Figure 1: Mold drawings

3D Flow and Temperature Analysis of Filling a Plutonium Mold

플루토늄 주형 충전의 3D 유동 및 온도 분석

Authors: Orenstein, Nicholas P. [1]

Publication Date:2013-07-24
Research Org.: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.: DOE/LANL
OSTI Identifier: 1088904
Report Number(s): LA-UR-13-25537
DOE Contract Number: AC52-06NA25396
Resource Type: Technical Report
Country of Publication: United States
Language: English
Subject: Engineering(42); Materials Science(36); Radiation Chemistry, Radiochemistry, & Nuclear Chemistry(38)


The plutonium foundry at Los Alamos National Laboratory casts products for various special nuclear applications. However, plutonium’s radioactivity, material properties, and security constraints complicate the ability to perform experimental analysis of mold behavior. The Manufacturing Engineering and Technologies (MET-2) group previously developed a graphite mold to vacuum cast small plutonium disks to be used by the Department of Homeland Security as point sources for radiation sensor testing.

A two-stage pouring basin consisting of a funnel and an angled cavity directs the liquid into a vertical runner. A stack of ten disk castings connect to the runner by horizontal gates. Volumetric flow rates were implemented to limit overflow into the funnel and minimize foundry returns. Models using Flow-3D computational fluid dynamics software are employed here to determine liquid Pu flow paths, optimal pour regimes, temperature changes, and pressure variations.


Hardcopy drawings provided necessary information to create 3D .stl models for import into Flow-3D (Figs. 1 and 2). The mesh was refined over several iterations to isolate the disk cavities, runner, angled cavity, funnel, and input pour. The final flow and mold-filling simulation utilizes a fine mesh with ~5.5 million total cells. For the temperature study, the mesh contained 1/8 as many cells to reduce computational time and set temperatures to 850 °C for the molten plutonium and 500 °C for the solid graphite mold components (Fig. 3).

Flow-3D solves mass continuity and Navier-Stokes momentum equations over the structured rectangular grid model using finite difference and finite volume numerical algorithms. The solver includes terms in the momentum equation for body and viscous accelerations and uses convective heat transfer.

Simulation settings enabled Flow-3D physics calculations for gravity at 980.665 cm/s 2 in the negative Z direction (top of mold to bottom); viscous, turbulent, incompressible flow using dynamically-computed Renormalized Group Model turbulence calculations and no-slip/partial slip wall shear, and; first order, full energy equation heat transfer.

Mesh boundaries were all set to symmetric boundary conditions except for the Zmin boundary set to outflow and the Zmax boundary set to a volume flow. Vacuum casting conditions and the high reactivity of remaining air molecules with Pu validate the assumption of an initially fluidless void.


The flow follows a unique three-dimensional path. The mold fills upwards with two to three disks receiving fluid in a staggered sequence. Figures 5-9 show how the fluid fills the cavity, and Figure 7 includes the color scale for pressure levels in these four figures. The narrow gate causes a high pressure region which forces the fluid to flow down the cavity centerline.

It proceeds to splash against the far wall and then wrap around the circumference back to the gate (Figs. 5 and 6). Flow in the angled region of the pouring basin cascades over the bottom ledge and attaches to the far wall of the runner, as seen in Figure 7.

This channeling becomes less pronounced as fluid volume levels increase. Finally, two similar but non-uniform depressed regions form about the centerline. These regions fill from their perimeter and bottom until completion (Fig. 8). Such a pattern is counter, for example, to a steady scenario in which a circle of molten Pu encompassing the entire bottom surface rises as a growing cylinder.

Cavity pressure becomes uniform when the cavity is full. Pressure levels build in the rising well section of the runner, where impurities were found to settle in actual casting. Early test simulations optimized the flow as three pours so that the fluid would never overflow to the funnel, the cavities would all fill completely, and small amounts of fluid would remain as foundry returns in the angled cavity.

These rates and durations were translated to the single 2.7s pour at 100 cm 3 per second used here. Figure 9 shows anomalous pressure fluctuations which occurred as the cavities became completely filled. Multiple simulations exhibited a rapid change in pressure from positive to negative and back within the newly-full disk and surrounding, already-full disks.

The time required to completely fill each cavity is plotted in Figure 10. Results show negligible temperature change within the molten Pu during mold filling and, as seen in Figure 11, at fill completion.

Figure 1: Mold drawings
Figure 1: Mold drawings
Figure 2: Mold Assembly
Figure 2: Mold Assembly
Figure 4: Actual mold and cast Pu
Figure 4: Actual mold and cast Pu
Figure 5: Bottom cavity filling
from runner
Figure 5: Bottom cavity filling from runner
Figure 6: Pouring and filling
Figure 6: Pouring and filling
Figure 8: Edge detection of cavity fill geometry. Two similar depressed areas form
about the centerline. Top cavity shown; same pressure scale as other figures
Figure 8: Edge detection of cavity fill geometry. Two similar depressed areas form about the centerline. Top cavity shown; same pressure scale as other figures
Figure 10: Cavity fill times,from first fluid contact with pouring basin, Figure 11:Fluid temperature remains essentially constant
Figure 10: Cavity fill times,from first fluid contact with pouring basin, Figure 11:Fluid temperature remains essentially constant


Non-uniform cavity filling could cause crystal microstructure irregularities during solidification. However, the small temperature changes seen – due to large differences in specific heat between Pu and graphite – over a relatively short time make such problems unlikely in this case.

In the actual casting, cooling required approximately ten minutes. This large difference in time scales further reduces the chance for temperature effects in such a superheated scenario. Pouring basin emptying decreases pressure at the gate which extends fill time of the top two cavities.

The bottom cavity takes longer to fill because fluid must first enter the runner and fill the well. Fill times continue linearly until the top two cavities. The anomalous pressure fluctuations may be due to physical attempts by the system to reach equilibrium, but they are more likely due to numerical errors in the Flow3D solver.

Unsuccessful tests were performed to remove them by halving fluid viscosity. The fine mesh reduced, but did not eliminate, the extent of the fluctuations. Future work is planned to study induction and heat transfer in the full Pu furnace system, including quantifying temporal lag of the cavity void temperature to the mold wall temperature during pre-heat and comparing heat flux levels between furnace components during cool-down.

Thanks to Doug Kautz for the opportunity to work with MET-2 and for assigning an interesting unclassified project. Additional thanks to Mike Bange for CFD guidance, insight of the project’s history, and draft review.

FLOW-3D 용어 사전 테이블

FLOW-3D Glossary | FLOW-3D 용어 사전

FLOW-3D 용어 사전 / 용어 설명

FLOW-3D 용어 사전 테이블
FLOW-3D 용어 사전 테이블

FLOW-3D 용어 사전 / 용어 설명

Drift Flux

드리프트 모델은 밀도가 서로 다른 두 혼합 유체 구성 요소의 상대적 흐름을 설명합니다. 구성 요소는 상이 다를 수도 있고, 상이 같지만(불가침) 유체가 다를 수도 있습니다. 분산된 위상 입자 크기가 클 경우 드리프트 모델의 적용성에 대한 제한이 존재할 수 있습니다. 이러한 제한은 일반적으로 메쉬 셀 크기의 10% 미만으로 분산된 위상 입자 크기를 유지함으로써 방지할 수 있습니다.


얇은 형상 조각을 나타내는데 사용되는 2 차원 개체입니다. 이들은 전처리기에 의해 셀면으로 이동되고 유체의 흐름을 부분적으로 또는 완전히 차단하는 역할을 합니다. 배플은 지정된 열 전달 계수를 가질 수 있으며 배플을 통과하는 양(플럭스 표면)을 측정하는 데 사용할 수 있습니다.

Two-dimensional objects that are used to represent thin pieces of geometry. They are moved by the preprocessor to cell faces and act to partially, or completely block the flow of fluid. Baffles can have heat transfer coefficients specified and can be used to measure quantities that pass through them (a flux surface).

경계 조건

도메인의 범위에서 솔루션을 정의합니다. 경계 위치에서 흐름의 실제 상태를 나타내는 경계 조건을 선택하는 것이 중요합니다.

Defines the solution at the extents of the domain. It is important to choose boundary conditions that represent the true condition of the flow at the boundary location.


CFD (Computational Fluid Dynamics)는 수치 솔루션을 통해 컴퓨터의 유체 흐름을 시뮬레이션 하는 유체 역학의 한 분야입니다.

Computational Fluid Dynamics (CFD), the branch of fluid mechanics dedicated to simulating the flow of fluid on a computer via numerical solutions.


Complements를 정의합니다. 예를 들어, 솔리드 구의 complements는 솔리드 재료로 둘러싸인 구형 구멍입니다.

The inverse of a shape defines the complement. For example, the complement of a solid sphere is a spherical hole surrounded by solid material.


클라이언트 컴퓨터는 자신이 FLOW-3D를 실행하고 있지만, FLOW-3D 소프트웨어 라이선스는 다른 컴퓨터 (서버 컴퓨터)에서 획득하는 컴퓨터를 의미합니다.

A client machine is a computer that runs FLOW-3D  but acquires the software license from a different machine (the server machine)


Components는 공간의 개체를 정의하며 하위 구성 요소로 구성됩니다. 구성 요소는 열 전도율, 비열 및 표면 거칠기와 같은 재료 특성을 가질 수 있습니다.

Components define objects in space and are comprised of subcomponents. A component can have material properties such as thermal conductivity, specific heat and surface roughness.

Custom result

시뮬레이션 중 또는 완료 후 사용자가 생성한 데이터를 그래픽으로 표시합니다. 생성하려면 사용자가 flsgrf결과 파일을 연 다음 플로팅 매개 변수(예 : 플로팅 할 도메인 부분, 플로팅 할 수량 등)를 선택해야 합니다.

Graphical displays of data generated by the user during the simulation or after it has completed. To generate, the user must open an flsgrf results file and then select the plotting parameter (e.g., portion of domain to plot, quantity to plot, etc.).


지배 방정식을 풀 영역입니다. 이것은 메쉬의 범위에 의해 정의됩니다.

The region in which the governing equations are to be solved. This is defined by the extents of the mesh.


전 처리기 및 솔버의 진행 상황과 오류 및 경고에 대한 정보가 포함된 파일 세트입니다.

A suite of files that contain information on the progress of the preprocessor and solver as well as errors and warnings.


압력/연속 반복이 어느 지점에서 수렴되는지를 결정하는데 사용된 수렴 기준입니다. 기본 숫자 설정을 사용하면 이 값은 FLOW-3D에 의해 자동으로 계산되며 시간 단계가 증가함에 따라 작아집니다.

The convergence criterion that was used to determine at what point the pressure/continuity iterations have converged. With the default numerical settings, this value is automatically computed by FLOW-3D  and becomes smaller as the time step increases.

Existing result

prpplt.* 또는 flsplt.* 파일은 전처리 종료 솔버 실행 종료시 또는 자동으로 생성되는 플롯 파일입니다.

A plot file that is automatically created, either at the end of preprocessing or the end of the solver run- prpplt.* or flsplt.*.


FLOW-3D 프로그램 파일이 있는 디렉토리를 정의하는 환경 변수.

Environment variable that defines the directory where the FLOW-3D  program files are located.

Floating license

FLOW-3D는 서버 시스템에 라이센스를 액세스하는 각 클라이언트 컴퓨터와 컴퓨터 네트워크에서 실행합니다. 허용하는 라이센스 최대 동시 시뮬레이션 수는 구매한 솔버 토큰 수에 의해 제한됩니다.

A license that allows FLOW-3D  to be run on a network of computers with each client machine accessing the license on a server machine. The maximum number of concurrent simulations is limited by the number of solver tokens purchased.

Flsgrf file

솔버가 생성한 결과 파일. 이 파일은 사전에 정의된 시간 간격으로 생성된 정보를 포함하며 그래픽 디스플레이를 생성하는 데 사용됩니다. 사용자 정의 플로팅 중에 포스트 프로세서에서 사용합니다.

Results file produced by the solver. This file contains information produced at predefined time intervals and is used to produce graphical displays. Used by the postprocessor during custom plotting.

Flsplt file

솔버가 자동으로 생성한 플롯 파일입니다. 이 파일에는 시뮬레이션의 히스토리 데이터, 메시 등에 대한 기본 정보와의 $GRAFIC 이름 목록에 사전 정의된 그래픽 요청이 포함되어 prepin.* 파일 안에 있습니다.

Plot file produced automatically by the solver. This file contains basic information on history data, mesh, etc. from the simulation as well as any pre-defined graphics requests in the $GRAFIC namelist in prepin.*.

Fluid #1 surface area

선택한 길이 단위의 자유 표면 영역을 제곱 됩니다. 인터페이스가 예리한 문제에만 해당됩니다.

The free-surface area in the chosen length units squared. This is only relevant for problems with a sharp interface.

Fluid thermal energy

영역에 존재하는 모든 유체에 포함된 총 열 에너지 (에너지 전송이 켜져 있는 시뮬레이션에만 해당).

The total thermal energy contained by all the fluid present in the domain (relevant only for simulations with energy transport turned on).

Free surface

유체와 유체 사이의 인터페이스. FLOW-3D에서 이 인터페이스는 전단이 없는 것으로 가정되며, 이는 빈 공간에 있는 가스가 유체에 무시할 수 있는 트랙션을 발휘함을 의미한다.

The interface between fluid and void. In FLOW-3D , this interface is assumed to be shear-free, meaning that any gas in the void space exerted negligible traction on the fluid.


” Graphical User Interface”.  GUI는 사용자가 FLOW-3D를 제어할 수 있는 그래픽 패널, 대화 상자 및 창을 제공합니다.

“Graphical User Interface”. The GUI presents the graphical panels, dialog boxes and windows that allow the user to control FLOW-3D .

Iteration count

각 시간 단계에서 필요한 압력/연속 반복 횟수입니다. 압력/연속성 반복은 유체 볼륨이 유지되도록 하고 유체 전체에서 올바른 압력을 계산하는 데 필요합니다.

The number of pressure/continuity iterations required at each time step. The pressure/continuity iterations are necessary to ensure that the fluid volume is maintained and to compute the correct pressure throughout the fluid.

License file

사용자가 FLOW-3D 를 실행할 수 있도록 암호화된 정보가 포함된 Flow Science에서 제공하는 전자 파일 입니다.

Electronic file provided by Flow Science that contains encrypted information enabling the user to run FLOW-3D .

License server

플로팅 라이센스 시스템의 작동을 활성화하기 위해 FLEXlm 라이센스 소프트웨어가 설치된 시스템. FLOW-3D는 License Server에 설치할 필요가 없습니다.

Computer on which the FLEXlm licensing software is installed to enable the operation of a floating license system. FLOW-3D  does not need to be installed on the license server.


FLOW-3D 실행을 제어하는 ​​FLEXlm 소프트웨어.

FLEXlm software that controls the running of FLOW-3D .

Max. residual

압력/연속성 반복의 최종 반복에서 연속성 방정식의 실제 발산. 이 값은 메시지가 나타나지 않는 한 일반적으로 epsi보다 작습니다 .

The actual divergence of the continuity equation on the final iteration of the pressure/continuity iterations. This value is usually smaller than epsi unless the message, pressure iteration did not converge in xxxx iterations appears.

Mean kinetic energy

모든 계산 셀의 운동 에너지의 합을 도메인에 존재하는 총 유체 질량으로 나눈 값입니다. 이 양이 시간이 지남에 따라 변하지 않으면 정상 상태에 도달했음을 나타내는 좋은 지표입니다.

The sum of kinetic energy of all the computational cells, divided by the total mass of fluid present in the domain. When this quantity ceases to change over time, it is a good indicator that steady-state has been reached.

Node-locked license

특정 컴퓨터에 고정된 라이센스. 노드 잠금 라이센스는 네트워크를 통해 액세스 할 수 없으므로 일반적으로 모든 작업을 한 컴퓨터에서 수행해야하는 경우에만 사용됩니다.

A license that is locked to a particular computer. A node-locked license cannot be accessed across a network, and so is typically only used when all work is to be done on one computer.

Non-inertial reference frame

가속화되는 참조 프레임. 비 관성 참조 프레임은 움직이는 컨테이너를 모방하는 데 사용할 수 있습니다.

A frame of reference that is accelerating. A non-inertial reference frame can be used to mimic a moving container.


1D 및 2D 플롯을 생성하는 FLOW-3D에 포함된 그래픽 디스플레이 프로그램.

Graphics display program included with FLOW-3D  that produces 1D and 2D plots.


FLOW-3D 내의 Postprocessor 프로그램은 FLOW-3D 또는 타사 시각화 프로그램에서 읽을 수 있는 데이터 파일을 생성하거나 타사 소프트웨어 프로그램에서 읽을 텍스트 데이터를 생성하는 솔버 출력 데이터를 처리하는 프로그램입니다.

The program within FLOW-3D  that processes the solver output data to produce data files that can be read by FLOW-3D ’s or third-party’s visualization programs, or produce text data to be read by third party software programs.

Prepin file

FLOW-3D 시뮬레이션을 실행하는데 필요한 모든 정보가 포함된 텍스트 파일 입니다. GUI를 사용하거나 텍스트 편집기를 사용하여 수동으로 작성할 수 있습니다.

Text file that contains all of the information necessary to create a FLOW-3D  simulation. It can be created using the GUI or manually with a text editor.


솔버의 실행을 준비하기 위해 입력 파일을 기반으로 메쉬 및 초기 조건을 생성하는 FLOW-3D 내의 프로그램 입니다.

The program within FLOW-3D  that generates the mesh and initial conditions based on the input file in preparation for the running of the solver.

Prpgrf file

전처리기에 의해 생성된 결과 파일로 전 처리기의 정보를 포함하며 후 처리기에서 사용자 플롯을 생성하는 데 사용할 수 있습니다. 이 파일은 미리보기 버튼을 선택하거나 시뮬레이션에서 사전 프로세서(runpre 사용)를 실행하는 경우에만 실행됩니다.

Results file produced by the preprocessor. Contains information from the preprocessor and can be used by the postprocessor to create custom plots. This file is produced only when the Preview button is selected or if only the pre-processor is run on the simulation (using runpre).

Prpplt file

전처리기에 의해 자동으로 생성된 파일을 플롯 합니다. 메시, 구성 요소, 초기 조건 및 재료 특성에 대한 정보가 포함되어 있습니다.

Plot file produced automatically by the preprocessor. Contains information on meshing, components, initial conditions and material properties.

Restart simulation

이전 시뮬레이션에서 계속되는 시뮬레이션입니다. 이전 시뮬레이션의 결과는 다시 시작 시뮬레이션을 위한 초기 조건 및 (선택적으로) 경계 조건을 생성하는 데 사용됩니다.

A simulation which continues from a previous simulation. The results from the previous simulation are used to generate the initial conditions and (optionally) boundary conditions for the restart simulation.


라이센스 서버를 호스팅하는 시스템

The machine that hosts the license server.

Stability limit

각 시간 단계에서 사용할 수 있는 최대 시간 단계. 더 큰 시간 단계는 수치적 불안정성과 비물리적 결과로 이어질 것이다.

The maximum time step that can be used during each time step. A larger time step will lead to numerical instabilities and nonphysical results.

STL (Stereolithography) File

.STL 파일 형식은 일련의 삼각형이 있는 솔리드 모델의 표면에 근접한 표준 데이터 전송 형식이다. 삼각형은 가장자리에서 결합해야 하며 일관된 방향을 가리키는 정규식이 있어야 한다.

The .STL file format is a standard data transmission format that approximates the surfaces of a solid model with a series of triangles. The triangles must join at the edges and must have normals that point in a consistent direction.

Solid fraction

응고된 영역의 유체 분율 (응고 모델이 켜져 있는 시뮬레이션에만 해당).

The fraction of fluid in the domain that has become solidified (relevant only for simulations where the solidification model has been turned on).


입력 파일에 정의된 흐름 문제를 시뮬레이션하는 방정식을 계산하는 FLOW-3D 내의 솔버 프로그램 입니다.

The program within FLOW-3D  that solves the system of equations that simulate the flow problem defined in the input file.

STL Viewer

스테레오리소그래피(STL) 파일을 표시하는 특수 유틸리티입니다. STL 파일은 CAD 소프트웨어로 제작되며 3 차원 객체의 표면을 형성하는 많은 삼각형으로 구성됩니다. 의 STL 뷰어 FLOW-3D는 메인 메뉴에서 유틸리티/STL 뷰어를 클릭하여 GUI를 통해 액세스 할 수 있습니다. 그러면 뷰어가 별도의 창에서 열립니다. 메쉬 및 형상 탭에서 STL 파일을 열고 볼 수도 있습니다.

A special utility that displays stereolithography (STL) files. STL files are produced by CAD software and are composed of many triangles that form the surface of a three-dimensional object. The STL Viewer in FLOW-3D  is accessible via the GUI by clicking Utilities/STL Viewer in the main menu. This causes the viewer to open in a separate window. STL files can also be opened and viewed in the Meshing and Geometry tab.


하위 구성 요소는 구성 요소라고하는 더 큰 모양을 형성하기 위해 결합할 수 있는 기하학적 모양입니다. 하위 구성 요소는 재료를 추가하거나 (고체로) 다른 하위 구성 요소에서 재료를 제거하거나 (구멍으로) 또는 모양 외부에 재료를 추가하도록 정의할 수 있습니다.

Subcomponents are geometric shapes that can be combined to form larger shapes, called components. A subcomponent can be defined to add material (as solids), remove material from other subcomponents (as holes), or add material outside of the shape (as a complement).

Time-step size

계산에 사용된 실제 시간 단계. 이 값은 안정성 한계와 같거나 작을 수 있습니다.

The actual time step used in the computation. This value can be equal to or less than the stability limit.


Units are based upon the values set for the physical properties. Items such as mesh block extents and cell lengths automatically conform to the units used for setting these physical properties.

단위는 물리적 특성에 설정된 값을 기반으로 합니다. 메쉬 블록 범위 및 셀 길이와 같은 항목은 이러한 물리적 속성을 설정하는 데 사용되는 단위를 자동으로 따릅니다.

Volume error (%)

주어진 시간에 도메인에 존재하는 총 유체의 백분율로 설명되지 않은 유체 부피의 백분율을 의미합니다. 따라서 단순히 총 부피가 작기 때문에 유체가 시스템 밖으로 배출되는 시뮬레이션에서 큰 비율의 부피 오류가 발생할 수 있습니다.

The percentage of fluid volume not accounted for as a percentage of the total fluid present in the domain at a given time. Therefore, a large percentage volume error can occur for simulations where fluid is draining out of the system simply because the total volume present is small.

Volume of fluid #1

선택한 길이 단위로 입방체에 존재하는 유체 #1의 총 부피입니다. 2 유체 문제의 경우, 유체 #2의 부피는 항상 도메인 부피에서 유체 #1의 부피를 뺀 값입니다.

The total volume of fluid #1 present in the system, in the chosen length units cubed. For two-fluid problems, the volume of fluid #2 is always the domain volume minus the volume of fluid #1.

Wall shear stress

FLOW-3D 옵션은 벽면 및 객체 인터페이스에서 전단 응력 계산을 켜거나 끌 수 있도록 해줍니다. “no-slip” 인터페이스의 효과를 모델링 하려면 벽면 전단 응력을 켜야 합니다.

The FLOW-3D  option that allows the user to turn on or off the computation of shear stress at wall and object interfaces. Wall shear stress must be turned on to model the effect of “no-slip” interfaces.


작업 공간은 시뮬레이션 프로젝트를 위한 파일 컨테이너입니다. 작업 공간은 사용자가 FLOW-3D 뿐만 아니라 하드 드라이브에서도 작업을 구성하는 데 도움이 됩니다.

A workspace is a file container for simulation projects. Workspaces help the user organize their work, not only within FLOW-3D , but also on their hard drive.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

FLOW-3D 기술자료로 이동

[FLOW-3D 물리모델] Viscosity and Turbulence / 점도와 난류

Viscosity and Turbulence


Wall Effects: Slip, Shear, and Component Roughness

유체가 고체 주위에서 움직일 때 유동은 유동속도, 난류, 그리고 경계면의 조도에 따른 저항을 만난다. 이런 경계 유동의 효과는 추가의 전단응력, 항력 그리고 (퇴적기반인 경우)부식을 초래한다. 이런 벽(또는 경계)효과를 모델링하는 것은 표면의 미끄러짐의 조건, 표면조도 그리고 벽 효과 속도분포를 적절히 규명할 수 있는 격자크기에 대한 주의를 요한다. 이런 변수 각각을 모델링하는 접근법을 밑에서 기술한다.

Wall Slip 

Slip 은 유동경계에서 상대 유동속도의 존재를 기술한다. 일반적으로 표면조건은 no-slip, partial-slip 그리고 free-slip 으로 기술된다.

Free-slip 표면은 표면에 수직한 속도 분포에 변화가 없는 표면이며 가끔 밀도의 자리 수가 차이가 나는 두 유체(물과 공기같이)간의 경계면을 기술하는데 이용된다. Partial-slip 경계는 경계에서의 유체속도가 부분적으로 감소되는 것을 기술하며, 예를 들면, 파이프 내 유화 처리된 파이프 내의 기름유동을 기술하는데 이용된다. 단연코 가장 흔한 경계조건 형태는 no-slip boundaries 경계이며 거의 모든 유체/고체 경계를 기술한다.

형상요소와 격자 벽에서의 점성경계조건은 벽 전단응력(상세내용은 이론 매뉴얼의 Wall-Shear Stress 참조)에 선형으로 비례하는 slip 속도를 포함한다. 비례계수는 마찰계수이며 지정되지 않은 마찰계수나 벽 형태의 영역 경계를 가지는 고체요소에 전반적으로 적용된다. 이 전반적 계수는 Model Setup → Physics tab → Viscosity and Turbulence dialog → Wall Shear Boundary Conditions → Friction Coefficient 에서 지정될 수 있다. 전반적 마찰계수는 모든 벽 형태의 경계에 적용되고 모든 고체요소에 대한 디폴트 값을 정의한다.

일반적 값 보다 우선하는 요소 특정 마찰계수가 정의될 수 있다: Model Setup → Meshing & Geometry → Component → Surface Properties → Static Friction Coefficient.


마찰계수가 무한대에 이를 때, 벽 slip 속도는 0(no-slip)에 근접한다. 임의의 큰 값을 지정하는 것을 피하기 위해 no-slip 선정이 마찰계수에 음의 값을 정의함으로써 활성화된다. 유한한 양의 값은 partial-slip 경계를 뜻한다. 0은 free-slip 경계조건을 지정한다. 유한한 양의 마찰계수는 부분-slip 경계가 된다. 디폴트로 Static friction coefficient = -1.0이며 모든 지정되지 않은 요소는 no-slip 표면을 갖는다.

각주: 부분 slip 이 난류모델 사용 시 기존요소에 대해 정의되면 경고가 나타날 것이다.

No-slip 과 partial-slip 표면은 Model Setup Fluids Properties Fluid # Viscosity 하에서 정의된 동적 점성을 필요로 한다.


Wall Shear 

벽 전단응력은 유동이 없는 면적부분에서 접선속도를 0으로 가정함으로써 모델링 된다. 0인 접선속도는 접선속도를 가지는 격자경계에서 그리고 이동체의 표면에 대해 수정될 수 있다.

벽 전단응력은 Viscous Flow Model Setup Physics Viscosity and Turbulence 보조 창에서 활성화되고 양의 유체 ViscosityModel Setup Fluids 탭에서 지정될 때 계산된다.

전단응력은 요소 Surface Roughness 계수(Model Setup Meshing & Geometry Component Surface Properties) 가 음수가 아닌 한(즉, 0이아닌 마찰계수에 대해) 자동적으로(하지만 자동적으로 출력되지는 않는다)요소 no-slip 과 partial-slip 요소에 대해 계산된다. 전단응력은 Model Setup Output Activate Shear Stress 에서 Activate Shear Stress 를 선택하고 General Critical Shear Stress = 0으로 지정함으로써 출력될 수 있다.

요소 특정 전단응력은 관심요소에 대해 Output 탭 하단에서 Pressure and Shear Force Output 를 선택함으로 출력될 수 있다.

전단응력과 밀접하게 연결되어 있는 변형률은 Model Setup Output Additional Output Strain Rate 를 선택함으로써 Restart Selected Data 출력에 추가될 수 있다.

전단응력, 변형률, 그리고 벽 근처 속도 분포를 정확히 모델링 하는 것은 격자가 적절히 해결되어야 한다는 것을 필요로 한다.  고체요소 또는 벽면에 인접한 첫 번째 셀은 로그 또는 층류의 벽 속도 분포가 적용되는 지역에 있어야 한다.  벽을 따라 셀들은 표면이 격자선상에 있으면 표면에 수직이거나 벽면을 포함한다.

유동이 Laminar(Viscosity and Turbulence physics 보조창에서 지정되는)이면 속도분포는 직접 미분에 의해 계산된다. 셀의 평균속도는 항상 정확하고 속도분포는 격자가 정련되면 더 잘 해석된다. 최적 셀 크기는 단지 필요한 분포 정확성과 허용되는 계산시간에 달려있으며 셀의 크기가 작아질수록 증가한다.

Turbulence 모델이 활성화되면 벽이나 고체요소 가까운 첫 번째 셀은 항상 밑에 보여진 로그법칙 구역에 상응하는 로그 분포에 따라 속도를 가지게 된다. 벽을 따르는 첫 번째 셀은 점성 sub-layer 를 포함하고 충분히 경계층의 로그법칙 구역 내에 있도록 크기가 정해져야 한다. 만약에 첫 번째 셀의 바깥쪽이 점성 sub-layer나 외부 또는 자유흐름 지역까지 포함한다면 그 때는 계산된 로그법칙 벽 근처 속도와 전단응력이  물리적 양으로부터 벗어나서 이들은 로그법칙관계와 일치하지 않는다.


적절한 범위의 셀 크기를 찾는 것은 고체 표면에 수직한 경계층의 높이(두께)를 추정하는 문제이다. 이에 대한 도움이 되는 값은 벽으로부터의 무차원 수직거리 y+, 가끔 viscous length 라고도 불리며 위의 무차원 속도 u+ 와 관련하여 보여진다. 아래 식에서 uτ 는 전단속도, τw 는 고체상의 전단응력, y 는 고체로부터의 수직거리, ρf 는 유체밀도 그리고 µf 는 유체의 동적(분자) 점도이다.

y+를 추정하기 위해 전단응력 τw 가 수동으로 추정되어야 하고 관심 있는 독자는 이를 위해 수리학 문헌을 참조한다. 일반적으로 y+(셀 크기의 함수로)는 30(이 값에서 내부 층이 로그법칙구역으로 부드럽게 변화하고) 보다 커야 하고 유동의 Reynolds 수와 경계층의 두께에 의존하는 값보다 작아야 한다(일반적으로 100 – 500 합당한 상한이다). τw의 수작업추정이 불가능하면 여러 번의 모사가 관찰값(전단응력 또는 속도)이 안정화되는”최적값”을 위해 반복되어야 한다. 고체표면에서 변수값을 계산하기 위해 이용된 근사값은 유체가 충분히 발달한 유동이라는 것을 가정하고 충분히 발달하지 못한 유동에 대한 결과를 해석할 때는 유의하여야 한다.

요소표면이 격자선 방향과 일치하면 고정점들이 표면에서 그리고 표면으로부터 적절한 거리에서 사용되어야 한다(막 설명된 바와 같이 첫 셀 거리 yy+ 기준을 맞추도록). 물체표면이 격자선과 평행하지 않으면 nested 격자블록을 적절한 곳에서 사용하여 표면에 가장 가까운 셀들이 적절한 간격을 가지도록 한다.


Component Roughness

요소표면에서의 벽 전단응력은 표면조도를 정의함으로써 수정할 수 있다. 조도는 길이의 단위를 가지며 분자점도에 fluid_density × roughness × relative velocity의 곱을 더함으로써 통상 전단응력 계산에 포함되고 있는데 여기서 relative velocity는 지역 유체속도와 벽 속도(정지된 벽이나 요소는 0)간의 차이이다. 이를 이행하면 laminar 유동모델의 벽 전단응력은 다음과 같다.


  • k 는 조도
  • ν 는 동점성계수
  • u 는 상대속도이며
  • δy 는 표면에 interest(관련된) 수직한 길이 규모이다.

조도가 충분히 클 때 응력은 다음에 비례한다.

Turbulent 유동모델에서 벽의 법칙 관계는 점도의 변화(즉 ν 에서 ν + ku로)가 ν/u 에 의해 정의된 특정길이 규모로부터 로그의존도를 k로 자동적으로 변환하는 것을 제외하고는 부드러운 벽에서와 마찬가지의 같은 형태를 지니며 k 는 두 특정 길이 중 큰 것이다.

수치해석에서 의미가 있기 위해 조도는 비록 큰 값이 사용될 수도 있지만 요소경계에서의 격자 셀 크기 보다 작아야 한다. 조도를 가지는 요소는 no-slip 표면(음의 static friction coefficient 를 통해)으로 주어져야 한다.

FLOW-3D 에서 조도변수 k 는 개별적으로 Meshing and Geometry Geometry Component Properties Surface Properties Surface Roughness 의 각 요소에서 지정될 수 있다.

Surface Roughness는 Moody diagrams 에서 기준된 조도처럼 균일하게 분포된 표면조도 요소의 평균 높이로 정의된다. 실제표면이 균일한 조도를 가지면 이 높이가 직접적으로 적용되나 균일하지 않으면 정확한 결과를 줄 equivalent 조도 값이 선정되어야 한다. 예를 들면 일반적인 평균속도, 수력반경, 그리고 수력 구배와 관련된 Manning 방정식은 Manning 계수와 관련된 수리반경이 알려질 때 FLOW-3DSurface Roughness 로 변환될 수 있는 등가의 조도변수(Manning의 n)를 사용한다.


  • V 는 채널 및 도관 내 평균유속
  • Rh 는 수력반경(윤변에 의해 나누어진 유체 단면적)
  • S 는 유동이 수력 구배, 특히(그리고 가끔 부정확하게) 도관이나 채널의 물리적 구배로 가정되며 1.49는 변화인자이고 모든 다른 단위는 미터/킬로그램/초(SI단위로)이며
  • n 은 Manning 조도이다.

균일하지 않은 표면에서 등가 균일조도는 밑에 보여진 것과 같이 Manning의 n 그리고 추정된 수력반경 또는 직경으로부터 계산될 수 있다. 여기서 Surface RoughnessFLOW-3D 에서 이용되는 조도변수이며 모든 변수들은SI 단위(미터) 이고 유동은 완전한 난류유동이며 수리학적으로 고르지 않다. 수력직경 DhRh 의 4배수로 정의된다(Dh = 4 Rh).

위에서 주어진 환원은 파이프와 등가 도관에 대한 Swamee-Jain 방정식으로부터 유도 된다.

여기서 다음 가정이 적용된다.

  • αmanning 는 feet 일 경우 1.486, meter 일 경우 1.0
  • 는Manning 방정식 가정이 옳을 때 1.0
  • ReD 는 5.74보다 훨씬 크다.이는 Manning의 n이 원래 측정된 유동단계에 상응하는 수리직경에 대해서만 기술적으로 유효하다. 이 변환은 다음과 같이 체크된다: mortar콘크리트에 대한 일반적 문헌 값은 0.013이다. n 이 수력반경 1.25ft(수력직경 5ft)인 채널에서 측정되었고 이때 는 0.0033ft또는 1mm인데 이는 mortar cement의 전형적인 문헌 값이다. 계산된 Surface Roughness 값은 대략 1과 10ft사이의 수력직경에 대한 값이다. 수력직경범위에 대한 제약은 항상 체크되어야 한다.각주: Surface Roughness > 0 는 상 변화 모델에서 요소표면 가까이의 액체에 의한 과열 발생 기능을 정지시킨다(Cavitation and Bubble Formation (Nucleation)를 참조한다).Surface Roughness의 값은 요소/유체 열 전달에 영향이 없다. 요소 – 유체로의 열 유속이 표면조도에 따라 증가되려면 요소에 대한 열 전달 면적의 승수가 되는 Surface Area Multiplier 변수를 사용한다. 디폴트로 Surface Area Multiplier = 1.0이다. Surface Area Multiplier = 0 은 유체와 요소 간 열교환 뿐만 아니라 요소 Mass source (사용되면)기능도 불가능하게 한다.
  • Temperature and Strain Rate Dependent Viscosity

    비뉴튼 유체는 점도가 변하는 유동조건에 따라 일정하지 않은 유체이다. 어떤 유체는 shear-thickening 즉 전단 하에서 농축되고 다른 유체는 shear-thinning(전단유동화), 즉 높은 전단 하에서 점도가 감소한다. 또한 온도가 변하는 모사에서 점도는 일반적으로 온도에 의존한다. 어떤 유체의 점도는 이력에 의존한다; 이런 유체는 thixotropic 이며 Thixotropic Fluids 모델을 필요로 한다.

    FLOW-3D 에서는 유체1만 비뉴튼일 수 있다. 2유체모사에서 비뉴튼 유체를 설정하기 위해 Viscous flow in Physics Viscosity and turbulence 를 활성화시킨다. 난류는 일반적으로 비뉴튼 유동에서 중요하지 않다; 그러나 난류선택은 할 수 있다. Turbulence Models은 비뉴튼 유체거동에 고려되지 않는 경험론에 의존한다. 그러므로 난류모델은 보통 비뉴튼 유동에는 유효하지 않으며 비뉴튼 유체에 대해서는 주의하여 사용되어야 한다.

    Fluids Properties Fluid 1 Viscosity 에서 펼쳐지는 메뉴로부터 점도 모델을 선택할 수 있다. 기본값은 상수이다. 비뉴튼 모델은 Temperature Dependent Table, Strain Rate Dependent Table, Strain Rate Dependent Function, Strain Rate and Temperature Dependent Function, Carreau Function, 그리고 Power Law를 포함한다:

Temperature Dependent Table이나 Strain Rate Dependent Table이 선택되면 온도나 변형률의 함수로 점도의 표 데이터를 입력하게 하는 Tabular 버튼을 클릭한다.

각주: 사용자 정의 표 데이터는 전처리에서 솔버가 최적으로 사용하게 내부데이터 구조로 전환된다. 전환은 입력표의 등 간격을 가지는 새 표로의 remapping(재사상)을 포함한다. 온도 또는 변형률 의존 점도를 위한 내부표의 처음과 마지막 점은 각 입력 표로부터 취해지며 그사이의 점들의 수는 10000으로 고정된다.  선형 보간이 전환 중 이용된다.

이 접근은 일반적으로 부드럽게 변하는 데이터에 대해서는 적합하다. 그러나 점도가 온도나 내부표의 간격에 비교될만하게 변형률의 범주에서 상당히 변하는 경우에 변환은 에러를 발생시킬 수도 있다. 이를 피하는 방법은 가능한 한 최대로 입력 표에서 온도와 변형률의 범위를 줄이는 것이다. 그래서 정확도를 높이기 위해 내부표의 간격을 줄이게 된다.

Strain Rate and Temperature Dependent Function 또는 Strain Rate Dependent Function이 선택되면 유체점도는 사용자지정 계수 λ00, λ0, λ1, λ2, n 그리고 µ를 가지는 변형률 및/또는 온도의 함수로 정의된다. 온도 의존도는 상수 a, b c 로 정의된다.

이 계수들은 다음 구성요소 관계를 가지는 점도를 정의한다.

Where 여기서

그리고 µ0 는 정상 상수 점도값(GUI 에서 Viscosity 옆의)으로 정의되는 전단이 없을 경우의 점도며 T* Fluids Properties Reference Temperature 로 정의된다. 적절한 계수의 선정은 사용자가 비뉴튼 유체거동에 대한 다양한 근사치를 사용하게 한다.

Carreau Function 선택을 택하면 점도를 변형률에 연관시키는 단순한 함수가 사용된다:


여기서는 Carreau 모델에 연관된 변수들만 정의되어야 한다; 이들은 GUI에서 활성화 된 것으로 보여진다. 이들은 Carreau 형태 유체의 점도 정의를 단순화한다.

Power Law 모델이 선정되면 또 다른 점도를 변형률에 연관시키는 단순한 함수가 사용된다:

여기서는 power-law 모델에 연관된 변수들만이 정의되어야 한다; 이 들은 GUI 에서 활성화 된 것으로 보여진다. 이들은 power-law 형태 유체의 점도정의를 단순화한다.

어떤 비뉴튼 유체모델이 사용될 때 전처리는 두 개의 추가 그림을 prpplt 파일에 그린다. 하나는 주어진 온도에서의 동적 점도 대 변형률이고 다른 하나는 주어진 변형률에서의 점도 대 온도이다. 전처리가 그림의 범위와 변형률 및 온도의 값을 선택하는 것이 어려우므로 사용자는 Input Variable Summary and Units 장의 User Defined Variables 절에서 기술된 바와 같이 4개의 소위 임시변수를 사용하는 환경을 정의할 수 있다.

  • DUM1은 점도 대 변형률이 그려지는 온도를 정의하며 이는 또한 점도 대 온도 그림을 위한 중앙 온도 값이다;
  • DUM2는 점도 대 온도 그림을 위한 DUM1-0.5*DUM2 로부터 DUM1 + 0.5*DUM2까지의 그림 범위를 정의한다.
  • DUM3는 은 점도 대 온도가 그려지는 변형률을 정의하며 또한 점도 대 변형률 그림을 위한 중앙 변형률 값이다;
  • DUM4는 점도 대 변형률 그림을 위한 DUM3-0.5*DUM4 부터 DUM3 + 0.5*DUM4까지의 그림 범위를 정의한다.


  • 변형률 의존점도에서 1차변수는 ‖eij‖ = 로 정의되는 변형률 크기이다. 같은 변수가 모사 중에 Strain rate magnitude로 출력된다.
  • 비뉴튼 유체유동은 낮은 Reynolds 수에서 가끔 발생한다. 결과적으로 시간간격 크기는 Explicit viscous stress solver가 사용되면 점성전단응력에 의해 조절된다. 모사속도를 상당히 낮추는 제약을 피하기 위해 Numerics Viscous stress solver options Successive under-relaxation또는Line implicit 를 지정함으로써 Implicit 점성응력 솔버가 대신 이용될 수 있다. 그러나 유동에 커다란 점성 구배가 존재하면 수렴은 늦어질 수도 있다.
  • 수치해석 문제점을 방지하기 위해 최대 점성을 약 1E + 15 로 제한하는 점도 계산 내에 추가  방편이 있다.

또한 다음을 참조한다

  • Outflow Boundary Conditions 에서 격자 경계조건의 논의
  • Thixotropic Fluids
  • Wall Slip. 벽 Slip

Thixotropic Fluids / 요변성 유체

요변성 유체의 겉보기 점도는 시간의 직접 함수이다. 겉보기 유체점도가 국부적 정상상태에 도달하는 속도를 조절하는 묽어짐 과 농축율의 관점에서 시간 의존도가 FLOW-3D에서 기술된다. 정상상태점도는 일반적으로 전단율과 온도의 함수일 것이다. 정상상태의 점도가 겉보기 점도보다 클 때 후자는 농축율에 따라 유동시점에서 증가할 것이다. 반대로 겉보기 점도가 정상상태 점도보다 클 때 묽어지는 율에 따라 겉보기점도는 감소할 것이다. 요변성 유체는 항상 비뉴튼성이고 또한 FLOW-3D 에서 정의되어야 한다 (Temperature and Strain Rate Dependent Viscosity참조).

요변성 점도 모델은 Physics Viscosity and Turbulence Thixotropic viscosity 를 선택함으로써 활성화된다.

묽어짐, Fluids Properties Viscosity Thixotropic Constant Thinning Rate, 그리고 농축, Constant Thickening Rate에 의한 이완율을 위한 두 개의 상수가 있다.



Strain Rate Sensitivity 계수가 정의되면 묽어지는 비율 α 또한 변형률에 의존할 수 있다.


  • µ0 Constant Thinning Rate 이고
  • µ1 Strain Rate Sensitivity 이다

Constant Thinning rate Constant Thickening rate 는 시간의 역수인 차원을 가지며 Strain Rate Sensitivity 는 무차원이다. 모든 율 계수는 기본값으로0이다. – 즉, 비요변성 효과.

정상상태에서 원하는 재료 거동을 근사하는 비뉴튼 점도모델(see Temperature and Strain Rate Dependent Viscosity참조)을 정의해야 한다. 물질을 정의하기 위해 Fluids Properties Viscosity 가지에서 변수들을 사용한다. 또 트리에서 Initial and boundary viscosity 값을 지정한다.

요변성 모사에서 점도는 매우 커질 수 있으므로 고점도 유동을 위한 외재적 알고리즘에 의해 요구되는 작은 시간단계 크기를 피하기 위해 Numerics Viscous stress solver options 로부터 Successive under-relaxation이나 Line implicit 를 선택할 수 있다.

각주: 입력 및 출력 변형률은 실제로는 변형률의 크기이다.

또한 Wall Slip Temperature and Strain Rate Dependent Viscosity 를 참조한다.


점성 평가(난류 종결)를 위한 6개의 옵션이 FLOW-3D 에 존재한다. 원하는 평가를 Physics > Viscosity and turbulence 에서 선정한다. 모든 모델에서 점성모델이 활성화되어야 하고 약의 동점성 값을 필요로 한다. 먼저 viscous flow 를 활성화한 후 유체 1 (그리고 있으면 유체 2 )의 점도를 Fluids Properties Viscosity 에서 입력한다.

이 모델 각각의 상세내용은 Theory 장의 Turbulence Models 절을 참조한다.

난류의 초기나 경계조건이 지정되지 않으면 초기나 경계에서의 난류운동에너지의 값은 프로그램에 의해 작은 값으로 지정되는데 이는 층류를 나타낸다. 유입유동이 난류이면 경험에 의해 상류유동의 난류 정도는 평균유동속도의 10%에 상응하는 잔잔한 유동에서의 난류유동변동이 가정된다. 예를 들면, 20m/s의 평균상류유동에서 난류속도변동의 크기가 2m/s이고, 난류운동에너지(단위 질량당)의 경계 값은 다음과 같다.

프로그램 기본값은 난류모델에서 나타나는 상수들을 지정하는 데 이용된다. 이 계수 값들은 일반적으로 권고되지 않지만 필요에 따라 변경될 수도 있다.

가장 작은 영역 차원(한 셀을 가지는 방향을 제외한)의 기본값0.07인 형상효과나 실제유동장의 규모를  반영하지 않으므로 Turbulent mixing length가 1방정식 난류에너지모델 사용자에 의해 지정되어야 한다. 이 변수는 유동에 존재하는 난류 와류의 특정규모를 기술하고 난류점도계수 최대 허용치를 정의하는데 이용된다.

Maximum turbulent mixing length는 계산된 난류의 점도가 너무 크지 않게 하도록 난류소산 ε 의 최소제한을 정하기 위해 Two-equation k ε model, the Renormalized group (RNG) model, 그리고 Two-equation k ω model에 의해 이용된다. 이 값은 Dynamically computed 선택이 Fluids Properties Viscosity window(상기 참조)로부터 자동적으로 모사 중에 시간과 위치의 함수로 계산된다. 다른 방법으로는 사용자가 Maximum turbulent mixing length 값을 Constant를 선택하여 옆의 편집상자에 값을 입력함으로써 기술할 수 있다.

Maximum turbulent mixing length가 클수록 모사 중 난류소산은 작아진다.  난류소산은 난류 점도 식의 분모에 나타나므로 난류점도는 특히 작은 전단율을 가지는 유동지역에서 커지게 된다. 역으로 작은 Maximum turbulent mixing length값은 작은 난류점도를 유발할 것이므로 난류를 과도하게 감쇠시킬 것이다.

예를 들면, 여수로 모사에서 Maximum turbulent mixing length 를 계산하는데 이용된 길이 규모가 여수로 상의 유동의 깊이일 수 있다; 고압 주조에서 길이규모는 러너의 가장 작은 폭일 수도 있다; 파이프 및 관 유동에서는 길이 규모는 유동채널의 수력직경일 수 있다. 일단 길이규모가 결정되면 Maximum turbulent mixing length는 길이 규모의 0.07, 또는 7%로 결정된다.

유입경계에서, 사용자는 난류 운동에너지와 소산을 직접 지정할 수 있다. 소산 없이 난류 운동에너지의 값이 주어지면 그 때의 소산 값은 자동적으로 편집상자 내에 정의된 Maximum turbulent mixing length 의 값에 의해 계산되거나 주어지지 않으면 기본값이다.

각주: 난류 평가를 위해 사용된 공식이 프로그램 시작 시 바뀔 수도 있다(General Restart Turbulence 참조). 난류이송방정식  (k ε, RNG, k ω 또는 One-equation) 을 포함하는 난류모델에서 이 방정식에서의 점성 확산 항은 항상 외재적으로 근사되므로 내재적 점성 알고리즘을 사용하는 것은 추천되지 않는다.

See also:

이론 매뉴얼 Turbulence Models 을 참조한다.

Viscous Heating

점성가열 모델은 Physics Viscosity and turbulence Activate viscous heating를 체크함으로써 활성화 된다. Viscous flow Turbulence options 아래서 선택되어야 함에 주의한다.

See also:

이 기능에 대한 상세정보를 위해 Theory 매뉴얼의 Thermal Diffusion and Sources를 참조한다.


  • 이 옵션은 Physics Heat transfer 가 활성화되어야 한다.
  • 0이아닌 유체 동점성이 Fluids 의 유체 입력에서 정의되는 경우만 사용된다.

Viscosity Output점성 출력

유체점도는 온도, 변형률 또는 난류 같은 다른 변수의 함수일 때 마다 자동적으로 후처리에서 저장된다. 반대로 점도가 상수이면 예를 들어 뉴튼 유체의 층류 유동에서는 일반적으로 후처리에서 이용 하지 못 한다. 사용자는 Output 탭의 Additional Output 절에서 Dynamic Viscosity 를 요청함으로써 디폴트 거동을 무효화할 수 있다. 이 기능은 특히 유체점도가 계산되는 FORTRAN routine mucal.F가 사용자에 의해 수정될 때 유용하다.