Optimization of processing parameters for pulsed laser welding of dissimilar metal interconnects
본 논문은 독자의 편의를 위해 기계번역된 내용이어서 자세한 내용은 원문을 참고하시기 바랍니다.
NguyenThi TienaYu-LungLoabM.Mohsin RazaaCheng-YenChencChi-PinChiuc
aNational Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan
bNational Cheng Kung University, Academy of Innovative Semiconductor and Sustainable Manufacturing, Tainan, Taiwan
cJum-bo Co., Ltd, Xinshi District, Tainan, Taiwan
Abstract
워블 전략이 포함된 펄스 레이저 용접(PLW) 방법을 사용하여 알루미늄 및 구리 이종 랩 조인트의 제조를 위한 최적의 가공 매개변수에 대해 실험 및 수치 조사가 수행됩니다. 피크 레이저 출력과 접선 용접 속도의 대표적인 조합 43개를 선택하기 위해 원형 패킹 설계 알고리즘이 먼저 사용됩니다.
선택한 매개변수는 PLW 프로세스의 전산유체역학(CFD) 모델에 제공되어 용융 풀 형상(즉, 인터페이스 폭 및 침투 깊이) 및 구리 농도를 예측합니다. 시뮬레이션 결과는 설계 공간 내에서 PLW 매개변수의 모든 조합에 대한 용융 풀 형상 및 구리 농도를 예측하기 위해 3개의 대리 모델을 교육하는 데 사용됩니다.
마지막으로, 대체 모델을 사용하여 구성된 처리 맵은 용융 영역에 균열이나 기공이 없고 향상된 기계적 및 전기적 특성이 있는 이종 조인트를 생성하는 PLW 매개변수를 결정하기 위해 세 가지 품질 기준에 따라 필터링됩니다.
제안된 최적화 접근법의 타당성은 최적의 용접 매개변수를 사용하여 생성된 실험 샘플의 전단 강도, 금속간 화합물(IMC) 형성 및 전기 접촉 저항을 평가하여 입증됩니다.
결과는 최적의 매개변수가 1209N의 높은 전단 강도와 86µΩ의 낮은 전기 접촉 저항을 생성함을 확인합니다. 또한 용융 영역에는 균열 및 기공과 같은 결함이 없습니다.
An experimental and numerical investigation is performed into the optimal processing parameters for the fabrication of aluminum and copper dissimilar lap joints using a pulsed laser welding (PLW) method with a wobble strategy. A circle packing design algorithm is first employed to select 43 representative combinations of the peak laser power and tangential welding speed. The selected parameters are then supplied to a computational fluidic dynamics (CFD) model of the PLW process to predict the melt pool geometry (i.e., interface width and penetration depth) and copper concentration. The simulation results are used to train three surrogate models to predict the melt pool geometry and copper concentration for any combination of the PLW parameters within the design space. Finally, the processing maps constructed using the surrogate models are filtered in accordance with three quality criteria to determine the PLW parameters that produce dissimilar joints with no cracks or pores in the fusion zone and enhanced mechanical and electrical properties. The validity of the proposed optimization approach is demonstrated by evaluating the shear strength, intermetallic compound (IMC) formation, and electrical contact resistance of experimental samples produced using the optimal welding parameters. The results confirm that the optimal parameters yield a high shear strength of 1209 N and a low electrical contact resistance of 86 µΩ. Moreover, the fusion zone is free of defects, such as cracks and pores.




References
G. Santos
Road transport and CO2 emissions: What are the challenges?
Transport Policy, 59 (2017), pp. 71-74
ArticleDownload PDFView Record in ScopusGoogle Scholar[2]
A. Das, D. Li, D. Williams, D. Greenwood
Joining technologies for automotive battery systems manufacturing
World Electric Veh. J., 9 (2) (2018), p. 22 View PDF
M. Zwicker, M. Moghadam, W. Zhang, C. Nielsen
Automotive battery pack manufacturing–a review of battery to tab joining
J. Adv. Joining Process., 1 (2020), Article 100017
ArticleDownload PDFView Record in ScopusGoogle Scholar[4]
T. Mai, A. Spowage
Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium
Mater. Sci. Eng. A, 374 (1–2) (2004), pp. 224-233
ArticleDownload PDFView Record in ScopusGoogle Scholar[5]
S.S. Lee, T.H. Kim, S.J. Hu, W.W. Cai, J. Li, J.A. Abell
Characterization of joint quality in ultrasonic welding of battery tabs
International Manufacturing Science and Engineering Conference, vol. 54990, American Society of Mechanical Engineers (2012), pp. 249-261
Y. Zhou, P. Gorman, W. Tan, K. Ely
Weldability of thin sheet metals during small-scale resistance spot welding using an alternating-current power supply
J. Electron. Mater., 29 (9) (2000), pp. 1090-1099 View PDF
CrossRefView Record in ScopusGoogle Scholar[7]
S. Katayama
Handbook of laser welding technologies
Elsevier (2013)
A. Sadeghian, N. Iqbal
A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing
Opt. Laser Technol., 146 (2022), Article 107595
ArticleDownload PDFView Record in ScopusGoogle Scholar[9]
M.J. Brand, P.A. Schmidt, M.F. Zaeh, A. Jossen
Welding techniques for battery cells and resulting electrical contact resistances
J. Storage Mater., 1 (2015), pp. 7-14
ArticleDownload PDFView Record in ScopusGoogle Scholar[10]
M. Jarwitz, F. Fetzer, R. Weber, T. Graf
Weld seam geometry and electrical resistance of laser-welded, aluminum-copper dissimilar joints produced with spatial beam oscillation
Metals, 8 (7) (2018), p. 510 View PDF
CrossRefView Record in ScopusGoogle Scholar[11]S. Smith, J. Blackburn, M. Gittos, P. de Bono, and P. Hilton, “Welding of dissimilar metallic materials using a scanned laser beam,” in International Congress on Applications of Lasers & Electro-Optics, 2013, vol. 2013, no. 1: Laser Institute of America, pp. 493-502.
P. Schmitz, J.B. Habedank, M.F. Zaeh
Spike laser welding for the electrical connection of cylindrical lithium-ion batteries
J. Laser Appl., 30 (1) (2018), Article 012004 View PDF
CrossRefView Record in ScopusGoogle Scholar[13]
P. Kah, C. Vimalraj, J. Martikainen, R. Suoranta
Factors influencing Al-Cu weld properties by intermetallic compound formation
Int. J. Mech. Mater. Eng., 10 (1) (2015), pp. 1-13
Z. Lei, X. Zhang, J. Liu, P. Li
Interfacial microstructure and reaction mechanism with various weld fillers on laser welding-brazing of Al/Cu lap joint
J. Manuf. Process., 67 (2021), pp. 226-240
ArticleDownload PDFView Record in ScopusGoogle Scholar[15]
T. Solchenbach, P. Plapper
Mechanical characteristics of laser braze-welded aluminium–copper connections
Opt. Laser Technol., 54 (2013), pp. 249-256
ArticleDownload PDFView Record in ScopusGoogle Scholar[16]
T. Solchenbach, P. Plapper, W. Cai
Electrical performance of laser braze-welded aluminum–copper interconnects
J. Manuf. Process., 16 (2) (2014), pp. 183-189
ArticleDownload PDFView Record in ScopusGoogle Scholar[17]
S.J. Lee, H. Nakamura, Y. Kawahito, S. Katayama
Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets
Sci. Technol. Weld. Join., 19 (2) (2014), pp. 111-118
Z. Xue, S. Hu, D. Zuo, W. Cai, D. Lee, K.-A. Elijah Jr
Molten pool characterization of laser lap welded copper and aluminum
J. Phys. D Appl. Phys., 46 (49) (2013), Article 495501 View PDF
CrossRefView Record in ScopusGoogle Scholar[19]
S. Zhao, G. Yu, X. He, Y. Zhang, W. Ning
Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo
J. Mater. Process. Technol., 211 (3) (2011), pp. 530-537
ArticleDownload PDFView Record in ScopusGoogle Scholar[20]
W. Huang, H. Wang, T. Rinker, W. Tan
Investigation of metal mixing in laser keyhole welding of dissimilar metals
Mater. Des., 195 (2020), Article 109056
ArticleDownload PDFView Record in ScopusGoogle Scholar[21]
E. Kaiser, G. Ambrosy, E. Papastathopoulos
Welding strategies for joining copper and aluminum by fast oscillating, high quality laser beam
High-Power Laser Materials Processing: Applications, Diagnostics, and Systems IX, vol. 11273, International Society for Optics and Photonics (2020), p. 112730C
View Record in ScopusGoogle Scholar[22]
V. Dimatteo, A. Ascari, A. Fortunato
Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization
J. Manuf. Process., 44 (2019), pp. 158-165
ArticleDownload PDFView Record in ScopusGoogle Scholar[23]
V. Dimatteo, A. Ascari, E. Liverani, A. Fortunato
Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing
Opt. Laser Technol., 145 (2022), Article 107495
ArticleDownload PDFView Record in ScopusGoogle Scholar[24]
D. Wu, X. Hua, F. Li, L. Huang
Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy
Int. J. Heat Mass Transf., 113 (2017), pp. 730-740
ArticleDownload PDFView Record in ScopusGoogle Scholar[25]
R. Ducharme, K. Williams, P. Kapadia, J. Dowden, B. Steen, M. Glowacki
The laser welding of thin metal sheets: an integrated keyhole and weld pool model with supporting experiments
J. Phys. D Appl. Phys., 27 (8) (1994), p. 1619 View PDF
CrossRefView Record in ScopusGoogle Scholar[26]
C.W. Hirt, B.D. Nichols
Volume of fluid (VOF) method for the dynamics of free boundaries
J. Comput. Phys., 39 (1) (1981), pp. 201-225
ArticleDownload PDFGoogle Scholar[27]
W. Piekarska, M. Kubiak
Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process
Int. J. Heat Mass Transf., 54 (23–24) (2011), pp. 4966-4974
ArticleDownload PDFView Record in ScopusGoogle Scholar[28]J. Zhou, H.-L. Tsai, and P.-C. Wang, “Transport phenomena and keyhole dynamics during pulsed laser welding,” 2006.
D. Harrison, D. Yan, S. Blairs
The surface tension of liquid copper
J. Chem. Thermodyn., 9 (12) (1977), pp. 1111-1119
ArticleDownload PDFView Record in ScopusGoogle Scholar[30]
M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher
Thermophysical properties of liquid aluminum
Metall. Mater. Trans. A, 48 (6) (2017), pp. 3036-3045 View PDF
This article is free to access.
CrossRefView Record in ScopusGoogle Scholar[31]
H.-C. Tran, Y.-L. Lo
Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process
Int. J. Adv. Manuf. Technol., 105 (10) (2019), pp. 4443-4460 View PDF
CrossRefView Record in ScopusGoogle Scholar[32]A. Ascari, A. Fortunato, E. Liverani, and A. Lutey, “Application of different pulsed laser sources to dissimilar welding of Cu and Al alloys,” in Proceedings of Lasers in Manufacturing Conference (LIM), 2019.
A. Fortunato, A. Ascari
Laser welding of thin copper and aluminum sheets: feasibility and challenges in continuous-wave welding of dissimilar metals
Lasers in Manufacturing and Materials Processing, 6 (2) (2019), pp. 136-157 View PDF
CrossRefView Record in ScopusGoogle Scholar[34]
A. Boucherit, M.-N. Avettand-Fènoël, R. Taillard
Effect of a Zn interlayer on dissimilar FSSW of Al and Cu
Mater. Des., 124 (2017), pp. 87-99
ArticleDownload PDFView Record in ScopusGoogle Scholar[35]
N. Kumar, I. Masters, A. Das
In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack
J. Manuf. Process., 70 (2021), pp. 78-96
ArticleDownload PDFView Record in ScopusGoogle Scholar[36]
M. Abbasi, A.K. Taheri, M. Salehi
Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process
J. Alloy. Compd., 319 (1–2) (2001), pp. 233-241
ArticleDownload PDFGoogle Scholar[37]
D. Zuo, S. Hu, J. Shen, Z. Xue
Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints
Mater. Des., 58 (2014), pp. 357-362
ArticleDownload PDFView Record in ScopusGoogle Scholar[38]
S. Yan, Y. Shi
Influence of Ni interlayer on microstructure and mechanical properties of laser welded joint of Al/Cu bimetal
J. Manuf. Process., 59 (2020), pp. 343-354
ArticleDownload PDFView Record in ScopusGoogle Scholar[39]
S. Yan, Y. Shi
Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints
J. Manuf. Process., 45 (2019), pp. 312-321