Sand Core Making / 모래 코어 제작

Sand Core Making / 모래 코어 제작

This article on sand core making was contributed by Dr. Matthias Todte and Frieder Semler, Flow Science Deutschland GmbH.

주조 품질에 대한 수요가 증가하고 고성능 구성 요소에 대한 박막형 구조로의 추세로 인해 품질에 대한 요구가 강화되었으며 동시에 모래 코어의 기하학적 복잡성도 증가했습니다. 시뮬레이션은 코어 박스의 설계를 최적화하는 데 도움이 되며, 저온 및 고온 코어 박스를 위한 유기 및 무기 바인더 시스템의 촬영, 가스 처리 및 경화를 위한 강력한 공정 조건을 확립합니다.

기체 주입, 건조 및 템퍼링의 기본 프로세스에 대한 논의는 실험적 검증을 거쳐야 합니다. 그런 다음 주물 결함을 방지하기 위해 코어 사격 공정 시뮬레이션이 필수적이었는지를 보여 줍니다. 마지막으로 코어 박스의 마모와 수명을 예측하는 수치모델을 개발한 연구 프로젝트를 소개합니다.

Water jacket core

Simulation of sand core making processes

Shooting

Shooting Simulation에서 모래로 채워진 타격 헤드가 공기를 통해 가압되고, 이로 인해 공기/모래/실린더/바인더 혼합물로 구성된 “유체”가 생성됩니다. 이 유체는 분사 노즐을 통해 코어 박스로 흐르고 배출 노즐을 통해 상자 밖으로 공기가 배출됩니다. Shooting Simulation의 목적은 코어 박스에 있는 모래의 밀도분포를 높히고 균일하게 하는 것입니다.

촬영 과정에서 모래로 채워진 블로 헤드가 공기를 통해 가압되어 공기/모래/바인더 혼합물로 구성된 “유체”가 생성됩니다. 이 유체는 블로우 헤드에서 분사 노즐을 통해 코어 박스로 흘러 나와 공기를 환기 노즐을 통해 박스 밖으로 밀어냅니다. Shooting 의 목표는 가능한 한 높고 균일하게 코어 박스에 있는 모래의 밀도 분포를 달성하는 것입니다. 변경할 수 있는 프로세스 매개 변수는 분사 압력과 발사 및 배기 노즐의 수와 위치입니다. 시간과 비용을 절약하기 위해 코어의 품질을 저하시키지 않고 가능한 한 노즐을 적게 사용하는 것이 바람직합니다.

Sand density distribution

Sand density distribution after the shooting

시뮬레이션을 사용하여 다양한 사격 및 환기 노즐 구성과 그 구성이 결과 모래 밀도 분포에 미치는 영향을 분석할 수 있습니다. 엔지니어는 속도와 전단 응력을 예측하여 코어 상자의 마모 및 이에 따른 수명에 대한 결론을 도출할 수 있습니다.

Gassing

유기 바인더 시스템에서는 모래가 유기 수지로 코팅됩니다. 이 수지의 경화는 보통 아민이라는 기체에 의해 이루어지는데, 이것은 일반적으로 분사에 사용된 노즐을 통해 주입됩니다. 이 가스는 코어가 모든 부분에서 경화되도록 하기위해 모든부분에 도달할 만큼 길어야 한다. 반면에, 유독 가스를 줄이기 위해서는 가스 배출이 필요이상으로 길어서는 안됩니다.

유기 바인더 시스템에서는 모래가 유기 레진으로 코팅되어 있습니다. 이 레진의 경화는 보통 아민 가스 작용제에 의해 이루어지는데, 아민은 주로 인젝션에 사용되는 노즐을 통해 분사됩니다. 이 가스 주입은 가스가 코어의 모든 부분에 도달할 수 있도록 충분히 길어야 합니다. 코어가 모든 곳에서 경화되도록 하기 위해서입니다. 반면, 가스 배출은 독성 가스를 절약하기 위해 필요 이상으로 길지 않아야 합니다.

Amine concentration core

Amine concentration in a core

시뮬레이션은 시간 경과에 따른 코어의 아민 농도 분포를 예측하며, 이는 코어의 경도와 동일하다. 이를 통해 엔지니어들은 가스 생성 공정에 대한 합리적인 시간 규모를 결정할 수 있습니다.

Drying

주조물의 수가 증가하는 경우, 독성이 있는 유기적 시스템 대신 무기, 수성-기반 바인더 시스템이 사용됩니다. 배기 가스 배출이 없는 코어 생산 공정의 이점 외에도 이 시스템은 주조 공정 중 코어 가스 생산량을 줄여 주조 품질을 향상시킵니다.

모래 코어의 경화를 위해서는 일반적으로 뜨거운 공기가 주입되어 이루어지는 코어에서 물을 제거해야 합니다. 이러한 바인더 시스템의 경우, 코어의 잔류 수분은 경도에 대한 측정 값입니다. 시뮬레이션은 코어를 통과하는 공기의 흐름뿐만 아니라 물이나 증기의 증발과 응축, 뜨거운 공기와 함께 증기의 이동을 모델링 해야 합니다.

아래 이미지는 예측된 잔류 수분과 실제 코어의 강도(또는 손상)의 상관 관계를 보여 줍니다.

Correlation of predicted residual moisture and the damage of a real core

Tempering of core boxes                                                                    

핫 박스 및 크로닝과 같은 특정 코어 제조 공정에서는 가열된 코어 박스에 있는 바인더의 열 반응을 통해 코어의 경화가 이루어집니다. 상자의 가열은 가열 채널과 전기 가열 요소를 사용하여 수행됩니다. 좋은 코어 품질을 위해서는 코어 상자의 균일한 온도 분포가 바람직합니다. 시뮬레이션은 특정 가열 소자 구성에 대한 온도 분포를 시간 경과에 따른 예측하고 발열의 균일성과 원하는 온도에 도달하는 데 필요한 시간을 표시합니다.

Heated core box

Temperature distribution in a heated core box

Validation of the core blowing model

Experiments and simulations for a water jacket core

핵심 shooting 실험은 TU 뮌헨의 파운드리 연구소에서 실시되었습니다. shooting  시간과 압력, 흡입구와 환기구의 수 등의 공정 매개 변수들이 다양하였으며 이들 매개 변수들이 분석된 코어 품질에 미치는 영향이 다양하였다. 실제 코어에서 발생한 결점은 시뮬레이션에서 모래 밀도가 낮은 영역과 상관 관계가 있습니다(아래 그림 참조).

Core blowing validation

Core defects compared to simulated density distribution

Application of the core blowing model : 리어 액슬 하우징의 주조 품질 개선

품질 보증에서 리어 액슬 하우징의 주물 결함을 감지했습니다(아래 그림 참조). 그 결함들은 중심부의 표면 결함의 결과인 것처럼 보였다. 이 가설을 뒷받침하고 코어 표면 품질을 개선하기 위한 조치를 권고하기 위해 시뮬레이션이 수행되었다. 마지막으로, 코어 박스 환기구의 다른 구성(숫자 및 위치)을 통해 주조 품질을 개선할 수 있었습니다.

Casting defects of a rear axle housing

Casting defects of a rear axle housing

Validation surface defects

Correlation of surface defects and simulated density distribution

Research project: Prediction of the lifetime of core boxes

코어 박스는 대부분 폴리우레탄 수지 코팅의 알루미늄으로 제작된다. 사격 과정에서 모래에 의한 코어 박스 표면의 침식은 코어 박스의 수명을 제한하는 요인이다. 프로젝트 목표는 표면 처리가 수명에 미치는 영향을 이해하고 단일 시뮬레이션에서 다수의 샷에 의해 발생하는 침식을 예측할 수 있는 연산 모델을 개발하는 침식 프로세스를 분석하는 것이었다.

일반적인 코어 상자(아래 참조)는 다른 모양의 삽입물로 제작되었습니다.

Core box with different inserts

Core box with different inserts

수치 모델은 코어 박스 벽의 압력과 전단력의 공간적, 시간적 통합에 기초하여 부식에 대한 양을 도출한다. 모형에 의해 예측된 침식은 실험 값과 일치했습니다(아래 그림 참조).

Measured and simulated erosion

Comparison of measured and simulated erosion

[FLOW-3D 물리모델]Surface Defects and Lost Foam Residue / 표면결함 및 로스트폼 잔류

Surface Defects and Lost Foam Residue / 표면결함 및 로스트폼 잔류

금속주조에서 액체금속이 주형을 충진할 때 액체표면상의 불순물이 주조품 내부로 접혀 들어가는 것이 가능하다. 이러한 불순물들은 최종 부품의 기계적 취약성을 일으킬 수 있다. FLOW-3D 에 두 관련 모델이 있다: 표면 불순물이 자유 표면에서의 산화물 형성에 의해 발생하는 Free surface defect tracking 모델과 불순물이 금속에 의한 폼의 용융 또는 기화 후에 잔존하는 탄소 잔류물때문인 Lost foam residue 모델. Physics Defect tracking 을 선택 후 전자를 활성화하고 Track free surface defects 를 활성화 시킨다.

Physics Lost foam을 선택하여 Lost foam residue tracking을 활성화하고 Track foam residue를 선택한다.

금속표면이 충진 중에 접히거나 충돌하면 표면의 불순물이 금속 내부에 갇히게 된다.

FLOW-3D 의 표면결함 예측 알고리즘은 산화물 형성을 위한 소스항으로 되어 있으며, 표면적과 노출시간에 비례한다. 로스트폼에서 생성된 결함에서 소스항은 품질이 저하된 폼의 양에 달려있다. 이송 방정식은 결함물의 이동을 금속유동과 함께 추적하는데 이용된다.

자유표면에서의 산화물 생성은 Defect generation rate에 의해 지배된다. 로스트폼 잔류형성은 Residue generation rate에 의해 조절된다. 이 두 변수의 기본값은1.0이다. 실제 생성의 크기는 중요하지 않으며 특히 표면에서의 오염물 생성을 정량화하는 실험 데이터가 없는 상황에서 중요하지 않다. 충진된 몰드 내의 오염물 분포는 결함의 확률적 분포로 설명될 수 있다. 예를 들면 산화 결함물이 국소적으로 최고 값을 가지는 위치는 결함물의 위치일 가능성이 높다.

이 두 모델에서 이송 시 Molecular diffusion coefficient는 생성된 후 결함 또는 잔류물의 분자 확산율  (즉, Brownian-motion에 근거한)을 조절한다. Turbulent diffusion coefficient multiplier는 난류에 의한 확산율을 조절한다: 값 1.0에서는 결함이나 잔류물이 모멘텀과 같은 비율로 확산하며 1.0보다 작은 경우에는 확산이 운동량보다 작다는 것을 뜻한다. 1.0보다 큰 값은 물리적 의미가 없다.

추가적인 결함 추적 변수는 몰드 벽에 부착되거나 빨려 들어 액체 금속유동에 의해서는 이동될 수 없는 로스트폼 잔류를 추적하기 위해 로스트폼 모델에서 사용될 수 있다. 이 정적인 결함들은 Allow residue wicking into mould를 활성화 함으로써 기술된다. 이 결함들은 변수 Residue wicking rate에 의해 정의된 비율로 몰드 벽 가까이 있는 정적인 결함물로 전환된다.

Note:

  • 표면 오염물은 명확한 유체 경계가 존재하는 유동에서만 추적될 수 있다.
  • 현재 모델에서 표면오염물은 주변 몰드 재료를 통해 빠져 나갈 수 없다.
  • 로스트폼과 표면결함 둘 다 Selected데이터 출력 영역에서 Surface defect concentration 신호에 의하여 나타내진다.

See also:

Air Entrainment.