested using FLOW-3D® HYDRO with an unperforated monopile used as the control. After the theoretical data was collected, physical scale models with the same variety of perforations were tested using a wave tank to determine the validity of the theoretical models. The CFD simulations were found to be within 10% of the physical models and within 5% of previous research. After the physical and simulated models were validated, it was found that the size of the perforations has a distinct impact on the wave load reduction and testing for differing approach angles of a given wave could be conducted. The variation in approach angle was simulated by rotating the monopile in 15° increments. The data presented in this paper suggests that the orientation of the monopile is not statistically significant and should not be a design consideration for perforated monopiles. It is also suggested to continue the study on the size and shape of the perforations to find the balance between wave load reduction and structural stability.
References Andersen, J., Abrahamsen, R., Andersen, T., Andersen, M., Baun, T., & Neubauer, J. (2020). Wave Load Mitigation by Perforation of Monopiles. Journal of Marine Science and Engineering, 8(5), 352. https://doi.org/10.3390/jmse8050352 Bakker A. (2008) Lectures on Applied Computational Fluid Dynamics. www.bakker.org. Bustamante, A., Vera-Tudela, L., & Kühn, M. (2015). Evaluation of wind farm effects on fatigue loads of an individual wind turbine at the EnBW baltic 1 offshore wind farm. Journal of Physics: Conference Series, 625, 012020. https://doi.org/10.1088/1742-6596/625/1/012020 Chakrabarti SK. Hydrodynamics of offshore structures. Springer Verlag;1987. Christiansen, R. (2020). Living Docks: Structural Implications and Determination of Force Coefficients of Oyster Mats on Dock Pilings in the Indian River Lagoon [Master’s Thesis, Florida Institute of Technology]. Clauss, G. (1992). Offshore Structures, Volume 1, Conceptual Design and Hydromechanics. Springer, London, UK. COMSOL Multiphysics® v. 6.1. www.comsol.com. COMSOL AB, Stockholm, Sweden. Delwiche, A. & Tavares, I. (2017). Retrofit Strategy using Aluminum Anodes for the Internal section of Windturbine Monopiles. NACE Internation Corrosion Conference & Expo, Paper no. 8955. Det Norske Veritas (2014) Fatigue design of offshore steel structures. Norway. 70 Det Norske Veritas (1989). Rules for the Classification of Fixed Offshore Installations. Technical report, DNV, Hovik, Norway. DNV. (2011). DNV-RP-C203 Fatigue Design of Offshore Steel Structures (tech. rep.). http://www.dnv.com Elger, D. F., LeBret, B. A., Crowe, C. T., & Roberson, J. A. (2022). Engineering fluid mechanics. John Wiley & Sons, Inc. FLOW-3D® Version 12.0 Users Manual (2018). FLOW-3D [Computer software]. Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com Gaertner, Evan, Jennifer Rinker, Latha Sethuraman, Frederik Zahle, Benjamin Andersen, Garrett Barter, Nikhar Abbas, Fanzhong Meng, Pietro Bortolotti, Witold Skrzypinski, George Scott, Roland Feil, Henrik Bredmose, Katherine Dykes, Matt Shields, Christopher Allen, and Anthony Viselli. (2020). Definition of the IEA 15-Megawatt Offshore Reference Wind. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-
https://www.nrel.gov/docs/fy20osti/75698.pdf Goodisman, Jerry (2001). “Observations on Lemon Cells”. Journal of Chemical Education. 78 (4): 516–518. Bibcode:2001JChEd..78..516G. doi:10.1021/ed078p516. Goodisman notes that many chemistry textbooks use an incorrect model for a cell with zinc and copper electrodes in an acidic electrolyte Hilbert, L.R. & Black, Anders & Andersen, F. & Mathiesen, Troels. (2011). Inspection and monitoring of corrosion inside monopile foundations for offshore wind turbines. European Corrosion Congress 2011, EUROCORR
3. 2187-2201. H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” in Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, Oct. 1967, doi: 10.1109/PROC.1967.5962. 71 Journee, J. M., and W. W. Massie. Offshore Hydrodynamics, First Edition. Delft University of Technology, 2001. Keulegan, G. H., and L. H. Carpenter. “Forces on Cylinders and Plates in an Oscillating Fluid.” Journal of Research of the National Bureau of Standards, vol. 60, no. 5, 1958, pp. 423–40. Lahlou, O. (2019). Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes (thesis). L. H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cam-bridge University Press, 2007. doi:10.1017/cbo9780511618536. MacCamy, R.C., Fuchs, R.A.: Wave Forces on Piles: a Diffraction Theory. Corps of Engineers Washington DC Beach Erosion Board (1954) M. M. Maher and G. Swain, “The Corrosion and Biofouling Characteristics of Sealed vs. Perforated Offshore Monopile Interiors Experiment Design Comparing Corrosion and Environment Inside Steel Pipe,” OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1-4, doi: 10.1109/OCEANS.2018.8604522. Morison, J. R.; O’Brien, M. P.; Johnson, J. W.; Schaaf, S. A. (1950), “The force exerted by surface waves on piles”, Petroleum Transactions, American Institute of Mining Engineers, 189 (5): 149–154, doi:10.2118/950149-G Paluzzi, Alexander John, “Effects of Perforations on Internal Cathodic Protection and Recruitment of Marine Organisms to Steel Pipes” (2023). Theses and Dissertations. 1403. https://repository.fit.edu/etd/1403 Ploeg, J.V.D. (2021). Perforation of monopiles to reduce hydrodynamic loads and enable use in deep waters [Master’s Thesis, Delft University of Technology] Institutional Repository at Delft University of Technology. http://resolver.tudelft.nl/uuid:91eada6f-4f2b-4ae6-be59-2b5ff0590c6f. 72 Shi, W., Zhang, S., Michailides, C., Zhang, L., Zhang, P., & Li, X. (2023). Experimental investigation of the hydrodynamic effects of breaking waves on monopiles in model scale. Journal of Marine Science and Technology, 28(1), 314–325. https://doi.org/10.1007/s00773-023-00926-9 Santamaria Gonzalez, G.A. (2023) Advantages and Challenges of Perforated Monopiles in Deep Water Sites [Master’s Thesis, Delft University of Technology] Institutional Repository at Delft University of Technology. http://resolver.tudelft.nl/uuid:490791b6-a912-4bac-a007-f77012c01107 Sarpkaya, T. and Isaacson, M. (1981). Mechanics of Wave Forces on Offshore Structures. Number ISBN 0-442-25402-4. Van Nostrand Reinhold Company Inc., New York. Tang, Y., Shi, W., Ning, D., You, J., & Michailides, C. (2020). Effects of spilling and plunging type breaking waves acting on large monopile offshore wind turbines. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00427 Teja, R. (2021, June 25). Wheatstone bridge: Working, examples, applications. ElectronicsHub. https://www.electronicshub.org/wheatstone-bridge/ The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com Wave gauges. Edinburgh Designs. (2016). http://www4.edesign.co.uk/product/wavegauges/ Wilberts, F. (2017). MEASUREMENT DRIVEN FATIGUE ASSESSMENT OF OFFSHORE WIND TURBINE FOUNDATIONS (Master’s Thesis, Uppsala University).
FLOW-3D POST 2023R2 는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.
FLOW-3D POST 2023R2 에서 사용자는 이제 selected data를 flsgrf , EXODUS II 둘중 하나 또는 flsgrf 와 EXODUS II 둘다 파일 형식으로 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 객체에 대해 유한 요소 메쉬를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용하여FLOW-3D 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 위치에서의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 추가 정보를 추출할 수 있습니다.
새로운 결과 파일 형식은 솔버 엔진의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다. 이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 원활한 시뮬레이션 경험을 제공합니다.
FLOW-3D2023R2는 two-equation(RANS) 난류 모델에 대한 dynamic mixing length 계산을 크게 개선했습니다. 거의 층류 흐름 체계와 같은 특정 제한 사례에서는 이전 버전의 코드 계산 한계가 때때로 과도하게 예측되어 사용자가 특정 mixing length를 수동으로 입력해야 할 수 있습니다.
새로운 dynamic mixing length 계산은 이러한 상황에서 난류 길이와 시간 척도를 더 잘 설명합니다. 이제 사용자는 고정된(물리 기반) mixing length를 설정하는 대신 더 넓은 범위의 흐름에 동적 모델을 적용할 수 있습니다.
정수압 초기화
사용자가 미리 정의된 유체 영역에서 정수압을 초기화해야 하는 경우가 많습니다. 이전에는 대규모의 복잡한 시뮬레이션에서 정수압 솔버의 수렴 속도가 느려지는 경우가 있었습니다. FLOW-3D2023R2는 정수압 솔버의 성능을 크게 향상시켜 전처리 단계에서 최대 6배 빠르게 수렴할 수 있도록 해줍니다.
압축성 흐름 솔버 성능
FLOW-3D2023R2는 최적화된 압력 솔버를 도입하여 압축성 흐름 문제에 대해 상당한 성능 향상을 제공합니다. 압축성 제트 흐름의 예에서 2023R2 솔버는 2023R1 버전보다 최대 4배 빠릅니다.
FLOW-3D 2023R2 의 새로운 기능
FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R2에서 IT 관련 개선 사항을 받았습니다. FLOW-3D 2023R2은 이제 Windows 11 및 RHEL 8을 지원합니다. Linux 설치 프로그램은 누락된 종속성을 보고하도록 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 그리고 워크플로우를 자동화한 분들을 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로우가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.
확장된 PQ 2 분석
제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량 운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리하도록 단순화하는 경우가 많습니다. 우리는 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 현실적인 결과를 제공했습니다. 이로써 시뮬레이션 시간을 줄이고 모델 복잡성의 감소시킬 수 있습니다.
FLOW-3D 2022R2 의 새로운 기능
FLOW-3D 2022R2 제품군 출시로 Flow Science는 FLOW-3D 의 워크스테이션과 HPC 버전을 통합하여 노드 병렬 고성능 컴퓨팅 실행할 수 있도록 단일 노드 CPU 구성에서 다중 노드에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 형태 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성요소 제어, entrained air 기능이 개선되었습니다.
통합 솔버
FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션이나 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행할 수 있습니다.
많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만, 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션의 Open MP/MPI 하이브리드 병렬화와 동일한 이점을 활용하여 워크스테이션과 노트북에서 실행할 수 있습니다.
솔버 성능 개선
멀티 소켓 워크스테이션
다중 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 사용하면 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있어 성능이 향상되는 것을 확인할 수 있습니다.
낮은 수준의 루틴으로 향상된 벡터화 및 메모리 액세스
대부분의 테스트 사례에서 10~20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 나타났습니다.
정제된 체적 대류 안정성 한계
Time step 안정성 한계는 모델 런타임의 주요 요인이며, 2022R2에서는 새로운 time step 안정성 한계인 3D 대류 안정성 한계를 Numerics 탭에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 일반적인 속도 향상을 30% 정도 보여줍니다.
압력 솔버 프리컨디셔너
경우에 따라 까다로운 유동 해석의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 이러한 어려운 경우 2022R2에서는 모델이 너무 많이 반복되면 FLOW-3D가 자동으로 새로운 프리컨디셔너 기능을 활성화하여 압력 수렴을 돕습니다. 런타임이 1.9~335배 더 빨라졌습니다!
점탄성 유체에 대한 로그 형태 텐서 방법
점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수에 효과적입니다.
활성 시뮬레이션 제어 확장
Active simulation 제어 기능이 확장되어 연속 주조 및 적층 제조 응용 분야에 일반적으로 사용되는 팬텀 개체는 물론 주조 및 기타 여러 열 관리 응용 분야에 사용되는 냉각 채널에도 사용됩니다.
향상된 공기 동반 기능
디퓨저 및 이와 유사한 산업용 기포 흐름 응용 분야의 경우 이제 질량 공급원을 사용하여 물기둥에 공기를 유입할 수 있습니다. 또한, 동반된 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.
전기화학 반응기에 대한 3D 수치 시뮬레이션 및 측정을 사용하여 동시 초음파 처리 유무에 관계없이 물에서 스트론튬 제거 효율을 분석했습니다. 초음파는 작동 주파수가 25kHz인 4개의 초음파 변환기를 사용하여 생성되었습니다. 반응기는 2개의 블록으로 배열된 8개의 알루미늄 전극을 사용했습니다.
LICHT K.1*, LONČAR G.1, POSAVČIĆ H.1, HALKIJEVIĆ I.1 1 Department of Hydroscience and Engineering, Faculty of Civil Engineering, University of Zagreb, Andrije Kačića-Miošića 26, 10000 Zagreb, Croatia *corresponding author: e-mail:katarina.licht@grad.unizg.hr
물 속의 스트론튬 이온은 3.2∙10-19C의 전하와 1.2∙10-8m의 직경을 특징으로 하는 입자로 모델링됩니다. 수치 모델은 기본 유체 역학 모듈, 정전기 모듈 및 일반 이동 객체 모듈을 사용하여 Flow-3D 소프트웨어에서 생성되었습니다.
수치 시뮬레이션을 통해 연구된 원자로 변형의 성능은 시뮬레이션 기간이 끝날 때 전극에 영구적으로 유지되는 모델 스트론튬 입자 수와 물 속의 초기 입자 수의 비율로 정의됩니다. 실험실 반응기의 경우 스트론튬 제거 효과는 실험 종료 시와 시작 시 물 내 균일한 스트론튬 농도의 비율로 정의됩니다.
결과는 초음파를 사용하면 수처리 180초 후에 스트론튬 제거 효과가 10.3%에서 11.2%로 증가한다는 것을 보여줍니다. 수치 시뮬레이션 결과는 동일한 기하학적 특성을 갖는 원자로에 대한 측정 결과와 일치합니다.
3D numerical simulations and measurements on an electrochemical reactor were used to analyze the efficiency of strontium removal from water, with and without simultaneous ultrasound treatment. Ultrasound was generated using 4 ultrasonic transducers with an operating frequency of 25 kHz. The reactor used 8 aluminum electrodes arranged in two blocks. Strontium ions in water are modeled as particles characterized by a charge of 3.2∙10-19 C and a diameter of 1.2∙10-8 m. The numerical model was created in Flow-3D software using the basic hydrodynamic module, electrostatic module, and general moving objects module. The performance of the studied reactor variants by numerical simulations is defined by the ratio of the number of model strontium particles permanently retained on the electrodes at the end of the simulation period to the initial number of particles in the water. For the laboratory reactor, the effect of strontium removal is defined by the ratio of the homogeneous strontium concentration in the water at the end and at the beginning of the experiments. The results show that the use of ultrasound increases the effect of strontium removal from 10.3% to 11.2% after 180 seconds of water treatment. The results of numerical simulations agree with the results of measurements on a reactor with the same geometrical characteristics.
Dong, B., Fishgold, A., Lee, P., Runge, K., Deymier, P. and Keswani, M. (2016), Sono-electrochemical recovery of metal ions from their aqueous solutions, Journal of Hazardous Materials, 318, 379–387. https://doi.org/10.1016/J.JHAZMAT.2016.07.007 EPA. (2014), Announcement of Final Regulatory Determinations for Contaminants on the Third Drinking Water Contaminant Candidate List. Retrieved from http://fdsys.gpo.gov/fdsys/search/home.action Fu, F., Lu, J., Cheng, Z. and Tang, B. (2016), Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism, Ultrasonics Sonochemistry, 29, 328–336. https://doi.org/10.1016/j.ultsonch.2015.10.007 Ince, N.H. (2018), Ultrasound-assisted advanced oxidation processes for water decontamination, Ultrasonics Sonochemistry, 40, 97–103. https://doi.org/10.1016/j.ultsonch.2017.04.009 Kamaraj, R. and Vasudevan, S. (2015), Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution, Chemical Engineering Research and Design, 93, 522–530. https://doi.org/10.1016/j.cherd.2014.03.021 Luczaj, J. and Masarik, K. (2015), Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA, Resources, 4(2), 323–357. https://doi.org/10.3390/resources4020323 Mohapatra, D.P. and Kirpalani, D.M. (2019), Selenium in wastewater: fast analysis method development and advanced oxidation treatment applications, Water Science and Technology: A Journal of the International Association on Water Pollution Research, 79(5), 842–849. https://doi.org/10.2166/wst.2019.010
Mollah, M.Y.A., Schennach, R., Parga, J.R. and Cocke, D.L.(2001), Electrocoagulation (EC)- Science and applications, Journal of Hazardous Materials, 84(1), 29–41. https://doi.org/10.1016/S0304-3894(01)00176-5
Moradi, M., Vasseghian, Y., Arabzade, H. and Khaneghah, A.M. (2021), Various wastewaters treatment by sonoelectrocoagulation process: A comprehensive review of operational parameters and future outlook, Chemosphere, 263, 128314. https://doi.org/10.1016/J.CHEMOSPHERE.2020.12831 4 Peng, H., Yao, F., Xiong, S., Wu, Z., Niu, G. and Lu, T. (2021), Strontium in public drinking water and associated public health risks in Chinese cities, Environmental Science and Pollution Research International, 28(18), 23048. https://doi.org/10.1007/S11356-021-12378-Y Scott, V., Juran, L., Ling, E.J., Benham, B. and Spiller, A. (2020), Assessing strontium and vulnerability to strontium in private drinking water systems in Virginia, Water, 12(4). https://doi.org/10.3390/w12041053 Ziylan, A., Koltypin, Y., Gedanken, A. and Ince, N.H. (2013), More on sonolytic and sonocatalytic decomposition of Diclofenac using zero-valent iron, Ultrasonics Sonochemistry, 20(1), 580–586. https://doi.org/10.1016/j.ultsonch.2012.05.00
FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다. FLOW-3D 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. 누락된 종속성을 보고하도록 Linux 설치 프로그램이 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 또한 워크플로를 자동화한 사용자를 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.
확장된 PQ 2 분석
제조에 사용되는 유압 시스템은 PQ 2 곡선을 사용하여 모델링할 수 있습니다. 장치의 세부 사항을 건너뛰고 흐름에 미치는 영향을 포함하기 위해 질량-운동량 소스 또는 속도 경계 조건을 사용하여 유압 시스템을 근사화하는 것이 편리한 단순화인 경우가 많습니다. 기존 PQ 2 분석 모델을 확장하여 이러한 유형의 기하학적 단순화를 허용하면서도 여전히 현실적인 결과를 제공합니다. 이것은 시뮬레이션 시간과 모델 복잡성의 감소로 해석됩니다.
FLOW-3D 2022R2 의 새로운 기능
FLOW-3D 2022R2 제품군 의 출시와 함께 Flow Science는 워크스테이션과 FLOW-3D 의 HPC 버전 을 통합하여 단일 노드 CPU 구성에서 다중 구성에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공합니다. 노드 병렬 고성능 컴퓨팅 실행. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 구조 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성 요소 제어, 향상된 연행 공기 기능이 포함됩니다.
통합 솔버
FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션 또는 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.
많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만 고성능 컴퓨팅 클러스터에서 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션에서 OpenMP/MPI 하이브리드 병렬화의 동일한 이점을 활용하여 워크스테이션 및 노트북에서 실행할 수 있습니다.
솔버 성능 개선
멀티 소켓 워크스테이션
멀티 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 통해 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있는 성능 이점을 볼 수 있습니다.
낮은 수준의 루틴으로 벡터화 및 메모리 액세스 개선
대부분의 테스트 사례에서 10%에서 20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 있었습니다.
정제된 체적 대류 안정성 한계
시간 단계 안정성 한계는 모델 런타임의 주요 동인입니다. 2022R2에서는 새로운 시간 단계 안정성 한계인 3D 대류 안정성 한계를 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 30% 정도의 일반적인 속도 향상을 보여주었습니다.
압력 솔버 프리 컨디셔너
경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 어려운 경우 2022R2에서는 모델이 너무 많이 반복될 때 FLOW-3D가 자동으로 새로운 프리 컨디셔너를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임이 1.9배에서 335배까지 빨라졌습니다!
점탄성 유체에 대한 로그 형태 텐서 방법
점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수치에 효과적입니다.
활성 시뮬레이션 제어 확장
능동 시뮬레이션 제어 기능은 연속 주조 및 적층 제조 응용 프로그램과 주조 및 기타 여러 열 관리 응용 프로그램에 사용되는 냉각 채널에 일반적으로 사용되는 팬텀 개체를 포함하도록 확장되었습니다.
연행 공기 기능 개선
디퓨저 및 유사한 산업용 기포 흐름 응용 분야의 경우 이제 대량 공급원을 사용하여 물 기둥에 공기를 도입할 수 있습니다. 또한 혼입 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었으며 매우 낮은 공기 농도에 대한 모델 정확도가 향상되었습니다.
Pan Lu1 , Zhang Cheng-Lin2,6,Wang Liang3, Liu Tong4 and Liu Jiang-lin5 1 Aviation and Materials College, Anhui Technical College of Mechanical and Electrical Engineering, Wuhu Anhui 241000, People’s Republic of China 2 School of Engineering Science, University of Science and Technology of China, Hefei Anhui 230026, People’s Republic of China 3 Anhui Top Additive Manufacturing Technology Co., Ltd., Wuhu Anhui 241300, People’s Republic of China 4 Anhui Chungu 3D Printing Institute of Intelligent Equipment and Industrial Technology, Anhui 241300, People’s Republic of China 5 School of Mechanical and Transportation Engineering, Taiyuan University of Technology, Taiyuan Shanxi 030024, People’s Republic of China 6 Author to whom any correspondence should be addressed. E-mail: ahjdpanlu@126.com, jiao__zg@126.com, ahjdjxx001@126.com,tongliu1988@126.com and liujianglin@tyut.edu.cn
선택적 레이저 용융(SLM)은 열 전달, 용융, 상전이, 기화 및 물질 전달을 포함하는 복잡한 동적 비평형 프로세스인 금속 적층 제조(MAM)에서 가장 유망한 기술 중 하나가 되었습니다. 용융 풀의 특성(구조, 온도 흐름 및 속도 흐름)은 SLM의 최종 성형 품질에 결정적인 영향을 미칩니다. 이 연구에서는 선택적 레이저 용융 AlCu5MnCdVA 합금의 용융 풀 구조, 온도 흐름 및 속도장을 연구하기 위해 수치 시뮬레이션과 실험을 모두 사용했습니다.
그 결과 용융풀의 구조는 다양한 형태(깊은 오목 구조, 이중 오목 구조, 평면 구조, 돌출 구조 및 이상적인 평면 구조)를 나타냈으며, 용융 풀의 크기는 약 132 μm × 107 μm × 50 μm였습니다. : 용융풀은 초기에는 여러 구동력에 의해 깊이 15μm의 깊은 오목형상이었으나, 성형 후기에는 장력구배에 의해 높이 10μm의 돌출형상이 되었다. 용융 풀 내부의 금속 흐름은 주로 레이저 충격력, 금속 액체 중력, 표면 장력 및 반동 압력에 의해 구동되었습니다.
AlCu5MnCdVA 합금의 경우, 금속 액체 응고 속도가 매우 빠르며(3.5 × 10-4 S), 가열 속도 및 냉각 속도는 각각 6.5 × 107 K S-1 및 1.6 × 106 K S-1 에 도달했습니다. 시각적 표준으로 표면 거칠기를 선택하고, 낮은 레이저 에너지 AlCu5MnCdVA 합금 최적 공정 매개변수 창을 수치 시뮬레이션으로 얻었습니다: 레이저 출력 250W, 부화 공간 0.11mm, 층 두께 0.03mm, 레이저 스캔 속도 1.5m s-1 .
또한, 실험 프린팅과 수치 시뮬레이션과 비교할 때, 용융 풀의 폭은 각각 약 205um 및 약 210um이었고, 인접한 두 용융 트랙 사이의 중첩은 모두 약 65um이었다. 결과는 수치 시뮬레이션 결과가 실험 인쇄 결과와 기본적으로 일치함을 보여 수치 시뮬레이션 모델의 정확성을 입증했습니다.
Selective Laser Melting (SLM) has become one of the most promising technologies in Metal Additive Manufacturing (MAM), which is a complex dynamic non-equilibrium process involving heat transfer, melting, phase transition, vaporization and mass transfer. The characteristics of the molten pool (structure, temperature flow and velocity flow) have a decisive influence on the final forming quality of SLM. In this study, both numerical simulation and experiments were employed to study molten pool structure, temperature flow and velocity field in Selective Laser Melting AlCu5MnCdVA alloy. The results showed the structure of molten pool showed different forms(deep-concave structure, double-concave structure, plane structure, protruding structure and ideal planar structure), and the size of the molten pool was approximately 132 μm × 107 μm × 50 μm: in the early stage, molten pool was in a state of deep-concave shape with a depth of 15 μm due to multiple driving forces, while a protruding shape with a height of 10 μm duo to tension gradient in the later stages of forming. The metal flow inside the molten pool was mainly driven by laser impact force, metal liquid gravity, surface tension and recoil pressure. For AlCu5MnCdVA alloy, metal liquid solidification speed was extremely fast(3.5 × 10−4 S), the heating rate and cooling rate reached 6.5 × 107 K S−1 and 1.6 × 106 K S−1 , respectively. Choosing surface roughness as a visual standard, low-laser energy AlCu5MnCdVA alloy optimum process parameters window was obtained by numerical simulation: laser power 250 W, hatching space 0.11 mm, layer thickness 0.03 mm, laser scanning velocity 1.5 m s−1 . In addition, compared with experimental printing and numerical simulation, the width of the molten pool was about 205 um and about 210 um, respectively, and overlapping between two adjacent molten tracks was all about 65 um. The results showed that the numerical simulation results were basically consistent with the experimental print results, which proved the correctness of the numerical simulation model.
References
[1] Cuiyun H 2008 Phase diagram determination and thermodynamic study of Al–Cu–Mn, Al–Cu–Si, Al–Mg–Ni and Ni–Ti–Si systems Central South University [2] Zhanfei Z 2017 Study on theta phase segregation and room temperature properties of high strength cast Al–Cu–Mn alloy Lanzhou University of Technology [3] Nie X et al 2018 Analysis of processing parameters and characteristics of selective laser melted high strength Al–Cu–Mg alloys: from single tracks to cubic samplesJ. Mater. Process. Technol. 256 69–77 [4] Shenping Y et al 2017 Laser absorptance measurement of commonly used metal materials in laser additive manufacturing technology Aviation Manufacturing Technology 12 23–9 [5] Wenqing W 2007 Relationship between cooling rate and grain size of AlCu5MnCdVA alloy Harbin University of Technology [6] Majeed M, Vural M, Raja S and Bilal Naim Shaikh M 2019 Finite element analysis of thermal behavior in maraging steel during SLM process Optik 208 113–24 [7] Khairallah S A, Anderson A T, Rubenchik A and King W E 2016 Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones Acta Mater. 108 36–45 [8] Bo C, Zhiyu X, Quanquan Z, Yuanbiao W, Liping W and Jin C 2020 Process optimization and microstructure and properties of SLM forming Cu6AlNiSnInCe imitation gold alloy Chin. J. Nonferr. Met. 30 372–82 [9] Li W 2012 Research on performance of metal parts formed by selective laser melting Huazhong University of Science and Technology [10] Yu Q 2013 The influence of different laser heat sources on the surface shape of the molten pool in laser cladding Surf. Technol. 42 40–3
[11] Xianfeng J, Xiangchen M, Rongwei S, Xigen Y and Ming Y 2015 Research on the influence of material state change on temperature field in SLM processing Applied Laser 35 155–9 [12] Körner C, Attar E and Heinl P 2011 Mesoscopic simulation of selective beam melting processesJ. Mater. Process. Technol. 211 978–87 [13] Yadroitsev I, Gusarov A, Yadroitsava I and Smurov I 2010 Single track formation in selective laser melting of metal powdersJ. Mater. Process. Technol. 210 1624–31 [14] King W, Anderson A T, Ferencz R M, Hodge N E, Kamath C and Khairallah S A 2014 Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory Mater. Sci. Technol. 31 957–68 [15] Hussein A, Hao L, Yan C and Everson R 2013 Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting Materials & Design (1980–2015) 52 638–47 [16] Qiu C, Panwisawas C, Ward M, Basoalto H C, Brooks J W and Attallah M M 2015 On the role of melt flow into the surface structure and porosity development during selective laser melting Acta Mater. 96 72–9 [17] Weihao Y, Hui C and Qingsong W 2020 Thermodynamic behavior of laser selective melting molten pool under the action of recoil pressure Journal of Mechanical Engineering 56 213–9 [18] Weijuan Y 2019 Numerical simulation of melt pool temperature field and morphology evolution during laser selective melting process Xi’an University of Technology [19] Genwang W 2017 Research on the establishment of laser heat source model based on energy distribution and its simulation application Harbin Institute of Technology [20] FLOW-3D 2017 User Manual (USA: FLOW SCIENCE) [21] Hirt C and Nichols B 1981 Volume of fluid (VOF) method for the dynamics of free boundariesJ. Comput. Phys. 39 201–25 [22] Hu Z, Zhang H, Zhu H, Xiao Z, Nie X and Zeng X 2019 Microstructure, mechanical properties and strengthening mechanisms of AlCu5MnCdVA aluminum alloy fabricated by selective laser melting Materials Science and Engineering: A 759 154–66 [23] Ketai H, Liu Z and Lechang Y 2020 Simulation of temperature field, microstructure and mechanical properties of 316L stainless steel in selected laser melting Progress in Laser and Optoelectronics 9 1–18 [24] Cao L 2020 Workpiece-scale numerical simulations of SLM molten pool dynamic behavior of 316L stainless steel Comput. Math. Appl. 4 22–34 [25] Dening Z, Yongping L, Tinglu H and Junyi S 2000 Numerical study of fluid flow and heat transfer in molten pool under the condition of moving heat source J. Met. 4 387–90 [26] Chengyun C, Cui F and Wenlong Z 2018 The effect of Marangoni flow on the thermal behavior and melt flow behavior of laser cladding Applied Laser 38 409–16 [27] Peiying B and Enhuai Y 2020 The effect of laser power on the morphology and residual stress of the molten pool of metal laser selective melting Progress in Laser and Optoelectronics 7 1–12 http://kns.cnki.net/kcms/detail/31.1690.TN.20190717.0933.032.html [28] Zhen L, Dongyun Z, Zhe F and Chengjie W 2017 Numerical simulation of the influence of overlap rate on the forming quality of Inconel 718 alloy by selective laser melting processing Applied Laser 37 187–93 [29] Wei W, Qi L, Guang Y, Lanyun Q and Xiong X 2015 Numerical simulation of electromagnetic field, temperature field and flowfield of laser melting pool under the action of electromagnetic stirring China Laser 42 48–55 [30] Hu Y, He X, Yu G and Zhao S 2016 Capillary convection in pulsed—butt welding of miscible dissimilar couple Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231 2429–40 [31] Li R 2010 Research on the key basic problems of selective laser melting forming of metal powder Huazhong University of Science and Technology [32] Zijue T, Weiwei L, Zhaorui Y, Hao W and Hongchao Z 2019 Study on the shape evolution behavior of metal laser melting deposition based on molten pool dynamic characteristicsJournal of Mechanical Engineering 55 39–47 [33] Pan L, Cheng-Lin Z, Hai-Yi L, Liang W and Tong L 2020 A new two-step selective laser remelting of 316L stainless steel: process, density, surface roughness, mechanical properties, microstructure Mater. Res. Express 7 056503 [34] Pan L, Cheng-Lin Z, Hai-Yi L, Jiang H, Tong L and Liang W 2019 The influence and optimization of forming process parameters of 316L stainless steel prepared by laser melting on the density Forging Technology 44 103–9
에피택셜 과 등축 응고 사이의 경쟁은 적층 제조에서 실행되는 레이저 용융 동안 CMSX-4 단결정 초합금에서 조사되었습니다. 단일 트랙 레이저 스캔은 레이저 출력과 스캐닝 속도의 여러 조합으로 방향성 응고된 CMSX-4 합금의 분말 없는 표면에서 수행되었습니다. EBSD(Electron Backscattered Diffraction) 매핑은 새로운 방향의 식별을 용이하게 합니다. 영역 분율 및 공간 분포와 함께 융합 영역 내에서 핵을 형성한 “스트레이 그레인”은 충실도가 높은 전산 유체 역학 시뮬레이션을 사용하여 용융 풀 내의 온도 및 유체 속도 필드를 모두 추정했습니다. 이 정보를 핵 생성 모델과 결합하여 용융 풀에서 핵 생성이 발생할 확률이 가장 높은 위치를 결정했습니다. 금속 적층 가공의 일반적인 경험에 따라 레이저 용융 트랙의 응고된 미세 구조는 에피택셜 입자 성장에 의해 지배됩니다. 더 높은 레이저 스캐닝 속도와 더 낮은 출력이 일반적으로 흩어진 입자 감소에 도움이 되지만,그럼에도 불구하고 길쭉한 용융 풀에서 흩어진 입자가 분명했습니다.
The competition between epitaxial vs. equiaxed solidification has been investigated in CMSX-4 single crystal superalloy during laser melting as practiced in additive manufacturing. Single-track laser scans were performed on a powder-free surface of directionally solidified CMSX-4 alloy with several combinations of laser power and scanning velocity. Electron backscattered diffraction (EBSD) mapping facilitated identification of new orientations, i.e., “stray grains” that nucleated within the fusion zone along with their area fraction and spatial distribution. Using high-fidelity computational fluid dynamics simulations, both the temperature and fluid velocity fields within the melt pool were estimated. This information was combined with a nucleation model to determine locations where nucleation has the highest probability to occur in melt pools. In conformance with general experience in metals additive manufacturing, the as-solidified microstructure of the laser-melted tracks is dominated by epitaxial grain growth; nevertheless, stray grains were evident in elongated melt pools. It was found that, though a higher laser scanning velocity and lower power are generally helpful in the reduction of stray grains, the combination of a stable keyhole and minimal fluid velocity further mitigates stray grains in laser single tracks.
Introduction
니켈 기반 초합금은 고온에서 긴 노출 시간 동안 높은 인장 강도, 낮은 산화 및 우수한 크리프 저항성을 포함하는 우수한 특성의 고유한 조합으로 인해 가스 터빈 엔진 응용 분야에서 광범위하게 사용됩니다. CMSX-4는 특히 장기 크리프 거동과 관련하여 초고강도의 2세대 레늄 함유 니켈 기반 단결정 초합금입니다. [ 1 , 2 ]입계의 존재가 크리프를 가속화한다는 인식은 가스 터빈 엔진의 고온 단계를 위한 단결정 블레이드를 개발하게 하여 작동 온도를 높이고 효율을 높이는 데 기여했습니다. 이러한 구성 요소는 사용 중 마모될 수 있습니다. 즉, 구성 요소의 무결성을 복원하고 단결정 미세 구조를 유지하는 수리 방법을 개발하기 위한 지속적인 작업이 있었습니다. [ 3 , 4 , 5 ]
적층 제조(AM)가 등장하기 전에는 다양한 용접 공정을 통해 단결정 초합금에 대한 수리 시도가 수행되었습니다. 균열 [ 6 , 7 ] 및 흩어진 입자 [ 8 , 9 ] 와 같은 심각한 결함 이 이 수리 중에 자주 발생합니다. 일반적으로 “스트레이 그레인”이라고 하는 응고 중 모재의 방향과 다른 결정학적 방향을 가진 새로운 그레인의 형성은 니켈 기반 단결정 초합금의 수리 중 유해한 영향으로 인해 중요한 관심 대상입니다. [ 3 , 10 ]결과적으로 재료의 단결정 구조가 손실되고 원래 구성 요소에 비해 기계적 특성이 손상됩니다. 이러한 흩어진 입자는 특정 조건에서 에피택셜 성장을 대체하는 등축 응고의 시작에 해당합니다.
떠돌이 결정립 형성을 완화하기 위해 이전 작업은 용융 영역(FZ) 내에서 응고하는 동안 떠돌이 결정립 형성에 영향을 미치는 수지상 응고 거동 및 처리 조건을 이해하는 데 중점을 두었습니다. [ 11 , 12 , 13 , 14 ] 연구원들은 단결정 합금의 용접 중에 표류 결정립 형성에 대한 몇 가지 가능한 메커니즘을 제안했습니다. [ 12 , 13 , 14 , 15 ]응고 전단에 앞서 국부적인 구성 과냉각은 이질적인 핵 생성 및 등축 결정립의 성장을 유발할 수 있습니다. 또한 용융 풀에서 활발한 유체 흐름으로 인해 발생하는 덴드라이트 조각화는 용융 풀 경계 근처에서 새로운 결정립을 형성할 수도 있습니다. 두 메커니즘 모두에서, 표류 결정립 형성은 핵 생성 위치에 의존하며, 차이점은 수상 돌기 조각화는 수상 돌기 조각이 핵 생성 위치로 작용한다는 것을 의미하는 반면 다른 메커니즘은 재료, 예 를 들어 산화물 입자에서 발견되는 다른 유형의 핵 생성 위치를 사용한다는 것을 의미합니다. 잘 알려진 바와 같이, 많은 주물에 대한 반대 접근법은 TiB와 같은 핵제의 도입을 통해 등축 응고를 촉진하는 것입니다.22알루미늄 합금에서.
헌법적 과냉 메커니즘에서 Hunt [ 11 ] 는 정상 상태 조건에서 기둥에서 등축으로의 전이(CET)를 설명하는 모델을 개발했습니다. Gaumann과 Kurz는 Hunt의 모델을 수정하여 단결정이 응고되는 동안 떠돌이 결정립이 핵을 생성하고 성장할 수 있는 정도를 설명했습니다. [ 12 , 14 ] 이후 연구에서 Vitek은 Gaumann의 모델을 개선하고 출력 및 스캐닝 속도와 같은 용접 조건의 영향에 대한 보다 자세한 분석을 포함했습니다. Vitek은 또한 실험 및 모델링 기술을 통해 표류 입자 형성에 대한 기판 방향의 영향을 포함했습니다. [ 3 , 10 ]일반적으로 높은 용접 속도와 낮은 출력은 표류 입자의 양을 최소화하고 레이저 용접 공정 중 에피택셜 단결정 성장을 최대화하는 것으로 나타났습니다. [ 3,10 ] 그러나 Vitek은 덴드라이트 조각화를 고려하지 않았으며 그의 연구는 불균질 핵형성이 레이저 용접된 CMSX -4 단결정 합금에서 표류 결정립 형성을 이끄는 주요 메커니즘임을 나타냅니다. 현재 작업에서 Vitek의 수치적 방법이 채택되고 금속 AM의 급속한 특성의 더 높은 속도와 더 낮은 전력 특성으로 확장됩니다.
AM을 통한 금속 부품 제조 는 지난 10년 동안 급격한 인기 증가를 목격했습니다. [ 16 ] EBM(Electron Beam Melting)에 의한 CMSX-4의 제작 가능성은 자주 조사되었으나 [ 17 , 18 , 19 , 20 , 21 ] CMSX의 제조 및 수리에 대한 조사는 매우 제한적이었다. – 4개의 단결정 구성요소는 레이저 분말 베드 융합(LPBF)을 사용하며, AM의 인기 있는 하위 집합으로, 특히 표류 입자 형성을 완화하는 메커니즘과 관련이 있습니다. [ 22 ]이러한 조사 부족은 주로 이러한 합금 시스템과 관련된 처리 문제로 인해 발생합니다. [ 2 , 19 , 22 , 23 , 24 ] 공정 매개변수( 예: 열원 전력, 스캐닝 속도, 스폿 크기, 예열 온도 및 스캔 전략)의 엄격한 제어는 완전히 조밀한 부품을 만들고 유지 관리할 수 있도록 하는 데 필수적입니다. 단결정 미세구조. [ 25 ] EBM을 사용하여 단결정 합금의 균열 없는 수리가 현재 가능하지만 [ 19 , 24 ] 표류 입자를 생성하지 않는 수리는 쉽게 달성할 수 없습니다.[ 23 , 26 ]
이 작업에서 LPBF를 대표하는 조건으로 레이저 용융을 사용하여 단결정 CMSX-4에서 표류 입자 완화를 조사했습니다. LPBF는 스캐닝 레이저 빔을 사용하여 금속 분말의 얇은 층을 기판에 녹이고 융합합니다. 층별 증착에서 레이저 빔의 사용은 급격한 온도 구배, 빠른 가열/냉각 주기 및 격렬한 유체 흐름을 경험하는 용융 풀을 생성 합니다 . 이것은 일반적으로 부품에 결함을 일으킬 수 있는 매우 동적인 물리적 현상으로 이어집니다. [ 28 , 29 , 30 ] 레이저 유도 키홀의 동역학( 예:, 기화 유발 반동 압력으로 인한 위상 함몰) 및 열유체 흐름은 AM 공정에서 응고 결함과 강하게 결합되고 관련됩니다. [ 31 , 32 , 33 , 34 ] 기하 구조의 급격한 변화가 발생하기 쉬운 불안정한 키홀은 다공성, 볼링, 스패터 형성 및 흔하지 않은 미세 구조 상을 포함하는 유해한 물리적 결함을 유발할 수 있습니다. 그러나 키홀 진화와 유체 흐름은 자연적으로 다음을 통해 포착 하기 어렵 습니다 .전통적인 사후 특성화 기술. 고충실도 수치 모델링을 활용하기 위해 이 연구에서는 전산유체역학(CFD)을 적용하여 표면 아래의 레이저-물질 상호 작용을 명확히 했습니다. [ 36 ] 이것은 응고된 용융물 풀의 단면에 대한 오랫동안 확립된 사후 특성화와 비교하여 키홀 및 용융물 풀 유체 흐름 정량화를 실행합니다.
CMSX-4 구성 요소의 레이저 기반 AM 수리 및 제조를 위한 적절한 절차를 개발하기 위해 적절한 공정 창을 설정하고 응고 중 표류 입자 형성 경향에 대한 예측 기능을 개발하는 것부터 시작합니다. 다중 합금에 대한 단일 트랙 증착은 분말 층이 있거나 없는 AM 공정에서 용융 풀 형상 및 미세 구조의 정확한 분석을 제공하는 것으로 나타났습니다. [ 37 , 38 , 39 ]따라서 본 연구에서는 CMSX-4의 응고 거동을 알아보기 위해 분말을 사용하지 않는 단일 트랙 레이저 스캔 실험을 사용하였다. 이는 CMSX-4 단결정의 LPBF 제조를 위한 예비 실험 지침을 제공합니다. 또한 응고 모델링은 기존 용접에서 LPBF와 관련된 급속 용접으로 확장되어 표류 입자 감소를 위한 최적의 레이저 용융 조건을 식별했습니다. 가공 매개변수 최적화를 위한 추가 지침을 제공하기 위해 용융물 풀의 매우 동적인 유체 흐름을 모델링했습니다.
재료 및 방법
단일 트랙 실험
방전 가공(EDM)을 사용하여 CMSX-4 방향성 응고 단결정 잉곳으로부터 샘플을 제작했습니다. 샘플의 최종 기하학은 치수 20의 직육면체 형태였습니다.××20××6mm. 6개 중 하나⟨ 001 ⟩⟨001⟩잉곳의 결정학적 방향은 레이저 트랙이 이 바람직한 성장 방향을 따라 스캔되도록 절단 표면에 수직으로 위치했습니다. 단일 레이저 용융 트랙은 EOS M290 기계를 사용하여 분말이 없는 샘플 표면에 만들어졌습니다. 이 기계는 최대 출력 400W, 가우시안 빔 직경 100의 이터븀 파이버 레이저가 장착된 LPBF 시스템입니다. μμ초점에서 m. 실험 중에 직사각형 샘플을 LPBF 기계용 맞춤형 샘플 홀더의 포켓에 끼워 표면을 동일한 높이로 유지했습니다. 이 맞춤형 샘플 홀더에 대한 자세한 내용은 다른 곳에서 설명합니다. 실험 은 아르곤 퍼지 분위기에서 수행되었으며 예열은 적용되지 않았습니다 . 단일 트랙 레이저 용융 실험은 다양한 레이저 출력(200~370W)과 스캔 속도(0.4~1.4m/s)에서 수행되었습니다.
성격 묘사
레이저 스캐닝 후, 레이저 빔 스캐닝 방향에 수직인 평면에서 FZ를 통해 다이아몬드 톱을 사용하여 샘플을 절단했습니다. 그 후, 샘플을 장착하고 220 그릿 SiC 페이퍼로 시작하여 콜로이드 실리카 현탁액 광택제로 마무리하여 자동 연마했습니다. 결정학적 특성화는 20kV의 가속 전압에서 TESCAN MIRA 3XMH 전계 방출 주사 전자 현미경(SEM)에서 수행되었습니다. EBSD 지도는0.4μm _0.4μ미디엄단계 크기. Bruker 시스템을 사용하여 EBSD 데이터를 정리하고 분석했습니다. EBSD 클린업은 그레인을 접촉시키기 위한 그레인 확장 루틴으로 시작한 다음 인덱스되지 않은 회절 패턴과 관련된 검은색 픽셀을 해결하기 위해 이웃 방향 클린업 루틴으로 이어졌습니다. 용융 풀 형태를 분석하기 위해 단면을 광학 현미경으로 분석했습니다. 광학 특성화의 대비를 향상시키기 위해 10g CuSO로 구성된 Marbles 시약의 변형으로 샘플을 에칭했습니다.44, 50mL HCl 및 70mL H22영형.
응고 모델링
구조적 과냉 기준에 기반한 응고 모델링을 수행하여 표유 입자의 성향 및 분포에 대한 가공 매개변수의 영향을 평가했습니다. 이 분석 모델링 접근 방식에 대한 자세한 내용은 이전 작업에서 제공됩니다. [ 3 , 10 ] 참고문헌 3 에 기술된 바와 같이 , 기본 재료의 결정학적 배향을 가진 용융 풀에서 총 표유 입자 면적 분율의 변화는 최소이므로 기본 재료 배향의 영향은 이 작업에서 고려되지 않았습니다. 우리의 LPBF 결과를 이전 작업과 비교하기 위해 Vitek의 작업에서 사용된 수학적으로 간단한 Rosenthal 방정식 [ 3 ]또한 레이저 매개변수의 함수로 용융 풀의 모양과 FZ의 열 조건을 계산하기 위한 기준으로 여기에서 채택되었습니다. Rosenthal 솔루션은 열이 일정한 재료 특성을 가진 반무한 판의 정상 상태 점원을 통해서만 전도를 통해 전달된다고 가정하며 일반적으로 다음과 같이 표현 됩니다 [ 40 , 41 ] .
티=티0+η피2 파이케이엑스2+와이2+지2———-√경험치[- 브이(엑스2+와이2+지2———-√− 엑스 )2α _] ,티=티0+η피2파이케이엑스2+와이2+지2경험치[-V(엑스2+와이2+지2-엑스)2α],(1)
여기서 T 는 온도,티0티0본 연구에서 313K( 즉 , EOS 기계 챔버 온도)로 설정된 주변 온도, P 는 레이저 빔 파워, V 는 레이저 빔 스캐닝 속도,ηη는 레이저 흡수율, k 는 열전도율,αα베이스 합금의 열확산율입니다. x , y , z 는 각각 레이저 스캐닝 방향, 가로 방향 및 세로 방향의 반대 방향과 정렬된 방향입니다 . 이 직교 좌표는 참조 3 의 그림 1에 있는 시스템을 따랐습니다 . CMSX-4에 대한 고상선 온도(1603K)와 액상선 온도(1669K)의 등온선 평균으로 응고 프런트( 즉 , 고체-액체 계면)를 정의했습니다. [ 42 , 43 , 44 ] 시뮬레이션에 사용된 열물리적 특성은 표 I 에 나열되어 있습니다.표 I CMSX-4의 응고 모델링에 사용된 열물리적 특성
어디θθ는 스캔 방향과 응고 전면의 법선 방향( 즉 , 최대 열 흐름 방향) 사이의 각도입니다. 이 연구의 용접 조건과 같은 제한된 성장에서 수지상 응고 전면은 고체-액체 등온선의 속도로 성장하도록 강제됩니다.V티V티. [ 46 ]
응고 전선이 진행되기 전에 새로 핵 생성된 입자의 국지적 비율ΦΦ, 액체 온도 구배 G 에 의해 결정 , 응고 선단 속도V티V티및 핵 밀도N0N0. 고정된 임계 과냉각에서 모든 입자가 핵형성된다고 가정함으로써△티N△티N, 등축 결정립의 반경은 결정립이 핵 생성을 시작하는 시점부터 주상 전선이 결정립에 도달하는 시간까지의 성장 속도를 통합하여 얻습니다. 과냉각으로 대체 시간d (ΔT_) / dt = – _V티G디(△티)/디티=-V티G, 열 구배 G 사이의 다음 관계 , 등축 입자의 국부적 부피 분율ΦΦ, 수상 돌기 팁 과냉각ΔT _△티, 핵 밀도N0N0, 재료 매개변수 n 및 핵생성 과냉각△티N△티N, Gäumann 외 여러분 에 의해 파생되었습니다 . [ 12 , 14 ] Hunt의 모델 [ 11 ] 의 수정에 기반함 :
계산을 단순화하기 위해 덴드라이트 팁 과냉각을 전적으로 구성 과냉각의 것으로 추정합니다.△티씨△티씨, 멱법칙 형식으로 근사화할 수 있습니다.△티씨= ( _V티)1 / 엔△티씨=(ㅏV티)1/N, 여기서 a 와 n 은 재료 종속 상수입니다. CMSX-4의 경우 이 값은a = 1.25 ×106ㅏ=1.25×106 s K 3.4m− 1-1,엔 = 3.4N=3.4, 그리고N0= 2 ×1015N0=2×1015미디엄− 3,-삼,참고문헌 3 에 의해 보고된 바와 같이 .△티N△티N2.5K이며 보다 큰 냉각 속도에서 응고에 대해 무시할 수 있습니다.106106 K/s. 에 대한 표현ΦΦ위의 방정식을 재배열하여 해결됩니다.
As proposed by Hunt,[11] a value of Φ≤0.66Φ≤0.66 pct represents fully columnar epitaxial growth condition, and, conversely, a value of Φ≥49Φ≥49 pct indicates that the initial single crystal microstructure is fully replaced by an equiaxed microstructure. To calculate the overall stray grain area fraction, we followed Vitek’s method by dividing the FZ into roughly 19 to 28 discrete parts (depending on the length of the melt pool) of equal length from the point of maximum width to the end of melt pool along the x direction. The values of G and vTvT were determined at the center on the melt pool boundary of each section and these values were used to represent the entire section. The area-weighted average of ΦΦ over these discrete sections along the length of melt pool is designated as Φ¯¯¯¯Φ¯, and is given by:
Φ¯¯¯¯=∑kAkΦk∑kAk,Φ¯=∑kAkΦk∑kAk,
(6)
where k is the index for each subsection, and AkAk and ΦkΦk are the areas and ΦΦ values for each subsection. The summation is taken over all the sections along the melt pool. Vitek’s improved model allows the calculation of stray grain area fraction by considering the melt pool geometry and variations of G and vTvT around the tail end of the pool.
수년에 걸쳐 용융 풀 현상 모델링의 정확도를 개선하기 위해 많은 고급 수치 방법이 개발되었습니다. 우리는 FLOW-3D와 함께 고충실도 CFD를 사용했습니다. FLOW-3D는 여러 물리 모델을 통합하는 상용 FVM(Finite Volume Method)입니다. [ 47 , 48 ] CFD는 유체 운동과 열 전달을 수치적으로 시뮬레이션하며 여기서 사용된 기본 물리 모델은 레이저 및 표면력 모델이었습니다. 레이저 모델에서는 레이 트레이싱 기법을 통해 다중 반사와 프레넬 흡수를 구현합니다. [ 36 ]먼저, 레이저 빔은 레이저 빔에 의해 조명되는 각 그리드 셀을 기준으로 여러 개의 광선으로 이산화됩니다. 그런 다음 각 입사 광선에 대해 입사 벡터가 입사 위치에서 금속 표면의 법선 벡터와 정렬될 때 에너지의 일부가 금속에 의해 흡수됩니다. 흡수율은 Fresnel 방정식을 사용하여 추정됩니다. 나머지 에너지는 반사광선 에 의해 유지되며 , 반사광선은 재료 표면에 부딪히면 새로운 입사광선으로 처리됩니다. 두 가지 주요 힘이 액체 금속 표면에 작용하여 자유 표면을 변형시킵니다. 금속의 증발에 의해 생성된 반동 압력은 증기 억제를 일으키는 주요 힘입니다. 본 연구에서 사용된 반동 압력 모델은피아르 자형= 특급 _{ B ( 1- _티V/ 티) }피아르 자형=ㅏ경험치{비(1-티V/티)}, 어디피아르 자형피아르 자형는 반동압력, A 와 B 는 재료의 물성에 관련된 계수로 각각 75와 15이다.티V티V는 포화 온도이고 T 는 키홀 벽의 온도입니다. 표면 흐름 및 키홀 형성의 다른 원동력은 표면 장력입니다. 표면 장력 계수는 Marangoni 흐름을 포함하기 위해 온도의 선형 함수로 추정되며,σ =1.79-9.90⋅10− 4( 티− 1654케이 )σ=1.79-9.90⋅10-4(티-1654년케이)엔엠− 1-1. [ 49 ] 계산 영역은 베어 플레이트의 절반입니다(2300 μμ미디엄××250 μμ미디엄××500 μμm) xz 평면 에 적용된 대칭 경계 조건 . 메쉬 크기는 8입니다. μμm이고 시간 단계는 0.15입니다. μμs는 계산 효율성과 정확성 간의 균형을 제공합니다.
결과 및 논의
용융 풀 형태
이 작업에 사용된 5개의 레이저 파워( P )와 6개의 스캐닝 속도( V )는 서로 다른 29개의 용융 풀을 생성했습니다.피- 브이피-V조합. P 와 V 값이 가장 높은 것은 그림 1 을 기준으로 과도한 볼링과 관련이 있기 때문에 본 연구에서는 분석하지 않았다 .
단일 트랙 용융 풀은 그림 1 과 같이 형상에 따라 네 가지 유형으로 분류할 수 있습니다 [ 39 ] : (1) 전도 모드(파란색 상자), (2) 키홀 모드(빨간색), (3) 전환 모드(마젠타), (4) 볼링 모드(녹색). 높은 레이저 출력과 낮은 스캐닝 속도의 일반적인 조합인 키홀 모드에서 용융물 풀은 일반적으로 너비/깊이( W / D ) 비율이 0.5보다 훨씬 큰 깊고 가느다란 모양을 나타냅니다 . 스캐닝 속도가 증가함에 따라 용융 풀이 얕아져 W / D 가 약 0.5인 반원형 전도 모드 용융 풀을 나타냅니다. W / D _전환 모드 용융 풀의 경우 1에서 0.5 사이입니다. 스캐닝 속도를 1200 및 1400mm/s로 더 높이면 충분히 큰 캡 높이와 볼링 모드 용융 풀의 특징인 과도한 언더컷이 발생할 수 있습니다.
힘과 속도의 함수로서의 용융 풀 깊이와 너비는 각각 그림 2 (a)와 (b)에 표시되어 있습니다. 용융 풀 폭은 기판 표면에서 측정되었습니다. 그림 2 (a)는 깊이가 레이저 출력과 매우 선형적인 관계를 따른다는 것을 보여줍니다. 속도가 증가함에 따라 깊이 대 파워 곡선의 기울기는 꾸준히 감소하지만 더 높은 속도 곡선에는 약간의 겹침이 있습니다. 이러한 예상치 못한 중첩은 종종 용융 풀 형태의 동적 변화를 유발하는 유체 흐름의 영향과 레이저 스캔당 하나의 이미지만 추출되었다는 사실 때문일 수 있습니다. 이러한 선형 동작은 그림 2 (b) 의 너비에 대해 명확하지 않습니다 . 그림 2(c)는 선형 에너지 밀도 P / V 의 함수로서 용융 깊이와 폭을 보여줍니다 . 선형 에너지 밀도는 퇴적물의 단위 길이당 에너지 투입량을 측정한 것입니다. [ 50 ] 용융 풀 깊이는 에너지 밀도에 따라 달라지며 너비는 더 많은 분산을 나타냅니다. 동일한 에너지 밀도가 준공 부품의 용융 풀, 미세 구조 또는 속성에서 반드시 동일한 유체 역학을 초래하지는 않는다는 점에 유의하는 것이 중요합니다. [ 50 ]
레이저 흡수율 평가
레이저 흡수율은 LPBF 조건에서 재료 및 가공 매개변수에 따라 크게 달라진다는 것은 잘 알려져 있습니다. [ 31 , 51 , 52 ] 적분구를 이용한 전통적인 흡수율의 직접 측정은 일반적으로 높은 비용과 구현의 어려움으로 인해 쉽게 접근할 수 없습니다. [ 51 ] 그 외 . [ 39 ] 전도 모드 용융 풀에 대한 Rosenthal 방정식을 기반으로 경험적 레이저 흡수율 모델을 개발했지만 기본 가정으로 인해 키홀 용융 풀에 대한 정확한 예측을 제공하지 못했습니다. [ 40 ] 최근 간외 . [ 53 ] Ti–6Al–4V에 대한 30개의 고충실도 다중 물리 시뮬레이션 사례를 사용하여 레이저 흡수에 대한 스케일링 법칙을 확인했습니다. 그러나 연구 중인 특정 재료에 대한 최소 흡수(평평한 용융 표면의 흡수율)에 대한 지식이 필요하며 이는 CMSX-4에 대해 알려지지 않았습니다. 다양한 키홀 모양의 용융 풀에 대한 레이저 흡수의 정확한 추정치를 얻기가 어렵기 때문에 상한 및 하한 흡수율로 분석 시뮬레이션을 실행하기로 결정했습니다. 깊은 키홀 모양의 용융 풀의 경우 대부분의 빛을 가두는 키홀 내 다중 반사로 인해 레이저 흡수율이 0.8만큼 높을 수 있습니다. 이것은 기하학적 현상이며 기본 재료에 민감하지 않습니다. [ 51, 52 , 54 ] 따라서 본 연구에서는 흡수율의 상한을 0.8로 설정하였다. 참고 문헌 51 에 나타낸 바와 같이 , 전도 용융 풀에 해당하는 최저 흡수율은 약 0.3이었으며, 이는 이 연구에서 합리적인 하한 값입니다. 따라서 레이저 흡수율이 스트레이 그레인 형성에 미치는 영향을 보여주기 위해 흡수율 값을 0.55 ± 0.25로 설정했습니다. Vitek의 작업에서는 1.0의 고정 흡수율 값이 사용되었습니다. [ 3 ]
퓨전 존 미세구조
그림 3 은 200~300W 및 600~300W 및 600~300W 범위의 레이저 출력 및 속도로 9가지 다른 처리 매개변수에 의해 생성된 CMSX-4 레이저 트랙의 yz 단면 에서 취한 EBSD 역극점도와 해당 역극점도를 보여 줍니다. 각각 1400mm/s. EBSD 맵에서 여러 기능을 쉽게 관찰할 수 있습니다. 스트레이 그레인은 EBSD 맵에서 그 방향에 해당하는 다른 RGB 색상으로 나타나고 그레인 경계를 묘사하기 위해 5도의 잘못된 방향이 사용되었습니다. 여기, 그림 3 에서 스트레이 그레인은 대부분 용융 풀의 상단 중심선에 집중되어 있으며, 이는 용접된 단결정 CMSX-4의 이전 보고서와 일치합니다. [ 10 ]역 극점도에서, 점 근처에 집중된 클러스터⟨ 001 ⟩⟨001⟩융합 경계에서 유사한 방향을 유지하는 단결정 기반 및 에피택셜로 응고된 덴드라이트를 나타냅니다. 그러나 흩어진 곡물은 식별할 수 있는 질감이 없는 흩어져 있는 점으로 나타납니다. 단결정 기본 재료의 결정학적 방향은 주로⟨ 001 ⟩⟨001⟩비록 샘플을 절단하는 동안 식별할 수 없는 기울기 각도로 인해 또는 단결정 성장 과정에서 약간의 잘못된 방향이 있었기 때문에 약간의 편차가 있지만. 용융 풀 내부의 응고된 수상 돌기의 기본 방향은 다시 한 번⟨ 001 ⟩⟨001⟩주상 결정립 구조와 유사한 에피택셜 성장의 결과. 그림 3 과 같이 용융 풀에서 수상돌기의 성장 방향은 하단의 수직 방향에서 상단의 수평 방향으로 변경되었습니다 . 이 전이는 주로 온도 구배 방향의 변화로 인한 것입니다. 두 번째 전환은 CET입니다. FZ의 상단 중심선 주변에서 다양한 방향의 흩어진 입자가 관찰되며, 여기서 안쪽으로 성장하는 수상돌기가 서로 충돌하여 용융 풀에서 응고되는 마지막 위치가 됩니다.
더 깊은 키홀 모양을 특징으로 하는 샘플에서 용융 풀의 경계 근처에 침전된 흩어진 입자가 분명합니다. 이러한 새로운 입자는 나중에 모델링 섹션에서 논의되는 수상돌기 조각화 메커니즘에 의해 잠재적으로 발생합니다. 결정립이 강한 열 구배에서 핵을 생성하고 성장한 결과, 대부분의 흩어진 결정립은 모든 방향에서 동일한 크기를 갖기보다는 장축이 열 구배 방향과 정렬된 길쭉한 모양을 갖습니다. 그림 3 의 전도 모드 용융 풀 흩어진 입자가 없는 것으로 입증되는 더 나은 단결정 품질을 나타냅니다. 상대적으로 낮은 출력과 높은 속도의 스캐닝 레이저에 의해 생성된 이러한 더 얕은 용융 풀에서 최소한의 결정립 핵형성이 발생한다는 것은 명백합니다. 더 큰 면적 분율을 가진 스트레이 그레인은 고출력 및 저속으로 생성된 깊은 용융 풀에서 더 자주 관찰됩니다. 국부 응고 조건에 대한 동력 및 속도의 영향은 후속 모델링 섹션에서 조사할 것입니다.
응고 모델링
서론에서 언급한 바와 같이 연구자들은 단결정 용접 중에 표류 결정립 형성의 가능한 메커니즘을 평가했습니다. [ 12 , 13 , 14 , 15 , 55 ]논의된 가장 인기 있는 두 가지 메커니즘은 (1) 응고 전단에 앞서 구성적 과냉각에 의해 도움을 받는 이종 핵형성 및 (2) 용융물 풀의 유체 흐름으로 인한 덴드라이트 조각화입니다. 첫 번째 메커니즘은 광범위하게 연구되었습니다. 이원 합금을 예로 들면, 고체는 액체만큼 많은 용질을 수용할 수 없으므로 응고 중에 용질을 액체로 거부합니다. 결과적으로, 성장하는 수상돌기 앞에서 용질 분할은 실제 온도가 국부 평형 액상선보다 낮은 과냉각 액체를 생성합니다. 충분히 광범위한 체질적으로 과냉각된 구역의 존재는 새로운 결정립의 핵형성 및 성장을 촉진합니다. [ 56 ]전체 과냉각은 응고 전면에서의 구성, 동역학 및 곡률 과냉각을 포함한 여러 기여의 합입니다. 일반적인 가정은 동역학 및 곡률 과냉각이 합금에 대한 용질 과냉각의 더 큰 기여와 관련하여 무시될 수 있다는 것입니다. [ 57 ]
서로 다른 기본 메커니즘을 더 잘 이해하려면피- 브이피-V조건에서 응고 모델링이 수행됩니다. 첫 번째 목적은 스트레이 그레인의 전체 범위를 평가하는 것입니다(Φ¯¯¯¯Φ¯) 처리 매개 변수의 함수로 국부적 표류 입자 비율의 변화를 조사하기 위해 (ΦΦ) 용융 풀의 위치 함수로. 두 번째 목적은 금속 AM의 빠른 응고 동안 응고 미세 구조와 표류 입자 형성 메커니즘 사이의 관계를 이해하는 것입니다.
그림 4 는 해석적으로 시뮬레이션된 표류 입자 비율을 보여줍니다.Φ¯¯¯¯Φ¯세 가지 레이저 흡수율 값에서 다양한 레이저 스캐닝 속도 및 레이저 출력에 대해. 결과는 스트레이 그레인 면적 비율이 흡수된 에너지에 민감하다는 것을 보여줍니다. 흡수율을 0.30에서 0.80으로 증가시키면Φ¯¯¯¯Φ¯약 3배이며, 이 효과는 저속 및 고출력 영역에서 더욱 두드러집니다. 다른 모든 조건이 같다면, 흡수된 전력의 큰 영향은 평균 열 구배 크기의 일반적인 감소와 용융 풀 내 평균 응고율의 증가에 기인합니다. 스캐닝 속도가 증가하고 전력이 감소함에 따라 평균 스트레이 그레인 비율이 감소합니다. 이러한 일반적인 경향은 Vitek의 작업에서 채택된 그림 5 의 파란색 영역에서 시뮬레이션된 용접 결과와 일치합니다 . [ 3 ] 더 큰 과냉각 구역( 즉, 지 /V티G/V티영역)은 용접 풀의 표유 입자의 면적 비율이 분홍색 영역에 해당하는 LPBF 조건의 면적 비율보다 훨씬 더 크다는 것을 의미합니다. 그럼에도 불구하고 두 데이터 세트의 일반적인 경향은 유사합니다. 즉 , 레이저 출력이 감소하고 레이저 속도가 증가함에 따라 표류 입자의 비율이 감소합니다. 또한 그림 5 에서 스캐닝 속도가 LPBF 영역으로 증가함에 따라 표유 입자 면적 분율에 대한 레이저 매개변수의 변화 효과가 감소한다는 것을 추론할 수 있습니다. 그림 6 (a)는 그림 3 의 EBSD 분석에서 나온 실험적 표류 결정립 면적 분율 과 그림 4 의 해석 시뮬레이션 결과를 비교합니다.. 열쇠 구멍 모양의 FZ에서 정확한 값이 다르지만 추세는 시뮬레이션과 실험 데이터 모두에서 일관되었습니다. 키홀 모양의 용융 풀, 특히 전력이 300W인 2개는 분석 시뮬레이션 예측보다 훨씬 더 많은 양의 흩어진 입자를 가지고 있습니다. Rosenthal 방정식은 일반적으로 열 전달이 순전히 전도에 의해 좌우된다는 가정으로 인해 열쇠 구멍 체제의 열 흐름을 적절하게 반영하지 못하기 때문에 이러한 불일치가 실제로 예상됩니다. [ 39 , 40 ] 그것은 또한 그림 4 의 발견 , 즉 키홀 모드 동안 흡수된 전력의 증가가 표류 입자 형성에 더 이상적인 조건을 초래한다는 것을 검증합니다. 그림 6 (b)는 실험을 비교Φ¯¯¯¯Φ¯수치 CFD 시뮬레이션Φ¯¯¯¯Φ¯. CFD 모델이 약간 초과 예측하지만Φ¯¯¯¯Φ¯전체적으로피- 브이피-V조건에서 열쇠 구멍 조건에서의 예측은 분석 모델보다 정확합니다. 전도 모드 용융 풀의 경우 실험 값이 분석 시뮬레이션 값과 더 가깝게 정렬됩니다.
모의 온도 구배 G 분포 및 응고율 검사V티V티분석 모델링의 쌍은 그림 7 (a)의 CMSX-4 미세 구조 선택 맵에 표시됩니다. 제공지 /V티G/V티( 즉 , 형태 인자)는 형태를 제어하고지 ×V티G×V티( 즉 , 냉각 속도)는 응고된 미세 구조의 규모를 제어하고 , [ 58 , 59 ]지 -V티G-V티플롯은 전통적인 제조 공정과 AM 공정 모두에서 미세 구조 제어를 지원합니다. 이 플롯의 몇 가지 분명한 특징은 등축, 주상, 평면 전면 및 이러한 경계 근처의 전이 영역을 구분하는 경계입니다. 그림 7 (a)는 몇 가지 선택된 분석 열 시뮬레이션에 대한 미세 구조 선택 맵을 나타내는 반면 그림 7 (b)는 수치 열 모델의 결과와 동일한 맵을 보여줍니다. 등축 미세구조의 형성은 낮은 G 이상 에서 명확하게 선호됩니다.V티V티정황. 이 플롯에서 각 곡선의 평면 전면에 가장 가까운 지점은 용융 풀의 최대 너비 위치에 해당하는 반면 등축 영역에 가까운 지점의 끝은 용융 풀의 후면 꼬리에 해당합니다. 그림 7 (a)에서 대부분의지 -V티G-V티응고 전면의 쌍은 원주형 영역에 속하고 점차 CET 영역으로 위쪽으로 이동하지만 용융 풀의 꼬리는 다음에 따라 완전히 등축 영역에 도달하거나 도달하지 않을 수 있습니다.피- 브이피-V조합. 그림 7 (a) 의 곡선 중 어느 것도 평면 전면 영역을 통과하지 않지만 더 높은 전력의 경우에 가까워집니다. 저속 레이저 용융 공정을 사용하는 이전 작업에서는 곡선이 평면 영역을 통과할 수 있습니다. 레이저 속도가 증가함에 따라 용융 풀 꼬리는 여전히 CET 영역에 있지만 완전히 등축 영역에서 멀어집니다. CET 영역으로 떨어지는 섹션의 수도 감소합니다.Φ¯¯¯¯Φ¯응고된 물질에서.
그만큼지 -V티G-V티CFD 모델을 사용하여 시뮬레이션된 응고 전면의 쌍이 그림 7 (b)에 나와 있습니다. 세 방향 모두에서 각 점 사이의 일정한 간격으로 미리 정의된 좌표에서 수행된 해석 시뮬레이션과 달리, 고충실도 CFD 모델의 출력은 불규칙한 사면체 좌표계에 있었고 G 를 추출하기 전에 일반 3D 그리드에 선형 보간되었습니다. 그리고V티V티그런 다음 미세 구조 선택 맵에 플롯됩니다. 일반적인 경향은 그림 7 (a)의 것과 일치하지만 이 방법으로 모델링된 매우 동적인 유체 흐름으로 인해 결과에 더 많은 분산이 있었습니다. 그만큼지 -V티G-V티분석 열 모델의 쌍 경로는 더 연속적인 반면 수치 시뮬레이션의 경로는 용융 풀 꼬리 모양의 차이를 나타내는 날카로운 굴곡이 있습니다(이는 G 및V티V티) 두 모델에 의해 시뮬레이션됩니다.
유체 흐름을 통합한 응고 모델링
수치 CFD 모델을 사용하여 유동 입자 형성 정도에 대한 유체 흐름의 영향을 이해하고 시뮬레이션 결과를 분석 Rosenthal 솔루션과 비교했습니다. 그림 8 은 응고 매개변수 G 의 분포를 보여줍니다.V티V티,지 /V티G/V티, 그리고지 ×V티G×V티yz 단면에서 x 는 FLOW-3D에서 (a1–d1) 분석 열 모델링 및 (a2–d2) FVM 방법을 사용하여 시뮬레이션된 용융 풀의 최대 폭입니다. 그림 8 의 값은 응고 전선이 특정 위치에 도달할 때 정확한 값일 수도 있고 아닐 수도 있지만 일반적인 추세를 반영한다는 의미의 임시 가상 값입니다. 이 프로파일은 출력 300W 및 속도 400mm/s의 레이저 빔에서 시뮬레이션됩니다. 용융 풀 경계는 흰색 곡선으로 표시됩니다. (a2–d2)의 CFD 시뮬레이션 용융 풀 깊이는 342입니다. μμm, 측정 깊이 352와 잘 일치 μμ일치하는 길쭉한 열쇠 구멍 모양과 함께 그림 1 에 표시된 실험 FZ의 m . 그러나 분석 모델은 반원 모양의 용융 풀을 출력하고 용융 풀 깊이는 264에 불과합니다. μμ열쇠 구멍의 경우 현실과는 거리가 멀다. CFD 시뮬레이션 결과에서 열 구배는 레이저 반사 증가와 불안정한 액체-증기 상호 작용이 발생하는 증기 함몰의 동적 부분 근처에 있기 때문에 FZ 하단에서 더 높습니다. 대조적으로 해석 결과의 열 구배 크기는 경계를 따라 균일합니다. 두 시뮬레이션 결과 모두 그림 8 (a1) 및 (a2) 에서 응고가 용융 풀의 상단 중심선을 향해 진행됨에 따라 열 구배가 점차 감소합니다 . 응고율은 그림 8 과 같이 경계 근처에서 거의 0입니다. (b1) 및 (b2). 이는 경계 영역이 응고되기 시작할 때 국부 응고 전면의 법선 방향이 레이저 스캐닝 방향에 수직이기 때문입니다. 이것은 드라이브θ → π/ 2θ→파이/2그리고V티→ 0V티→0식에서 [ 3 ]. 대조적으로 용융 풀의 상단 중심선 근처 영역에서 응고 전면의 법선 방향은 레이저 스캐닝 방향과 잘 정렬되어 있습니다.θ → 0θ→0그리고V티→ 브이V티→V, 빔 스캐닝 속도. G 와 _V티V티값이 얻어지면 냉각 속도지 ×V티G×V티및 형태 인자지 /V티G/V티계산할 수 있습니다. 그림 8 (c2)는 용융 풀 바닥 근처의 온도 구배가 매우 높고 상단에서 더 빠른 성장 속도로 인해 냉각 속도가 용융 풀의 바닥 및 상단 중심선 근처에서 더 높다는 것을 보여줍니다. 지역. 그러나 이러한 추세는 그림 8 (c1)에 캡처되지 않았습니다. 그림 8 의 형태 요인 (d1) 및 (d2)는 중심선에 접근함에 따라 눈에 띄게 감소합니다. 경계에서 큰 값은 열 구배를 거의 0인 성장 속도로 나누기 때문에 발생합니다. 이 높은 형태 인자는 주상 미세구조 형성 가능성이 높음을 시사하는 반면, 중앙 영역의 값이 낮을수록 등축 미세구조의 가능성이 더 크다는 것을 나타냅니다. Tanet al. 또한 키홀 모양의 용접 풀 [ 59 ] 에서 이러한 응고 매개변수의 분포 를 비슷한 일반적인 경향으로 보여주었습니다. 그림 3 에서 볼 수 있듯이 용융 풀의 상단 중심선에 있는 흩어진 입자는 낮은 특징을 나타내는 영역과 일치합니다.지 /V티G/V티그림 8 (d1) 및 (d2)의 값. 시뮬레이션과 실험 간의 이러한 일치는 용융 풀의 상단 중심선에 축적된 흩어진 입자의 핵 생성 및 성장이 등온선 속도의 증가와 온도 구배의 감소에 의해 촉진됨을 보여줍니다.
그림 9 는 유체 속도 및 국부적 핵형성 성향을 보여줍니다.ΦΦ300W의 일정한 레이저 출력과 400, 800 및 1200mm/s의 세 가지 다른 레이저 속도에 의해 생성된 3D 용융 풀 전체에 걸쳐. 그림 9 (d)~(f)는 로컬ΦΦ해당 3D 보기에서 밝은 회색 평면으로 표시된 특정 yz 단면의 분포. 이 yz 섹션은 가장 높기 때문에 선택되었습니다.Φ¯¯¯¯Φ¯용융 풀 내의 값은 각각 23.40, 11.85 및 2.45pct입니다. 이들은 그림 3 의 실험 데이터와 비교하기에 적절하지 않을 수 있는 액체 용융 풀의 과도 값이며Φ¯¯¯¯Φ¯그림 6 의 값은 이 값이 고체-액체 계면에 가깝지 않고 용융 풀의 중간에서 취해졌기 때문입니다. 온도가 훨씬 낮아서 핵이 생존하고 성장할 수 있기 때문에 핵 형성은 용융 풀의 중간이 아닌 고체-액체 계면에 더 가깝게 발생할 가능성이 있습니다.
그림 3 (a), (d), (g), (h)에서 위쪽 중심선에서 멀리 떨어져 있는 흩어진 결정립이 있었습니다. 그들은 훨씬 더 높은 열 구배와 더 낮은 응고 속도 필드에 위치하기 때문에 과냉각 이론은 이러한 영역에서 표류 입자의 형성에 대한 만족스러운 설명이 아닙니다. 이것은 떠돌이 결정립의 형성을 야기할 수 있는 두 번째 메커니즘, 즉 수상돌기의 팁을 가로지르는 유체 흐름에 의해 유발되는 수상돌기 조각화를 고려하도록 동기를 부여합니다. 유체 흐름이 열 구배를 따라 속도 성분을 갖고 고체-액체 계면 속도보다 클 때, 주상 수상돌기의 국지적 재용융은 용질이 풍부한 액체가 흐물흐물한 구역의 깊은 곳에서 액상선 등온선까지 이동함으로써 발생할 수 있습니다. . [ 55] 분리된 수상돌기는 대류에 의해 열린 액체로 운반될 수 있습니다. 풀이 과냉각 상태이기 때문에 이러한 파편은 고온 조건에서 충분히 오래 생존하여 길 잃은 입자의 핵 생성 사이트로 작용할 수 있습니다. 결과적으로 수상 돌기 조각화 과정은 활성 핵의 수를 효과적으로 증가시킬 수 있습니다.N0N0) 용융 풀 [ 15 , 60 , 61 ] 에서 생성된 미세 구조에서 표류 입자의 면적을 증가시킵니다.
그림 9 (a) 및 (b)에서 반동 압력은 용융 유체를 아래쪽으로 흐르게 하여 결과 흐름을 지배합니다. 유체 속도의 역방향 요소는 V = 400 및 800mm/s에 대해 각각 최대값 1.0 및 1.6m/s로 더 느려집니다 . 그림 9 (c)에서 레이저 속도가 더 증가함에 따라 증기 침하가 더 얕고 넓어지고 반동 압력이 더 고르게 분포되어 증기 침강에서 주변 영역으로 유체를 밀어냅니다. 역류는 최대값 3.5m/s로 더 빨라집니다. 용융 풀의 최대 너비에서 yz 단면 의 키홀 아래 평균 유체 속도는 그림에 표시된 경우에 대해 0.46, 0.45 및 1.44m/s입니다.9 (a), (b) 및 (c). 키홀 깊이의 변동은 각 경우의 최대 깊이와 최소 깊이의 차이로 정의되는 크기로 정량화됩니다. 240 범위의 강한 증기 내림 변동 μμm은 그림 9 (a)의 V = 400mm/s 경우에서 발견 되지만 이 변동은 그림 9 (c)에서 16의 범위로 크게 감소합니다.μμ미디엄. V = 400mm/s인 경우 의 유체장과 높은 변동 범위는 이전 키홀 동역학 시뮬레이션과 일치합니다. [ 34 ]
따라서 V = 400mm/s 키홀 케이스의 무질서한 변동 흐름이 용융 풀 경계를 따라 응고된 주상 수상돌기에서 분리된 조각을 구동할 가능성이 있습니다. V = 1200mm/s의 경우 강한 역류 는 그림 3 에서 관찰되지 않았지만 동일한 효과를 가질 수 있습니다. . 덴드라이트 조각화에 대한 유체 유동장의 영향에 대한 이 경험적 설명은 용융 풀 경계 근처에 떠돌이 입자의 존재에 대한 그럴듯한 설명을 제공합니다. 분명히 하기 위해, 우리는 이 가설을 검증하기 위해 이 현상에 대한 직접적인 실험적 관찰을 하지 않았습니다. 이 작업에서 표유 입자 면적 분율을 계산할 때 단순화를 위해 핵 생성 모델링에 일정한 핵 생성 수 밀도가 적용되었습니다. 이는 그림 9 의 표류 입자 영역 비율 이 수지상정 조각화가 발생하는 경우 이러한 높은 유체 흐름 용융 풀에서 발생할 수 있는 것, 즉 강화된 핵 생성 밀도를 반영하지 않는다는 것을 의미합니다.
위의 이유로 핵 형성에 대한 수상 돌기 조각화의 영향을 아직 배제할 수 없습니다. 그러나 단편화 이론은 용접 문헌 [ 62 ] 에서 검증될 만큼 충분히 개발되지 않았 으므로 부차적인 중요성만 고려된다는 점에 유의해야 합니다. 1200mm/s를 초과하는 레이저 스캐닝 속도는 최소한의 표류 결정립 면적 분율을 가지고 있음에도 불구하고 분명한 볼링을 나타내기 때문에 단결정 수리 및 AM 처리에 적합하지 않습니다. 따라서 낮은 P 및 높은 V 에 의해 생성된 응고 전면 근처에서 키홀 변동이 최소화되고 유체 속도가 완만해진 용융 풀이 생성된다는 결론을 내릴 수 있습니다., 처리 창의 극한은 아니지만 흩어진 입자를 나타낼 가능성이 가장 적습니다.
마지막으로 단일 레이저 트랙의 응고 거동을 조사하면 에피택셜 성장 동안 표류 입자 형성을 더 잘 이해할 수 있다는 점에 주목하는 것이 중요합니다. 우리의 현재 결과는 최적의 레이저 매개변수에 대한 일반적인 지침을 제공하여 최소 스트레이 그레인을 달성하고 단결정 구조를 유지합니다. 이 가이드라인은 250W 정도의 전력과 600~800mm/s의 스캔 속도로 최소 흩어진 입자에 적합한 공정 창을 제공합니다. 각 처리 매개변수를 신중하게 선택하면 과거에 스테인리스강에 대한 거의 단결정 미세 구조를 인쇄하는 데 성공했으며 이는 CMSX-4 AM 빌드에 대한 가능성을 보여줍니다. [ 63 ]신뢰성을 보장하기 위해 AM 수리 프로세스를 시작하기 전에 보다 엄격한 실험 테스트 및 시뮬레이션이 여전히 필요합니다. 둘 이상의 레이저 트랙 사이의 상호 작용도 고려해야 합니다. 또한 레이저, CMSX-4 분말 및 벌크 재료 간의 상호 작용이 중요하며, 수리 중에 여러 층의 CMSX-4 재료를 축적해야 하는 경우 다른 스캔 전략의 효과도 중요한 역할을 할 수 있습니다. 분말이 포함된 경우 Lopez-Galilea 등 의 연구에서 제안한 바와 같이 분말이 주로 완전히 녹지 않았을 때 추가 핵 생성 사이트를 도입하기 때문에 단순히 레이저 분말과 속도를 조작하여 흩어진 입자 형성을 완화하기 어려울 수 있습니다 . [ 22 ]결과적으로 CMSX-4 단결정을 수리하기 위한 레이저 AM의 가능성을 다루기 위해서는 기판 재료, 레이저 출력, 속도, 해치 간격 및 층 두께의 조합을 모두 고려해야 하며 향후 연구에서 다루어야 합니다. CFD 모델링은 2개 이상의 레이저 트랙 사이의 상호작용과 열장에 미치는 영향을 통합할 수 있으며, 이는 AM 빌드 시나리오 동안 핵 생성 조건으로 단일 비드 연구의 지식 격차를 해소할 것입니다.
결론
LPBF 제조의 특징적인 조건 하에서 CMSX-4 단결정 의 에피택셜(기둥형) 대 등축 응고 사이의 경쟁을 실험적 및 이론적으로 모두 조사했습니다. 이 연구는 고전적인 응고 개념을 도입하여 빠른 레이저 용융의 미세 구조 특징을 설명하고 응고 조건과 표유 결정 성향을 예측하기 위해 해석적 및 수치적 고충실도 CFD 열 모델 간의 비교를 설명했습니다. 본 연구로부터 다음과 같은 주요 결론을 도출할 수 있다.
단일 레이저 트랙의 레이저 가공 조건은 용융 풀 형상, 레이저 흡수율, 유체 흐름 및 키홀 요동, 입자 구조 및 표류 입자 형성 민감성에 강한 영향을 미치는 것으로 밝혀졌습니다.
레이저 용접을 위해 개발된 이론적인 표유 결정립 핵형성 분석이 레이저 용융 AM 조건으로 확장되었습니다. 분석 모델링 결과와 단일 레이저 트랙의 미세구조 특성화를 비교하면 예측이 전도 및 볼링 조건에서 실험적 관찰과 잘 일치하는 반면 키홀 조건에서는 예측이 약간 과소하다는 것을 알 수 있습니다. 이러한 불일치는 레이저 트랙의 대표성이 없는 섹션이나 유체 속도 필드의 변화로 인해 발생할 수 있습니다. CFD 모델에서 추출한 열장에 동일한 표유 입자 계산 파이프라인을 적용하면 연구된 모든 사례에서 과대평가가 발생하지만 분석 모델보다 연장된 용융 풀의 실험 데이터와 더 정확하게 일치합니다.
이 연구에서 두 가지 표류 결정립 형성 메커니즘인 불균일 핵형성 및 수상돌기 조각화가 평가되었습니다. 우리의 결과는 불균일 핵형성이 용융 풀의 상단 중심선에서 새로운 결정립의 형성으로 이어지는 주요 메커니즘임을 시사합니다.지 /V티G/V티정권.
용융 풀 경계 근처의 흩어진 입자는 깊은 키홀 모양의 용융 풀에서 독점적으로 관찰되며, 이는 강한 유체 흐름으로 인한 수상 돌기 조각화의 영향이 이러한 유형의 용융 풀에서 고려하기에 충분히 강력할 수 있음을 시사합니다.
일반적으로 더 높은 레이저 스캐닝 속도와 더 낮은 전력 외에도 안정적인 키홀과 최소 유체 속도는 또한 흩어진 입자 형성을 완화하고 레이저 단일 트랙에서 에피택셜 성장을 보존합니다.
References
R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, pp.17–20.BookGoogle Scholar
A. Basak, R. Acharya, and S. Das: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3845–59.ArticleGoogle Scholar
R. Vilar and A. Almeida: J. Laser Appl., 2015, vol. 27, p. S17004.ArticleGoogle Scholar
T. Kalfhaus, M. Schneider, B. Ruttert, D. Sebold, T. Hammerschmidt, J. Frenzel, R. Drautz, W. Theisen, G. Eggeler, O. Guillon, and R. Vassen: Mater. Des., 2019, vol. 168, p. 107656.ArticleCASGoogle Scholar
S.S. Babu, S.A. David, J.W. Park, and J.M. Vitek: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 1–12.ArticleCASGoogle Scholar
L. Felberbaum, K. Voisey, M. Gäumann, B. Viguier, and A. Mortensen: Mater. Sci. Eng. A, 2001, vol. 299, pp. 152–56.ArticleGoogle Scholar
S. Mokadem, C. Bezençon, J.M. Drezet, A. Jacot, J.D. Wagnière, and W. Kurz: TMS Annual Meeting, 2004, pp. 67–76.
J.M. Vitek: ASM Proc. Int. Conf. Trends Weld. Res., vol. 2005, pp. 773–79.
B. Kianian: Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report, Wohlers Associates, Inc., Fort Collins, 2017.Google Scholar
M. Ramsperger, L. Mújica Roncery, I. Lopez-Galilea, R.F. Singer, W. Theisen, and C. Körner: Adv. Eng. Mater., 2015, vol. 17, pp. 1486–93.ArticleCASGoogle Scholar
A.B. Parsa, M. Ramsperger, A. Kostka, C. Somsen, C. Körner, and G. Eggeler: Metals, 2016, vol. 6, pp. 258-1–17.ArticleGoogle Scholar
C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, and G. Eggeler: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3781–92.ArticleGoogle Scholar
D. Bürger, A. Parsa, M. Ramsperger, C. Körner, and G. Eggeler: Mater. Sci. Eng. A, 2019, vol. 762, p. 138098,ArticleGoogle Scholar
R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett: Science, 2019, vol. 363, pp. 849–52.ArticleCASGoogle Scholar
B. Fotovvati, S.F. Wayne, G. Lewis, and E. Asadi: Adv. Mater. Sci. Eng., 2018, vol. 2018, p. 4920718.ArticleGoogle Scholar
P.-J. Chiang, R. Jiang, R. Cunningham, N. Parab, C. Zhao, K. Fezzaa, T. Sun, and A.D. Rollett: in Advanced Real Time Imaging II, pp. 77–85.
J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, and M.J. Matthews: Adv. Eng. Mater., 2019, vol. 21, pp. 1–9.ArticleGoogle Scholar
C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun: Phys. Rev. X, 2019, vol. 9, p. 021052.CASGoogle Scholar
S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Acta Mater., 2016, vol. 108, pp. 36–45.ArticleCASGoogle Scholar
N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, and W. Tan: Appl. Phys. Rev., 2019, vol. 11, p. 064054.ArticleCASGoogle Scholar
T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.ArticleCASGoogle Scholar
I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov: J. Mater. Process. Technol., 2010, vol. 210, pp. 1624–31.ArticleCASGoogle Scholar
S. Ghosh, L. Ma, L.E. Levine, R.E. Ricker, M.R. Stoudt, J.C. Heigel, and J.E. Guyer: JOM, 2018, vol. 70, pp. 1011–16.ArticleCASGoogle Scholar
Y. He, C. Montgomery, J. Beuth, and B. Webler: Mater. Des., 2019, vol. 183, p. 108126.ArticleCASGoogle Scholar
D. Rosenthal: Weld. J., 1941, vol. 20, pp. 220–34.Google Scholar
M. Tang, P.C. Pistorius, and J.L. Beuth: Addit. Manuf., 2017, vol. 14, pp. 39–48.CASGoogle Scholar
R.E. Aune, L. Battezzati, R. Brooks, I. Egry, H.J. Fecht, J.P. Garandet, M. Hayashi, K.C. Mills, A. Passerone, P.N. Quested, E. Ricci, F. Schmidt-Hohagen, S. Seetharaman, B. Vinet, and R.K. Wunderlich: Proc. Int.Symp. Superalloys Var. Deriv., 2005, pp. 467–76.
B.C. Wilson, J.A. Hickman, and G.E. Fuchs: JOM, 2003, vol. 55, pp. 35–40.ArticleCASGoogle Scholar
J.J. Valencia and P.N. Quested: ASM Handb., 2008, vol. 15, pp. 468–81.Google Scholar
H.L. Wei, J. Mazumder, and T. DebRoy: Sci. Rep., 2015, vol. 5, pp. 1–7.Google Scholar
N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303–14.ArticleCASGoogle Scholar
R. Lin, H. Wang, F. Lu, J. Solomon, and B.E. Carlson: Int. J. Heat Mass Transf., 2017, vol. 108, pp. 244–56.ArticleCASGoogle Scholar
M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel: Addit. Manuf., 2019, vol. 30, p. 100835.CASGoogle Scholar
K. Higuchi, H.-J. Fecht, and R.K. Wunderlich: Adv. Eng. Mater., 2007, vol. 9, pp. 349–54.ArticleCASGoogle Scholar
Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen: Addit. Manuf., 2019, vol. 28, pp. 600–09.Google Scholar
J. Trapp, A.M. Rubenchik, G. Guss, and M.J. Matthews: Appl. Mater. Today, 2017, vol. 9, pp. 341–49.ArticleGoogle Scholar
M. Schneider, L. Berthe, R. Fabbro, and M. Muller: J. Phys. D, 2008, vol. 41, p. 155502.ArticleGoogle Scholar
Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, and W.K. Liu: Nat. Commun., 2021, vol. 12, p. 2379.ArticleCASGoogle Scholar
B.J. Simonds, E.J. Garboczi, T.A. Palmer, and P.A. Williams: Appl. Phys. Rev., 2020, vol. 13, p. 024057.ArticleCASGoogle Scholar
J. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, 2016, pp. 483–532.Google Scholar
W. Tiller, K. Jackson, J. Rutter, and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428–37.ArticleCASGoogle Scholar
D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, and M.A. Easton: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4341–59.ArticleGoogle Scholar
F. Yan, W. Xiong, and E.J. Faierson: Materials, 2017, vol. 10, p. 1260.ArticleGoogle Scholar
J.M. Vitek, S.A. David, and L.A. Boatner: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 109–18.ArticleCASGoogle Scholar
X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, S.E. Atabay, M.A. Shandiz, and M. Brochu: Prog. Addit. Manuf., 2020, vol. 5, pp. 41–49.ArticleGoogle Scholar
316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링
M. BAYAT1,* , AND J. H. HATTEL1
Corresponding author 1 Technical University of Denmark (DTU), Building 425, Kgs. 2800 Lyngby, Denmark
ABSTRACT
Spatter and denudation are two very well-known phenomena occurring mainly during the laser powder bed fusion process and are defined as ejection and displacement of powder particles, respectively. The main driver of this phenomenon is the formation of a vapor plume jet that is caused by the vaporization of the melt pool which is subjected to the laser beam. In this work, a 3-dimensional transient turbulent computational fluid dynamics model coupled with a discrete element model is developed in the finite volume-based commercial software package Flow-3D AM to simulate the spatter phenomenon. The numerical results show that a localized low-pressure zone forms at the bottom side of the plume jet and this leads to a pseudo-Bernoulli effect that drags nearby powder particles into the area of influence of the vapor plume jet. As a result, the vapor plume acts like a momentum sink and therefore all nearby particles point are dragged towards this region. Furthermore, it is noted that due to the jet’s attenuation, powder particles start diverging from the central core region of the vapor plume as they move vertically upwards. It is moreover observed that only particles which are in the very central core region of the plume jet get sufficiently accelerated to depart the computational domain, while the rest of the dragged particles, especially those which undergo an early divergence from the jet axis, get stalled pretty fast as they come in contact with the resting fluid. In the last part of the work, two simulations with two different scanning speeds are carried out, where it is clearly observed that the angle between the departing powder particles and the vertical axis of the plume jet increases with increasing scanning speed.
스패터와 denudation은 주로 레이저 분말 베드 융합 과정에서 발생하는 매우 잘 알려진 두 가지 현상으로 각각 분말 입자의 배출 및 변위로 정의됩니다.
이 현상의 주요 동인은 레이저 빔을 받는 용융 풀의 기화로 인해 발생하는 증기 기둥 제트의 형성입니다. 이 작업에서 이산 요소 모델과 결합된 3차원 과도 난류 전산 유체 역학 모델은 스패터 현상을 시뮬레이션하기 위해 유한 체적 기반 상용 소프트웨어 패키지 Flow-3D AM에서 개발되었습니다.
수치적 결과는 플룸 제트의 바닥면에 국부적인 저압 영역이 형성되고, 이는 근처의 분말 입자를 증기 플룸 제트의 영향 영역으로 끌어들이는 의사-베르누이 효과로 이어진다는 것을 보여줍니다.
결과적으로 증기 기둥은 운동량 흡수원처럼 작용하므로 근처의 모든 입자 지점이 이 영역으로 끌립니다. 또한 제트의 감쇠로 인해 분말 입자가 수직으로 위쪽으로 이동할 때 증기 기둥의 중심 코어 영역에서 발산하기 시작합니다.
더욱이 플룸 제트의 가장 중심 코어 영역에 있는 입자만 계산 영역을 벗어날 만큼 충분히 가속되는 반면, 드래그된 나머지 입자, 특히 제트 축에서 초기 발산을 겪는 입자는 정체되는 것으로 관찰됩니다. 그들은 휴식 유체와 접촉하기 때문에 꽤 빠릅니다.
작업의 마지막 부분에서 두 가지 다른 스캔 속도를 가진 두 가지 시뮬레이션이 수행되었으며, 여기서 출발하는 분말 입자와 연기 제트의 수직 축 사이의 각도가 스캔 속도가 증가함에 따라 증가하는 것이 명확하게 관찰되었습니다.
References
[1] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, 2018, doi: 10.1016/j.pmatsci.2017.10.001. [2] M. Markl and C. Körner, “Multiscale Modeling of Powder Bed–Based Additive Manufacturing,” Annu. Rev. Mater. Res., vol. 46, no. 1, pp. 93–123, 2016, doi: 10.1146/annurev-matsci-070115-032158. [3] A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, “Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method,” Mater. Des., vol. 106, pp. 321–329, 2016, doi: 10.1016/j.matdes.2016.05.125. [4] Y. Zhang and J. Zhang, “Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata,” Addit. Manuf., vol. 28, no. July 2018, pp. 750–765, 2019, doi: 10.1016/j.addma.2019.06.024. [5] A. A. Martin et al., “Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging,” Mater. Today Adv., vol. 1, p. 100002, 2019, doi: 10.1016/j.mtadv.2019.01.001. [6] Y. C. Wu et al., “Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation,” J. Mater. Process. Technol., vol. 254, no. July 2017, pp. 72–78, 2018, doi: 10.1016/j.jmatprotec.2017.11.032. [7] W. Gao, S. Zhao, Y. Wang, Z. Zhang, F. Liu, and X. Lin, “Numerical simulation of thermal field and Fe-based coating doped Ti,” Int. J. Heat Mass Transf., vol. 92, pp. 83– 90, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.082. [8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J. H. Hattel, and S. Scholz, “Elucidation of dross formation in laser powder bed fusion at down-facing surfaces: Phenomenonoriented multiphysics simulation and experimental validation,” Addit. Manuf., vol. 50, 2022, doi: 10.1016/j.addma.2021.102551. [9] C. Meier, R. W. Penny, Y. Zou, J. S. Gibbs, and A. J. Hart, “Thermophysical phenomena in metal additive manufacturing by selective laser melting: Fundamentals, modeling, simulation and experimentation,” arXiv, 2017, doi: 10.1615/annualrevheattransfer.2018019042. [10] W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, and S. A. Khairallah, “Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory,” Mater. Sci. Technol. (United Kingdom), vol. 31, no. 8, pp. 957–968, 2015, doi: 10.1179/1743284714Y.0000000728.
Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*
Abstract
염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.
Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.
Keywords
computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination
References
Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.; Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
다중 재료 재료 분사 적층 제조 공정은 3차원(3D) 부품을 레이어별로 구축하기 위해 다양한 모델 및 지지 재료의 미세 액적을 증착합니다.
최근의 노력은 액체가 마이크로/밀리 채널에서 쉽게 퍼지할 수 있는 지지 재료로 작용할 수 있고 구조에 영구적으로 남아 있는 작동 유체로 작용할 수 있음을 보여주었지만 인쇄 프로세스 및 메커니즘에 대한 자세한 이해가 부족합니다.
액체 인쇄의 제한된 광범위한 적용. 이 연구에서 광경화성 및 광경화성 액체 방울이 동시에 증착되는 액체-고체 공동 인쇄라고 하는 “한 번에 모두 가능한” 다중 재료 인쇄 프로세스가 광범위하게 특성화됩니다. 액체-고체 공동 인쇄의 메커니즘은 실험적인 고속 이미징 및 CFD(전산 유체 역학) 연구를 통해 설명됩니다.
이 연구는 액체의 표면 장력이 액체 표면에서 광중합하여 재료의 단단한 층을 형성하는 분사된 광중합체 미세 방울을 지지할 수 있음을 보여줍니다.
마이크로/밀리 유체 소자의 액체-고체 공동 인쇄를 위한 설계 규칙은 믹서, 액적 발생기, 고도로 분기되는 구조 및 통합된 단방향 플랩 밸브와 같은 평면, 3D 및 복합 재료 마이크로/메조 유체 구조에 대한 사례 연구뿐만 아니라 제시됩니다.
우리는 액체-고체 공동 인쇄 과정을 마이크로/메조플루이딕 회로, 전기화학 트랜지스터, 칩 장치 및 로봇을 포함한 응용 프로그램을 사용하여 3D, 통합된 복합 재료 유체 회로 및 유압 구조의 단순하고 빠른 제작을 가능하게 하는 적층 제조의 핵심 새로운 기능으로 구상합니다.
Multi-material material jetting additive manufacturing processes deposit micro-scale droplets of different model and support materials to build three-dimensional (3D) parts layer by layer. Recent efforts have demonstrated that liquids can act as support materials, which can be easily purged from micro/milli-channels, and as working fluids, which permanently remain in a structure, yet the lack of a detailed understanding of the print process and mechanism has limited widespread applications of liquid printing. In this study, an “all in one go” multi-material print process, herein termed liquid–solid co-printing in which non photo-curable and photo-curable liquid droplets are simultaneous deposited, is extensively characterized. The mechanism of liquid–solid co-printing is explained via experimental high speed imaging and computational fluid dynamic (CFD) studies. This work shows that a liquid’s surface tension can support jetted photopolymer micro-droplets which photo-polymerize on the liquid surface to form a solid layer of material. Design rules for liquid–solid co-printing of micro/milli-fluidic devices are presented as well as case studies of planar, 3D, and multi-material micro/mesofluidic structures such as mixers, droplet generators, highly branching structures, and an integrated one-way flap valve. We envision the liquid–solid co-printing process as a key new capability in additive manufacturing to enable simple and rapid fabrication of 3D, integrated print-in-place multi-material fluidic circuits and hydraulic structures with applications including micro/mesofluidic circuits, electrochemical transistors, lab-on-a-chip devices, and robotics.
Keywords
Additive manufacturing; Mesofluidics; Modeling and simulation; Multi-material; Material jetting
W.E. Alphonso1, M.Bayat1,*, M. Baier 2, S. Carmignato2, J.H. Hattel1 1Department of Mechanical Engineering, Technical University of Denmark (DTU), Lyngby, Denmark 2Department of Management and Engineering – University of Padova, Padova, Italy
ABSTRACT
L-PBF(Laser Powder Bed Fusion)는 레이저 열원을 사용하여 선택적으로 통합되는 분말 층으로 복잡한 3D 금속 부품을 만드는 금속 적층 제조(MAM) 기술입니다. 처리 영역은 수십 마이크로미터 정도이므로 L-PBF를 다중 규모 제조 공정으로 만듭니다.
기체 기공의 형성 및 성장 및 용융되지 않은 분말 영역의 생성은 다중물리 모델에 의해 예측할 수 있습니다. 또한 이러한 모델을 사용하여 용융 풀 모양 및 크기, 온도 분포, 용융 풀 유체 흐름 및 입자 크기 및 형태와 같은 미세 구조 특성을 계산할 수 있습니다.
이 작업에서는 용융, 응고, 유체 흐름, 표면 장력, 열 모세관, 증발 및 광선 추적을 통한 다중 반사를 포함하는 스테인리스 스틸 316-L에 대한 충실도 다중 물리학 중간 규모 수치 모델이 개발되었습니다. 완전한 실험 설계(DoE) 방법을 사용하는 통계 연구가 수행되었으며, 여기서 불확실한 재료 특성 및 공정 매개변수, 즉 흡수율, 반동 압력(기화) 및 레이저 빔 크기가 용융수지 모양 및 크기에 미치는 영향을 분석했습니다.
또한 용융 풀 역학에 대한 위에서 언급한 불확실한 입력 매개변수의 중요성을 강조하기 위해 흡수율이 가장 큰 영향을 미치고 레이저 빔 크기가 그 뒤를 잇는 주요 효과 플롯이 생성되었습니다. 용융 풀 크기에 대한 반동 압력의 중요성은 흡수율에 따라 달라지는 용융 풀 부피와 함께 증가합니다.
모델의 예측 정확도는 유사한 공정 매개변수로 생성된 단일 트랙 실험과 시뮬레이션의 용융 풀 모양 및 크기를 비교하여 검증됩니다.
더욱이, 열 렌즈 효과는 레이저 빔 크기를 증가시켜 수치 모델에서 고려되었으며 나중에 결과적인 용융 풀 프로파일은 모델의 견고성을 보여주기 위한 실험과 비교되었습니다.
Laser Powder Bed Fusion (L-PBF) is a Metal Additive Manufacturing (MAM) technology where a complex 3D metal part is built from powder layers, which are selectively consolidated using a laser heat source. The processing zone is in the order of a few tenths of micrometer, making L-PBF a multi-scale manufacturing process. The formation and growth of gas pores and the creation of un-melted powder zones can be predicted by multiphysics models. Also, with these models, the melt pool shape and size, temperature distribution, melt pool fluid flow and its microstructural features like grain size and morphology can be calculated. In this work, a high fidelity multi-physics meso-scale numerical model is developed for stainless steel 316-L which includes melting, solidification, fluid flow, surface tension, thermo-capillarity, evaporation and multiple reflection with ray-tracing. A statistical study using a full Design of Experiments (DoE) method was conducted, wherein the impact of uncertain material properties and process parameters namely absorptivity, recoil pressure (vaporization) and laser beam size on the melt pool shape and size was analysed. Furthermore, to emphasize on the significance of the above mentioned uncertain input parameters on the melt pool dynamics, a main effects plot was created which showed that absorptivity had the highest impact followed by laser beam size. The significance of recoil pressure on the melt pool size increases with melt pool volume which is dependent on absorptivity. The prediction accuracy of the model is validated by comparing the melt pool shape and size from the simulation with single track experiments that were produced with similar process parameters. Moreover, the effect of thermal lensing was considered in the numerical model by increasing the laser beam size and later on the resultant melt pool profile was compared with experiments to show the robustness of the model.
CONCLUSION
In this work, a high-fidelity multi-physics numerical model was developed for L-PBF using the FVM method in Flow-3D. The impact of uncertainty in the input parameters including absorptivity, recoil pressure and laser beam size on the melt pool is addressed using a DoE method. The DoE analysis shows that absorptivity has the highest impact on the melt pool. The recoil pressure and laser beam size only become significant once absorptivity is 0.45. Furthermore, the numerical model is validated by comparing the predicted melt pool shape and size with experiments conducted with similar process parameters wherein a high prediction accuracy is achieved by the model. In addition, the impact of thermal lensing on the melt pool dimensions by increasing the laser beam spot size is considered in the validated numerical model and the resultant melt pool is compared with experiments.
REFERENCES
[1] T. Bonhoff, M. Schniedenharn, J. Stollenwerk, P. Loosen, Experimental and theoretical analysis of thermooptical effects in protective window for selective laser melting, Proc. Int. Conf. Lasers Manuf. LiM. (2017) 26–29. https://www.wlt.de/lim/Proceedings2017/Data/PDF/Contribution31_final.pdf. [2] L.R. Goossens, Y. Kinds, J.P. Kruth, B. van Hooreweder, On the influence of thermal lensing during selective laser melting, Solid Free. Fabr. 2018 Proc. 29th Annu. Int. Solid Free. Fabr. Symp. – An Addit. Manuf. Conf. SFF 2018. (2020) 2267–2274. [3] J. Shinjo, C. Panwisawas, Digital materials design by thermal-fluid science for multi-metal additive manufacturing, Acta Mater. 210 (2021) 116825. https://doi.org/10.1016/j.actamat.2021.116825. [4] Z. Zhang, Y. Huang, A. Rani Kasinathan, S. Imani Shahabad, U. Ali, Y. Mahmoodkhani, E. Toyserkani, 3- Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity, Opt. Laser Technol. 109 (2019) 297–312. https://doi.org/10.1016/j.optlastec.2018.08.012. [5] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyholeinduced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Addit. Manuf. 30 (2019) 100835. https://doi.org/10.1016/j.addma.2019.100835. [6] M. Bayat, S. Mohanty, J.H. Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF, Int. J. Heat Mass Transf. 139 (2019) 95–114. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003. [7] J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw, B. Van Hooreweder, On the influence of laser defocusing in Selective Laser Melting of 316L, Addit. Manuf. 23 (2018) 161–169. https://doi.org/10.1016/j.addma.2018.08.006.
Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation
Asif Ur Rehman 1,2,3,* ,† , Muhammad Arif Mahmood 4,* ,† , Fatih Pitir 1 , Metin Uymaz Salamci 2,3 , Andrei C. Popescu 4 and Ion N. Mihailescu 4
Abstract
LPBF(Laser Powder Bed fusion) 공정에서 작동 조건은 열 분포를 기반으로 레이저 유도 키홀 영역을 결정하는 데 필수적입니다. 얕은 구멍과 깊은 구멍으로 분류되는 이러한 영역은 LPBF 프로세스에서 확률과 결함 형성 강도를 제어합니다.
LPBF 프로세스의 핵심 구멍을 연구하고 제어하기 위해 수학적 및 CFD(전산 유체 역학) 모델이 제공됩니다. CFD의 경우 이산 요소 모델링 기법을 사용한 유체 체적 방법이 사용되었으며, 분말 베드 보이드 및 표면에 의한 레이저 빔 흡수를 포함하여 수학적 모델이 개발되었습니다.
동적 용융 풀 거동을 자세히 살펴봅니다. 실험적, CFD 시뮬레이션 및 분석적 컴퓨팅 결과 간에 정량적 비교가 수행되어 좋은 일치를 얻습니다.
LPBF에서 레이저 조사 영역 주변의 온도는 높은 내열성과 분말 입자 사이의 공기로 인해 분말층 주변에 비해 급격히 상승하여 레이저 횡방향 열파의 이동이 느려집니다. LPBF에서 키홀은 에너지 밀도에 의해 제어되는 얕고 깊은 키홀 모드로 분류될 수 있습니다. 에너지 밀도를 높이면 얕은 키홀 구멍 모드가 깊은 키홀 구멍 모드로 바뀝니다.
깊은 키홀 구멍의 에너지 밀도는 다중 반사와 키홀 구멍 내의 2차 반사 빔의 집중으로 인해 더 높아져 재료가 빠르게 기화됩니다.
깊은 키홀 구멍 모드에서는 온도 분포가 높기 때문에 액체 재료가 기화 온도에 가까우므로 얕은 키홀 구멍보다 구멍이 형성될 확률이 훨씬 높습니다. 온도가 급격히 상승하면 재료 밀도가 급격히 떨어지므로 비열과 융해 잠열로 인해 유체 부피가 증가합니다.
그 대가로 표면 장력을 낮추고 용융 풀 균일성에 영향을 미칩니다.
In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.
Keywords: laser powder bed fusion; computational fluid dynamics; analytical modelling; shallow and deep keyhole modes; experimental correlation
References
Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]
Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter investigation through multiphysics simulation and experimental validation. J. Alloys Compd. 2022, 890, 161873. [CrossRef]
Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243. [CrossRef]
Mohsin Raza, M.; Lo, Y.L. Experimental investigation into microstructure, mechanical properties, and cracking mechanism of IN713LC processed by laser powder bed fusion. Mater. Sci. Eng. A 2021, 819, 141527. [CrossRef]
Dezfoli, A.R.A.; Lo, Y.L.; Raza, M.M. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated Finite Element and Cellular Automaton Approach. Materials 2021, 14, 5202. [CrossRef]
Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of selective laser sintering materials for different applications. Rapid Prototyp. J. 2015, 21, 630–648. [CrossRef]
Liu, F.H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol-Gel Sci. Technol. 2012, 64, 704–710. [CrossRef]
Ur Rehman, A.; Sglavo, V.M. 3D printing of geopolymer-based concrete for building applications. Rapid Prototyp. J. 2020, 26, 1783–1788. [CrossRef]
Ur Rehman, A.; Sglavo, V.M. 3D printing of Portland cement-containing bodies. Rapid Prototyp. J. 2021. ahead of print. [CrossRef]
Popovich, A.; Sufiiarov, V. Metal Powder Additive Manufacturing. In New Trends in 3D Printing; InTech: Rijeka, Croatia, 2016.
Jia, T.; Zhang, Y.; Chen, J.K.; He, Y.L. Dynamic simulation of granular packing of fine cohesive particles with different size distributions. Powder Technol. 2012, 218, 76–85. [CrossRef]
Ansari, P.; Ur Rehman, A.; Pitir, F.; Veziroglu, S.; Mishra, Y.K.; Aktas, O.C.; Salamci, M.U. Selective Laser Melting of 316L Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals 2021, 11, 1076. [CrossRef]
Ur Rehman, A.; Tingting, L.; Liao, W. 4D Printing; Printing Ceramics from Metals with Selective Oxidation. Patent No. W0/2019/052128, 21 March 2019.
Ullah, A.; Wu, H.; Ur Rehman, A.; Zhu, Y.; Liu, T.; Zhang, K. Influence of laser parameters and Ti content on the surface morphology of L-PBF fabricated Titania. Rapid Prototyp. J. 2021, 27, 71–80. [CrossRef]
Ur Rehman, A. Additive Manufacturing of Ceramic Materials and Combinations with New Laser Strategies. Master’s Thesis, Nanjing University of Science and Technology, Nanjing, China, 2017.
Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [CrossRef]
Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016, 61, 361–377. [CrossRef]
Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128. [CrossRef]
Everton, S.K.; Hirsch, M.; Stavroulakis, P.I.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [CrossRef]
Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [CrossRef] [PubMed]
Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.I.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations. Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [CrossRef]
Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-jet powder flow and laser–powder interaction in laser melting deposition: Modelling versus experimental correlations. Metals 2020, 10, 1113. [CrossRef]
King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [CrossRef]
Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [CrossRef]
Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting. Scr. Mater. 2015, 105, 14–17. [CrossRef]
Qian, Y.; Yan, W.; Lin, F. Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp. J. 2018, 24, 1586–1598. [CrossRef]
Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126, 251–263. [CrossRef]
Panwisawas, C.; Sovani, Y.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C.; Choquet, I. Modelling of thermal fluid dynamics for fusion welding. J. Mater. Process. Technol. 2018, 252, 176–182. [CrossRef]
Martin, A.A.; Calta, N.P.; Hammons, J.A.; Khairallah, S.A.; Nielsen, M.H.; Shuttlesworth, R.M.; Sinclair, N.; Matthews, M.J.; Jeffries, J.R.; Willey, T.M.; et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging. Mater. Today Adv. 2019, 1, 100002. [CrossRef]
Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [CrossRef] [PubMed]
Tang, C.; Tan, J.L.; Wong, C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser melting. Int. J. Heat Mass Transf. 2018, 126, 957–968. [CrossRef]
Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S. Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J. Manuf. Mater. Process. 2018, 2, 63. [CrossRef]
Oane, M.; Sporea, D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys. Technol. 2001, 42, 31–40. [CrossRef]
Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 2002, 26, 89–111. [CrossRef]
Parteli, E.J.R.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288, 96–102. [CrossRef]
Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass Transf. 2019, 141, 1036–1048. [CrossRef]
Tian, Y.; Yang, L.; Zhao, D.; Huang, Y.; Pan, J. Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel. J. Manuf. Process. 2020, 58, 964–974. [CrossRef]
Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [CrossRef]
Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48. [CrossRef]
Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion. Engineering 2017, 3, 685–694. [CrossRef]
Rosenthal, D. Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 1941, 20, 220–234.
Chen, Q.; Zhao, Y.Y.; Strayer, S.; Zhao, Y.Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the Effect of Preheating Temperature on Melt Pool Morphology Variation in Inconel 718 Laser Powder Bed Fusion via Simulation and Experiment. Available online: https://www.sciencedirect.com/science/article/pii/S2214860420310149#bb8 (accessed on 30 April 2021).
Ur Rehman, A.; Pitir, F.; Salamci, M.U. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and 1000 ◦C: Operando Study. Materials 2021, 14, 6683. [CrossRef] [PubMed]
Ur Rehman, A.; Pitir, F.; Salamci, M.U. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L. Materials 2021, 14, 6264. [CrossRef] [PubMed]
Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B.; Christiansen, D.; Beuth, J.; Lewandowski, J.J. Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 10–12 August 2014; 2014; pp. 256–267.
Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 2012, 61, 967–974. [CrossRef]
Effect of carrier gases on the entrainment defects within AZ91 alloy castings
Tian Liab J.M.T.Daviesa Xiangzhen Zhuc aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom
Abstract
An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.
연행 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주조로 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF 6 /CO2 , SF 6 / 공기). AZ91 합금에 포함된 엔트레인먼트 결함의 진화 과정은 미세조직 검사 및 열역학적 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.
키워드
마그네슘 합금주조Oxide film, Bifilm, Entrainment 불량, 재현성
1 . 소개
지구상에서 가장 가벼운 구조용 금속인 마그네슘은 지난 수십 년 동안 가장 매력적인 경금속 중 하나가 되었습니다. 결과적으로 마그네슘 산업은 지난 20년 동안 급속한 발전을 경험했으며 [1 , 2] , 이는 전 세계적으로 Mg 합금에 대한 수요가 크게 증가했음을 나타냅니다. 오늘날 Mg 합금의 사용은 자동차, 항공 우주, 전자 등의 분야에서 볼 수 있습니다. [3 , 4] . Mg 금속의 전 세계 소비는 특히 자동차 산업에서 앞으로 더욱 증가할 것으로 예측되었습니다. 기존 자동차와 전기 자동차 모두의 에너지 효율성 요구 사항이 설계를 경량화하도록 더욱 밀어붙이기 때문입니다 [3 , 5, 6] .
Mg 합금에 대한 수요의 지속적인 성장은 Mg 합금 주조의 품질 및 기계적 특성 개선에 대한 광범위한 관심을 불러일으켰습니다. Mg 합금 주조 공정 동안 용융물의 표면 난류는 소량의 주변 대기를 포함하는 이중 표면 필름의 포획으로 이어질 수 있으므로 동반 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)을 형성합니다. ) [7] , [8] , [9] , [10] . 무작위 크기, 수량, 방향 및 연행 결함의 배치는 주조 특성의 변화와 관련된 중요한 요인으로 널리 받아들여지고 있습니다 [7] . 또한 Peng et al. [11]AZ91 합금 용융물에 동반된 산화물 필름이 Al 8 Mn 5 입자에 대한 필터 역할을 하여 침전될 때 가두는 것을 발견했습니다 . Mackie et al. [12]는 또한 동반된 산화막이 금속간 입자를 트롤(trawl)하는 작용을 하여 입자가 클러스터링되어 매우 큰 결함을 형성할 수 있다고 제안했습니다. 금속간 화합물의 클러스터링은 비말동반 결함을 주조 특성에 더 해롭게 만들었습니다.
연행 결함에 관한 이전 연구의 대부분은 Al-합금에 대해 수행되었으며 [7 , [13] , [14] , [15] , [16] , [17] , [18] 몇 가지 잠재적인 방법이 제안되었습니다. 알루미늄 합금 주물의 품질에 대한 부정적인 영향을 줄이기 위해. Nyahumwa et al., [16] 은 연행 결함 내의 공극 체적이 열간 등방압 압축(HIP) 공정에 의해 감소될 수 있음을 보여줍니다. Campbell [7] 은 결함 내부의 동반된 가스가 주변 용융물과의 반응으로 인해 소모될 수 있다고 제안했으며, 이는 Raiszedeh와 Griffiths [19]에 의해 추가로 확인되었습니다 ..혼입 가스 소비가 Al-합금 주물의 기계적 특성에 미치는 영향은 [8 , 9]에 의해 조사되었으며 , 이는 혼입 가스의 소비가 주조 재현성의 개선을 촉진함을 시사합니다.
Al-합금 내 결함에 대한 조사와 비교하여 Mg-합금 내 연행 결함에 대한 연구는 상당히 제한적입니다. 연행 결함의 존재는 Mg 합금 주물 [20 , 21] 에서 입증 되었지만 그 거동, 진화 및 연행 가스 소비는 여전히 명확하지 않습니다.
Mg 합금 주조 공정에서 용융물은 일반적으로 마그네슘 점화를 피하기 위해 커버 가스로 보호됩니다. 따라서 모래 또는 매몰 몰드의 공동은 용융물을 붓기 전에 커버 가스로 세척해야 합니다 [22] . 따라서, Mg 합금 주물 내의 연행 가스는 공기만이 아니라 주조 공정에 사용되는 커버 가스를 포함해야 하며, 이는 구조 및 해당 연행 결함의 전개를 복잡하게 만들 수 있습니다.
SF 6 은 Mg 합금 주조 공정에 널리 사용되는 대표적인 커버 가스입니다 [23] , [24] , [25] . 이 커버 가스는 유럽의 마그네슘 합금 주조 공장에서 사용하도록 제한되었지만 상업 보고서에 따르면 이 커버는 전 세계 마그네슘 합금 산업, 특히 다음과 같은 글로벌 마그네슘 합금 생산을 지배한 국가에서 여전히 인기가 있습니다. 중국, 브라질, 인도 등 [26] . 또한, 최근 학술지 조사에서도 이 커버가스가 최근 마그네슘 합금 연구에서 널리 사용된 것으로 나타났다 [27] . SF 6 커버 가스 의 보호 메커니즘 (즉, 액체 Mg 합금과 SF 6 사이의 반응Cover gas)에 대한 연구는 여러 선행연구자들에 의해 이루어졌으나 표면 산화막의 형성과정이 아직 명확하게 밝혀지지 않았으며, 일부 발표된 결과들도 상충되고 있다. 1970년대 초 Fruehling [28] 은 SF 6 아래에 형성된 표면 피막이 주로 미량의 불화물과 함께 MgO 임을 발견 하고 SF 6 이 Mg 합금 표면 피막에 흡수 된다고 제안했습니다 . Couling [29] 은 흡수된 SF 6 이 Mg 합금 용융물과 반응하여 MgF 2 를 형성함을 추가로 확인했습니다 . 지난 20년 동안 아래에 자세히 설명된 것처럼 Mg 합금 표면 필름의 다양한 구조가 보고되었습니다.(1)
단층 필름 . Cashion [30 , 31] 은 X선 광전자 분광법(XPS)과 오제 분광법(AES)을 사용하여 표면 필름을 MgO 및 MgF 2 로 식별했습니다 . 그는 또한 필름의 구성이 두께와 전체 실험 유지 시간에 걸쳐 일정하다는 것을 발견했습니다. Cashion이 관찰한 필름은 10분에서 100분의 유지 시간으로 생성된 단층 구조를 가졌다.(2)
이중층 필름 . Aarstad et. al [32] 은 2003년에 이중층 표면 산화막을 보고했습니다. 그들은 예비 MgO 막에 부착된 잘 분포된 여러 MgF 2 입자를 관찰 하고 전체 표면적의 25-50%를 덮을 때까지 성장했습니다. 외부 MgO 필름을 통한 F의 내부 확산은 진화 과정의 원동력이었습니다. 이 이중층 구조는 Xiong의 그룹 [25 , 33] 과 Shih et al. 도 지지했습니다 . [34] .(삼)
트리플 레이어 필름 . 3층 필름과 그 진화 과정은 Pettersen [35]에 의해 2002년에 보고되었습니다 . Pettersen은 초기 표면 필름이 MgO 상이었고 F의 내부 확산에 의해 점차적으로 안정적인 MgF 2 상 으로 진화한다는 것을 발견했습니다 . 두꺼운 상부 및 하부 MgF 2 층.(4)
산화물 필름은 개별 입자로 구성 됩니다. Wang et al [36] 은 Mg-alloy 표면 필름을 SF 6 커버 가스 하에서 용융물에 교반 한 다음 응고 후 동반된 표면 필름을 검사했습니다. 그들은 동반된 표면 필름이 다른 연구자들이 보고한 보호 표면 필름처럼 계속되지 않고 개별 입자로 구성된다는 것을 발견했습니다. 젊은 산화막은 MgO 나노 크기의 산화물 입자로 구성되어 있는 반면, 오래된 산화막은 한쪽 면에 불화물과 질화물이 포함된 거친 입자(평균 크기 약 1μm)로 구성되어 있습니다.
Mg 합금 용융 표면의 산화막 또는 동반 가스는 모두 액체 Mg 합금과 커버 가스 사이의 반응으로 인해 형성되므로 Mg 합금 표면막에 대한 위에서 언급한 연구는 진화에 대한 귀중한 통찰력을 제공합니다. 연행 결함. 따라서 SF 6 커버 가스 의 보호 메커니즘 (즉, Mg-합금 표면 필름의 형성)은 해당 동반 결함의 잠재적인 복잡한 진화 과정을 나타냅니다.
그러나 Mg 합금 용융물에 표면 필름을 형성하는 것은 용융물에 잠긴 동반된 가스의 소비와 다른 상황에 있다는 점에 유의해야 합니다. 예를 들어, 앞서 언급한 연구에서 표면 성막 동안 충분한 양의 커버 가스가 담지되어 커버 가스의 고갈을 억제했습니다. 대조적으로, Mg 합금 용융물 내의 동반된 가스의 양은 유한하며, 동반된 가스는 완전히 고갈될 수 있습니다. Mirak [37] 은 3.5% SF 6 /기포를 특별히 설계된 영구 금형에서 응고되는 순수한 Mg 합금 용융물에 도입했습니다. 기포가 완전히 소모되었으며, 해당 산화막은 MgO와 MgF 2 의 혼합물임을 알 수 있었다.. 그러나 Aarstad [32] 및 Xiong [25 , 33]에 의해 관찰된 MgF 2 스팟 과 같은 핵 생성 사이트 는 관찰되지 않았습니다. Mirak은 또한 조성 분석을 기반으로 산화막에서 MgO 이전에 MgF 2 가 형성 되었다고 추측했는데 , 이는 이전 문헌에서 보고된 표면 필름 형성 과정(즉, MgF 2 이전에 형성된 MgO)과 반대 입니다. Mirak의 연구는 동반된 가스의 산화막 형성이 표면막의 산화막 형성과 상당히 다를 수 있음을 나타내었지만 산화막의 구조와 진화에 대해서는 밝히지 않았습니다.
또한 커버 가스에 캐리어 가스를 사용하는 것도 커버 가스와 액체 Mg 합금 사이의 반응에 영향을 미쳤습니다. SF 6 /air 는 용융 마그네슘의 점화를 피하기 위해 SF 6 /CO 2 운반 가스 [38] 보다 더 높은 함량의 SF 6을 필요로 하여 다른 가스 소비율을 나타냅니다. Liang et.al [39] 은 CO 2 가 캐리어 가스로 사용될 때 표면 필름에 탄소가 형성된다고 제안했는데 , 이는 SF 6 /air 에서 형성된 필름과 다릅니다 . Mg 연소 [40]에 대한 조사 에서 Mg 2 C 3 검출이 보고되었습니다.CO 2 연소 후 Mg 합금 샘플 에서 이는 Liang의 결과를 뒷받침할 뿐만 아니라 이중 산화막 결함에서 Mg 탄화물의 잠재적 형성을 나타냅니다.
여기에 보고된 작업은 다양한 커버 가스(즉, SF 6 /air 및 SF 6 /CO 2 )로 보호되는 AZ91 Mg 합금 주물에서 형성된 연행 결함의 거동과 진화에 대한 조사 입니다. 이러한 캐리어 가스는 액체 Mg 합금에 대해 다른 보호성을 가지며, 따라서 상응하는 동반 가스의 다른 소비율 및 발생 프로세스와 관련될 수 있습니다. AZ91 주물의 재현성에 대한 동반 가스 소비의 영향도 연구되었습니다.
2 . 실험
2.1 . 용융 및 주조
3kg의 AZ91 합금을 700 ± 5 °C의 연강 도가니에서 녹였습니다. AZ91 합금의 조성은 표 1 에 나타내었다 . 가열하기 전에 잉곳 표면의 모든 산화물 스케일을 기계가공으로 제거했습니다. 사용 된 커버 가스는 0.5 %이었다 SF 6 / 공기 또는 0.5 % SF 6 / CO 2 (부피. %) 다른 주물 6L / 분의 유량. 용융물은 15분 동안 0.3L/min의 유속으로 아르곤으로 가스를 제거한 다음 [41 , 42] , 모래 주형에 부었습니다. 붓기 전에 샌드 몰드 캐비티를 20분 동안 커버 가스로 플러싱했습니다 [22] . 잔류 용융물(약 1kg)이 도가니에서 응고되었습니다.
표 1 . 본 연구에 사용된 AZ91 합금의 조성(wt%).
알
아연
미네소타
시
철
니
마그네슘
9.4
0.61
0.15
0.02
0.005
0.0017
잔여
그림 1 (a)는 러너가 있는 주물의 치수를 보여줍니다. 탑 필링 시스템은 최종 주물에서 연행 결함을 생성하기 위해 의도적으로 사용되었습니다. Green과 Campbell [7 , 43] 은 탑 필링 시스템이 바텀 필링 시스템에 비해 주조 과정에서 더 많은 연행 현상(즉, 이중 필름)을 유발한다고 제안했습니다. 이 금형의 용융 흐름 시뮬레이션(Flow-3D 소프트웨어)은 연행 현상에 관한 Reilly의 모델 [44] 을 사용하여 최종 주조에 많은 양의 이중막이 포함될 것이라고 예측했습니다( 그림 1 에서 검은색 입자로 표시됨) . NS).
수축 결함은 또한 주물의 기계적 특성과 재현성에 영향을 미칩니다. 이 연구는 주조 품질에 대한 이중 필름의 영향에 초점을 맞추었기 때문에 수축 결함이 발생하지 않도록 금형을 의도적으로 설계했습니다. ProCAST 소프트웨어를 사용한 응고 시뮬레이션은 그림 1c 와 같이 최종 주조에 수축 결함이 포함되지 않음을 보여주었습니다 . 캐스팅 건전함도 테스트바 가공 전 실시간 X-ray를 통해 확인했다.
모래 주형은 1wt를 함유한 수지 결합된 규사로 만들어졌습니다. % PEPSET 5230 수지 및 1wt. % PEPSET 5112 촉매. 모래는 또한 억제제로 작용하기 위해 2중량%의 Na 2 SiF 6 을 함유했습니다 .. 주입 온도는 700 ± 5 °C였습니다. 응고 후 러너바의 단면을 Sci-Lab Analytical Ltd로 보내 H 함량 분석(LECO 분석)을 하였고, 모든 H 함량 측정은 주조 공정 후 5일째에 실시하였다. 각각의 주물은 인장 강도 시험을 위해 클립 신장계가 있는 Zwick 1484 인장 시험기를 사용하여 40개의 시험 막대로 가공되었습니다. 파손된 시험봉의 파단면을 주사전자현미경(SEM, Philips JEOL7000)을 이용하여 가속전압 5~15kV로 조사하였다. 파손된 시험 막대, 도가니에서 응고된 잔류 Mg 합금 및 주조 러너를 동일한 SEM을 사용하여 단면화하고 연마하고 검사했습니다. CFEI Quanta 3D FEG FIB-SEM을 사용하여 FIB(집속 이온 빔 밀링 기술)에 의해 테스트 막대 파괴 표면에서 발견된 산화막의 단면을 노출했습니다. 분석에 필요한 산화막은 백금층으로 코팅하였다. 그런 다음 30kV로 가속된 갈륨 이온 빔이 산화막의 단면을 노출시키기 위해 백금 코팅 영역을 둘러싼 재료 기판을 밀링했습니다. 산화막 단면의 EDS 분석은 30kV의 가속 전압에서 FIB 장비를 사용하여 수행되었습니다.
2.2 . 산화 세포
전술 한 바와 같이, 몇몇 최근 연구자들은 마그네슘 합금의 용탕 표면에 형성된 보호막 조사 [38 , 39 , [46] , [47] , [48] , [49] , [50] , [51] , [52 ] . 이 실험 동안 사용된 커버 가스의 양이 충분하여 커버 가스에서 불화물의 고갈을 억제했습니다. 이 섹션에서 설명하는 실험은 엔트레인먼트 결함의 산화막의 진화를 연구하기 위해 커버 가스의 공급을 제한하는 밀봉된 산화 셀을 사용했습니다. 산화 셀에 포함된 커버 가스는 큰 크기의 “동반된 기포”로 간주되었습니다.
도 2에 도시된 바와 같이 , 산화셀의 본체는 내부 길이가 400mm, 내경이 32mm인 폐쇄형 연강관이었다. 수냉식 동관을 전지의 상부에 감았습니다. 튜브가 가열될 때 냉각 시스템은 상부와 하부 사이에 온도 차이를 만들어 내부 가스가 튜브 내에서 대류하도록 했습니다. 온도는 도가니 상단에 위치한 K형 열전대로 모니터링했습니다. Nieet al. [53] 은 Mg 합금 용융물의 표면 피막을 조사할 때 SF 6 커버 가스가 유지로의 강철 벽과 반응할 것이라고 제안했습니다 . 이 반응을 피하기 위해 강철 산화 전지의 내부 표면(그림 2 참조)) 및 열전대의 상반부는 질화붕소로 코팅되었습니다(Mg 합금은 질화붕소와 접촉하지 않았습니다).
실험 중에 고체 AZ91 합금 블록을 산화 셀 바닥에 위치한 마그네시아 도가니에 넣었습니다. 전지는 1L/min의 가스 유속으로 전기 저항로에서 100℃로 가열되었다. 원래의 갇힌 대기(즉, 공기)를 대체하기 위해 셀을 이 온도에서 20분 동안 유지했습니다. 그런 다음, 산화 셀을 700°C로 더 가열하여 AZ91 샘플을 녹였습니다. 그런 다음 가스 입구 및 출구 밸브가 닫혀 제한된 커버 가스 공급 하에서 산화를 위한 밀폐된 환경이 생성되었습니다. 그런 다음 산화 전지를 5분 간격으로 5분에서 30분 동안 700 ± 10°C에서 유지했습니다. 각 유지 시간이 끝날 때 세포를 물로 켄칭했습니다. 실온으로 냉각한 후 산화된 샘플을 절단하고 연마한 다음 SEM으로 검사했습니다.
3 . 결과
3.1 . SF 6 /air 에서 형성된 엔트레인먼트 결함의 구조 및 구성
0.5 % SF의 커버 가스 하에서 AZ91 주물에 형성된 유입 결함의 구조 및 조성 6 / 공기는 SEM 및 EDS에 의해 관찰되었다. 결과는 그림 3에 스케치된 엔트레인먼트 결함의 두 가지 유형이 있음을 나타냅니다 . (1) 산화막이 전통적인 단층 구조를 갖는 유형 A 결함 및 (2) 산화막이 2개 층을 갖는 유형 B 결함. 이러한 결함의 세부 사항은 다음에 소개되었습니다. 여기에서 비말동반 결함은 생물막 또는 이중 산화막으로도 알려져 있기 때문에 B형 결함의 산화막은 본 연구에서 “다층 산화막” 또는 “다층 구조”로 언급되었습니다. “이중 산화막 결함의 이중층 산화막”과 같은 혼란스러운 설명을 피하기 위해.
그림 4 (ab)는 약 0.4μm 두께의 조밀한 단일층 산화막을 갖는 Type A 결함을 보여줍니다. 이 필름에서 산소, 불소, 마그네슘 및 알루미늄이 검출되었습니다( 그림 4c). 산화막은 마그네슘과 알루미늄의 산화물과 불화물의 혼합물로 추측됩니다. 불소의 검출은 동반된 커버 가스가 이 결함의 형성에 포함되어 있음을 보여주었습니다. 즉, Fig. 4 (a)에 나타난 기공 은 수축결함이나 수소기공도가 아니라 연행결함이었다. 알루미늄의 검출은 Xiong과 Wang의 이전 연구 [47 , 48] 와 다르며 , SF 6으로 보호된 AZ91 용융물의 표면 필름에 알루미늄이 포함되어 있지 않음을 보여주었습니다.커버 가스. 유황은 원소 맵에서 명확하게 인식할 수 없었지만 해당 ESD 스펙트럼에서 S-피크가 있었습니다.
도 5 (ab)는 다층 산화막을 갖는 Type B 엔트레인먼트 결함을 나타낸다. 산화막의 조밀한 외부 층은 불소와 산소가 풍부하지만( 그림 5c) 상대적으로 다공성인 내부 층은 산소만 풍부하고(즉, 불소가 부족) 부분적으로 함께 성장하여 샌드위치 모양을 형성합니다. 구조. 따라서 외층은 불화물과 산화물의 혼합물이며 내층은 주로 산화물로 추정된다. 황은 EDX 스펙트럼에서만 인식될 수 있었고 요소 맵에서 명확하게 식별할 수 없었습니다. 이는 커버 가스의 작은 S 함량(즉, SF 6 의 0.5% 부피 함량 때문일 수 있음)커버 가스). 이 산화막에서는 이 산화막의 외층에 알루미늄이 포함되어 있지만 내층에서는 명확하게 검출할 수 없었다. 또한 Al의 분포가 고르지 않은 것으로 보입니다. 결함의 우측에는 필름에 알루미늄이 존재하지만 그 농도는 매트릭스보다 높은 것으로 식별할 수 없음을 알 수 있다. 그러나 결함의 왼쪽에는 알루미늄 농도가 훨씬 높은 작은 영역이 있습니다. 이러한 알루미늄의 불균일한 분포는 다른 결함(아래 참조)에서도 관찰되었으며, 이는 필름 내부 또는 아래에 일부 산화물 입자가 형성된 결과입니다.
무화과 도 4 및 5 는 SF 6 /air 의 커버 가스 하에 주조된 AZ91 합금 샘플에서 형성된 연행 결함의 횡단면 관찰을 나타낸다 . 2차원 단면에서 관찰된 수치만으로 연행 결함을 특성화하는 것만으로는 충분하지 않습니다. 더 많은 이해를 돕기 위해 테스트 바의 파단면을 관찰하여 엔트레인먼트 결함(즉, 산화막)의 표면을 더 연구했습니다.
Fig. 6 (a)는 SF 6 /air 에서 생산된 AZ91 합금 인장시험봉의 파단면을 보여준다 . 파단면의 양쪽에서 대칭적인 어두운 영역을 볼 수 있습니다. 그림 6 (b)는 어두운 영역과 밝은 영역 사이의 경계를 보여줍니다. 밝은 영역은 들쭉날쭉하고 부서진 특징으로 구성되어 있는 반면, 어두운 영역의 표면은 비교적 매끄럽고 평평했습니다. 또한 EDS 결과( Fig. 6 c-d 및 Table 2) 불소, 산소, 황 및 질소는 어두운 영역에서만 검출되었으며, 이는 어두운 영역이 용융물에 동반된 표면 보호 필름임을 나타냅니다. 따라서 어두운 영역은 대칭적인 특성을 고려할 때 연행 결함이라고 제안할 수 있습니다. Al-합금 주조물의 파단면에서 유사한 결함이 이전에 보고되었습니다 [7] . 질화물은 테스트 바 파단면의 산화막에서만 발견되었지만 그림 1과 그림 4에 표시된 단면 샘플에서는 검출되지 않았습니다 . 4 및 5 . 근본적인 이유는 이러한 샘플에 포함된 질화물이 샘플 연마 과정에서 가수분해되었을 수 있기 때문입니다 [54] .
표 2 . EDS 결과(wt.%)는 그림 6에 표시된 영역에 해당합니다 (커버 가스: SF 6 /공기).
도 1 및 도 2에 도시된 결함의 단면 관찰과 함께 . 도 4 및 도 5 를 참조하면, 인장 시험봉에 포함된 연행 결함의 구조를 도 6 (e) 와 같이 스케치하였다 . 결함에는 산화막으로 둘러싸인 동반된 가스가 포함되어 있어 테스트 바 내부에 보이드 섹션이 생성되었습니다. 파괴 과정에서 결함에 인장력이 가해지면 균열이 가장 약한 경로를 따라 전파되기 때문에 보이드 섹션에서 균열이 시작되어 연행 결함을 따라 전파됩니다 [55] . 따라서 최종적으로 시험봉이 파단되었을 때 Fig. 6 (a) 와 같이 시험봉의 양 파단면에 연행결함의 산화피막이 나타났다 .
3.2 . SF 6 /CO 2 에 형성된 연행 결함의 구조 및 조성
SF 6 /air 에서 형성된 엔트레인먼트 결함과 유사하게, 0.5% SF 6 /CO 2 의 커버 가스 아래에서 형성된 결함 도 두 가지 유형의 산화막(즉, 단층 및 다층 유형)을 가졌다. 도 7 (a)는 다층 산화막을 포함하는 엔트레인먼트 결함의 예를 도시한다. 결함에 대한 확대 관찰( 그림 7b )은 산화막의 내부 층이 함께 성장하여 SF 6 /air 의 분위기에서 형성된 결함과 유사한 샌드위치 같은 구조를 나타냄을 보여줍니다 ( 그림 7b). 5 나 ). EDS 스펙트럼( 그림 7c) 이 샌드위치형 구조의 접합부(내층)는 주로 산화마그네슘을 함유하고 있음을 보여주었다. 이 EDS 스펙트럼에서는 불소, 황, 알루미늄의 피크가 확인되었으나 그 양은 상대적으로 적었다. 대조적으로, 산화막의 외부 층은 조밀하고 불화물과 산화물의 혼합물로 구성되어 있습니다( 그림 7d-e).
Fig. 8 (a)는 0.5%SF 6 /CO 2 분위기에서 제작된 AZ91 합금 인장시험봉의 파단면의 연행결함을 보여준다 . 상응하는 EDS 결과(표 3)는 산화막이 불화물과 산화물을 함유함을 보여주었다. 황과 질소는 검출되지 않았습니다. 게다가, 확대 관찰( 도 8b)은 산화막 표면에 반점을 나타내었다. 반점의 직경은 수백 나노미터에서 수 마이크론 미터까지 다양했습니다.
산화막의 구조와 조성을 보다 명확하게 나타내기 위해 테스트 바 파단면의 산화막 단면을 FIB 기법을 사용하여 현장에서 노출시켰다( 그림 9 ). 도 9a에 도시된 바와 같이 , 백금 코팅층과 Mg-Al 합금 기재 사이에 연속적인 산화피막이 발견되었다. 그림 9 (bc)는 다층 구조( 그림 9c 에서 빨간색 상자로 표시)를 나타내는 산화막에 대한 확대 관찰을 보여줍니다 . 바닥층은 불소와 산소가 풍부하고 불소와 산화물의 혼합물이어야 합니다 . 5 와 7, 유일한 산소가 풍부한 최상층은 도 1 및 도 2에 도시 된 “내층”과 유사하였다 . 5 및 7 .
연속 필름을 제외하고 도 9 에 도시된 바와 같이 연속 필름 내부 또는 하부에서도 일부 개별 입자가 관찰되었다 . 그림 9( b) 의 산화막 좌측에서 Al이 풍부한 입자가 검출되었으며, 마그네슘과 산소 원소도 풍부하게 함유하고 있어 스피넬 Mg 2 AlO 4 로 추측할 수 있다 . 이러한 Mg 2 AlO 4 입자의 존재는 Fig. 5 와 같이 관찰된 필름의 작은 영역에 높은 알루미늄 농도와 알루미늄의 불균일한 분포의 원인이 된다 .(씨). 여기서 강조되어야 할 것은 연속 산화막의 바닥층의 다른 부분이 이 Al이 풍부한 입자보다 적은 양의 알루미늄을 함유하고 있지만, 그림 9c는 이 바닥층의 알루미늄 양이 여전히 무시할 수 없는 수준임을 나타냅니다 . , 특히 필름의 외층과 비교할 때. 도 9b에 도시된 산화막의 우측 아래에서 입자가 검출되어 Mg와 O가 풍부하여 MgO인 것으로 추측되었다. Wang의 결과에 따르면 [56], Mg 용융물과 Mg 증기의 산화에 의해 Mg 용융물의 표면에 많은 이산 MgO 입자가 형성될 수 있다. 우리의 현재 연구에서 관찰된 MgO 입자는 같은 이유로 인해 형성될 수 있습니다. 실험 조건의 차이로 인해 더 적은 Mg 용융물이 기화되거나 O2와 반응할 수 있으므로 우리 작업에서 형성되는 MgO 입자는 소수에 불과합니다. 또한 필름에서 풍부한 탄소가 발견되어 CO 2 가 용융물과 반응하여 탄소 또는 탄화물을 형성할 수 있음을 보여줍니다 . 이 탄소 농도는 표 3에 나타낸 산화막의 상대적으로 높은 탄소 함량 (즉, 어두운 영역) 과 일치하였다 . 산화막 옆 영역.
표 3 . 도 8에 도시된 영역에 상응하는 EDS 결과(wt.%) (커버 가스: SF 6 / CO 2 ).
테스트 바 파단면( 도 9 ) 에서 산화막의 이 단면 관찰은 도 6 (e)에 도시된 엔트레인먼트 결함의 개략도를 추가로 확인했다 . SF 6 /CO 2 와 SF 6 /air 의 서로 다른 분위기에서 형성된 엔트레인먼트 결함 은 유사한 구조를 가졌지만 그 조성은 달랐다.
3.3 . 산화 전지에서 산화막의 진화
섹션 3.1 및 3.2 의 결과 는 SF 6 /air 및 SF 6 /CO 2 의 커버 가스 아래에서 AZ91 주조에서 형성된 연행 결함의 구조 및 구성을 보여줍니다 . 산화 반응의 다른 단계는 연행 결함의 다른 구조와 조성으로 이어질 수 있습니다. Campbell은 동반된 가스가 주변 용융물과 반응할 수 있다고 추측했지만 Mg 합금 용융물과 포획된 커버 가스 사이에 반응이 발생했다는 보고는 거의 없습니다. 이전 연구자들은 일반적으로 개방된 환경에서 Mg 합금 용융물과 커버 가스 사이의 반응에 초점을 맞췄습니다 [38 , 39 , [46] , [47], [48] , [49] , [50] , [51] , [52] , 이는 용융물에 갇힌 커버 가스의 상황과 다릅니다. AZ91 합금에서 엔트레인먼트 결함의 형성을 더 이해하기 위해 엔트레인먼트 결함의 산화막의 진화 과정을 산화 셀을 사용하여 추가로 연구했습니다.
.도 10 (a 및 d) 0.5 % 방송 SF 보호 산화 셀에서 5 분 동안 유지 된 표면 막 (6) / 공기. 불화물과 산화물(MgF 2 와 MgO) 로 이루어진 단 하나의 층이 있었습니다 . 이 표면 필름에서. 황은 EDS 스펙트럼에서 검출되었지만 그 양이 너무 적어 원소 맵에서 인식되지 않았습니다. 이 산화막의 구조 및 조성은 도 4 에 나타낸 엔트레인먼트 결함의 단층막과 유사하였다 .
10분의 유지 시간 후, 얇은 (O,S)가 풍부한 상부층(약 700nm)이 예비 F-농축 필름에 나타나 그림 10 (b 및 e) 에서와 같이 다층 구조를 형성했습니다 . ). (O, S)가 풍부한 최상층의 두께는 유지 시간이 증가함에 따라 증가했습니다. Fig. 10 (c, f) 에서 보는 바와 같이 30분간 유지한 산화막도 다층구조를 가지고 있으나 (O,S)가 풍부한 최상층(약 2.5μm)의 두께가 10분 산화막의 그것. 도 10 (bc) 에 도시 된 다층 산화막 은 도 5에 도시된 샌드위치형 결함의 막과 유사한 외관을 나타냈다 .
도 10에 도시된 산화막의 상이한 구조는 커버 가스의 불화물이 AZ91 합금 용융물과의 반응으로 인해 우선적으로 소모될 것임을 나타내었다. 불화물이 고갈된 후, 잔류 커버 가스는 액체 AZ91 합금과 추가로 반응하여 산화막에 상부 (O, S)가 풍부한 층을 형성했습니다. 따라서 도 1 및 도 3에 도시된 연행 결함의 상이한 구조 및 조성 . 4 와 5 는 용융물과 갇힌 커버 가스 사이의 진행 중인 산화 반응 때문일 수 있습니다.
이 다층 구조는 Mg 합금 용융물에 형성된 보호 표면 필름에 관한 이전 간행물 [38 , [46] , [47] , [48] , [49] , [50] , [51] 에서 보고되지 않았습니다 . . 이는 이전 연구원들이 무제한의 커버 가스로 실험을 수행했기 때문에 커버 가스의 불화물이 고갈되지 않는 상황을 만들었기 때문일 수 있습니다. 따라서 엔트레인먼트 결함의 산화피막은 도 10에 도시된 산화피막과 유사한 거동특성을 가지나 [38 ,[46] , [47] , [48] , [49] , [50] , [51] .
SF 유지 산화막와 마찬가지로 6 / 공기, SF에 형성된 산화물 막 (6) / CO 2는 또한 세포 산화 다른 유지 시간과 다른 구조를 가지고 있었다. .도 11 (a)는 AZ91 개최 산화막, 0.5 %의 커버 가스 하에서 SF 표면 용융 도시 6 / CO 2, 5 분. 이 필름은 MgF 2 로 이루어진 단층 구조를 가졌다 . 이 영화에서는 MgO의 존재를 확인할 수 없었다. 30분의 유지 시간 후, 필름은 다층 구조를 가졌다; 내부 층은 조밀하고 균일한 외관을 가지며 MgF 2 로 구성 되고 외부 층은 MgF 2 혼합물및 MgO. 0.5%SF 6 /air 에서 형성된 표면막과 다른 이 막에서는 황이 검출되지 않았다 . 따라서, 0.5%SF 6 /CO 2 의 커버 가스 내의 불화물 도 막 성장 과정의 초기 단계에서 우선적으로 소모되었다. SF 6 /air 에서 형성된 막과 비교하여 SF 6 /CO 2 에서 형성된 막에서 MgO 는 나중에 나타났고 황화물은 30분 이내에 나타나지 않았다. 이는 SF 6 /air 에서 필름의 형성과 진화 가 SF 6 /CO 2 보다 빠르다 는 것을 의미할 수 있습니다 . CO 2 후속적으로 용융물과 반응하여 MgO를 형성하는 반면, 황 함유 화합물은 커버 가스에 축적되어 반응하여 매우 늦은 단계에서 황화물을 형성할 수 있습니다(산화 셀에서 30분 후).
4 . 논의
4.1 . SF 6 /air 에서 형성된 연행 결함의 진화
Outokumpu HSC Chemistry for Windows( http://www.hsc-chemistry.net/ )의 HSC 소프트웨어를 사용하여 갇힌 기체와 액체 AZ91 합금 사이에서 발생할 수 있는 반응을 탐색하는 데 필요한 열역학 계산을 수행했습니다. 계산에 대한 솔루션은 소량의 커버 가스(즉, 갇힌 기포 내의 양)와 AZ91 합금 용융물 사이의 반응 과정에서 어떤 생성물이 가장 형성될 가능성이 있는지 제안합니다.
실험에서 압력은 1기압으로, 온도는 700°C로 설정했습니다. 커버 가스의 사용량은 7 × 10으로 가정 하였다 -7 약 0.57 cm의 양으로 kg 3 (3.14 × 10 -6 0.5 % SF위한 kmol) 6 / 공기, 0.35 cm (3) (3.12 × 10 – 8 kmol) 0.5%SF 6 /CO 2 . 포획된 가스와 접촉하는 AZ91 합금 용융물의 양은 모든 반응을 완료하기에 충분한 것으로 가정되었습니다. SF 6 의 분해 생성물 은 SF 5 , SF 4 , SF 3 , SF 2 , F 2 , S(g), S 2(g) 및 F(g) [57] , [58] , [59] , [60] .
그림 12 는 AZ91 합금과 0.5%SF 6 /air 사이의 반응에 대한 열역학적 계산의 평형 다이어그램을 보여줍니다 . 다이어그램에서 10 -15 kmol 미만의 반응물 및 생성물은 표시되지 않았습니다. 이는 존재 하는 SF 6 의 양 (≈ 1.57 × 10 -10 kmol) 보다 5배 적 으므로 영향을 미치지 않습니다. 실제적인 방법으로 과정을 관찰했습니다.
이 반응 과정은 3단계로 나눌 수 있다.
1단계 : 불화물의 형성. AZ91 용융물은 SF 6 및 그 분해 생성물과 우선적으로 반응하여 MgF 2 , AlF 3 및 ZnF 2 를 생성 합니다. 그러나 ZnF 2 의 양 이 너무 적어서 실제적으로 검출되지 않았을 수 있습니다( MgF 2 의 3 × 10 -10 kmol에 비해 ZnF 2 1.25 × 10 -12 kmol ). 섹션 3.1 – 3.3에 표시된 모든 산화막 . 한편, 잔류 가스에 황이 SO 2 로 축적되었다 .
2단계 : 산화물의 형성. 액체 AZ91 합금이 포획된 가스에서 사용 가능한 모든 불화물을 고갈시킨 후, Mg와의 반응으로 인해 AlF 3 및 ZnF 2 의 양이 빠르게 감소했습니다. O 2 (g) 및 SO 2 는 AZ91 용융물과 반응하여 MgO, Al 2 O 3 , MgAl 2 O 4 , ZnO, ZnSO 4 및 MgSO 4 를 형성 합니다. 그러나 ZnO 및 ZnSO 4 의 양은 EDS에 의해 실제로 발견되기에는 너무 적었을 것입니다(예: 9.5 × 10 -12 kmol의 ZnO, 1.38 × 10 -14 kmol의 ZnSO 4 , 대조적으로 4.68 × 10−10 kmol의 MgF 2 , X 축의 AZ91 양 이 2.5 × 10 -9 kmol일 때). 실험 사례에서 커버 가스의 F 농도는 매우 낮고 전체 농도 f O는 훨씬 높습니다. 따라서 1단계와 2단계, 즉 불화물과 산화물의 형성은 반응 초기에 동시에 일어나 그림 1과 2와 같이 불화물과 산화물의 가수층 혼합물이 형성될 수 있다 . 4 및 10 (a). 내부 층은 산화물로 구성되어 있지만 불화물은 커버 가스에서 F 원소가 완전히 고갈된 후에 형성될 수 있습니다.
산화막 내의 MgAl 2 O 4 및 Al 2 O 3 의 양은 도 4에 도시된 산화막과 일치하는 검출하기에 충분한 양이었다 . 그러나, 도 10 에 도시된 바와 같이, 산화셀에서 성장된 산화막에서는 알루미늄의 존재를 인식할 수 없었다 . 이러한 Al의 부재는 표면 필름과 AZ91 합금 용융물 사이의 다음 반응으로 인한 것일 수 있습니다.(1)
Al 2 O 3 + 3Mg + = 3MgO + 2Al, △G(700°C) = -119.82 kJ/mol(2)
Mg + MgAl 2 O 4 = MgO + Al, △G(700°C) = -106.34 kJ/mol이는 반응물이 서로 완전히 접촉한다는 가정 하에 열역학적 계산이 수행되었기 때문에 HSC 소프트웨어로 시뮬레이션할 수 없었습니다. 그러나 실제 공정에서 AZ91 용융물과 커버 가스는 보호 표면 필름의 존재로 인해 서로 완전히 접촉할 수 없습니다.
3단계 : 황화물과 질화물의 형성. 30분의 유지 시간 후, 산화 셀의 기상 불화물 및 산화물이 고갈되어 잔류 가스와 용융 반응을 허용하여 초기 F-농축 또는 (F, O )이 풍부한 표면 필름, 따라서 그림 10 (b 및 c)에 표시된 관찰된 다층 구조를 생성합니다 . 게다가, 질소는 모든 반응이 완료될 때까지 AZ91 용융물과 반응했습니다. 도 6 에 도시 된 산화막 은 질화물 함량으로 인해 이 반응 단계에 해당할 수 있다. 그러나, 그 결과는 도 1 및 도 5에 도시 된 연마된 샘플에서 질화물이 검출되지 않음을 보여준다. 4 와 5, 그러나 테스트 바 파단면에서만 발견됩니다. 질화물은 다음과 같이 샘플 준비 과정에서 가수분해될 수 있습니다 [54] .(삼)
Mg 3 N 2 + 6H 2 O = 3Mg(OH) 2 + 2NH 3 ↑(4)
AlN+ 3H 2 O = Al(OH) 3 + NH 3 ↑
또한 Schmidt et al. [61] 은 Mg 3 N 2 와 AlN이 반응하여 3원 질화물(Mg 3 Al n N n+2, n=1, 2, 3…) 을 형성할 수 있음을 발견했습니다 . HSC 소프트웨어에는 삼원 질화물 데이터베이스가 포함되어 있지 않아 계산에 추가할 수 없습니다. 이 단계의 산화막은 또한 삼원 질화물을 포함할 수 있습니다.
4.2 . SF 6 /CO 2 에서 형성된 연행 결함의 진화
도 13 은 AZ91 합금과 0.5%SF 6 /CO 2 사이의 열역학적 계산 결과를 보여준다 . 이 반응 과정도 세 단계로 나눌 수 있습니다.
1단계 : 불화물의 형성. SF 6 및 그 분해 생성물은 AZ91 용융물에 의해 소비되어 MgF 2 , AlF 3 및 ZnF 2 를 형성했습니다 . 0.5% SF 6 /air 에서 AZ91의 반응에서와 같이 ZnF 2 의 양 이 너무 작아서 실제적으로 감지되지 않았습니다( 2.67 x 10 -10 kmol의 MgF 2 에 비해 ZnF 2 1.51 x 10 -13 kmol ). S와 같은 잔류 가스 트랩에 축적 유황 2 (g) 및 (S)의 일부분 (2) (g)가 CO와 반응하여 2 SO 형성하는 2및 CO. 이 반응 단계의 생성물은 도 11 (a)에 도시된 필름과 일치하며 , 이는 불화물만을 함유하는 단일 층 구조를 갖는다.
2단계 : 산화물의 형성. ALF 3 및 ZnF 2 MgF로 형성 용융 AZ91 마그네슘의 반응 2 , Al 및 Zn으로한다. SO 2 는 소모되기 시작하여 표면 필름에 산화물을 생성 하고 커버 가스에 S 2 (g)를 생성했습니다. 한편, CO 2 는 AZ91 용융물과 직접 반응하여 CO, MgO, ZnO 및 Al 2 O 3 를 형성 합니다. 도 1에 도시 된 산화막 . 9 및 11 (b)는 산소가 풍부한 층과 다층 구조로 인해 이 반응 단계에 해당할 수 있습니다.
커버 가스의 CO는 AZ91 용융물과 추가로 반응하여 C를 생성할 수 있습니다. 이 탄소는 온도가 감소할 때(응고 기간 동안) Mg와 추가로 반응하여 Mg 탄화물을 형성할 수 있습니다 [62] . 이것은 도 4에 도시된 산화막의 탄소 함량이 높은 이유일 수 있다 . 8 – 9 . Liang et al. [39] 또한 SO 2 /CO 2 로 보호된 AZ91 합금 표면 필름에서 탄소 검출을 보고했습니다 . 생성된 Al 2 O 3 는 MgO와 더 결합하여 MgAl 2 O 4 [63]를 형성할 수 있습니다 . 섹션 4.1 에서 논의된 바와 같이, 알루미나 및 스피넬은 도 11 에 도시된 바와 같이 표면 필름에 알루미늄 부재를 야기하는 Mg와 반응할 수 있다 .
3단계 : 황화물의 형성. AZ91은 용융물 S 소비하기 시작 2 인 ZnS와 MGS 형성 갇힌 잔류 가스 (g)를. 이러한 반응은 반응 과정의 마지막 단계까지 일어나지 않았으며, 이는 Fig. 7 (c)에 나타난 결함의 S-함량 이 적은 이유일 수 있다 .
요약하면, 열역학적 계산은 AZ91 용융물이 커버 가스와 반응하여 먼저 불화물을 형성한 다음 마지막에 산화물과 황화물을 형성할 것임을 나타냅니다. 다른 반응 단계에서 산화막은 다른 구조와 조성을 가질 것입니다.
4.3 . 운반 가스가 동반 가스 소비 및 AZ91 주물의 재현성에 미치는 영향
SF 6 /air 및 SF 6 /CO 2 에서 형성된 연행 결함의 진화 과정은 4.1절 과 4.2 절 에서 제안되었습니다 . 이론적인 계산은 실제 샘플에서 발견되는 해당 산화막과 관련하여 검증되었습니다. 연행 결함 내의 대기는 Al-합금 시스템과 다른 시나리오에서 액체 Mg-합금과의 반응으로 인해 효율적으로 소모될 수 있습니다(즉, 연행된 기포의 질소가 Al-합금 용융물과 효율적으로 반응하지 않을 것입니다 [64 , 65] 그러나 일반적으로 “질소 연소”라고 하는 액체 Mg 합금에서 질소가 더 쉽게 소모될 것입니다 [66] ).
동반된 가스와 주변 액체 Mg-합금 사이의 반응은 동반된 가스를 산화막 내에서 고체 화합물(예: MgO)로 전환하여 동반 결함의 공극 부피를 감소시켜 결함(예: 공기의 동반된 가스가 주변의 액체 Mg 합금에 의해 고갈되면 용융 온도가 700 °C이고 액체 Mg 합금의 깊이가 10 cm라고 가정할 때 최종 고체 제품의 총 부피는 0.044가 됩니다. 갇힌 공기가 취한 초기 부피의 %).
연행 결함의 보이드 부피 감소와 해당 주조 특성 사이의 관계는 알루미늄 합금 주조에서 널리 연구되었습니다. Nyahumwa와 Campbell [16] 은 HIP(Hot Isostatic Pressing) 공정이 Al-합금 주물의 연행 결함이 붕괴되고 산화물 표면이 접촉하게 되었다고 보고했습니다. 주물의 피로 수명은 HIP 이후 개선되었습니다. Nyahumwa와 Campbell [16] 도 서로 접촉하고 있는 이중 산화막의 잠재적인 결합을 제안했지만 이를 뒷받침하는 직접적인 증거는 없었습니다. 이 결합 현상은 Aryafar et.al에 의해 추가로 조사되었습니다. [8], 그는 강철 튜브에서 산화물 스킨이 있는 두 개의 Al-합금 막대를 다시 녹인 다음 응고된 샘플에 대해 인장 강도 테스트를 수행했습니다. 그들은 Al-합금 봉의 산화물 스킨이 서로 강하게 결합되어 용융 유지 시간이 연장됨에 따라 더욱 강해짐을 발견했으며, 이는 이중 산화막 내 동반된 가스의 소비로 인한 잠재적인 “치유” 현상을 나타냅니다. 구조. 또한 Raidszadeh와 Griffiths [9 , 19] 는 연행 가스가 반응하는 데 더 긴 시간을 갖도록 함으로써 응고 전 용융 유지 시간을 연장함으로써 Al-합금 주물의 재현성에 대한 연행 결함의 부정적인 영향을 성공적으로 줄였습니다. 주변이 녹습니다.
앞서 언급한 연구를 고려할 때, Mg 합금 주물에서 혼입 가스의 소비는 다음 두 가지 방식으로 혼입 결함의 부정적인 영향을 감소시킬 수 있습니다.
(1) 이중 산화막의 결합 현상 . 도 5 및 도 7 에 도시 된 샌드위치형 구조 는 이중 산화막 구조의 잠재적인 결합을 나타내었다. 그러나 산화막의 결합으로 인한 강도 증가를 정량화하기 위해서는 더 많은 증거가 필요합니다.
(2) 연행 결함의 보이드 체적 감소 . 주조품의 품질에 대한 보이드 부피 감소의 긍정적인 효과는 HIP 프로세스 [67]에 의해 널리 입증되었습니다 . 섹션 4.1 – 4.2 에서 논의된 진화 과정과 같이 , 동반된 가스와 주변 AZ91 합금 용융물 사이의 지속적인 반응으로 인해 동반 결함의 산화막이 함께 성장할 수 있습니다. 최종 고체 생성물의 부피는 동반된 기체에 비해 상당히 작았다(즉, 이전에 언급된 바와 같이 0.044%).
따라서, 혼입 가스의 소모율(즉, 산화막의 성장 속도)은 AZ91 합금 주물의 품질을 향상시키는 중요한 매개변수가 될 수 있습니다. 이에 따라 산화 셀의 산화막 성장 속도를 추가로 조사했습니다.
도 14 는 상이한 커버 가스(즉, 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 ) 에서의 표면 필름 성장 속도의 비교를 보여준다 . 필름 두께 측정을 위해 각 샘플의 15개의 임의 지점을 선택했습니다. 95% 신뢰구간(95%CI)은 막두께의 변화가 가우시안 분포를 따른다는 가정하에 계산하였다. 0.5%SF 6 /air 에서 형성된 모든 표면막이 0.5%SF 6 /CO 2 에서 형성된 것보다 빠르게 성장함을 알 수 있다 . 다른 성장률은 0.5%SF 6 /air 의 연행 가스 소비율 이 0.5%SF 6 /CO 2 보다 더 높음 을 시사했습니다., 이는 동반된 가스의 소비에 더 유리했습니다.
산화 셀에서 액체 AZ91 합금과 커버 가스의 접촉 면적(즉, 도가니의 크기)은 많은 양의 용융물과 가스를 고려할 때 상대적으로 작았다는 점에 유의해야 합니다. 결과적으로, 산화 셀 내에서 산화막 성장을 위한 유지 시간은 비교적 길었다(즉, 5-30분). 하지만, 실제 주조에 함유 된 혼입 결함은 (상대적으로 매우 적은, 즉, 수 미크론의 크기에 도시 된 바와 같이 ,도 3. – 6 및 [7]), 동반된 가스는 주변 용융물로 완전히 둘러싸여 상대적으로 큰 접촉 영역을 생성합니다. 따라서 커버 가스와 AZ91 합금 용융물의 반응 시간은 비교적 짧을 수 있습니다. 또한 실제 Mg 합금 모래 주조의 응고 시간은 몇 분일 수 있습니다(예: Guo [68] 은 직경 60mm의 Mg 합금 모래 주조가 응고되는 데 4분이 필요하다고 보고했습니다). 따라서 Mg-합금 용융주조 과정에서 포획된 동반된 가스는 특히 응고 시간이 긴 모래 주물 및 대형 주물의 경우 주변 용융물에 의해 쉽게 소모될 것으로 예상할 수 있습니다.
따라서, 동반 가스의 다른 소비율과 관련된 다른 커버 가스(0.5%SF 6 /air 및 0.5%SF 6 /CO 2 )가 최종 주물의 재현성에 영향을 미칠 수 있습니다. 이 가정을 검증하기 위해 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 에서 생산된 AZ91 주물 을 기계적 평가를 위해 테스트 막대로 가공했습니다. Weibull 분석은 선형 최소 자승(LLS) 방법과 비선형 최소 자승(비 LLS) 방법을 모두 사용하여 수행되었습니다 [69] .
그림 15 (ab)는 LLS 방법으로 얻은 UTS 및 AZ91 합금 주물의 연신율의 전통적인 2-p 선형 Weibull 플롯을 보여줍니다. 사용된 추정기는 P= (i-0.5)/N이며, 이는 모든 인기 있는 추정기 중 가장 낮은 편향을 유발하는 것으로 제안되었습니다 [69 , 70] . SF 6 /air 에서 생산된 주물 은 UTS Weibull 계수가 16.9이고 연신율 Weibull 계수가 5.0입니다. 대조적으로, SF 6 /CO 2 에서 생산된 주물의 UTS 및 연신 Weibull 계수는 각각 7.7과 2.7로, SF 6 /CO 2 에 의해 보호된 주물의 재현성이 SF 6 /air 에서 생산된 것보다 훨씬 낮음을 시사합니다. .
또한 저자의 이전 출판물 [69] 은 선형화된 Weibull 플롯의 단점을 보여주었으며, 이는 Weibull 추정 의 더 높은 편향과 잘못된 R 2 중단을 유발할 수 있습니다 . 따라서 그림 15 (cd) 와 같이 Non-LLS Weibull 추정이 수행되었습니다 . SF 6 /공기주조물 의 UTS Weibull 계수 는 20.8인 반면, SF 6 /CO 2 하에서 생산된 주조물의 UTS Weibull 계수는 11.4로 낮아 재현성에서 분명한 차이를 보였다. 또한 SF 6 /air elongation(El%) 데이터 세트는 SF 6 /CO 2 의 elongation 데이터 세트보다 더 높은 Weibull 계수(모양 = 5.8)를 가졌습니다.(모양 = 3.1). 따라서 LLS 및 Non-LLS 추정 모두 SF 6 /공기 주조가 SF 6 /CO 2 주조 보다 더 높은 재현성을 갖는다고 제안했습니다 . CO 2 대신 공기를 사용 하면 혼입된 가스의 더 빠른 소비에 기여하여 결함 내의 공극 부피를 줄일 수 있다는 방법을 지원합니다 . 따라서 0.5%SF 6 /CO 2 대신 0.5%SF 6 /air를 사용 하면(동반된 가스의 소비율이 증가함) AZ91 주물의 재현성이 향상되었습니다.
그러나 모든 Mg 합금 주조 공장이 현재 작업에서 사용되는 주조 공정을 따랐던 것은 아니라는 점에 유의해야 합니다. Mg의 합금 용탕 본 작업은 탈기에 따라서, 동반 가스의 소비에 수소의 영향을 감소 (즉, 수소 잠재적 동반 가스의 고갈 억제, 동반 된 기체로 확산 될 수있다 [7 , 71 , 72] ). 대조적으로, 마그네슘 합금 주조 공장에서는 마그네슘을 주조할 때 ‘가스 문제’가 없고 따라서 인장 특성에 큰 변화가 없다고 널리 믿어지기 때문에 마그네슘 합금 용융물은 일반적으로 탈기되지 않습니다 [73] . 연구에 따르면 Mg 합금 주물의 기계적 특성에 대한 수소의 부정적인 영향 [41 ,42 , 73] , 탈기 공정은 마그네슘 합금 주조 공장에서 여전히 인기가 없습니다.
또한 현재 작업에서 모래 주형 공동은 붓기 전에 SF 6 커버 가스 로 플러싱되었습니다 [22] . 그러나 모든 Mg 합금 주조 공장이 이러한 방식으로 금형 캐비티를 플러싱한 것은 아닙니다. 예를 들어, Stone Foundry Ltd(영국)는 커버 가스 플러싱 대신 유황 분말을 사용했습니다. 그들의 주물 내의 동반된 가스 는 보호 가스라기 보다는 SO 2 /공기일 수 있습니다 .
따라서 본 연구의 결과는 CO 2 대신 공기를 사용 하는 것이 최종 주조의 재현성을 향상시키는 것으로 나타났지만 다른 산업용 Mg 합금 주조 공정과 관련하여 캐리어 가스의 영향을 확인하기 위해서는 여전히 추가 조사가 필요합니다.
7 . 결론
1.
AZ91 합금에 형성된 연행 결함이 관찰되었습니다. 그들의 산화막은 단층과 다층의 두 가지 유형의 구조를 가지고 있습니다. 다층 산화막은 함께 성장하여 최종 주조에서 샌드위치 같은 구조를 형성할 수 있습니다.2.
실험 결과와 이론적인 열역학적 계산은 모두 갇힌 가스의 불화물이 황을 소비하기 전에 고갈되었음을 보여주었습니다. 이중 산화막 결함의 3단계 진화 과정이 제안되었습니다. 산화막은 진화 단계에 따라 다양한 화합물 조합을 포함했습니다. SF 6 /air 에서 형성된 결함 은 SF 6 /CO 2 에서 형성된 것과 유사한 구조를 갖지만 산화막의 조성은 달랐다. 엔트레인먼트 결함의 산화막 형성 및 진화 과정은 이전에 보고된 Mg 합금 표면막(즉, MgF 2 이전에 형성된 MgO)의 것과 달랐다 .삼.
산화막의 성장 속도는 SF하에 큰 것으로 입증되었다 (6) / SF보다 공기 6 / CO 2 손상 봉입 가스의 빠른 소비에 기여한다. AZ91 합금 주물의 재현성은 SF 6 /CO 2 대신 SF 6 /air를 사용할 때 향상되었습니다 .
감사의 말
저자는 EPSRC LiME 보조금 EP/H026177/1의 자금 지원 과 WD Griffiths 박사와 Adrian Carden(버밍엄 대학교)의 도움을 인정합니다. 주조 작업은 University of Birmingham에서 수행되었습니다.
참조 [1] MK McNutt , SALAZAR K. 마그네슘, 화합물 및 금속, 미국 지질 조사국 및 미국 내무부 레 스톤 , 버지니아 ( 2013 ) Google 학술검색 [2] 마그네슘 화합물 및 금속, 미국 지질 조사국 및 미국 내무부 ( 1996 ) Google 학술검색 [삼] I. Ostrovsky , Y. Henn ASTEC’07 International Conference-New Challenges in Aeronautics , Moscow ( 2007 ) , pp. 1 – 5 8월 19-22일 Scopus에서 레코드 보기Google 학술검색 [4] Y. Wan , B. Tang , Y. Gao , L. Tang , G. Sha , B. Zhang , N. Liang , C. Liu , S. Jiang , Z. Chen , X. Guo , Y. Zhao 액타 메이터. , 200 ( 2020 ) , 274 – 286 페이지 기사PDF 다운로드Scopus에서 레코드 보기 [5] JTJ Burd , EA Moore , H. Ezzat , R. Kirchain , R. Roth 적용 에너지 , 283 ( 2021 ) , 제 116269 조 기사PDF 다운로드Scopus에서 레코드 보기 [6] AM 루이스 , JC 켈리 , 조지아주 Keoleian 적용 에너지 , 126 ( 2014 ) , pp. 13 – 20 기사PDF 다운로드Scopus에서 레코드 보기 [7] J. 캠벨 주물 버터워스-하이네만 , 옥스퍼드 ( 2004 ) Google 학술검색 [8] M. Aryafar , R. Raiszadeh , A. Shalbafzadeh J. 메이터. 과학. , 45 ( 2010 년 ) , PP. (3041) – 3051 교차 참조Scopus에서 레코드 보기 [9] R. 라이자데 , WD 그리피스 메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 42 ( 2011 ) , 133 ~ 143페이지 교차 참조Scopus에서 레코드 보기 [10] R. 라이자데 , WD 그리피스 J. 합금. Compd. , 491 ( 2010 ) , 575 ~ 580 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [11] L. Peng , G. Zeng , TC Su , H. Yasuda , K. Nogita , CM Gourlay JOM , 71 ( 2019 ) , pp. 2235 – 2244 교차 참조Scopus에서 레코드 보기 [12] S. Ganguly , AK Mondal , S. Sarkar , A. Basu , S. Kumar , C. Blawert 코로스. 과학. , 166 ( 2020 ) [13] GE Bozchaloei , N. Varahram , P. Davami , SK 김 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 548 ( 2012 ) , 99 ~ 105페이지 Scopus에서 레코드 보기 [14] S. 폭스 , J. 캠벨 Scr. 메이터. , 43 ( 2000 ) , PP. 881 – 886 기사PDF 다운로드Scopus에서 레코드 보기 [15] M. 콕스 , RA 하딩 , J. 캠벨 메이터. 과학. 기술. , 19 ( 2003 ) , 613 ~ 625페이지 Scopus에서 레코드 보기 [16] C. Nyahumwa , NR Green , J. Campbell 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 32 ( 2001 ) , 349 ~ 358 쪽 Scopus에서 레코드 보기 [17] A. Ardekhani , R. Raiszadeh J. 메이터. 영어 공연하다. , 21 ( 2012 ) , pp. 1352 – 1362 교차 참조Scopus에서 레코드 보기 [18] X. Dai , X. Yang , J. Campbell , J. Wood 메이터. 과학. 기술. , 20 ( 2004 ) , 505 ~ 513 쪽 Scopus에서 레코드 보기 [19] EM 엘갈라드 , MF 이브라힘 , HW 도티 , FH 사무엘 필로스. 잡지. , 98 ( 2018 ) , PP. 1337 – 1359 교차 참조Scopus에서 레코드 보기 [20] WD 그리피스 , NW 라이 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. 190 – 196 교차 참조Scopus에서 레코드 보기 [21] AR Mirak , M. Divandari , SMA Boutorabi , J. 캠벨 국제 J. 캐스트 만났습니다. 해상도 , 20 ( 2007 ) , PP. 215 – 220 교차 참조Scopus에서 레코드 보기 [22] C. 칭기 주조공학 연구실 Helsinki University of Technology , Espoo, Finland ( 2006 ) Google 학술검색 [23] Y. Jia , J. Hou , H. Wang , Q. Le , Q. Lan , X. Chen , L. Bao J. 메이터. 프로세스. 기술. , 278 ( 2020 ) , 제 116542 조 기사PDF 다운로드Scopus에서 레코드 보기 [24] S. Ouyang , G. Yang , H. Qin , S. Luo , L. Xiao , W. Jie 메이터. 과학. 영어 A , 780 ( 2020 ) , 제 139138 조 기사PDF 다운로드Scopus에서 레코드 보기 [25] 에스엠. Xiong , X.-F. 왕 트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234 기사PDF 다운로드Scopus에서 레코드 보기 [26] 지브이리서치 그랜드뷰 리서치 ( 2018 ) 미국 Google 학술검색 [27] T. 리 , J. 데이비스 메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 5,389 – (5400) 교차 참조Scopus에서 레코드 보기 [28] JF Fruehling, 미시간 대학, 1970. Google 학술검색 [29] S. 쿨링 제36회 세계 마그네슘 연례 회의 , 노르웨이 ( 1979 ) , pp. 54 – 57 Scopus에서 레코드 보기Google 학술검색 [30] S. Cashion , N. Ricketts , P. Hayes J. 가벼운 만남. , 2 ( 2002 ) , 43 ~ 47페이지 기사PDF 다운로드Scopus에서 레코드 보기 [31] S. Cashion , N. Ricketts , P. Hayes J. 가벼운 만남. , 2 ( 2002 ) , PP. 37 – 42 기사PDF 다운로드Scopus에서 레코드 보기 [32] K. Aarstad , G. Tranell , G. Pettersen , TA Engh SF6에 의해 보호되는 마그네슘의 표면을 연구하는 다양한 기술 TMS ( 2003년 ) Google 학술검색 [33] 에스엠 Xiong , X.-L. 리우 메탈. 메이터. 트랜스. , 38 ( 2007 년 ) , PP. (428) – (434) 교차 참조Scopus에서 레코드 보기 [34] T.-S. 시 , J.-B. Liu , P.-S. 웨이 메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지 기사PDF 다운로드Scopus에서 레코드 보기 [35] G. Pettersen , E. Øvrelid , G. Tranell , J. Fenstad , H. Gjestland 메이터. 과학. 영어 , 332 ( 2002 ) , PP. (285) – (294) 기사PDF 다운로드Scopus에서 레코드 보기 [36] H. Bo , LB Liu , ZP Jin J. 합금. Compd. , 490 ( 2010 ) , 318 ~ 325 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [37] A. 미락 , C. 데이비슨 , J. 테일러 코로스. 과학. , 52 ( 2010 ) , PP. 1992 년 – 2000 기사PDF 다운로드Scopus에서 레코드 보기 [38] BD 리 , UH 부리 , KW 리 , GS 한강 , JW 한 메이터. 트랜스. , 54 ( 2013 ) , 66 ~ 73페이지 Scopus에서 레코드 보기 [39] WZ Liang , Q. Gao , F. Chen , HH Liu , ZH Zhao China Foundry , 9 ( 2012 ) , pp. 226 – 230 교차 참조Scopus에서 레코드 보기 [40] UI 골드슐레거 , EY 샤피로비치 연소. 폭발 충격파 , 35 ( 1999 ) , 637 ~ 644페이지 Scopus에서 레코드 보기 [41] A. Elsayed , SL Sin , E. Vandersluis , J. Hill , S. Ahmad , C. Ravindran , S. Amer Foundry 트랜스. 오전. 파운드리 Soc. , 120 ( 2012 ) , 423 ~ 429페이지 Scopus에서 레코드 보기 [42] E. Zhang , GJ Wang , ZC Hu 메이터. 과학. 기술. , 26 ( 2010 ) , 1253 ~ 1258페이지 Scopus에서 레코드 보기 [43] NR 그린 , J. 캠벨 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 173 ( 1993 ) , 261 ~ 266 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [44] C 라일리 , MR 졸리 , NR 그린 MCWASP XII 논문집 – 주조, 용접 및 고급 Solidifcation 프로세스의 12 모델링 , 밴쿠버, 캐나다 ( 2009 ) Google 학술검색 [45] HE Friedrich, BL Mordike, Springer, 독일, 2006. Google 학술검색 [46] C. Zheng , BR Qin , XB Lou 기계, 산업 및 제조 기술에 관한 2010 국제 회의 , ASME ( 2010 ) , pp. 383 – 388 2010년 미트 교차 참조Scopus에서 레코드 보기Google 학술검색 [47] SM Xiong , XF 왕 트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234 기사PDF 다운로드Scopus에서 레코드 보기 [48] SM Xiong , XL Liu 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. (428) – (434) 교차 참조Scopus에서 레코드 보기 [49] TS Shih , JB Liu , PS Wei 메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지 기사PDF 다운로드Scopus에서 레코드 보기 [50] K. Aarstad , G. Tranell , G. Pettersen , TA Engh 매그. 기술. ( 2003 ) , PP. (5) – (10) Scopus에서 레코드 보기 [51] G. Pettersen , E. Ovrelid , G. Tranell , J. Fenstad , H. Gjestland 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 332 ( 2002 ) , 285 ~ 294페이지 기사PDF 다운로드Scopus에서 레코드 보기 [52] XF 왕 , SM Xiong 코로스. 과학. , 66 ( 2013 ) , PP. 300 – 307 기사PDF 다운로드Scopus에서 레코드 보기 [53] SH Nie , SM Xiong , BC Liu 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 422 ( 2006 ) , 346 ~ 351페이지 기사PDF 다운로드Scopus에서 레코드 보기 [54] C. Bauer , A. Mogessie , U. Galovsky Zeitschrift 모피 Metallkunde , 97 ( 2006 ) , PP. (164) – (168) 교차 참조Scopus에서 레코드 보기 [55] QG 왕 , D. Apelian , DA Lados J. 가벼운 만남. , 1 ( 2001 ) , PP. (73) – 84 기사PDF 다운로드Scopus에서 레코드 보기 [56] S. Wang , Y. Wang , Q. Ramasse , Z. Fan 메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 2957 – 2974 교차 참조Scopus에서 레코드 보기 [57] S. Hayashi , W. Minami , T. Oguchi , HJ Kim 카그. 코그. 론분슈 , 35 ( 2009 ) , 411 ~ 415페이지 교차 참조Scopus에서 레코드 보기 [58] K. 아르스타드 노르웨이 과학 기술 대학교 ( 2004년 ) Google 학술검색 [59] RL 윌킨스 J. Chem. 물리. , 51 ( 1969 ) , p. 853 -& Scopus에서 레코드 보기 [60] O. Kubaschewski , K. Hesselemam 무기물의 열화학적 성질 Springer-Verlag , 벨린 ( 1991 ) Google 학술검색 [61] R. Schmidt , M. Strobele , K. Eichele , HJ Meyer 유로 J. Inorg. 화학 ( 2017 ) , PP. 2727 – 2735 교차 참조Scopus에서 레코드 보기 [62] B. Hu , Y. Du , H. Xu , W. Sun , WW Zhang , D. Zhao 제이민 메탈. 분파. B-금속. , 46 ( 2010 ) , 97 ~ 103페이지 Scopus에서 레코드 보기 [63] O. Salas , H. Ni , V. Jayaram , KC Vlach , CG Levi , R. Mehrabian J. 메이터. 해상도 , 6 ( 1991 ) , 1964 ~ 1981페이지 Scopus에서 레코드 보기 [64] SSS Kumari , UTS Pillai , BC 빠이 J. 합금. Compd. , 509 ( 2011 ) , pp. 2503 – 2509 기사PDF 다운로드Scopus에서 레코드 보기 [65] H. Scholz , P. Greil J. 메이터. 과학. , 26 ( 1991 ) , 669 ~ 677 쪽 Scopus에서 레코드 보기 [66] P. Biedenkopf , A. Karger , M. Laukotter , W. Schneider 매그. 기술. , 2005년 ( 2005년 ) , 39 ~ 42 쪽 Scopus에서 레코드 보기 [67] HV 앳킨슨 , S. 데이비스 메탈. 메이터. 트랜스. , 31 ( 2000 ) , PP. 2981 – 3000 교차 참조Scopus에서 레코드 보기 [68] EJ Guo , L. Wang , YC Feng , LP Wang , YH Chen J. 썸. 항문. 칼로리. , 135 ( 2019 ) , PP. 2001 년 – 2008 년 교차 참조Scopus에서 레코드 보기 [69] T. Li , WD Griffiths , J. Chen 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 48A ( 2017 ) , PP. 5516 – 5528 교차 참조Scopus에서 레코드 보기 [70] M. Tiryakioglu , D. Hudak는 J. 메이터. 과학. , 42 ( 2007 ) , pp. 10173 – 10179 교차 참조Scopus에서 레코드 보기 [71] Y. Yue , WD Griffiths , JL Fife , NR Green 제1회 3d 재료과학 국제학술대회 논문집 ( 2012 ) , pp. 131 – 136 교차 참조Scopus에서 레코드 보기Google 학술검색 [72] R. 라이자데 , WD 그리피스 메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 37 ( 2006 ) , PP. (865) – (871) Scopus에서 레코드 보기 [73] ZC Hu , EL Zhang , SY Zeng 메이터. 과학. 기술. , 24 ( 2008 ) , 1304 ~ 1308페이지 교차 참조Scopus에서 레코드 보기
일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.
와이어 기반 DED | Wire Based DED
와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.
FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.
3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다. FLOW-3D AM 은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.
파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.
FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.
레이저 파우더 베드 퓨전 (L-PBF)
LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.
FLOW-3D DEM 및 FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM 은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.
파우더 베드 부설 공정
FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.
다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.
입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.
이 FLOW-3D AM 시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.
Melting | 파우더 베드 용해
DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.
레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.
용융 풀이 응고되면 FLOW-3D AM 압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.
Multilayer | 다층 적층 제조
용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.
해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.
LPBF의 키홀 링 | Keyholing in LPBF
키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.
바인더 분사 (Binder jetting)
Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.
Scan Strategy | 스캔 전략
스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.
Beam Shaping | 빔 형성
레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.
이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.
다중 재료 용접 사례 연구
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.
방향성 에너지 증착
FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.
Won-Ik Cho, Peer Woizeschke Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany
Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.
Abstract
Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.
Korea Abstract
빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.
본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.
1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.
빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.
1 . 소개
융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.
융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.
반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.
이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.
2 . 방법론
그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).
CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 특성이었습니다.
시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .
그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.
3 . 결과
이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.
그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.
무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2 차 주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.
Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.
4 . 토론
시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1 차 및 2 차버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.
첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2 차 주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.
두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1 차 주파수 성분이 더 우세 해졌고, 2 차 주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.
빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .
Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.
5 . 결론
CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 이어집니다.1.
1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.
1 차 주파수와 2 차 주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.
낮은 발진 주파수에서는 1 차 주파수와 2 차 주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.
용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.
CRediT 저자 기여 성명
조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.
경쟁 관심의 선언
저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.
감사의 말
이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.
-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.
-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.
-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 . (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.
또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.
-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.
-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 . (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.
흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.
자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.
참고 문헌
D.J. Kotecki, D.L. Cheever, D.G. Howden Mechanism of ripple formation during weld solidification Weld. J., 51 (8) (1972), pp. 386s-391s Google Scholar [2] M. Zacksenhouse, D.E. Hardt Weld pool impedance identification for size measurement and control J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184 CrossRefView Record in ScopusGoogle Scholar [3] V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay Melt pool dynamics during laser welding J. Phys. D, 28 (1995), pp. 2443-2450 CrossRefView Record in ScopusGoogle Scholar [4] A.J.R. Aendenroomer, G. den Ouden Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding Weld. J., 77 (5) (1998), pp. 181s-187s Google Scholar [5] M.J.M. Hermans, G. den Ouden Process behavior and stability in short circuit gas metal arc welding Weld. J., 78 (4) (1999), pp. 137-141 View Record in ScopusGoogle Scholar [6] B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168 View Record in ScopusGoogle Scholar [7] M. Geiger, K.-H. Leitz, H. Koch, A. Otto A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets Prod. Eng. Res. Dev., 3 (2009), pp. 127-136 CrossRefView Record in ScopusGoogle Scholar [8] C. Kägeler, M. Schmidt Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets Phys. Procedia, 5 (2010), pp. 447-453 ArticleDownload PDFView Record in ScopusGoogle Scholar [9] Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P Weld. J., 94 (2015), pp. 176s-187s Google Scholar [10] J. Volpp, F. Vollertsen Keyhole stability during laser welding—part I: modelling and evaluation Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457 CrossRefView Record in ScopusGoogle Scholar [11] N. Postacioglu, P. Kapadia, J. Dowden Capillary waves on the weld pool in penetration welding with a laser J. Phys. D, 22 (1989), pp. 1050-1061 CrossRefView Record in ScopusGoogle Scholar [12] N. Postacioglu, P. Kapadia, J. Dowden Theory of the oscillations of an ellipsoidal weld pool in laser welding J. Phys. D, 24 (1991), pp. 1288-1292 CrossRefView Record in ScopusGoogle Scholar [13] J. Kroos, U. Gratzke, M. Vicanek, G. Simon Dynamic behaviour of the keyhole in laser welding J. Phys. D, 26 (1993), pp. 481-486 View Record in ScopusGoogle Scholar [14] H. Maruo, Y. Hirata Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate Weld. Int., 7 (8) (1993), pp. 614-619 CrossRefView Record in ScopusGoogle Scholar [15] T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon Oscillations of the keyhole in penetration laser beam welding J. Phys. D, 27 (1994), pp. 2023-2030 CrossRefView Record in ScopusGoogle Scholar [16] T. Klein, M. Vicanek, G. Simon Forced oscillations of the keyhole in penetration laser beam welding J. Phys. D, 29 (1996), pp. 322-332 View Record in ScopusGoogle Scholar [17] K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss Synchronous weld pool oscillation for monitoring and control IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471 View Record in ScopusGoogle Scholar [18] W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding Comput. Mater. Sci., 49 (2010), pp. 792-800 ArticleDownload PDFView Record in ScopusGoogle Scholar [19] W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen Numerical simulation of molten pool dynamics in high power disk laser welding J. Mater. Process. Technol., 212 (2012), pp. 262-275 ArticleDownload PDFView Record in ScopusGoogle Scholar [20] A. Otto, A. Patschger, M. Seiler Numerical and experimental investigations of humping phenomena in laser micro welding Phys. Procedia, 83 (2016), pp. 1415-1423 ArticleDownload PDFView Record in ScopusGoogle Scholar [21] R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys Int. J. Heat Mass Trans., 108 (2017), pp. 244-256 ArticleDownload PDFView Record in ScopusGoogle Scholar [22] S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473 CrossRefView Record in ScopusGoogle Scholar [23] R. Hu, X. Chen, G. Yang, S. Gong, S. Pang Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion Int. J. Heat Mass Transf., 126 (2018), pp. 877-887 ArticleDownload PDFView Record in ScopusGoogle Scholar [24] X. Meng, A. Artinov, M. Bachmann, M. Rethmeier Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding J. Laser Appl., 32 (2020), Article 022026 CrossRefGoogle Scholar [25] W.-I. Cho, V. Schultz, F. Vollertsen Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017) Google Scholar [26] W.-I. Cho, V. Schultz, P. Woizeschke Numerical study of the effect of the oscillation frequency in buttonhole welding J. Mater. Process. Technol., 261 (2018), pp. 202-212 ArticleDownload PDFView Record in ScopusGoogle Scholar [27] V. Schultz, T. Seefeld, F. Vollertsen Bridging Large Air Gaps by Laser Welding with Beam Oscillation International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32 CrossRefGoogle Scholar [28] W.-I. Cho, S.-J. Na Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel J. Weld. Join., 38 (3) (2020), pp. 235-240 CrossRefView Record in ScopusGoogle Scholar [29] FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc. Google Scholar [30] W.-I. Cho, P. Woizeschke Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal Int. J. Heat Mass Transf., 152 (2020), Article 119528 ArticleDownload PDFView Record in ScopusGoogle Scholar [31] F. Vollertsen Loopless production: definition and examples from joining 69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016) Google Scholar [32] V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke Deep penetration laser welding with high seam surface quality due to buttonhole welding Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018) IIW-Doc. IV-1390-18
Time resolved PIV encompassing moving and/or deformable objects interfering with the light source requires the employment of dynamic masking (DM). A few DM techniques have been recently developed, mainly in microfluidics and multiphase flows fields. Most of them require ad-hoc design of the experimental setup, and may spoil the accuracy of the resulting PIV analysis. A new DM technique is here presented which envisages, along with a dedicated masking algorithm, the employment of fluorescent coating to allow for accurate tracking of the object. We show results from measurements obtained through a validated PIV setup demonstrating the need to include a DM step even for objects featuring limited displacements. We compare the proposed algorithm with both a no-masking and a static masking solution. In the framework of developing low cost, flexible and accurate PIV setups, the proposed algorithm is made available through a freeware application able to generate masks to be used by an existing, freeware PIV analysis package.
광원을 방해하는 이동 또는 변형 가능한 물체를 포함하는 시간 해결 PIV는 동적 마스킹 (DM)을 사용해야 합니다. 주로 미세 유체 및 다상 흐름 분야에서 몇 가지 DM 기술이 최근 개발되었습니다. 대부분은 실험 설정의 임시 설계가 필요하며 결과 PIV 분석의 정확도를 떨어 뜨릴 수 있습니다. 여기에는 전용 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수있는 새로운 DM 기술이 제시되어 있습니다. 제한된 변위를 특징으로 하는 물체에 대해서도 DM 단계를 포함해야 하는 필요성을 보여주는 검증 된 PIV 설정을 통해 얻은 측정 결과를 보여줍니다. 제안 된 알고리즘을 no-masking 및 static masking 솔루션과 비교합니다. 저비용, 유연하고 정확한 PIV 설정 개발 프레임 워크에서 제안 된 알고리즘은 기존 프리웨어 PIV 분석 패키지에서 사용할 마스크를 생성 할 수 있는 프리웨어 애플리케이션을 통해 사용할 수 있습니다.
PIV (입자 영상 속도계)의 사용은 70 년대 후반 (Archbold 및 Ennos 1972 )이 반점 계측의 확장 (Barker and Fourney 1977 ) 으로 도입된 이래 실험 유체 역학에서 중심적인 역할을 했습니다 . PIV 기술의 기본 아이디어는 유체에 주입된 입자의 속도를 측정하여 유동장을 재구성하는 것입니다. 입자의 크기와 밀도는 확실하게 선택되고 유동을 만족스럽게 따르게 됩니다.
흐름은 레이저 / LED 소스를 통해 조명되고 입자에 의해 산란 된 빛은 추적을 허용합니다. 독자는 리뷰 작품 Grant ( 1997 ), Westerweel et al. ( 2013 년)에 대한 자세한 설명을 참조하십시오. 기본 2D 기술은 고유한 설정으로 발전했으며, 가장 진보 된 것은 단일 / 다중 평면 입체 PIV (Prasad 2000 ) 및 체적 / 단층 PIV (Scarano 2013 )입니다. 광범위한 유동장의 비 침습적 측정이 필요한 산업 및 연구 응용 분야에서 광범위하게 사용되었습니다.
조사된 유동장이 단단한 서있는 경계의 영향을 받는 경우 정적 마스킹 (SM) 접근 방식을 사용하여 PIV 분석을 수행하는 영역에서 솔리드 객체와 그림자가 차지하는 영역을 빼기 위해 주의를 기울여야 합니다. 실제로 이러한 영역에서는 파종 입자를 식별 할 수 없으므로 유속 재구성을 수행 할 수 없습니다. 제대로 처리되지 않으면 이 마스킹 단계는 잘못된 예측으로 이어질 수 있으며, 불행히도 그림자 영역 경계의 근접성에 국한되지 않습니다.
PIV 기술은 획득 프레임 속도를 관심있는 시간 척도로 조정하여 정상 상태 또는 시간 변화 흐름에 적용 할 수 있습니다. 시간의 가변성이 고체 물체의 위치 / 모양과 관련된 경우 이미지를 동적으로 마스킹하기 위해 추가 노력이 필요합니다. 고체 물체뿐만 아니라 다른 유체 단계도 가려야한다는 점에 유의해야합니다 (Foeth et al. 2006).
이 프로세스는 고체 물체의 움직임이 선험적으로 알려진 경우 비교적 쉬우므로 SM 알고리즘에 대한 최소한의 수정이 목적에 부합 할 수 있습니다. 그러나 고체 물체의 위치 및 / 또는 모양이 알려지지 않은 방식으로 시간에 따라 변할 경우 물체를 동적으로 추적 할 수 있는 마스킹 기술이 필요합니다. PIV 분석을위한 동적 마스킹 (DM) 접근 방식은 현재 상당한 주목을 받고 있습니다 (Sanchis and Jensen 2011 , Masullo 및 Theunissen 2017 , Anders et al. 2019 ) . 시간 분해 PIV 시스템의 확산 덕분에 고속 카메라의 가용성이 높아집니다.
DM 기술의 주요 발전은 마이크로 PIV 분야에서 비롯됩니다 (Lindken et al. 2009) 마이크로 및 나노 스위 머 (Ergin et al. 2015 ) 및 다상 흐름 (Brücker 2000 , Khalitov 및 Longmire 2002 ) 주변의 유동장을 조사 하려면 정확하고 유연한 알고리즘이 필요합니다. DM 기술은 상용 PIV 분석 소프트웨어 패키지 (TSI Instruments 2014 , DantecDynamics 2018 )에 포함되어 있습니다. 최근 개발 (Vennemann 및 Rösgen 2020 )은 신경망 자동 마스킹 기술의 적용을 예상하지만, 네트워크를 훈련하려면 합성 데이터 세트를 생성해야합니다.
많은 알고리즘은 이미지 처리 기술을 사용하여 개체를 추적하며, 대부분 사용자는 획득 한 이미지에서 추적 할 개체를 강조 표시 할 수있는 임시 실험 설정을 개발해야합니다. 따라서 실험 설정의 설계는 알고리즘의 최종 정확도에 영향을줍니다.
몇 가지 해결책을 구상 할 수 있습니다. 다음에서는 간단한 2D PIV 설정을 참조하지만 대부분의 고려 사항은 더 복잡한 설정으로 확장 할 수 있습니다. PIV 설정에서 객체를 쉽고 정확하게 추적 할 수 있도록 렌더링하는 가장 간단한 방법은 일반적으로 PIV 레이저 시트에 대략 수직 인 카메라를 향한 반사를 최대화하는 방향을 가리키는 추가 광원을 사용하여 조명하는 것입니다. 이 순진한 솔루션과 관련된 주요 문제는 PIV의 ROI (관심 영역)를 비추 지 않고는 광원을 움직이는 물체에만 겨냥하는 것이 사실상 불가능하여 시딩에 의해 산란 된 레이저 광 사이의 명암비를 감소 시킨다는 것입니다. 입자와 어두운 배경.
카메라의 프레임 속도가 높을수록 센서에 닿는 빛의 양이 적다는 사실로 인해 상황이 가혹 해집니다. 고체 물체의 움직임과 유동 입자가 모두 사용 된 설정의 획득 속도에 비해 충분히 느리다면, 가능한 해결책은 레이저 펄스 쌍 사이에 단일 확산 광 샷을 삽입하는 것입니다 (반드시 대칭 삽입은 아님). 그리고 카메라 샷을 둘 모두에 동기화합니다. 각 레이저 커플에서 물체의 위치는 확산 광에 의해 생성 된 이전 샷과 다음 샷의 두 위치를 보간하여 결정될 수 있습니다. 이 접근 방식에는 레이저, 카메라 및 빛을 제어 할 수있는 동기화 장치가 필요합니다.
이 문제에 대한 해결책이 제안되었으며 유체 인터페이스 (Foeth et al. 2006 ; Dussol et al. 2016 ) 의 밝은 반사를 활용 하여 이미지에서 많은 양의 산란 레이저 광을 획득 할 수 있습니다. 고체 표면에는 효과를 높이기 위해 반사 코팅이 제공 될 수 있습니다. 그런 다음 물체는 비정상적으로 큰 입자로 식별되고 경계를 쉽게 추적 할 수 있습니다. 이 솔루션의 단점은 물체 표면에서 산란 된 빛이 레이저 시트에 있지 않은 많은 시딩 입자를 비추어 PIV 분석의 정확도를 점진적으로 저하 시킨다는 것입니다.
위의 접근 방식의 개선은 다른 파장 의 두 번째 동일 평면 레이저 시트 (Driscoll et al. 2003 )를 사용합니다. 첫 번째 레이저 파장을 중심으로 한 좁은 반사 대역. 전체 설정은 매우 비쌀 수 있습니다. 파장 방출의 차이를 이용하여 설정을 저렴하게 만들 수 있습니다. 서로 다른 필터가 장착 된 두 대의 카메라를 적용하면 인터페이스로부터의 반사와 독립적으로 형광 시드 입자를 식별 할 수 있습니다 (Pedocchi et al. 2008 ).
객체의 변위가 작을 때 기본 솔루션은 실제 시간에 따라 변하는 음영 영역에 가장 근접한 하나의 정적 마스크를 추출하는 것입니다. 일반적인 경험 법칙은 예상되는 음영 영역보다 약간 더 크게 마스크를 그려 분석에 포함 된 조명 영역의 양을 단순화하고 최소화하는 것 사이의 최상의 균형을 찾는 것입니다.
본 논문에서는 PIV 분석을위한 DM 문제에 대한 새로운 실험적 접근법을 제안합니다. 우리의 방법은 형광 페인팅을 사용하여 물체를 쉽게 추적 할 수 있도록 하는 기술과 시변 마스크를 생성 할 수있는 특정 오픈 소스 알고리즘을 포함합니다. 이 접근법은 레이저 광에 불투명 한 물체의 큰 변위를 허용함으로써 효과적인 것으로 입증되었습니다.
우리의 방법인 NM (no-masking)과 SM (static masking) 접근 방식을 비교합니다. 우리의 접근 방식의 타당성을 입증하는 것 외에도 이 백서는 마스킹 단계가 정확한 결과를 얻기 위해 가장 중요하다는 것을 확인합니다. 실제로 물체의 변위가 무시할 수 없는 경우 DM에 대한 리조트는 필수이며 SM 접근 방식은 음영 처리 된 영역의 주변 환경에 국한되지 않는 부정확성을 유발합니다.
논문의 구조는 다음과 같습니다. 먼저 형광 코팅 기술과 마스킹 소프트웨어를 설명하는 제안된 접근법의 근거를 소개합니다. 그런 다음 PIV 설정에 대한 설명 후 두 벤치 마크 사례를 통해 전체 PIV 체인 분석의 신뢰성을 평가합니다. 그런 다음 제안 된 DM 방법의 결과를 NM 및 SM 솔루션과 비교합니다. 마지막으로 몇 가지 결론이 도출됩니다.
행동 양식
제안 된 DM 기술은 PIV 분석을 위해 캡처 한 동일한 이미지에서 쉽고 정확한 추적 성을 허용하기 위해 움직이는 물체 표면의 형광 코팅을 구상합니다. 물체가 가시화되면 특정 알고리즘이 물체 추적을 수행하고 레이저 위치가 알려지면 (그림 1 참조 ) 음영 영역의 마스킹을 수행합니다.
형광 코팅
코팅은 구조적 매트릭스 에 시판되는 형광 분말 (fluorescein (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018 )) 의 분산액으로 구성됩니다 . 단단한 물체의 경우 매트릭스는 폴리 에스터 / 에폭시 (대상 재료와의 화학적 호환성에 따라) 투명 수지 일 수 있습니다. 변형 가능한 물체의 경우 매트릭스는 투명한 실리콘 고무로 만들 수 있습니다. 형광 코팅 된 물체는 실행 중에 지속적으로 빛을 방출하기 위해 실험 전에 충분히 오랫동안 조명을 비춰 야합니다. 우리는 4W LED 소스 (그림 2 에서 볼 수 있음)에 20 초 긴 노출이 실험 실행 (몇 초)의 짧은 기간 동안 일관된 형광 방출을 제공하기에 충분하다는 것을 발견했습니다.
우리 실험에서 물체와 입자 크기 사이의 상당한 차이를 감안할 때 전자를 식별하는 것은 간단합니다. 그림 3 은 씨 뿌리기 입자와 물체 모양이 서로 다른 세 번에 겹쳐진 모습을 보여줍니다 (색상은 다른 순간을 나타냄).
대신, 이러한 크기 기반 분류가 가능하지 않은 경우 입자와 물체의 파장을 분리해야합니다. 이러한 분리는 시드 입자에 의해 산란 된 빛과 현저하게 다른 파장에서 방출되는 형광 코팅을 선택하여 달성 할 수 있습니다. 또는 레이저에서 멀리 떨어진 대역에서 방출되는 형광 입자를 이용하는 것 (Pedocchi et al. 2008 ). 두 경우 모두 컬러 이미지 획득의 채널 분리 또는 멀티 카메라 설정의 애드혹 필터링은 물체 식별을 크게 촉진 할 수 있습니다. 우리의 경우에는 그러한 파장 분리를 달성 할 필요가 없습니다. 실제로 형광 코팅의 방출 스펙트럼의 피크는 540nm입니다 (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018), 사용 된 레이저의 532 nm에 매우 가깝습니다.
마스킹 소프트웨어
DM 용으로 개발 된 알고리즘 은 무료 PIV 분석 패키지 PIVlab (Thielicke 2020 , Thielicke 및 Stamhuis 2014 ) 과 함께 작동하도록 고안된 오픈 소스 프리웨어 GUI 기반 도구 (Prestininzi 및 Lombardi 2021 )입니다. 이것은 세 단계의 순차적 실행으로 구성됩니다 (그림 1 에서 a–b–c라고 함 ). 첫 번째 단계 (a)는 장면에서 레이저 위치를 찾는 데 사용됩니다 (즉, 소스의 좌표를 계산합니다. 장애물에 부딪히는 빛); 두 번째 항목 (b)은 개체 위치를 추적하고 각 프레임의 음영 영역을 계산합니다. 세 번째 항목 (c)은 추적 된 개체 영역과 음영 처리 된 개체 영역을 PIV 알고리즘을위한 단일 마스크로 병합합니다.
각 단계에 대한 자세한 내용은 다음과 같습니다.
(ㅏ)레이저 위치는 프레임 (즉, 획득 한 프레임의 시야 (FOV)) 내에서 가시적 일 수도 있고 아닐 수도 있습니다. 전자의 경우 사용자는 GUI에서 레이저 소스를 클릭하여 찾기 만하면됩니다. 후자의 경우, 사용자는 음영 영역의 경계에 속하는 두 개의 세그먼트 (두 쌍의 점)를 그리도록 요청받습니다. 그러면 FOV 외부에있는 레이저 위치가 두 선의 교차점으로 계산됩니다. 세그먼트로 구성됩니다. 개체 그림자는 ROI 프레임 상자에 도달하는 것으로 간주됩니다.
(비)레이저 위치가 알려지면 물체 추적은 다음과 같이 수행됩니다. 각 프레임의 하나의 채널 (이 경우 RGB 색상 공간이 사용되기 때문에 녹색 채널이지만 GUI는 선호하는 채널을 지정할 수 있음)은 다음과 같습니다. 로컬 적응 임계 값을 사용하여 이진화 됨 (Bradley and Roth 2007), 후자는 이웃 주변의 로컬 평균 강도를 사용하여 각 픽셀에 대해 계산됩니다. 그런 다음 입자와 물체로 구성된 이진 이미지가 영역으로 변환됩니다. 우리 실험에 존재하는 유일한 장애물은 모든 입자에 비해 더 큰 크기를 기준으로 식별됩니다. 다른 전략은 이전에 논의되었습니다. 그런 다음 장애물 영역의 경계 다각형은 사용자 정의 포인트 밀도로 결정됩니다. 여기에서는 그림자 결정을 위해 광선 투사 (RC) 접근 방식을 채택했습니다. RC는 컴퓨터 그래픽을 기반으로하는 “경 운송 모델링”의 틀에 속합니다. 수치 적으로 정확한 그림자를 제공하기 때문에 여기에서 선택됩니다. 정확도는 떨어지지 만 주로 RC의 계산 부하를 줄이는 것을 목표로하는 몇 가지 다른 방법이 개발되었습니다.2015 ), 여기서 간략히 회상합니다. 각 프레임 (명확성을 위해 여기에 색인화되지 않음)에 대해 광선아르 자형나는 j아르 자형나는제이레이저 위치 L 에서 i 번째 정점 으로 캐스트됩니다.피나는 j피나는제이의 J 오브젝트의 경계 다각형 일; 목표는피나는 j피나는제이 하위 집합에 속 ㅏ제이ㅏ제이 레이저에 의해 직접 조명되는 경계 정점의 피나는 j피나는제이 에 추가됩니다 ㅏ제이ㅏ제이 만약 아르 자형나는 j아르 자형나는제이 적어도 한쪽을 교차 에스k j에스케이제이( j 번째 개체 경계 다각형 의 모든면에 걸쳐있는 k )피나는 j피나는제이 (그것이 교차로 큐나는 j k큐나는제이케이 레이저 위치와 정점 사이에 있지 않습니다. 피나는 j피나는제이). 두 개의 광선, 즉ρ1ρ1 과 ρ2ρ2추가면을 가로 지르지 않는는 저장됩니다.
(씨)일단 정점 세트, 즉 ㅏ제이ㅏ제이 레이저에 의해 직접 비춰지고 식별되었으며 ROI 프레임 상자의 음영 부분은 후자와 교차하여 결정됩니다. ρ1ρ1 과 ρ2ρ2. 두 교차점은 다음에 추가됩니다.ㅏ제이ㅏ제이. 점으로 둘러싸인 영역ㅏ제이ㅏ제이 마침내 마스크로 변환됩니다.
레이저 소스가 여러 개인 경우 각각에 RC 알고리즘을 적용해야하며 음영 영역의 결합이 수행됩니다. 레이 캐스팅 절차의 의사 코드는 Alg에보고됩니다. 1.
DM 검증
이 섹션에서는 제안 된 DM으로 수행 된 PIV 측정과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM) 간의 비교를 제시합니다.
실험 설정
진동 유도기 (VI)의 성능을 분석하기 위해 PIV 설정을 설계하고 현재 DM 기술을 개발했습니다 (Curatolo et al. 2019 , 2020 ). 후자는 비 맥동 유체 흐름에서 역류에 배치 된 캔틸레버의 규칙적이고 넓은 진동을 유도 할 수있는 윙렛입니다. 이러한 VI는 캔틸레버의 끝에 장착되며 (그림 2 참조 ) 진동 운동의 어느 지점에서든 캔틸레버의 중립 구성을 향해 양력을 생성 할 수있는 두 개의 오목한 날개가 있습니다.
VI는 캔틸레버 표면에 장착 된 압전 패치를 사용하여 고정 유체 흐름에서 기계적 에너지 추출을 향상시킬 수 있습니다. 그림 2 에서 강조된 날개의 전체 측면 가장자리는 Sect에 설명 된 사양에 따라 형광 페인트로 코팅되어 있습니다. 2.1 . 실험은 Roma Tre University 공학부 수력 학 실험실의 자유 표면 채널에서 수행됩니다. 10.8cm 길이의 캔틸레버는 채널의 중심선에 배치되고 상류로 향하며 수직-세로 평면에서 진동합니다. 세라믹 페 로브 스카이 트 (PZT) 압전 패치 (7××캔틸레버의 윗면에는 Physik Instrumente (PI)에서 만든 3cm)가 부착되어 있습니다. 흐름 유도 진동 하에서 변형으로 인해 AC 전압 차이를 제공합니다. VI 왼쪽 날개의 수직 중앙면에있는 2D 속도 필드는 수제 수중 PIV 장비를 통해 얻었습니다.각주1 연속파, 저비용, 저전력 (150mW), 녹색 (532nm) 레이저 빔이 2mm 두께의 부채꼴 시트에 퍼집니다.120∘120∘그림 2 와 같이 VI의 한쪽 날개를 절반으로 교차 합니다. 물은 평균 직경이 100 인 폴리 아미드 입자로 시드됩니다.μμm 및 1016 Kg / m의 밀도삼삼. 레이저 소스는 VI의 15cm 위쪽 (자유 표면 아래 약 4cm)과 VI의 하류 5cm에 경사지게 배치됩니다.5∘5∘상류. 위의 설정은 주로 날개의 후류를 조사하기 위해 고안되었습니다. 날개의 상류면과 하류 부분의 일부는 레이저 시트에 직접 맞지 않습니다. 레이저 시트에 수직으로 촬영하는 고속 상용 카메라 (Sony RX100 M5)를 사용하여 동영상을 촬영합니다. 후자는 1920의 프레임 크기로 500fps의 높은 프레임 속도 모드로 기록됩니다.×× 1080px, 나중에 더 작은 655로 잘림 ××이미지 분석 중에 분석 할 850px ROI. 시간 해결, 프리웨어, 오픈 소스, MatLab 용 PIV 분석 도구가 사용됩니다 (Thielicke and Stamhuis 2014 ). 이 도구는 질의 영역 (IA) 변형 (우리의 경우 64×× 64, 32 ×× 32 및 26 ××26). 각 패스에서 각 IA의 경계와 모서리에서 추가 변위 정보를 얻기 위해 인접한 IA 사이에 50 %의 중첩이 허용됩니다. 첫 번째 통과 후, 입자 변위 정보가 보간되어 IA의 모든 픽셀의 변위를 도출하고 그에 따라 변형됩니다.
시딩 입자 수 밀도는 첫 번째 패스에서 IA 당 약 5입니다. Keane과 Adrian ( 1992 )에 따르면 이러한 밀도 값은 95 % 유효한 탐지 확률을 보장합니다. IA는 프레임 커플 내에서 입자의 충분한 영구성을 보장하기 위해 크기가 조정됩니다. 분석 된 유동 역학은 0.4 ~ 0.7m / s 범위의 유동 속도를 특징으로합니다. 따라서 입자는 권장 최소값 인 2 프레임 (Keane and Adrian 1992 ) 보다 큰 약 3-4 프레임의 세 번째 패스 IA에 나타납니다 .
PIV 체인 분석 평가
사용 된 PIV 알고리즘의 정확성은 이전에 문헌에서 광범위하게 평가되었습니다 (예 : Guérin et al. ( 2020 ), Vennemann and Rösgen ( 2020 ), Mohammadshahi et al. ( 2020 ), Narayan et al. ( 2020 )). 그러나 PIV 측정의 물리적 일관성을 보장하기 위해 두 가지 벤치 마크 사례가 여기에 나와 있습니다.
첫 번째는 Sect에 설명 된 동일한 PIV 설정을 통해 측정 된 세로 유속의 수직 프로파일을 비교합니다. 3.1 분석 기준 용액이있는 실험 채널에서. 후자는 플로팅 트레이서로 수행되는 PTV (입자 추적 속도계) 측정을 통해 보정되었습니다. 분석 속도 프로파일은 Eq. 1 (Keulegan 1938 ).u ( z) =유∗[5.75 로그(지δ) +8.5];유(지)=유∗[5.75로그(지δ)+8.5];(1)
여기서 u 는 수평 유속 성분, z 는 수직 좌표,δδ 침대 거칠기 및 V∗V∗ 균일 한 흐름 공식에 의해 주어진 것으로 가정되는 마찰 속도, 즉 유∗= U/ C유∗=유/씨; U 는 깊이 평균 유속이고 C 는 다음 과 같이 주어진 마찰 계수입니다.씨= 5.75로그( 13.3에프R / δ)씨=5.75로그(13.3에프아르 자형/δ), R = 0.2아르 자형=0.2 m은 유압 반경이고 에프= 0.92에프=0.92유한 폭 채널의 형상 계수. 그림 4 는 4 초의 시간 창에 걸쳐 순간 값을 평균화하여 얻은 분석 프로필과 PIV 측정 간의 비교를 보여줍니다. 국부적 인 변동은 대략 0.5 초의 시간 척도에서 진화하는 것으로 밝혀졌습니다. PTV 결과에 가장 적합하면 다음과 같은 값이 산출됩니다.δ= 1δ=1cm, 베드 거칠기의 경우 Eq. 1 , 실험 채널 침대 표면의 실제 조건과 호환됩니다. VI의 휴지 구성 위치에서 유속의 분석 값은 그림에서 검은 색 십자가로 표시됩니다. 비교는 놀라운 일치를 보여 주므로 실험 설정과 PIV 알고리즘의 조합이 분석 된 설정에 대해 신뢰할 수있는 것으로 간주 될 수 있음을 증명합니다.
두 번째 벤치 마크는 VI 뒷면에 재 부착 된 흐름의 양을 비교합니다. 실제로 이러한 장치의 높은 캠버를 고려할 때 흐름은 하류 표면에서 분리되어 결국 다시 연결됩니다. 첨부 흐름을 나타내는 표면의 양 (Curatolo 외. 발견 2020 ) 흥미로운 압전 패치 (즉, 효율이 큰 경우에 더 빠르게 진동이 유발되는 것이다)에서 VI의 효율과 상관된다. 여기에서는 PIV 분석을 통해 측정 된 진동의 상사 점에서 재 부착 된 흐름의 길이를 CFD (전산 유체 역학) 상용 코드 FLOW-3D® (Flow Science 2019 )로 예측 한 길이와 비교하여 RANS를 해결합니다. 결합 식 (비어 스톡스 레이놀즈 평균) 케이 -ϵϵ구조화 된 그리드의 난류 폐쇄 (시뮬레이션을 위해 1mm 간격이 선택됨). 다운 스트림 측면의 흐름은 이러한 높은 캠버 VI를 위해 여러 위치에서 분리 및 재 부착됩니다. 이 벤치 마크에서 비교 된 양은 VI의 앞쪽 가장자리와 가장 가까운 흐름 재 부착 위치 사이의 호 길이입니다. 그림 5를 참조 하면 CFD 모델에 의해 예측 된 호의 길이는 측정 된 호의 길이보다 10 % 더 큽니다. 이 작업에 제시된 DM 기술을 사용하는 PIV 분석은 물리적으로 건전한 측정을 제공하는 것으로 입증됩니다. 후류의 유체 역학에 대한 자세한 분석과 VI의 전반적인 효율성과의 상관 관계는 현재 진행 중이며 향후 작업의 대상이 될 것입니다.
결과
그림 6을 참조하여 순간 유속 장의 관점에서 세 가지 접근법의 결과를 비교합니다. 선택한 순간은 진동의 상사 점에 해당합니다.
제안 된 DM (그림 6 의 패널 a )은 부드러운 유동장을 생성하여 후류에서 일관된 소용돌이 구조를 나타냅니다.
NM 접근법 (그림 6 의 패널 b1 )도 후류의 와류 구조를 정확하게 예측하지만 음영 영역에서 대부분 부정확 한 값을 산출합니다. 또한 비교에서 합리적인 기준을 추론 할 수 없기 때문에 획득 한 유동장 의 사후 필터링이 실현 가능하지 않다는 것이 분명합니다 . 실제로 유속은 그림 6 의 패널 c1에서 볼 수 있듯이 가장 큰 오류가 생성되는 위치에서도 “합리적인”크기를 갖습니다. , DM 및 NM 접근 방식으로 얻은 속도 필드 간의 차이가 표시됩니다. 더욱이 후류에서 발생하는 매우 불안정한 소용돌이 운동이 이러한 위치에 가깝게 이동하기 때문에 그럴듯한 흐름 방향을 가정하더라도 필터링 기준을 공식화 할 수 없습니다. 모델러가 그러한 부정확성을 알고 있었다하더라도 NM 접근법은 “합리적”이지만 여전히 날개의 내부 현과 그 바로 아래에있는 유동장의 대부분은 부정확합니다. 이러한 행동은 매우 오해의 소지가 있습니다.
그림 6 의 패널 b2는 SM 접근법으로 얻은 유속 장을 보여주고 패널 c2는 SM과 DM 접근법으로 얻은 결과 간의 차이를 보여줍니다. SM 접근법은 NM 대응 물에 비해 전반적으로 더 나은 정확도를 명확하게 보여 주지만, 이는 레이저 소스의 위치가 진동 중에 음영 영역이 많이 움직이지 않기 때문입니다 (그림 3 참조). 한 번의 진동 동안 VI가 경험 한 최대 변위를 육안으로 검사합니다. 즉, 분석 된 사례의 경우 정적 마스크를 그리기위한 중립 구성을 선택하면 NM 접근 방식보다 낮은 오류를 얻을 수 있습니다. 더 큰 물체 변위를 포함하는 실험 설정은 NM이 일관되게 더 정확해질 수 있기 때문에 NM보다 SM의 우월성은 일반화 될 수 없음을 강조하고 싶습니다.
그림 6 은 분석 된 접근법에 의해 생성 된 차이를 철저히 보여 주지만 결과에 대한보다 정량적 인 평가를 제공하기 위해 오류의 빈도 분포를 계산했습니다. 그림 7 에서 이러한 분포를 살펴보면 SM 접근법이 NM보다 전체적인 예측이 더 우수하고 SM 분포가 더 정점에 있음을 확인합니다. 그럼에도 불구하고 SM은 여전히 비정상적인 강도의 스파이크를 생성합니다. 분포의 꼬리로 표시되는 이러한 값은 정적 마스크 범위의 과대 평가 (왼쪽 꼬리) 및 과소 평가 (오른쪽 꼬리)에 연결됩니다. 그러나 주파수의 크기는 고려되는 경우에 SM과 NM의 적용 가능성을 배제하여 DM에 대한 리조트를 의무적으로 만듭니다.
결론
이 작업에서는 PIV 분석 도구에 DM (Dynamic Masking) 모듈을 제공하기위한 새로운 실험 기법을 제시합니다. 동적 마스킹은 유체 흐름에 잠긴 불투명 이동 / 변형 가능한 물체를 포함하는 시간 해결 PIV 설정에서 필요한 단계입니다. 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수 있습니다. 우리는 제안 된 DM과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM)을 비교하여 자체적으로 설계된 저비용 PIV 설정을 통해 수행 된 측정을 제시합니다. 분석 된 유동 역학은 고체 물체의 제한된 변위를 포함하지만 정량적 비교는 DM 기술을 채택해야하는 필수 필요성을 보여줍니다. 여기에서 정확성이 입증 된 현재의 실험적 접근 방식은
메모
1.실험 데이터 세트는 PIV 분석의 복제를 허용하기 위해 요청시 제공됩니다.
참고 문헌
Anders S, Noto D, Seilmayer M, Eckert S (2019) 스펙트럼 랜덤 마스킹 : 다상 흐름에서 piv를위한 새로운 동적 마스킹 기술. Experim 유체 60 (4) : 1–6조Google 학술 검색
Archbold E, Ennos A (1972) 이중 노출 레이저 사진에서 변위 측정. Optica Acta Int J Opt 19 (4) : 253–271조Google 학술 검색
Barker D, Fourney M (1977) 얼룩 패턴으로 유체 속도 측정. Opt Lett 1 (4) : 135–137조Google 학술 검색
Bradley D, Roth G (2007) 적분 이미지를 사용한 적응 형 임계 값. J 그래프 도구 12 (2) : 13–21조Google 학술 검색
Brücker C (2000) Piv의 다상 흐름. 입자 이미지 유속계 및 관련 기술, 강의 시리즈, p 1
Driscoll K, Sick V, Gray C (2003) 고밀도 연료 스프레이에서 동시 공기 / 연료 위상 piv 측정. Experim 유체 35 (1) : 112–115조Google 학술 검색
Dussol D, Druault P, Mallat B, Delacroix S, Germain G (2016) 불안정한 인터페이스, 거품 및 움직이는 구조를 포함하는 piv 이미지에 대한 자동 동적 마스크 추출. Comptes Rendus Mécanique 344 (7) : 464–478조Google 학술 검색
Ergin F, Watz B, Wadhwa N (2015) 장거리 micropiv를 사용하여 작은 평영 수영 선수 주변의 픽셀 정확도 동적 마스킹 및 흐름 측정. 에서 : 입자 이미지 유속계 -PIV15에 관한 제 11 회 국제 심포지엄. 캘리포니아 주 산타 바바라, 9 월, 14 ~ 16 쪽
CRUI-CARE 계약에 따라 Università degli Studi Roma Tre가 제공하는 오픈 액세스 자금.
작가 정보
제휴
이탈리아 Roma, Università Roma Tre 공학과Valentina Lombardi, Michele La Rocca, Pietro Prestininzi
교신 저자
Valentina Lombardi에 대한 서신 .
추가 정보
발행인의 메모
Springer Nature는 출판 된지도 및 기관 소속의 관할권 주장과 관련하여 중립을 유지합니다.
권리와 허가
오픈 액세스이 기사는 크리에이티브 커먼즈 저작자 표시 4.0 국제 라이선스에 따라 사용이 허가되었습니다.이 라이선스는 귀하가 원저자와 출처에 대해 적절한 크레딧을 제공하는 한 모든 매체 또는 형식으로 사용, 공유, 개작, 배포 및 복제를 허용합니다. 크리에이티브 커먼즈 라이센스에 대한 링크를 제공하고 변경 사항이 있는지 표시합니다. 이 기사의 이미지 또는 기타 제 3 자 자료는 자료에 대한 크레딧 라인에 달리 명시되지 않는 한 기사의 크리에이티브 커먼즈 라이선스에 포함됩니다. 자료가 기사의 크리에이티브 커먼즈 라이센스에 포함되어 있지 않고 의도 된 사용이 법적 규정에 의해 허용되지 않거나 허용 된 사용을 초과하는 경우 저작권 보유자로부터 직접 허가를 받아야합니다. 이 라이센스의 사본을 보려면 다음을 방문하십시오.http://creativecommons.org/licenses/by/4.0/ .
Tien-Li Chang a,*, Jung-Chang Wang b , Chun-Chi Chen c , Ya-Wei Lee d , Ta-Hsin Chou a a Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Rm. 125, Building 22, 195 Section 4, Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, ROC bDepartment of Manufacturing Research and Development, ADDA Corporation, Taiwan cNational Nano Device Laboratories, Taiwan d Research and Development Division, Ordnance Readiness Development Center, Taiwan
Abstract
이 연구는 나노 임프린트 공정에서 Ni 몰드 스탬프와 PMMA (폴리 메틸 메타 크릴 레이트) 기판 사이의 접착 방지 층으로서 새로운 재료를 제시합니다. 폴리 벤족 사진 ((6,6′-bis (2,3-dihydro3-methyl-4H-1,3-benzoxazinyl))) 분자 자기 조립 단층 (PBO-SAM)은 점착 방지 코팅제로 간주되어 불소 함유 화합물은 Ni / PMMA 기판의 나노 임프린트 공정을 개선 할 수 있습니다. 이 작업에서 나노 구조 기반 Ni 스탬프와 각인 된 PMMA 몰드는 각각 전자빔 석판화 (EBL)와 수제 나노 임프린트 장비에 의해 수행됩니다. 제작 된 나노 패턴의 형성을 제어하기 위해 시뮬레이션은 HEL (hot embossing lithography) 공정 동안 PBO-SAM / PMMA 기판의 변형에 대한 온도 분포의 영향을 분석 할 수 있습니다. 여기서 기둥 패턴의 직경은 Ni 스탬프 표면에 200nm 및 400nm 피치입니다. 이 적합성 조건에서 소수성 PBO-SAM 표면을 기반으로하여 Ni 몰드 스탬프의 결과는 품질 및 수량 제어에서 90 % 이상의 개선을 추론합니다.
Introduction
나노 임프린트 리소그래피 (NIL)는 초 미세 패터닝 기판 기술을 대량 생산할 수있는 가장 큰 잠재력입니다 [1,2]. 최근에는 광전자 장치 [3], 양자 컴퓨팅 장치 [4], 바이오 센서 [5] 및 전자 장치 [6]에 요구 될 수있는 NEMS / MEMS 기술의 빠른 개발이 이루어지고 있습니다.
따라서 기존의 포토 리소 그래프는 할당에 적합한 방법이 아닐 수 있습니다 [7]. X 선, 이온빔, 전자빔 리소그래피의 경우 LCD의 도광판 초박막 판과 같은 대 면적 패턴 제작에 적합하지 않습니다. 제어하기 어렵습니다. 일부 제작된 문제를 기반으로 NIL 프로세스는 재료, 패턴 크기, 구조 및 기판 지형면에서 유연성을 제공합니다 [8].
오늘날 NIL 제조 방법은 낮은 비용과 높은 처리량의 높은 패터닝 해상도의 조합으로 학제 간 나노 스케일 연구 및 상용 제품의 새로운 문을 열 수 있는 큰 관심을 받고 있습니다. 그러나 이 나노 임프린트 기술이 산업 규모 공정을 위해 충분히 성숙하기 전에 몇 가지 응용 문제를 해결해야 합니다.
각인된 몰드 공정은 종종 고온 (폴리머의 유리 전이 온도에 대해> 100oC)과 고압 (> 100bar)에서 수행되기 때문에 분명히 바람직하지 않습니다. 가열 및 냉각 공정의 열주기는 금형 및 각인 된 기판의 왜곡을 유발할 수 있습니다. 한 가지 특별한 문제는 스탬프와 폴리머 사이의 접착 방지 층 처리를 제어하여 기계적 결함이 임프린트 품질과 스탬프 수명에 영향을 미칠 수있는 중요한 패턴 결함이되는 것을 방지하는 것입니다.
Schift et al. 플루오르화 트리클로로 실란을 마이크로 미터 체제에서 실리콘에 대한 접착 방지 코팅으로 사용하는 것으로 입증되었습니다 [9]. 또한 Park et al. Ni 몰드 스탬프에 더 나은 접착 방지 코팅 공정을 달성하기 위해 불소화 실란제를 사용했습니다 [10].
그러나 지금까지 Ni 스탬프에 대한 접착 방지 코팅 처리의 NIL 공정에서 비 불소 물질에 대한 시도는 거의 이루어지지 않았습니다. 우리의 생활 환경은 그것을 유지하기 위해 불소가 아닌 물질이 필요합니다. 또한 Ni 계 소재의 부드러운 특성을 바탕으로 가장 중요한 롤러 나노 임프린트 기술을 개발할 수 있습니다.
본 연구의 목적은 Ni 스탬프와 PMMA 기판 사이의 점착 방지 코팅제로 PBO-SAM을 개발하여 나노 제조 기술, 즉 NIL을 향상시키는 것입니다.
Experiment
먼저 4,4′- 이소 프로필 리 덴디 페놀 (비스페놀 -A, BA-m), 포름 알데히드 및 메틸 아민을 반응시켜 폴리 벤족 사진을 제조 하였다. 미국 Aldrich Chemical company, Inc.에서 구입 한 모든 화학 물질. 합성 과정에서 포름 알데히드/디 옥산 및 메틸 아민 / 디 옥산 물질을 10 o C에서 항아리에서 10분 동안 측정하는 벤족 사진 단량체가 필요했습니다.
디 에틸 에테르를 기화시킨 후, 벤족 사진 전구체가 완성되었다. benzoxazine 전구체를 140 o C에서 1 시간 동안 가열하면 BA-m 폴리 벤족 사진을 얻을 수 있습니다. 다음으로 4 인치입니다.
이 연구에서는 p 형 Si (10 0) 웨이퍼를 사용할 수 있습니다. SiO2 기반 Ni (원자량 5.87g / mole) 기판의 제조를 위해 Ti (5nm) 및 SiO2 (20nm)를 순차적으로 증착 한 후 O2- 플라즈마 처리를 수행했습니다. Ni 기판과 SiO2 층 사이의 접착력을 높이기 위해 Ti 중간층이 사용되었습니다. 아세톤, 이소프로판올 및 탈 이온수를 사용하여 세척 한 후 샘플을 포토 레지스트 (ZEP520A-7, Nippon Zeon Co., Ltd.)로 스핀 코팅했습니다.
마스터 몰드는 그림 1 (A)에서 Ni 필름의 반응성 이온 에칭 (RIE)과 함께 Crestec CABL8210 전자 빔 직접 쓰기 도구 (30 keV, 100 pA)를 사용하여 제작되었습니다. 그런 다음 시뮬레이션된 결과는 NIL 프로세스에서 엠보싱 압력으로 기계적 고장의 효과를 제공할 수 있으며, 이는 우리가 원하는 나노 패턴 설계 및 연구에 도움이 될 수 있습니다.
PBOSAM / PMMA 기판 모델의 변형은 3 차원 접근법에 기반한 유한 체적 방법 (FVM)을 통해 예측할 수 있습니다. Navier-Stokes 방정식 [11]에서 압력과 속도 사이의 결합은 SIMPLE 알고리즘을 사용하여 이루어집니다. 2 차 상향 이산화 방식은 대류 플럭스 및 운동량의 확산 플럭스, 유체의 질량 분율에 대한 중심 차이 방식에 대해 구현됩니다. 완화 부족 요인의 일반적인 값은 0.5입니다.
수렴 기준이 1105로 설정된 연속성을 제외한 모든 변수에 대해 잔차가 1103 미만인 경우 솔루션이 수렴된 것으로 간주됩니다. 여기서 각인된 나노 패턴은 그림 1 (B)와 같이 수제 장비에서 수행한 HEL 공정을 통해 사용할 수 있습니다. PBO-SAM 코팅 방법으로 HEL 절차를 활용 한 나노 패턴의 제작은 그림 1 (C)에 개략적으로 표시되었습니다.
200nm의 얇은 PMMA 필름 (분자량 15kg / mole)을 SiO2 기판에 스핀 코팅 한 후 160oC에서 30 분 동안 핫 플레이트에서 베이킹했습니다. 또한 PBO-SAM 코팅은 접착 방지제입니다. CVD 공정에 의해 증착되었습니다. 마스터는 150oC 및 50bar에서 10 분 동안 PBO-SAM / PMMA 기판 필름에 엠보싱하여 복제되었습니다.
마지막으로, 엠보싱 된 나노 구조물의 바닥에 남아 있던 PBO-SAM / PMMA 층은 RIE 처리로 제거되었습니다. 각 임프린트 후 스탬프 및 기판의 품질이 제작 된 후 현미경을 사용하여 관찰하고 물 접촉각 (CA) 측정을 사용하여 습윤 및 접착 특성을 알아낼 수 있습니다.
References
[1] M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Nature 417 (2002) 835. [2] S.Y. Chou, C. Keimel, J. Gu, Appl. Phys. Lett. 84 (2004) 5299. [3] Q. Wang, G. Farrell, P. Wang, G. Rajan, T. Thomas, Sensor Actuator A 134 (2007) 405. [4] C. Kentsch, W. Henschel, D. Wharam, D.P. Kern, Microelectron. Eng. 83 (2006) 1753. [5] T.L. Chang, Y.W. Lee, C.C. Chen, F.H. Ko, Microelectron. Eng. 84 (2007) 1689. [6] S. Tisa, F. Zappa, A. Tosi, S. Cova, Sensor Actuator A 140 (2007) 113. [7] M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Lab Chip 5 (2005) 5545. [8] W. Hu, E.K.F. Yim, R.M. Reano, K.W. Leong, S.W. Pang, J. Vac. Sci. Technol. B 84 (2005) 2984. [9] H. Schift, L.J. Heyderman, C. Padeste, J. Gobrecht, Microelectron. Eng. 423 (2002) 61. [10] S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht, Microelectron. Eng. 73–74 (2004) 196. [11] A. Yokoo, M. Nakao, H. Yoshikawa, H. Masuda, T. Tamamura, Jpn. J. Appl. Phys. 38 (1999) 7268.
X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2 a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006
Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR
LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.
이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.
상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.
수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.
지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.
기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.
폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.
용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.
Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.
Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.
Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.
이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.
현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.
또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.
[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44. [2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785. [3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225. [4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904. [5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003. [6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507. [7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174. [8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005. [9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999. [10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003, pp. 317–323. [11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251. [12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002. [13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418. [14] X. Yao, An experimental analysis of casting formation in the expendable pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994. [15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52. [16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999. [17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001. [18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.
This article was contributed by V.Sukhotskiy1,2, I. H. Karampelas3, G. Garg 1, A. Verma1, M. Tong 1, S. Vader2, Z. Vader2, and E. P. Furlani1 1University at Buffalo SUNY, 2Vader Systems, 3Flow Science, Inc.
Drop-on-demand 잉크젯 인쇄는 상업 및 소비자 이미지 재생을 위한 잘 정립 된 방법입니다. 이 기술을 주도하는 동일한 원리는 인쇄 및 적층 제조 분야에도 적용될 수 있습니다. 기존의 잉크젯 기술은 폴리머에서 살아있는 세포에 이르기까지 다양한 재료를 증착하고 패턴화하여 다양한 기능성 매체, 조직 및 장치를 인쇄하는 데 사용되었습니다 [1, 2]. 이 작업의 초점은 잉크젯 기반 기술을 3D 솔리드 금속 구조 인쇄로 확장하는 데 있습니다 [3, 4]. 현재 대부분의 3D 금속 프린팅 응용 프로그램은 고체 물체를 형성하기 위해 레이저 [6] 또는 전자 빔 [7]과 같은 외부 지향 에너지 원의 영향을 받아 증착 된 금속 분말 소결 또는 용융을 포함합니다. 그러나 이러한 방법은 비용 및 프로세스 복잡성 측면에서 단점이 있습니다. 예를 들어, 3D 프린팅 프로세스에 앞서 분말을 생성하기 위해 시간과 에너지 집약적인 기술이 필요합니다.
이 기사에서는 MHD (자기 유체 역학) drop-on-demand 방출 및 움직이는 기판에 액체 방울 증착을 기반으로 3D 금속 구조의 적층 제조에 대한 새로운 접근 방식에 대해 설명합니다. 프로세스의 각 부분을 연구하기 위해 많은 시뮬레이션이 수행되었습니다.
단순화를 위해 이 연구는 두 부분으로 나뉘었습니다.
첫 번째 부분에서는 MHD 분석을 사용하여 프린트 헤드 내부의 Lorentz 힘 밀도에 의해 생성 된 압력을 추정 한 다음 FLOW-3D 모델의 경계 조건으로 사용됩니다. 액적 방출 역학을 연구하는 데 사용되었습니다.
두 번째 부분에서는 이상적인 액적 증착 조건을 식별하기 위해 FLOW-3D 매개 변수 분석을 수행했습니다. 모델링 노력의 결과는 그림 1에 표시된 장치의 설계를 안내하는데 사용되었습니다.
코일은 배출 챔버를 둘러싸고 전기적으로 펄스되어 액체 금속을 투과하고 폐쇄 루프를 유도하는 과도 자기장을 생성합니다. 그 안에 일시적인 전기장. 전기장은 순환 전류 밀도를 발생시키고, 이는 과도장에 역 결합되고 챔버 내에서 자홍 유체 역학적 로렌츠 힘 밀도를 생성합니다. 힘의 방사형 구성 요소는 오리피스에서 액체 금속 방울을 분출하는 역할을 하는 압력을 생성합니다. 분출된 액적은 기질로 이동하여 결합 및 응고되어 확장된 고체 구조를 형성합니다. 임의의 형태의 3 차원 구조는 입사 액적의 정확한 패턴 증착을 가능하게 하는 움직이는 기판을 사용하여 층별로 인쇄 될 수 있습니다. 이 기술은 상표명 MagnetoJet으로 Vader Systems (www.vadersystems.com)에 의해 특허 및 상용화되었습니다.
MagnetoJet 프린팅 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의 형상의 3D 금속 구조를 인쇄하는 것입니다 [8, 9]. 또한 고유한 금속 입자 구조가 존재하기 때문에 기계적 특성이 개선된 부품을 인쇄 할 수 있습니다.
프로토타입 디바이스 개발
Vader Systems의 3D 인쇄 시스템의 핵심 구성 요소는 두 부분의 노즐과 솔레노이드 코일로 구성된 프린트 헤드 어셈블리입니다. 액체화는 노즐의 상부에서 발생합니다. 하부에는 직경이 100μm ~ 500μm 인 서브 밀리미터 오리피스가 있습니다. 수냉식 솔레노이드 코일은 위 그림에 표시된 바와 같이 오리피스 챔버를 둘러싸고있습니다 (냉각 시스템은 도시되지 않음). 다수의 프린트 헤드 디자인의 반복적인 개발은 액체 금속 배출 거동뿐만 아니라, 액체 금속 충전 거동에 대한 사출 챔버 기하적인 효과를 분석하기 위해 연구되었습니다.
이 프로토타입 시스템은 일반적인 알루미늄 합금으로 만들어진 견고한 3D 구조를 성공적으로 인쇄했습니다 (아래 그림 참조). 액적 직경, 기하학, 토출 빈도 및 기타 매개 변수에 따라 직경이 50 μm에서 500 μm까지 다양합니다. 짧은 버스트에서 최대 5000 Hz까지 40-1000 Hz의 지속적인 방울 분사 속도가 달성 되었습니다.
Computational Models
프로토 타입 장치 개발의 일환으로, 성능 (예 : 액적 방출 역학, 액적-공기 및 액적-기질 상호 작용)에 대한 설계 개념을 스크리닝하기 위해 프로토타입 제작 전에 계산 시뮬레이션을 수행했습니다. 분석을 단순화하기 위해 CFD 분석 뿐만 아니라 컴퓨터 전자기(CE)를 사용하는 두 가지 다른 보완 모델이 개발되었습니다. 첫 번째 모델에서는 2 단계 CE 및 CFD 분석을 사용하여 MHD 기반 액적 분출 거동과 효과적인 압력 생성을 연구했습니다. 두 번째 모델에서는 열-유체 CFD 분석을 사용하여 기판상의 액적 패턴화, 유착 및 응고를 연구했습니다.
MHD 분석 후, 첫 번째 모델에서 등가 압력 프로파일을 추출하여 액적 분출 및 액적-기질 상호 작용의 과도 역학을 탐구하도록 설계된 FLOW-3D 모델의 입력으로 사용되었습니다. FLOW-3D 시뮬레이션은 액적 분출에 대한 오리피스 안과 주변의 습윤 효과를 이해하기 위해 수행되었습니다. 오리피스 내부와 외부 모두에서 유체 초기화 수준을 변경하고 펄스 주파수에 의해 결정된 펄스 사이의 시간을 허용함으로써 크기 및 속도를 포함하여 분출 된 액 적의 특성 차이를 식별 할 수있었습니다.
Droplet 생성
MagnetoJet 인쇄 프로세스에서, 방울은 전압 펄스 매개 변수에 따라 일반적으로 1 – 10m/s 범위의 속도로 배출되고 기판에 충돌하기 전에 비행 중에 약간 냉각됩니다. 기판상의 액적들의 패터닝 및 응고를 제어하는 능력은 정밀한 3D 솔리드 구조의 형성에 중요합니다. 고해상도 3D 모션베이스를 사용하여 패터닝을 위한 정확한 Droplet 배치가 이루어집니다. 그러나 낮은 다공성과 원하지 않는 레이어링 artifacts가 없는 잘 형성된 3D 구조를 만들기 위해 응고를 제어하는 것은 다음과 같은 제어를 필요로하기 때문에 어려움이 있습니다.
냉각시 액체 방울로부터 주변 물질로의 열 확산,
토출된 액적의 크기,
액적 분사 빈도 및
이미 형성된 3D 물체로부터의 열 확산.
이들 파라미터를 최적화 함으로써, 인쇄된 형상의 높은 공간 분해능을 제공하기에 충분히 작으며, 인접한 액적들 및 층들 사이의 매끄러운 유착을 촉진하기에 충분한 열 에너지를 보유 할 것입니다. 열 관리 문제에 직면하는 한 가지 방법은 가열된 기판을 융점보다 낮지만 상대적으로 가까운 온도에서 유지하는 것입니다. 이는 액체 금속 방울과 그 주변 사이의 온도 구배를 감소시켜 액체 금속 방울로부터의 열의 확산을 늦춤으로써 유착을 촉진시키고 고형화하여 매끄러운 입체 3D 덩어리를 형성합니다. 이 접근법의 실행 가능성을 탐구하기 위해 FLOW-3D를 사용한 파라 메트릭 CFD 분석이 수행되었습니다.
액체 금속방울 응집과 응고
우리는 액체 금속방울 분사 주파수뿐만 아니라 액체 금속방울 사이의 중심 간 간격의 함수로서 가열된 기판에서 내부 층의 금속방울 유착 및 응고를 조사했습니다. 이 분석에서 액체 알루미늄의 구형 방울은 3mm 높이에서 가열 된 스테인리스 강 기판에 충돌합니다. 액적 분리 거리 (100)로 변화 될 때 방울이 973 K의 초기 온도를 가지고, 기판이 다소 943 K.도 3의 응고 온도보다 900 K로 유지됩니다. 실선의 인쇄 중에 액적 유착 및 응고를 도시 50㎛의 간격으로 500㎛에서 400㎛까지 연속적으로 유지하고, 토출 주파수는 500Hz에서 일정하게 유지 하였습니다.
방울 분리가 250μm를 초과하면 선을 따라 입자가 있는 응고된 세그먼트가 나타납니다. 350μm 이상의 거리에서는 세그먼트가 분리되고 선이 채워지지 않은 간극이 있어 부드러운 솔리드 구조를 형성하는데 적합하지 않습니다. 낮은 온도에서 유지되는 기질에 대해서도 유사한 분석을 수행했습니다(예: 600K, 700K 등). 3D 구조물이 쿨러 기질에 인쇄될 수 있지만, 그것들은 후속적인 퇴적 금속 층들 사이에 강한 결합의 결여와 같은 바람직하지 않은 공예품을 보여주는 것이 관찰되었습니다. 이는 침전된 물방울의 열 에너지 손실률이 증가했기 때문입니다. 기판 온도의 최종 선택은 주어진 용도에 대해 물체의 허용 가능한 인쇄 품질에 따라 결정될 수 있습니다. 인쇄 중에 부품이 커짐에 따라 더 높은 열 확산에 맞춰 동적으로 조정할 수도 있습니다.
FLOW-3D 결과 검증
위 그림은 가열된 기판 상에 인쇄된 컵 구조 입니다. 인쇄 과정에서 가열된 인쇄물의 온도는 인쇄된 부분의 순간 높이를 기준으로 실시간으로 733K (430 ° C)에서 833K (580 ° C)로 점차 증가했습니다. 이것은 물체 표면적이 증가함에 따라 국부적인 열 확산의 증가를 극복하기 위해 행해졌습니다. 알루미늄의 높은 열전도율은 국부적인 온도 구배에 대한 조정이 신속하게 이루어져야 하기 때문에 특히 어렵습니다. 그렇지 않으면 온도가 빠르게 감소하고 층내 유착을 저하시킵니다.
결론
시뮬레이션 결과를 바탕으로, Vader System의 프로토타입 마그네슘 유체 역학 액체 금속 Drop-on-demand 3D 프린터 프로토 타입은 임의의 형태의 3D 솔리드 알루미늄 구조를 인쇄할 수 있었습니다. 이러한 구조물은 서브 밀리미터의 액체 금속방울을 층 단위로 패턴화하여 성공적으로 인쇄되었습니다. 시간당 540 그램 이상의 재료 증착 속도는 오직 하나의 노즐을 사용하여 달성 되었습니다.
이 기술의 상업화는 잘 진행되고 있지만 처리량, 효율성, 해상도 및 재료 선택면에서 최적의 인쇄 성능을 실현하는 데는 여전히 어려움이 있습니다. 추가 모델링 작업은 인쇄 과정 중 과도 열 영향을 정량화하고, 메니스커스 동작뿐만 아니라 인쇄된 부품의 품질을 평가하는 데 초점을 맞출 것입니다.
[3] Tseng, A.A., Lee, M.H. and Zhao, B., “Design and operation of a droplet deposition system for freeform fabrication of metal parts,” Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology 123(1), 74-84 (2001).
[4] Suter, M., Weingärtner, E. and Wegener, K., “MHD printhead for additive manufacturing of metals,” Procedia CIRP 2, 102-106 (2012).
[5] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D.Q., “Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,” International Journal of Heat and Mass Transfer 80, 288-300 (2015).
[6] Simchi, A., “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A 428(1), 148-158 (2006).
[7] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. and Wicker, R.B., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” Journal of Materials Science & Technology, 28(1), 1-14 (2012).
[8] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors & Actuators: A. Physical, 80(1), 84-89 (2000).
[9] M. Orme and R. F. Smith, “Enhanced aluminum properties by means of precise droplet deposition,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 122(3), 484-493, (2000)
가공 및 제조 업계에서는 다양한 유형의 The granular media model를 접할 수 있습니다. 특이한 특성으로 인해 입상 재료는 유용한 목적을 위해 전달, 혼합 또는 조작하려는 엔지니어에게 어려운 문제를 제기 할 수 있습니다. 입상 매체 모델은 고체 입자와 기체 또는 액체 (예 : 모래와 공기 또는 모래와 물) 일 수있는 유체의 혼합물의 거동을 예측하는 데 사용됩니다. 입상 고체와 유체의 혼합물은 수수료 표면에 의해 제한 될 수있는 비압축성 유체로 취급됩니다. 입상 매체 모델은 고농축 입상 재료의 흐름을 위해 개발되었습니다. 이 모델은 “연속”접근 방식을 사용합니다. 즉, 모래의 연속적인 유체 표현을 기반으로 하여 개별 모래 입자를 처리하려고 하지 않습니다.
Granular미디어 모델링
모래와 공기의 혼합물은 공기와 모래 재료가 개별 속도로 흐르지만 압력 및 점성 응력으로 인한 운동량 교환을 통해 결합되는 2 상 흐름입니다. 전형적인 코어 모래에서 모래 입자의 직경은 약 10 분의 1 밀리미터이며 공동으로 날려지는 모래의 부피 분율은 일반적으로 50 % 이상입니다. 이 범위에서는 모래와 공기 사이에 강력한 결합이 존재하므로 그 혼합물을 단일 복합 유체로 모델링 할 수 있습니다. 두 재료의 속도 차이로 인한 2 상 효과는 Drift-Flux라고 하는 상대 속도에 대한 근사치를 사용하여 설명됩니다.
상대 속도 접근 방식을 사용하는 이 복합 흐름은 입상 매체 모델의 기반으로 선택되었습니다. 모래/공기 혼합물은 주변 공기와의 경계에 날카로운 자유 표면이 있는 단일 유체로 표현 될 수 있다고 가정합니다. 그러나 복합 유체는 모래 다짐 정도에 따라 균일하지 않은 밀도를 가질 수 있습니다. 혼합물의 점도는 밀도와 전단 응력의 함수입니다. 운동량 전달의 대부분은 입자-입자 충돌에 의한 것이기 때문에 모래-공기 혼합물은 전단 농축 물질의 특성을 갖습니다.
캐비티의 순수한 공기 영역을 배출하기 위해 단열 기포로 처리됩니다. 단열 기포는 유체 또는 단단한 벽으로 둘러싸인 공기 영역입니다. 기포의 압력은 기포 부피의 함수이며 기포가 차지하는 영역에서 균일 한 값을 갖습니다. 통풍구는 기포 내의 공기가 공동 외부로 배출되도록 합니다.
Sand Core Blowing Applications
유체와 달리 입상매질에서는 발생할 수 있는 몇 가지 차이점을 설명하기 위해 간단한 2 차원 쐐기 모양 호퍼가 바닥에 1cm 너비 튜브로 설치되었습니다. 시뮬레이션은 바닥 튜브가 비어있는 채로 시작됩니다.
모래는 0.63 부피 분율의 가까운 포장 한계에서 초기화되었습니다. 배출관 입구의 바닥에있는 모래는 중력의 작용으로 떨어지기 시작하지만 위의 거의 모든 모래는 고정되어 있습니다. 1-4, 여기서 색상은 패킹으로 인한 흐름 저항입니다 (빨간색은 완벽하게 단단함). 짧은 시간에 거품과 같은 영역이 형성되고 모래의 윗면을 향해 올라갑니다. 기포가 상단에 도달 할 때까지 기포 표면 주위의 흐름 만 보이며 표면이 붕괴됩니다. 상단 표면의 움푹 들어간 부분은 측면을 34 °의 지정된 안식각으로 줄이는 국부적 흐름을 가지고 있습니다. 한편이 패턴을 반복하기 위해 바닥에 또 다른 거품이 형성됩니다.
이 새로운 모델의 적용을 설명하기 위해 D. Lefebvre, A. Mackenbrock, V. Vidal, V에 의해 “날린 코어 및 금형 설계에서 시뮬레이션 개발 및 사용”논문의 데이터와 비교하기 위해 시뮬레이션을 수행했습니다. Pavan and PM Haigh., Hommes & Fonderie, 2004 년 12 월. 데이터는 하나의 충전 포트가있는 2 차원 다이 형상에 대한 것입니다. 다이의 벤팅은 비대칭 적이 어서 벤트가 충전 패턴에 미치는 영향을 연구 할 수 있었습니다.
시뮬레이션 영역의 크기는 폭 30cm, 높이 15cm, 두께 1cm입니다. 밀도 1.508 gm/cc의 모래 / 공기 혼합물을 상자 입구에서 절대 2 기압의 압력으로 상자에 넣었습니다. 상자의 오른쪽에는 5 개의 열린 통풍구가 있고 상자의 아래쪽과 왼쪽에는 6 개의 통풍구가 더 있습니다. 이 배열은 상자의 비대칭 채우기로 이어집니다.
Figure 5: 연속체 모델 시뮬레이션과 실험 데이터의 비교 시뮬레이션 결과는 0.035s, 0.047s 및 0.055s입니다. 색조는 혼합 농도를 나타냅니다.
계산 그리드는 수평으로 80 개의 메쉬 셀과 수직으로 40 개의 메쉬로 구성되었습니다. 시뮬레이션이 완전히 채워진 코어 박스에 도달하는 데 걸리는 시간은 0.07 초 였고 3.2GHz Pentium 4 PC 컴퓨터에서 직렬 모드로 실행되는 CPU 시간이 약 8.9 초가 필요했습니다 (만족할 정도로 작지만 물론 이것은 2D 케이스였습니다. 계산 영역에 3200 개의 셀이 있음).
연속체 모델 시뮬레이션의 결과와 Lefebvre 등 논문의 사진을 비교 한 결과가 그림 5에 나와 있습니다. 시각적 일치는 많은 세부 사항에서 매우 좋은 것으로 보입니다. 시뮬레이션은 왼쪽에 통풍구가 닫혀있는 비대칭 영향을 포착합니다.
FLOW-3D POST 2023R2는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.
FLOW-3D POST 2023R2 에서 사용자는 이제 flsgrf , EXODUS II 또는 flsgrf 및 EXODUS II 파일 형식 으로 선택한 데이터를 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 객체에 대해 유한 요소 메쉬를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용 하여 FLOW-3D 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 보조 정보를 추출할 수 있습니다.
새로운 결과 파일 형식은 솔버 엔진의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다.
FLOW-3D POST 의 새로운 EXODUS II 파일 형식 및 Surface LIC 표현의 예
이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 사용자에게 원활한 시뮬레이션 경험을 제공합니다. FLOW-3D POST 의 새로운 시각화 기능 에 대해 자세히 알아보세요 .
정수압 초기화
사용자가 사전 정의된 금속 영역에서 정수압을 초기화해야 하는 경우가 종종 있습니다. 크고 복잡한 시뮬레이션에서는 정수압 솔버의 수렴 속도가 느려지는 경우가 있습니다. FLOW-3D CAST 2023R2는 정수압 솔버의 성능을 크게 향상시켜 전처리 단계에서 최대 6배 빠르게 수렴할 수 있도록 해줍니다.
FLOW-3D CAST 2023R2 의 재설계된 열 다이 사이클링(TDC) 모델은 고압 다이 캐스팅 및 기타 영구 금형 주조 공정의 프로세스 시트와 더 잘 일치하는 더 간단하고 직관적인 설정 프로세스를 제공합니다.
이제 TDC 시퀀스는 충전 단계의 시작 부분 에서 시작되어 하위 프로세스 전반에 걸쳐 시간에 따른 냉각/가열 라인 정의에 대한 더 높은 정확성과 정렬을 제공합니다. 향상된 스프레이 냉각 모델을 통해 사용자는 부품별로 처리 일정을 정의할 수 있을 뿐만 아니라 스프레이, 세척 및 코팅 처리에 대한 옵션을 처방할 수 있습니다. 슬라이더 동작도 포함되며 이제 냉각 채널과 가열 요소가 슬라이더와 함께 이동합니다.
이러한 기능은 다양한 단계, 일정, 이동, 처리 및 조립 단계를 보여주는 깔끔하고 직관적인 프로세스 개요를 제공하는 새로운 Thermal Die Cycling 대화 상자를 통해 제어됩니다.
FLOW-3D CAST 의 새로운 Thermal Die Cycling 대화 상자
이러한 개발은 개선된 열 솔루션뿐만 아니라 TDC와 관련된 공정의 응고 및 납땜에 대한 더 나은 예측을 촉진합니다.
FLOW-3D CAST 2023R1 의 새로운 기능
FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다.
FLOW-3DCAST 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. Linux 설치 프로그램은 누락된 종속성을 보고하도록 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 그리고 워크플로를 자동화한 분들을 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.
FLOW-3D CAST 2023R1 의 고급 기능을 통해 사용자는 다음을 수행할 수 있습니다.
기가캐스팅 제작 시 등 샷 성능 최적화
툴링 마모 해결
고급 탄소강 및 저합금강 주조 시뮬레이션
거시적 분리의 효과를 설명합니다.
플런저 모션 개선
우리는 슬로우 샷 계산기를 개선하여 정확성을 높이고, 공기 혼입을 줄이며, 낮은 충전 수준을 더 잘 처리할 수 있도록 유효성 범위를 확장했습니다. 또한 사용자 인터페이스를 간소화했으며 향상된 슬로우 샷 계산기와 결합하여 인상적인 결과를 제공합니다. 이제 플런저 위치 또는 시간 기반 정의에서 슬로우 샷 계산기의 데이터를 쉽게 사용할 수 있습니다. 새로운 계산기는 또한 슬로우 샷이 끝날 때 혼입되는 공기를 크게 줄이는 세련된 샷 프로필을 제공합니다.
2007년 슬로우 샷 계산기와 2022년 버전 비교. 슬로우 샷이 끝나면 새 계산기를 사용하여 동반 공기량이 감소하는 것을 확인하십시오.
확장된 PQ 2 분석
대형 주조는 계산 비용이 많이 들고 기가 주조는 시뮬레이션 소프트웨어를 한계까지 밀어붙일 수 있습니다. 속도 경계 조건이나 금속 입력을 사용하여 샷 슬리브와 플런저를 근사화하는 것은 런타임을 줄이는 유용한 단순화 방법입니다. 그러나 PQ
2 분석 없이는 HPDC 기계가 한계에 가깝게 작동하고 예상대로 작동하지 않아 부품 품질을 위협하는지 알 수 없습니다.
우리는 매우 유능한 PQ 2 분석을 수행 하고 이를 금속 입력 및 속도 경계 조건에 적용하여 이 문제를 해결했습니다. 이는 가장 크고 가장 복잡한 주조에서도 충전 정확도를 유지하면서 처리 시간을 크게 줄이는 것을 의미합니다.
주조 금형과 다이는 기계적 스트레스 요인을 포함한 다양한 이유로 마모됩니다. 기존 전단 하중 측정법은 이 마모를 연구할 때 도움이 되지만 지금까지는 금형에 대한 금속의 충돌을 설명하지 못했고 모래 주조 금형에 포함된 모래의 최종 위치를 예측할 수 없었습니다. 이 문제를 해결하기 위해 우리는 이 마모 메커니즘을 더 잘 이해할 수 있도록 새로운 출력을 추가했습니다. 새로운 출력에는 이러한 유형의 침식이 발생할 가능성이 있는 지역과 모래 함유물의 예상 위치가 표시됩니다.
알루미늄 주조에 사용되는 영구 다이는 용융된 알루미늄이 다이의 철과 결합하여 화학적 마모를 겪게 되며, 이는 부품 품질뿐만 아니라 다이의 수명과 유지 관리 요구 사항에 영향을 미치는 땜납을 형성합니다. 이 마모 메커니즘의 중요성으로 인해 우리는 납땜의 위치와 심각도를 모두 예측하는 모델을 구축하게 되었습니다.
시뮬레이션된 솔더(왼쪽)와 관찰된 솔더(오른쪽, 빨간색). 사진은 다이에 관한 것이지만 시뮬레이션에서는 부품을 보여주기 때문에 이미지가 거울처럼 보입니다.
화학 기반 탄소 및 저합금강 응고 모델
우리의 장기 개발 목표 중 하나의 결과는 석출 반응, 응고 및 재용해 경로, 미세 구조 특징 및 결함을 정확하게 설명하는 탄소강 및 저합금강에 대한 강력한 화학 기반 응고 모델 입니다. 이 모델은 또한 중요한 3상 포정반응과 델타 페라이트에서 오스테나이트로의 전이로 인한 대량 수축과 관련된 결함을 설명합니다.
이 모델은 실험과의 탁월한 일치를 보여주며, 예를 들어 과포정 합금이 응고가 끝날 때 페라이트 영역을 개발할 수 있는 이유와 같은 비직관적이고 시간 의존적인 동작에 대한 통찰력을 제공합니다.
거시 분리 예측
대규모 분리는 주조품의 품질과 다운스트림 처리에 중요한 영향을 미칠 수 있으므로 이를 화학 기반 응고 모델에 추가했습니다. 이 모델은 매크로 분리 관련 결함이 발생할 수 있는 위치를 예측하므로 캐스팅 전에 이를 예측하고 완화할 수 있습니다.
강철 주조에 대한 실험과 시뮬레이션 결과를 비교합니다. WT Adams, Jr. 및 KW Murphy, “주강 주물에서 라이저 아래의 심각한 화학 물질 분리를 방지하기 위한 최적의 완전 접촉 상단 라이저”, AFS Trans., 88(1980), pp. 389-404
FLOW-3D CAST 2022R2 의 새로운 기능
FLOW-3DCAST 2022R2 제품군 출시로 Flow Science는 FLOW-3D CAST 의 워크스테이션과 HPC 버전을 통합하여 단일 노드 CPU 구성에서 다중 노드 병렬 고성능 컴퓨팅 실행. 추가 개발에는 점탄성 흐름을 위한 새로운 로그 형태 텐서 방법, 지속적인 솔버 속도 성능 개선, 고급 냉각 채널 및 팬텀 구성요소 제어, 개선된 동반 공기 기능이 포함됩니다.
통합 솔버
우리는 FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션이나 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.
많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만, 고성능 컴퓨팅 클러스터에서도 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션의 OpenMP/MPI 하이브리드 병렬화와 동일한 이점을 활용하여 워크스테이션과 노트북에서 실행할 수 있습니다.
증가하는 CPU 코어 수를 사용한 성능 확장의 예OpenMP/MPI 하이브리드 병렬화를 위한 메시 분해의 예
솔버 성능 개선
멀티 소켓 워크스테이션
다중 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 사용하면 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있어 성능이 향상되는 것을 확인할 수 있습니다.
낮은 수준의 루틴으로 향상된 벡터화 및 메모리 액세스
대부분의 테스트 사례에서 10~20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 나타났습니다.
정제된 체적 대류 안정성 한계
시간 단계 안정성 제한은 모델 런타임의 주요 동인이며, 2022R2에서는 새로운 시간 단계 안정성 제한인 3D 대류 안정성 제한을 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 일반적인 속도 향상을 30% 정도 보여줍니다.
압력 솔버 프리컨디셔너
경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 이러한 어려운 경우 2022R2에서는 모델이 너무 많이 반복되면 FLOW-3D가 자동으로 새로운 사전 조절기를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임은 1.9에서 335까지 더 빨라졌습니다!
점탄성 유체에 대한 로그 형태 텐서 방법
점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissemberg 수에 효과적입니다.
활성 시뮬레이션 제어 확장
능동 시뮬레이션 제어 기능이 확장되어 연속 주조 및 적층 제조 응용 분야에 일반적으로 사용되는 팬텀 개체는 물론 주조 및 기타 여러 열 관리 응용 분야에 사용되는 냉각 채널에도 사용됩니다.
연속 주조 응용 분야에 대한 가상 물체 속도 제어의 예융합 증착 모델링 애플리케이션을 위한 동적 열 제어의 예산업용 탱크 적용을 위한 동적 냉각 채널 제어의 예
FLOW-3D CAST 아카이브 의 새로운 기능
FLOW-3D CAST는 다양한 금속 주조 해석이 가능한 완벽한 열유동 해석 프로그램으로, 매우 정확한 모델링과 다기능성, 사용 용이성 및 고성능 클라우드 컴퓨팅 기능을 결합한 최첨단 금속 주조 해석 시뮬레이션 플랫폼입니다. 모든 금속 주조 공정에 대해 FLOW-3D CAST는 빠르고 직관적인 해석이 가능한 작업 공간을 제공합니다. 11개 공정에 대한 Workspace, 강력한 후처리, 충진 예측, 응고 및 결함 분석을 통해 FLOW-3D CAST는 최적의 주조 제품 설계에 필요한 도구와 로드맵을 모두 제공합니다.
FLOW-3D Cast는 거의 모든 주조 공정을 모델링 할 수 있도록 설계되었습니다. FLOW-3D Cast의 매우 정확한 유동 및 응고 결과는 표면 산화물, 혼입된 공기, 매크로 및 미세 다공성과 같은 중요한 주조 결함을 포착합니다. 다른 특별한 모델링 기능으로는 로봇 스프레이 냉각 및 윤활, 샷 슬리브 흐름 프로필, 스퀴즈 핀 및 열 응력을 모델링 할 수있는 열 다이 사이클링이 있습니다.
최적화된 시뮬레이션 설계를 통해 개발 시간을 단축하고 출시 시간을 단축하며 수율을 높일 수 있습니다. FLOW-3D CAST를 사용하면 설계 및 개발 비용을 절감할 수 있습니다.
FLOW-3D POST 2023R2는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.
FLOW-3D POST 2023R2 에서 사용자는 이제 선택한 데이터를 flsgrf 또는 EXODUS II 파일 형식으로 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 개체에 대해 유한 요소 메시를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용하여 FLOW-3D HYDRO 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 보조 정보를 추출할 수 있습니다.
FLOW-3D POST 의 새로운 EXODUS II 파일 형식에서 볼륨 렌더링 기능을 사용하여 동반된 공기를 보여주는 예입니다 .
새로운 결과 파일 형식은 hydr3d 솔버의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다. 이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 원활한 시뮬레이션 경험을 제공합니다.
FLOW-3D HYDRO 2023R2는 2방정식(RANS) 난류 모델에 대한 동적 혼합 길이 계산을 크게 개선했습니다. 거의 층류 흐름 체계와 같은 특정 제한 사례에서는 이전 버전의 코드 계산 제한기가 때때로 과도하게 예측되어 사용자가 특정 혼합 길이를 수동으로 입력해야 할 수 있습니다.
새로운 동적 혼합 길이 계산은 이러한 상황에서 난류 길이와 시간 규모를 더 잘 설명하며, 이제 사용자는 고정(물리 기반) 혼합 길이를 설정하는 대신 더 넓은 범위의 흐름에 동적 모델을 적용할 수 있습니다.
적절한 고정 혼합 길이와 비교하여 접촉 탱크의 혼합 시뮬레이션을 위한 기존 동적 혼합 길이 모델과 새로운 동적 혼합 길이 모델 간의 비교
정수압 초기화
사용자가 미리 정의된 유체 영역에서 정수압을 초기화해야 하는 경우가 많습니다. 이전에는 대규모의 복잡한 시뮬레이션에서 정수압 솔버의 수렴 속도가 느려지는 경우가 있었습니다. FLOW-3D HYDRO 2023R2는 정수압 솔버의 성능을 크게 향상시켜 전처리 단계에서 최대 6배 빠르게 수렴할 수 있도록 해줍니다.
확장된 지형 표현 지원
GeoTIFF 지원
2023R2 릴리스에서 FLOW-3D HYDRO는 기본적으로 래스터 지형 및 수심 측량을 위한 GeoTIFF(.tif) 파일 형식을 지원합니다. 이제 사용자는 GeoTIFF 파일을 사용자 인터페이스로 직접 가져올 수 있습니다.
FLOW-3D HYDRO 에서 렌더링된 GeoTIFF(.tif) 래스터 파일의 예
LandXML 지원
측량 데이터가 균일하지 않거나 래스터 표면의 해상도가 충분하지 않은 경우 TIN 표면은 LandXML(.xml) 파일 형식을 통해 향상된 지형 지도를 제공합니다. FLOW-3D HYDRO 2023R2는 기본적으로 LandXML 파일을 가져옵니다.
래스터 파일과의 향상된 상호 작용
래스터 파일은 고해상도에서 넓은 지형 영역을 다루는 경우가 많으므로 사용자 인터페이스에서 3D 표현의 상호 작용 속도가 느려질 수 있습니다. 이제 사용자는 3D 표현의 품질을 제어하여 렌더링 시간을 크게 줄이고 상호 작용성을 크게 향상시킬 수 있습니다.
FLOW-3D HYDRO 2023R1 의 새로운 기능
FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다.
FLOW-3D HYDRO 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. Linux 설치 프로그램은 누락된 종속성을 보고하도록 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 그리고 워크플로를 자동화한 분들을 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.
천수(shallow water) 난류 모델
난류는 물과 환경 흐름장의 주요 측면이며, 특히 천수(shallow water) 근사치로 모델링된 영역에서는 더욱 그렇습니다. 우리는 모델링 위험을 줄이고 더 나은 결과를 제공하기 위해 세 가지 새로운 난류 모델, 일정한 확산도, 혼합 길이 및 Smagorinsky 모델을 포함하도록 천수(shallow water) 모델의 난류 처리를 개선했습니다.
FLOW-3D HYDRO 2022R2 의 새로운 기능
FLOW-3D HYDRO 2022R2 출시로 Flow Science는 FLOW-3DHYDRO 의 워크스테이션과 HPC 버전을 통합하여 단일 노드 CPU 구성에서 다중 노드에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공했습니다. 병렬 고성능 컴퓨팅 실행. 추가 개발에는 향상된 공기 동반 기능과 물 및 환경 응용 분야에 대한 경계 조건 정의 개선이 포함됩니다.
통합 솔버
우리는 FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션이나 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.
많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만, 고성능 컴퓨팅 클러스터에서도 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션의 OpenMP/MPI 하이브리드 병렬화와 동일한 이점을 활용하여 워크스테이션과 노트북에서 실행할 수 있습니다.
증가하는 CPU 코어 수를 사용한 성능 확장의 예2소켓 워크스테이션에서 OpenMP/MPI 하이브리드 병렬화를 위한 메시 분해의 예
멀티 소켓 워크스테이션
다중 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 사용하면 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있어 성능이 향상되는 것을 확인할 수 있습니다.
낮은 수준의 루틴으로 향상된 벡터화 및 메모리 액세스
대부분의 테스트 사례에서 10~20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 나타났습니다.
정제된 체적 대류 안정성 한계
시간 단계 안정성 제한은 모델 런타임의 주요 동인이며, 2022R2에서는 새로운 시간 단계 안정성 제한인 3D 대류 안정성 제한을 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 일반적인 속도 향상을 30% 정도 보여줍니다.
압력 솔버 프리컨디셔너
경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 이러한 어려운 경우 2022R2에서는 모델이 너무 많이 반복되면 FLOW-3D가 자동으로 새로운 사전 조절기를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임은 1.9에서 335까지 더 빨라졌습니다!
점탄성 유체에 대한 로그 형태 텐서 방법
점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수에 효과적입니다.
FLOW-3D HYDRO 경계 조건 개선
FLOW-3D HYDRO 2022R2 에서는 물 적용 경계 조건에 대한 두 가지 개선 사항을 사용할 수 있습니다 . 천수(shallow water)의 유량 경계 조건이 개선되어 보다 현실적이고 공간적으로 변화하는 속도 프로파일을 생성하므로 사용자는 정확도를 잃지 않고 도메인 크기를 줄일 수 있습니다. 자연적인 입구 경계 조건의 경우 정격 곡선 완화 시간 옵션을 사용하여 과도 조건에 대한 응답을 향상시킬 수 있습니다.
입구 경계에서 흐름 방향으로 변하는 속도 프로파일의 예
향상된 공기 동반 기능
디퓨저 및 유사한 기포 흐름 응용 분야의 경우 이제 질량 공급원을 사용하여 물기둥에 공기를 유입할 수 있습니다. 또한, 동반 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었습니다.
최근 FLOW Science, Inc에서는 토목 및 환경 엔지니어링 산업을위한 완벽한 CFD 모델링 솔루션인 FLOW-3D HYDRO 제품을 출시했습니다. 기존 FLOW-3D 사용자이거나 유압 엔지니어링 관행에 CFD 모델링 기능을 사용하시는 것에 관심이 있는 경우, 언제든지 아래 연락처로 연락주세요. 연락처 : 02-2026-0442 이메일 : flow3d@stikorea.co.kr
FLOW-3D HYDRO 는 더 높은 수준의 정확도와 모델 해상도를 제공하기 위해 3D 비 유압 모델링 기능이 필요한 경우 고급 모델링 도구로 사용할 수 있습니다. 일반적인 모델링 응용 분야는 소형 댐 / 인프라, 운송 수력학, 복잡한 3D 하천 수력학, 열 부력 연기, 배수구 및 오염 물질 수송과 관련됩니다.
FLOW-3D HYDRO의 핵심 기능은 전체 3D 모델과 동적으로 연결될 수있는 천수(shallow water) 모델입니다.
이 기능을 통해 사용자는 멀티 스케일 모델링 애플리케이션을위한 모델 도메인을 확장하여 필요한 모델 해상도로 계산 효율성을 극대화 할 수 있습니다. FLOW-3DHYDRO 또한 강 및 환경 응용 분야에 특화된 추가 기능과 고급 물리학을 포함합니다.
시뮬레이션 템플릿
FLOW-3D HYDRO 의 작업 공간 템플릿으로 시간을 절약하고 실수를 방지하며 일관된 모델을 실행하십시오 . 작업 공간 템플릿은 일반적인 응용 분야에 대한 유체 속성, 물리적 모델, 수치 설정 및 시뮬레이션 출력을 미리로드합니다.
작업 공간 템플릿은 7 가지 모델 클래스에 사용할 수 있습니다.
자유 표면 – TruVOF (기본값)
공기 유입
열 기둥
퇴적물 수송
천수(shallow water)
자유 표면 – 2 유체 VOF
자유 표면 없음
사전로드 된 예제 시뮬레이션
FLOW-3D HYDRO 의 40 개 이상의 사전로드 된 물 중심 예제 시뮬레이션 라이브러리는 애플리케이션 모델링을위한 훌륭한 시작점을 제공합니다. 사전로드 된 예제 시뮬레이션은 모델러에게 모델 설정 및 모범 사례의 로드맵뿐만 아니라 대부분의 애플리케이션에 대한 자세한 시작점을 제공합니다.이전다음
비디오 튜토리얼
비디오 자습서는 새로운 사용자가 다양한 응용 프로그램을 모델링하는 방법을 빠르게 배울 수있는 훌륭한 경로를 제공합니다. FLOW-3D HYDRO 비디오 튜토리얼 기능 :
광범위한 응용 및 물리학을위한 AZ 단계별 기록
“사용 방법”정보
모범 사례를위한 팁
CAD / GIS 데이터, 시뮬레이션 파일 및 후 처리 파일
고급 솔버 개발
Tailings Model
새로운 Tailings Model은 tailings dam failure로 인한 tailings runout을 시뮬레이션하기위한 고급 기능을 제공합니다. tailings정의에 대한 다층 접근 방식과 함께 미세하고 거친 입자 구성을 나타내는 이중 모드 점도 모델은 모든 방법으로 건설 된 tailings 댐의 모델링을 허용합니다.
천수(shallow water), 3D 및 하이브리드 3D / 천수(shallow water) 메싱을 포함한 유연한 메싱을 통해 얕은 지역에서 빠른 솔루션을 제공하면서 다층 tailings의 복잡성을 정확하게 모델링 할 수 있습니다. 점성 경계층의 정확한 표현을 위해 천수(shallow water) 메시에 2 층 Herschel-Bulkley 점도 모델을 사용할 수 있습니다.
모델 하이라이트
미세 입자 및 거친 입자 광미 조성물을위한 이중 모드 점도 모델
침전, 패킹 및 입자 종의 난류 확산을 포함한 Tailings 수송
천수(shallow water) 메시를위한 2 층 Herschel-Bulkley 점도 모델
3D, 천수(shallow water), 3D / 천수(shallow water) 하이브리드 메시를 포함한 유연한 메시 접근 방식
Multi-layer, variable composition tailings for general definition of tailings dam construction
Shallow Water
FLOW-3D HYDRO 의 천수(shallow water) 모델링 기능은 3D 메시를 천수(shallow water) 메시와 결합하여 탁월한 모델링 다양성을 제공하는 고유 한 하이브리드 메시를 사용합니다. 압력 솔버의 수치 개선으로 더 안정적이고 빠른 시뮬레이션이 가능합니다. 하이브리드 메쉬의 하단 전단 응력 계산이 크게 향상되어 정확도가 더욱 향상되었습니다. 지형에 거칠기를 적용하는 새로운 방법에는 Strickler, Chezy, Nikuradse, Colebrook-White, Haaland 및 Ramette 방정식이 포함됩니다.
Two-Fluid VOF Model
sharp 인터페이스가 있거나 없는 압축 가능 또는 비압축성 2 유체 모델은 항상 1 유체 자유 표면 모델과 함께 FLOW-3D 에서 사용할 수 있습니다 . 사실, sharp 인터페이스 처리는 TruVOF 기술을 자유 표면 모델과 공유하며 상용 CFD 소프트웨어에서 고유합니다. 최근 개발에는 2- 필드 온도 및 인터페이스 슬립 모델이 포함되었습니다. 이 모델은 오일 / 물, 액체 / 증기, 물 / 공기 및 기타 2 상 시스템에 성공적으로 적용되었습니다.
FLOW-3D HYDRO 는 2- 유체 솔루션의 정확성과 안정성에서 두 가지 중요한 발전을보고 있습니다. 운동량과 질량 보존 방정식의 강화 된 결합은 특히 액체 / 기체 흐름에서 계면에서 운동량 보존을 향상시킵니다. 연속성 방정식에서 제한된 압축성 항의 확장 된 근사값은 더 빠르고 안정적인 2 유체 압력 솔버를 만듭니다.
예를 들어, 터널 및 드롭 샤프트 설계와 같은 유압 응용 분야에서 공기가 종종 중요한 역할을 하기 때문에 두 개발 모두 FLOW-3DHYDRO 릴리스에 적시에 적용됩니다. 일반적으로 낮은 마하 수로 인해 이러한 경우 물과 공기에 제한된 압축성이 사용됩니다.
고성능 컴퓨팅 및 클라우드
일반 워크스테이션 또는 랩톱으로 많은 작업을 수행 할 수 있지만, 대형 시뮬레이션과 고화질 시뮬레이션은 더 많은 CPU 코어를 활용함으로써 엄청난 이점을 얻을 수 있습니다. FLOW-3D CLOUD 및 고성능 컴퓨팅은 더 빠르고 정확한 모델을 실행할 수있는 더 빠른 런타임과 더 많은 선택권을 제공합니다.
화장실이 어떻게 작동하는지 궁금한 적이 있습니까? 사실 꽤 복잡합니다. 손잡이를 밀면 물이 용기를 채우기 시작합니다. 용기의 유체 레벨이 트랩 상단 (보울 뒤) 위로 올라가면 위어 유형의 흐름이 시작됩니다. 흐름이 충분히 빠르면 트랩 상단에 거품이 형성되어 사이펀이 생성됩니다. 그 시점에서 사이펀은 용기에서 물을 빼내고 변기가 내립니다.
많은 지역에서 물 절약은 중요한 문제이며 가정과 상업용 모두에 저 유량 화장실이 필요합니다. 그러나 화장실이 첫 번째 시도에서 작업을 완료하지 못하면 물 절약 목표가 실패합니다. FLOW-3D는 최적의 결과를 얻기 위해 다양한 설계를 모델링하는 데 사용할 수 있습니다.
Toilet Flushing Examples
아래 3D 애니메이션에서 FLOW-3D는 물 동작의 세척 순서를 보여줍니다. 물의 두 영역이 공과 함께 초기화됩니다. 공은 6 자유도의 완전 결합 유체-고체 모션을 시뮬레이션하기 위해 움직이는 물체 모델(GMO)을 사용하여 모델링됩니다. 중력은 수세식 탱크에서 물을 용기로 밀어 넣습니다. 분석은 정체 영역과 공이 영역을 벗어나는 기간을 나타내는 흐름 프로파일과 압력 윤곽을 보여줍니다. 공 대신 다른 질량과 모양을 사용할 수 있습니다. 플러싱 과정에서 잔여 물도 분석 할 수 있습니다.
아래의 횡단면 플롯은 수조의 흐름 재순환과 상세한 흐름 프로필을 보여줍니다. Collision 모델은 규정된 반발 및 마찰 계수를 기반으로 바운싱을 예측하는 공을 시뮬레이션하는 데 사용되었습니다. 물과 공기 사이의 일시적인 예리한 경계면은 FLOW-3D의 TruVOF 방법을 사용하여 잘 유지됩니다.
레이저 파우더 베드 퓨전 (L-PBF) 첨가제 제조에는 복잡한 물리적 공정이 필요합니다. 특히, 흡수 된 레이저 빔 에너지는 입자를 녹여 강한 유체 흐름이 표면 장력 기울기 (또는 Marangoni 전단 응력)에 의해 주로 발생하는 용융 풀을 형성합니다. 열 전달 및 유체 유동은 분말 베드 내의 분말 입자의 국부적 배열에 의해 영향을 받으며, 이는 위치에 따라 다를 수 있습니다. 매우 일시적인 유체 흐름으로 인해 용융 된 풀 표면 (자유 표면)의 형상이 끊임없이 진화하여 최종 표면 품질에 영향을 미칩니다.
Numerical modeling approach
본 연구에서는 분말 포장 특성, 공정 변수 및 용융 풀 역학이 표면 품질에 미치는 영향을 정량적으로 이해하기 위해 두 가지 모델을 순서대로 사용합니다. 첫 번째 모델은 오픈 소스 이산 요소 방법 (DEM) 코드 인 Yade를 기반으로 개발 된 분말 입자 포장 모델입니다. 입자 적층 정보 (예를 들어, 개별 입자의 위치 및 반경)를 제공한다. 이러한 정보는 FLOW-3D를 기반으로 한 3D 과도 용융 풀 모델 인 두 번째 모델에 입력됩니다. 두 모델의 세부 사항은 문헌 [1]에 나와있다. FLOW-3D를 기반으로 한 용융 풀 모델의 특징을 요약하면 다음과 같습니다.
과도 유체 흐름 시뮬레이션은 그림 1에서와 같이 1000 μm (길이), 270 μm (너비) 및 190 μm (높이) 치수의 3D 계산 영역에서 수행됩니다. 도메인은 50 μm 두께의 층 의 분말 입자를 90㎛ 두께의 기판 위에 놓았다. 도메인의 미리 알림은 처음에는 무효로 채워집니다. 분말 층 형상은 DEM 시뮬레이션의 결과를 사용하여 초기화됩니다. 총 셀 수를 줄이면서 공간 분해능을 극대화하기 위해 메쉬 크기가 기판 / 파우더 레이어 인터페이스를 향하여 기판에서 9 μm에서 3 μm까지 연속적으로 감소하는 편향 메쉬가 사용됩니다. 메쉬 크기는 파우더 레이어와 그 위의 빈 공간에서 3 μm로 일정하게 유지됩니다. 총 셀 수는 143 만입니다.
경계 조건의 경우, 가우시안 분포에 기초한 소정의 열유속이 분말 층의 상부 표면에 부과되어 X 방향을 따라 이동하는 레이저로부터의 열 입력을 나타낸다. 온도에 따른 표면 장력은 FLOW-3D에서 사용 가능한 개선 된 표면 장력 모델을 사용하여 포함됩니다. 다른 열 – 물리적 특성의 경우, FLOW-3D 데이터베이스에서 사용 가능한 IN718 합금에 대한 데이터가 사용됩니다.
Result and discussion
그림 2는 시간 = 55 μs에서 용융 풀 내의 온도 등면 및 속도 벡터의 종단면도 (즉, 레이저 이동 방향에 평행 한 단면)를 도시한다. 용융 된 풀 경계는 1608.15 K에서 등온선으로 표시되며, IN718의 액상 선 온도입니다. 이 그림의 오른쪽에 표시된 것처럼 입자는 부분적으로 용융 풀로 용융됩니다. 용융 된 풀 표면 근처에서, 용융 금속은 레이저 빔 바로 밑의 중심 위치에서 풀의 후단으로 당겨진다. 풀 표면 근처의 용융 금속의 이와 같은 역류는 풀의 후단을 향해 고비를 형성하는 동안 레이저 빔 아래에서 움푹 들어간 표면 프로파일을 생성한다. 다음에서 논의되는 바와 같이, 혹 모양은 볼 결함의 형성을 초래할 수 있습니다.
볼링(balling)은 그림 3에서와 같이 용융 풀이 불연속으로 분리되어 분리 된 섬으로 갈라질 때 발생할 수있는 결함입니다.이 그림에서 알 수 있듯이 레이저 빔 바로 아래의 용융 풀은 안정적이지 않으며 후단이 빠르게 분리됩니다 정면에서 분리 된 섬을 형성합니다. 분리는 그림 3 (c)와 같이 용융 풀의 중간에있는 보이드에서 시작된다. 이 공극은 레이저가 앞으로 계속 이동하면서 팽창하여 결국 용융 된 풀을 두 부분으로 나눕니다. 도 3 (e) 및 (f). 공극의 형성과 그 팽창은 표면 장력 구배 (Marangoni 효과)에 의해 강한 후진 유동에 의해 유발됩니다.
Summary
L-PBF에서의 열 전달 및 유체 흐름의 3D 과도 시뮬레이션은 볼 결함의 형성을 정량적으로 이해하기 위해 수행됩니다. 단순한 선형 트랙 만 시뮬레이션되었지만, 본 모델은 최종 빌드 품질의 중요한 속성 인 용융 풀 표면 프로파일 및 볼링 결함 형성을 연구 할 때 분말 레벨 시뮬레이션의 중요성을 보여줍니다.
뿐만 아니라 위의 금속 분말 소결 시뮬레이션은 금속 3D 프린팅(Metal 3D Printing) 산업의 핵심 기술이며 차후 많은 연구와 응용이 기대되는 분야가 될 것입니다.
Acknowledgements
이 자료는 수상 번호 N00014-14-1-0688하에 미해군 연구소(ONR)가 지원하는 연구과제에 기초로 작성되었습니다.
레이저 파우더 베드 퓨전 (L-PBF) 첨가제 제조에는 복잡한 물리적 공정이 필요합니다. 특히, 흡수 된 레이저 빔 에너지는 입자를 녹여 강한 유체 흐름이 표면 장력 기울기 (또는 Marangoni 전단 응력)에 의해 주로 발생하는 용융 풀을 형성합니다. 열 전달 및 유체 유동은 분말 베드 내의 분말 입자의 국부적 배열에 의해 영향을 받으며, 이는 위치에 따라 다를 수 있습니다. 매우 일시적인 유체 흐름으로 인해 용융 된 풀 표면 (자유 표면)의 형상이 끊임없이 진화하여 최종 표면 품질에 영향을 미칩니다.
Numerical modeling approach
본 연구에서는 분말 포장 특성, 공정 변수 및 용융 풀 역학이 표면 품질에 미치는 영향을 정량적으로 이해하기 위해 두 가지 모델을 순서대로 사용합니다. 첫 번째 모델은 오픈 소스 이산 요소 방법 (DEM) 코드 인 Yade를 기반으로 개발 된 분말 입자 포장 모델입니다. 입자 적층 정보 (예를 들어, 개별 입자의 위치 및 반경)를 제공한다. 이러한 정보는 FLOW-3D를 기반으로 한 3D 과도 용융 풀 모델 인 두 번째 모델에 입력됩니다. 두 모델의 세부 사항은 문헌 [1]에 나와있다. FLOW-3D를 기반으로 한 용융 풀 모델의 특징을 요약하면 다음과 같습니다.
과도 유체 흐름 시뮬레이션은 그림 1에서와 같이 1000 μm (길이), 270 μm (너비) 및 190 μm (높이) 치수의 3D 계산 영역에서 수행됩니다. 도메인은 50 μm 두께의 층 의 분말 입자를 90㎛ 두께의 기판 위에 놓았다. 도메인의 미리 알림은 처음에는 무효로 채워집니다. 분말 층 형상은 DEM 시뮬레이션의 결과를 사용하여 초기화됩니다. 총 셀 수를 줄이면서 공간 분해능을 극대화하기 위해 메쉬 크기가 기판 / 파우더 레이어 인터페이스를 향하여 기판에서 9 μm에서 3 μm까지 연속적으로 감소하는 편향 메쉬가 사용됩니다. 메쉬 크기는 파우더 레이어와 그 위의 빈 공간에서 3 μm로 일정하게 유지됩니다. 총 셀 수는 143 만입니다.
경계 조건의 경우, 가우시안 분포에 기초한 소정의 열유속이 분말 층의 상부 표면에 부과되어 X 방향을 따라 이동하는 레이저로부터의 열 입력을 나타낸다. 온도에 따른 표면 장력은 FLOW-3D에서 사용 가능한 개선 된 표면 장력 모델을 사용하여 포함됩니다. 다른 열 – 물리적 특성의 경우, FLOW-3D 데이터베이스에서 사용 가능한 IN718 합금에 대한 데이터가 사용됩니다.
약 600 마이크로 초 길이의 L-PBF의 과도 시뮬레이션은 약 40 시간의 클럭 시간이 소요되었으며 인텔 ® 제온 ® 프로세서 E5335 및 4GB RAM의 중간 정도급의 워크 스테이션에서 수행되었습니다.
Result and discussion
그림 2는 시간 = 55 μs에서 용융 풀 내의 온도 등면 및 속도 벡터의 종단면도 (즉, 레이저 이동 방향에 평행 한 단면)를 도시한다. 용융 된 풀 경계는 1608.15 K에서 등온선으로 표시되며, IN718의 액상 선 온도입니다. 이 그림의 오른쪽에 표시된 것처럼 입자는 부분적으로 용융 풀로 용융됩니다. 용융 된 풀 표면 근처에서, 용융 금속은 레이저 빔 바로 밑의 중심 위치에서 풀의 후단으로 당겨진다. 풀 표면 근처의 용융 금속의 이와 같은 역류는 풀의 후단을 향해 고비를 형성하는 동안 레이저 빔 아래에서 움푹 들어간 표면 프로파일을 생성한다. 다음에서 논의되는 바와 같이, 혹 모양은 볼 결함의 형성을 초래할 수 있습니다.
볼링(balling)은 그림 3에서와 같이 용융 풀이 불연속으로 분리되어 분리 된 섬으로 갈라질 때 발생할 수있는 결함입니다.이 그림에서 알 수 있듯이 레이저 빔 바로 아래의 용융 풀은 안정적이지 않으며 후단이 빠르게 분리됩니다 정면에서 분리 된 섬을 형성합니다. 분리는 그림 3 (c)와 같이 용융 풀의 중간에있는 보이드에서 시작된다. 이 공극은 레이저가 앞으로 계속 이동하면서 팽창하여 결국 용융 된 풀을 두 부분으로 나눕니다. 도 3 (e) 및 (f). 공극의 형성과 그 팽창은 표면 장력 구배 (Marangoni 효과)에 의해 강한 후진 유동에 의해 유발됩니다.
Summary
L-PBF에서의 열 전달 및 유체 흐름의 3D 과도 시뮬레이션은 볼 결함의 형성을 정량적으로 이해하기 위해 수행됩니다. 단순한 선형 트랙 만 시뮬레이션되었지만, 본 모델은 최종 빌드 품질의 중요한 속성 인 용융 풀 표면 프로파일 및 볼링 결함 형성을 연구 할 때 분말 레벨 시뮬레이션의 중요성을 보여줍니다.
뿐만 아니라 위의 금속 분말 소결 시뮬레이션은 금속 3D 프린팅(Metal 3D Printing) 산업의 핵심 기술이며 차후 많은 연구와 응용이 기대되는 분야가 될 것입니다.
Acknowledgements
이 자료는 수상 번호 N00014-14-1-0688하에 미해군 연구소(ONR)가 지원하는 연구과제에 기초로 작성되었습니다.
FLOW-3D 는 비정형 파뿐만 아니라 일반 선형 및 비선형파 표면을 시뮬레이션 할 수 있는 기능이 있습니다. 선형파는 작은 진폭 및 급경사를 갖는 사인파 표면 프로파일을 가지며, 비선형파는 선형 파보다 더 큰 진폭 (유한 진폭), 더 뾰족한 볏 및 평탄한 골짜기를 갖는다. 비선형 파는 파동 문자와 그 해를 구하기 위해 사용 된 수학적 방법에 따라 스톡 (stookes), 코니이드 (cnoidal) 파 및 독방 파로 분류 될 수 있습니다.
그림 1. 다른 진행파의 프로파일 비교 도 1 및도 2에 도시 된 바와 같이, 스톡스 파는 심층 및 과도수의 주기적인 파이다. Cnoidal 파는 천수(shallow water)와 중간 물에서 긴주기적인 파이고 Stokes 파보다 더 뾰족한 볏과 평평한 골짜기를 가지고 있습니다. 스톡스와 코니 형 파와 달리 독방 파는 천수(shallow water)와 과도 수에서 존재하는 비 주기적 파이다. 그것은 하나의 산마루와 물마루를 가지며 완전히 방해받지 않은 수면 위입니다. 수학적으로 파장이 무한대가 될 때 그것은 코니 형 파의 제한적인 경우입니다. 심층수, 과도 수 및 파도에 대한 천수(shallow water)의 분류는 표 1에서 찾아 볼 수있다.
그림 2. 다양한 파도의 적용 범위 (Le Méhauté, 1976, Sorensen, 2005 및 USACE, 2008). d : 평균 수심; H : 파고; T : 파주기; g : 중력 가속도
선형 파 이론 (Airy, 1845)이 많은 응용 분야에서 사용되었지만 비선형 파 이론은 파동의 진폭이 작지 않은 경우 선형 파 이론보다 정확도가 크게 향상되었습니다. FLOW-3D 에서 3 개의 비선형 파 이론이 5 차 스톡스 파 이론 (Fenton, 1985), 스톡스 및 코니이드 파에 대한 푸리에 급수 방법 (Fenton, 1999), McCowan의 독방 파 이론 (McCowan, 1891, Munk, 1949). 그 중에서 Fenton의 Fourier 시리즈 방법은 선형 물, 스톡 (Stokes) 및 코니형 (cnoidal) 파를 포함하여 심층수, 과도 수 및 천수(shallow water)에서 모든 종류의 주기적 전파 파들에 유효합니다. 또한 다른 웨이브 이론보다 정확도가 높습니다 (USACE, 2008). 따라서 모든 수심에서 선형 및 비선형 주기파의 모든 유형을 생성하는 것이 권장되는 방법입니다. solitary wave의 경우, FLOW-3D 에 사용 된 McCowan의 이론은 Boussinesq (1871)에 의해 개발 된 다른 널리 사용되는 이론보다 더 높은 주문 정확도를 갖는다.
그림 3. PM과 JOHNSWAP 스펙트럼 (USCE, 2006에서 적응)
Classifications
d /
Deep water
1/2 to ∞
Transitional water
1/20 to 1/2
Shallow water
0 to 1/20
불규칙한 물결은 파도의 물성이 일정하지 않은 자연적인 바다의 상태를 나타냅니다. FLOW-3D에서 불규칙한 파동은 다양한 진폭과 주파수 및 임의의 위상 변이를 갖는 많은 선형 성분 파의 중첩으로 표현됩니다. Pierson-Moskowitz (Pierson and Moskowitz, 1964)와 JONSWAP 파력 에너지 스펙트럼 (Hasselmann, et al., 1973)은 FLOW-3D에서 구성 요소 파를 생성하기 위해 구현된다. 다른 웨이브 에너지 스펙트럼은 사용자 정의 데이터 파일을 가져와서 사용할 수 있습니다.
계산 시간을 절약하기 위해 웨이브는 메시 블록 경계에서뿐만 아니라 초기 조건으로 정의 될 수 있습니다.
아래의 애니메이션은 웨이브 초기화가 있거나없는 웨이브의 모든 유형에 대한 예제를 보여줍니다. 선형 및 비선형 수위 시뮬레이션을 위해 FLOW-3D 의 성공적인 적용이 이루어졌습니다. Bhinder 외의 예를 참조하십시오. al (2009), Chen (2012), Hsu et. al (2012) Thanyamanta et. al (2011) 및 Yilmaz et. 자세한 내용은 알 (2011)을 참조하십시오.
References
Airy, G. B., 1845, Tides and Waves, Encyc. Metrop. Article 102.
Bhinder, M. A., Mingham, C. G., Causon, D. M., Rahmati, M. T., Aggidis, G. A. and Chaplin, R.V., 2009, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA), Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii.
Boussinesq, J., 1871, Theorie de L’intumescence Liquide Appelee Onde Solitaire ou de Translation se Propageant dans un Canal Rectangulaire, Comptes Rendus Acad. Sci. Paris, Vol 72, pp. 755-759.
Chen, C. H., 2012, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University.
Fenton, J. D., 1985, A Fifth-Order Stokes Theory for Steady Waves, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 111, No. 2.
Fenton, J. D., 1999, Numerical Methods for Nonlinear Waves, Advances in Coastal and Ocean Engineering, Vol. 5, ed. P.L.-F. Liu, pp. 241-324, World Scientific: Singapore, 1999.
Hasselmann, K., Barnet, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H., 1973, Measurement of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), German Hydrographic Institute, Amburg.
Hsu, T. W., Lai, J. W. and Lan, Y., J., 2012, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China.
Kamphuis, J. M., 2000, Introduction to Coastal Engineering and Management, World Scientific, Singapore.
Le Méhauté, B., 1976, An Introduction to Hydrodynamics and Water Waves, Springer-Verlag.
McCowan, J., 1891, On the solitary wave, Philosophical Magazine, Vol. 32, pp. 45-58.
Munk, W. H., 1949, The Solitary Wave Theory and Its Application to Surf Problems, Annals New York Acad. Sci., Vol 51, pp 376-423.
Pierson W. J. and Moskowitz, L., 1964, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitiagordskii, J. Geophys. Res. 9, pp. 5181-5190.
Thanyamanta, W., Herrington, P. and Molyneux, D., 2011, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands.
USACE (U.S. Army Corps of Engineers), 2006, Coastal Engineering Manual, EM 1110-2-1100, Washington, DC.
Yilmaz, N., Trapp, G. E., Gagan, S. M. and Emmerich, T., R., 2011 CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp. 537-541
작은 검정 선은 속도 벡터입니다. 빨간색은 대부분 모래가 밀집되어있는 모래 밀도를 나타냅니다.
모래가 유리의 상반부에서 초기화되고 하반부로 흐르도록 허용되는 2 차원 모래 시계 형상의 시뮬레이션을 통해 액체와 입상 흐름 사이의 차이를 잘 이해할 수 있습니다.
좌측 스냅 샷은 14 초 후에 계산된 흐름을 보여줍니다. 해당 애니메이션은 전체 흐름의 기록을 포함하여 유리의 아래쪽 절반에 있는 모든 모래로 연결됩니다. 모래시계 유리의 높이는 49.0cm이며, 허리 부분에 직경 1.0cm의 구멍이 있습니다. 모래는 0.045cm의 균일 한 입자 직경을 가지고 있으며 34 °의 안식각을 갖도록 규정되어 있습니다. 총 시뮬레이션 시간은 40 초 였으므로 싱글 프로세서 데스크톱 컴퓨터에서 6.5 분의 CPU 시간이 필요했습니다. 스냅 샷 플롯에서 몇 가지 중요한 관찰을 할 수 있습니다.
가장 중요한 것은 흐르는 작은 모래 (짧은 벡터로 표시됨)가 상단과 하단의 모래 표면에 있다는 것입니다. 표면에서 멀리 떨어진 곳에서는 모래가 완전히 포장되어 흐를 수 없습니다. 둘째로 바닥 부분에있는 모래는 액체가 바닥을 가로 질러 흘러 나오지 않고 흘러 들어감에 따라 흘러 나오지 않습니다. 모래가 위로 쌓여지면서 불안정한 눈사태와 유사한 더미 표면에 흐름이 있습니다. 이 흐름은 바닥에 파일 더미가 느리게 바깥쪽으로 퍼지게합니다. 유실이 끝날 때 하부 섹션의 말뚝 각도는 지정된 안식 각에 가깝습니다.
이 모델에 대한 자세한 내용은 Flow Science Report on Granular Media를 다운로드하십시오.
FLOW-3D CLOUD 는 사용 가능한 소프트웨어 및 하드웨어 리소스를 수천 개의 컴퓨팅 코어로 확장할 수 있는 클라우드 컴퓨팅 서비스입니다. FLOW-3D CLOUD는 Penguin 주문형 컴퓨팅(POD)에 편리하게 설치되며 POD에서 자체 라이선스를 호스팅하거나 설계 및 분석 주기의 피크 시간에 사용량에 따라 비용을 지불할 수 있습니다. 대규모 시뮬레이션, 파라메트릭 연구 또는 실험 계획(DOE)을 실행하도록 설계된 FLOW-3D CLOUD를 사용하면 클러스터 획득 및 유지 관리에 대한 걱정 없이 시뮬레이션 기능을 확장할 수 있습니다. 또한 Flow Science는 기존 고객에게 할인된 가격으로 시뮬레이션 피크 시간에 대한 HPC 서비스를 제공합니다.
FLOW-3D CLOUD를 사용하면 최첨단 컴퓨팅 노드에서 수백 개의 코어에 액세스할 수 있으며 모든 웹 브라우저를 통해 충실도가 높은 CFD 시뮬레이션에 액세스할 수 있는 유연성을 얻을 수 있습니다. 이 플랫폼을 사용함으로써 우리는 문제와 관련된 복잡한 물리학을 지속적으로 더 잘 해결할 수 있었고 프로젝트에서 상당한 시간을 절약할 수 있었습니다. 클라우드 컴퓨팅은 현대 CFD 방식의 판도를 바꾸는 기술이며 Golder는 이 기술을 채택한 선구자 중 하나임을 자랑스럽게 생각합니다.