[FLOW-3D 물리모델]Condensation, Evaporation at Free Surfaces / 자유표면에서의 응축, 기화

Condensation/Evaporation at Free Surfaces자유표면에서의 응축/기화

1. Vaporization at Free Surfaces 자유표면에서의 기화

자유표면에서 발생하는 기화효과는 공간에서 정의된 일정 포화상태의 견지에서 모델링 될 수 있다. 이 모델을 활성화하기 위해 Physics>Bubble and phase change models>Constant pressure bubble with vaporization 를 선택한다. Fluids>Properties>Phase Change 에서의 Saturation Temperature 는 공간내의 기포의 포화상태를 정의한다. 기화 잠열은 Fluids>Phase change>Latent Heat of Vapor 에서 지정된다.

유체 에너지 방정식(열전달)은 이 모델(Physics>Heat Transfer)과 함께 해석되어야 한다. Fluids> Properties>Phase Change 에있는 Accommodation coefficient 에 양의 값을 정의한다. 자유 표면상의 액체의 온도가 포화 온도보다 높다면 액체는 다음과 같은 율로 증발할 것이다.

  • α 는 기화율을 조절하는 Accommodation coefficient이다. 이 값은 일반적으로 0.01에서0.1사이이며 1.0을 넘지 말아야 한다.
  • Hv 는 기화 잠열이다.
  • Asur 는 상변화를 위한 유효표면적이다.
  • kf 는 액체의 열전도도이다.
  • Tl 는 표면상 액체 온도이며
  • Tv1는일정한 기포 포화 온도이다
  • h 는 Prandtl 수로 정의된 표면에 있는 액체의 열전도에 대한 특정 길이이다.

여기서

  • xmin 는 (임의의 방향으로)계산 격자의 최소 셀 크기
  • Cv 는 일정 체적시의 기포 비열이며
  • µ1는 유체 #1의 점도이다.

각 표면 셀에서 기화하는 질량 유량은 후처리를 위해 저장되고 Analyze 에서 가시화될 수 있다.

기화는 자유 표면을 포함하는 셀들에서만 발생될 수 있다. 기포 포화온도는 일정 또는 변동압력을 갖는 모든 공간에 대해 일정하며 같다.

2. One Fluid with Thermal Bubbles 열기포를 갖는 하나의 유체

액체-증기 상변화에 의한 질량 전달은 열기포와 주위 액체 사이에 발생할 수 있다. 기포는 유체 #1 이 증기로 차 있다고 가정하고(즉, 기체 성분은 하나다.) 기포는 일정 압력, 온도, 그리고 밀도를 갖는다. 많은 기포 방울들이 있을 수 있고, 각 기포에서의 증기는 체적 변화와 열 및 질량 전달 때문에 고유한 시간에 따라 변하는 상을 갖는다. 유체 분율이0인 지정 압력의 격자 경계와 접하는 기포는 그 경계에서 정의된 기화 상태를 가질 것이다. 기화/응축모델은 Physics>Bubble and phase change models>Thermal bubbles with phase change 에서 활성화된다.

증기의 상태방정식은 이상 기체 방정식이며 절대 압력 P P = (γ − 1) · ρvapCvT 로부터 계산되는데 여기서

  • γ 는 1.285 ≤ γ ≤ 1.667값을 갖는 비열의 비율
  • T 는 절대온도
  • Cv 는 일정 체적에서의 증기의 비열
  • Cp 는 일정 압력에서의 증기의 비열
  • ρvap 는 기포 내의 증기 밀도

기포는 절대 단위로 이들의 초기 압력과 온도를 지정함으로써 초기화된다. 증기는 또한 Cavitation and Bubble Formation (Nucleation)에서 기술된 바와 같이 공동 또는 비등 과정을 통해 유체 내에서 생성될 수 있다. 증기 물성과 포화 곡선은 Fluids>Properties>Phase change 하위 메뉴에서 정의된다. 증기 압력은 사용자가 정의한 포화 곡선을 이용하여 그 지역의 유체 온도의 함수로써 계산된다. 디폴트 포화 곡선은 압력 P 와 온도 T 간의 Clausius-Clapeyron 관련식이다.

여기서

  • PV 1 TV 1(위의 물성치 목록에서 Saturation Pressure Saturation Temperature라고 쓰여있는) 는 포화곡선상의 한 점에서의 압력과 온도이다.
  • TEXPExponent for T-P Curve 로써 입력된다; 이의 값은 일반적으로
  • γ 는 증기의 비열 Gamma
  • Cv 는 일정 체적시의 기체 비열
  • Hv 는 기체의 잠열

형상 요소와 기포 내 증기간의 열전달은 Meshing & Geometry>Geometry>Component>Surface properties 의 component-void간의 열전달 계수에 의해 지정된다. 액체와 기포 내 증기와의 열전달도 마찬가지로 유체-void간의 열전달 계수에 의해 지정되어야 한다. 새로 생성된 증기기포는 heat transfer void type 1로 지정되는 것에 주목한다. Physics>Heat transfer>Fluid to solid heat transfer 가 증기 기포와 고체 요소간의 열전달을 가능하게 하기 위해 활성화되어야 한다.

상 변화는 계산 셀 내의 평균 유체 물성(밀도, 열에너지 그리고 액체분율)에 의존한다. 특히 액체와 증기의 온도는 한 요소에서 같으며, 표면의 얇은 유체막에서의 온도가 아니다. 이런 의미에서 상변화 모델은 현상학적이고 상변화율을 조절하기 위해 accommodation coefficient 의 조정이 필요하다. 1보다 큰 값은 사용되지 않아야 하는데, 이는 이 모델의 수렴이 힘들게 될 수도 있기 때문이다. 사실 일반적으로 사용되는 값들은 0.01과 0.1사이이다.

3. Two-fluid Model 두가지 유체 모델

이 모델은 증기 영역에서 모든 역학이 계산되는 것을 제외하고는 응축/기화 모델 (One Fluid with Thermal Bubbles)과 유사하다. 이 경우 압축 two-fluid 모델(비압축성 유체와 압축성 증기)은 경계면에서 발생하는 액체-증기 상변화가 가능하다. 순수 액체 지역에서의 핵 생성 또는 순수 증기 지역에서의 응축이 또한 가능하다. 유체 #1은 유체의 액상을 그리고 압축성 유체 #2(가스)는 증기를 기술한다. 표준 압축성 유동 모델에서와 같이 증기의 상태 방정식은 이상 기체 방정식, P = RF2 · ρ · T 이며 여기서.

  • RF2 는 증기의 기체상수
  • P 는 압력
  • ρ 는 기체 밀도
  • T 는 증기의 온도

two-fluid 상변화 모델은 Physics >Bubble and phase change models> Two-fluid phase change 에서 초기화되며, Fluids>Properties>Phase change 에서 양의 accommodation coefficient 를 필요로 한다. 상변화율은 직접적으로 accommodation coefficient 에 비례한다. 이 값은 절대적인 제한은 아니지만 일반적으로 0.01에서0.1사이이며 1.0을 넘지 말아야 한다. 증기 물성은 압축성 유체2의 물성으로 정의되며 증기 잠열과 포화곡선은 Fluids>Properties>Phase change 에서 정의된다. 포화 압력과 포화 온도로 정의되며 쌍으로 나타나는 압력-온도는 포화 곡선상의 한 점이어야 한다. T-P 곡선상의 지수는 온도-압력 포화관계의 지수이다. 디폴트 포화곡선은 압력 P 와 온도 T 간의 Clausius-Clapeyron 관련식이다.

여기서

  • PV 1 TV 1(위의 물성 목록에서 Saturation Pressure Saturation Temperature라고 쓰여있는)는 포화 곡선상의 한 점에서의 압력과 온도
  • TEXPExponent for T-P Curve 로써 입력된다; 이 값은 일반적으로 TV EXP = (γ − 1) CLHVCV 2 1
  •  Gamma 는 증기의 비열의 비율
  • CV 2 는 일정 체적시의 기체 비열
  • CLHV 1는 증기 잠열(단위질량당 에너지)

상변화는 유한 체적 내의 평균 유체 물성(밀도, 열에너지 그리고 액체분율)에 의존한다. 특히 액체와 증기의 온도는 한 요소에서 같다. 액체와 증기 경계면에서의 질량 전달율은 국부적 액체의 포화압력과 증기압사이의 차이에 의하여 계산된다.

Mass transfer rate

여기서

  • Pvap 는 증기압
  • Psat(T) 는 위에서 정의된 바와 같이 지역온도에서의 포화압력이다. 사용자가 필요에 따라 변경할 수 있는 subroutine PSAT.F에서 계산된다.
  • RSIZEAccommodation coefficient 이고 일반적으로 0.01과 0.1사이의 값이다.

액체와 증기경계에서 유체 질량의 단위면적당 상변화율이 계산되고, 후처리를 위해 Phase change mass flux 라고 불리는 공간변수로써 저장된다.
양의 값은 증발을 뜻한다:
음의 값은 응축.

액체 체적에서의 상변화는 Superheat temperature 를 지정함으로써 포화온도를 지나서까지 지연될 수 있다. 지역 포화온도보다 큰 Superheat temperature 의 값 때문에 증기 기포가 발생하기 전에 이 온도까지 유체 체적이 가열되는 것이 가능하다. 과열은 선택에따라 0이 아닌 벽의 거칠기를 사용함으로써 고체 벽 가까이에서 발생하지 않도록 할 수 있다.

4. Two Fluids with Non-condensable Gas / 비 응축가스를 갖는 Two Fluids

 

보통, 응축/기화 모델(two-fluid 모델)은 유체 #2가 완전히 액체의 증기상으로 이루어진다고 가정한다. 가스가 증기와 비응축가스(즉, 공기중의 수증기)의 혼합물로 구성되어 있는 경우에 Physics>Bubble and phase change>Two-fluid phase change>Noncondensable gas model 를 선택한다. two-fluid vapor 모델의 추가는 증기와 비응축가스의 기체상수들의 밀도 가중 평균 혼합물의 기체상수의 계산을 포함한다:

여기서

  • ρvap 는 계산된 거시적 증기밀도
  • ρnc 는 계산된 거시적 비응축 기체 밀도
  • RF2는 증기의 기체상수
  • RF 는 평균기체상수

그러므로, 압력은 P = RFρT 로 계산된다. 증기의 포화압력은 상변화(Two-fluid Model), 를 갖는 표준 Two-fluid 모델에서와 같은 방법으로 계산되지만, 질량 유량은 전체 가스압력을 사용하는 것과는 달리 증기의 부분압력을 이용하여 계산된다.

Mass transfer rate

여기서

  • Pvap 는 가스성 유체의 증기의 부분압력
  • Psat(T) 는 사용자가 필요에 따라 변경할 수 있는 subroutine PSAT.F에서 정의되는 Clausius-Clapeyron 방정식으로부터 계산되는 국부 온도에서의 포화압력이다.
  • RSIZEAccommodation coefficient 이고 일반적으로 0.01과 0.1사이의 값이다.

Accommodation coefficient 가 1.0의 값을 가진다면 모델은 한 시간단계에서 평형에 도달하기에 충분한 상변화를 예측하려고 시도할 것이다. 이 속도는 너무 급속해 실제 물리적조건과 비교될 수가 없다. 액체와 가스의 경계면의 경계층 내의 역학은 규모가 너무 작아 이 모델에 포함할 수 없으므로 FLOW-3D 가 정확히 이 계수 없이 상변화율을 예측하는 것은 불가능하다. .

이 모델을 이용하기 위해 Physics>Bubble and phase change models>Non-condensable gas model 의 체크상자를 선택한다. Gas constant Specific heat of the non-condensable gas 를 위한 값을 입력한다. 가스가 영역 경계에서 들어오는 곳에 각 mesh block 경계 조건 입력창에 있는 Non-condensable gas fraction 의 비응축가스의 체적율(0 과 1사이)을 지정한다. 비응축가스를 포함하는 초기 유체지역을 정의하기 위해 Meshing & Geometry>Initial>Global 를 지정한다. 이 양은 또한 각각의 초기유체 영역과 특정 지점에서 지정될 수 있다.

5. Vaporization Residue / 증발 잔류량

MAIN VARIABLES: SCALAR: IRESID, RMXSC
XPUT: IPHCHG

액체용제가 기화할 때 이에 포함되어 있는 용질은 더 농축된다. 마찬가지로 스칼라 농도변수로 모델링 된 용질도 유체문제의 자유표면에서 증발로 인해 자동적으로 농축될 것이다. 표면요소에 액체가 반보다 적게 있을 경우 농축변화가 표면요소의 두께의 반에 해당하는 지역으로 퍼져나가는 크기로 스칼라의 농축이 바로 주위의 표면요소에서도 또한 발생할 것이다.

 증발이 충분히 발생하고 용질의 농도가 커지면 표면에서 발생할 수도 있고 용질이 완전히 증발하면 표면상에 이의 잔류가 생성될 수 있다. 잔류형성은 Physics Bubbles and phase change 에서 활성화되는 Constant pressure bubbles with vaporization, 및 Thermal bubbles with phase change 모델과 함께 시뮬레이션 되어야 한다. 잔류모델은 IRESID = 1로 지정하고 용질 스칼라 ns, RMXSC(ns)를 최대 packing 밀도를 정의함으로써 활성화된다. 일단 용질이 최대 packing 밀도까지 농축되면 더 이상의 농축은 고정(움직이지 않는)된 잔류를 초래한다. 하나 이상의 스칼라 용질이 존재하면 잔류는 모든 용질 전체 잔류를 기록한다.

Note: 용질농도는 Physics Scalars 로부터 FLOW-3D‘s Scalars 모델을 이용하여 입력된다.

The Non-Condensable Gas Model [비 응축 가스 모델]

Overview
The non-condensable gas model is built upon the two-fluid, liquid/vapor phase change model and includes the effects of a non-condensable gas present in the vapor space. The new model is designed to work only with the two-fluid phase change model because the spatial distribution of vapor and gas components is needed to predict the phase change behavior. By contrast, the one-fluid phase change model assumes spatially uniform pressure and temperature throughout the gas phase. The assumption of a uniform gas/vapor concentration in a two-component gas would rarely be valid. This model is the basis of work completed to simulate the ullage space of cryogenic tanks2, but it is applicable to any two-component gas problem.

FLOW-3D/MP Features List

FLOW-3D/MP Features

FLOW-3D/MP v6.1 은 FLOW-3D v11.1 솔버에 기초하여 물리 모델, 특징 및 그래픽 사용자 인터페이스가 동일합니다. FLOW-3D v11.1의 새로운 기능은 아래 파란색으로 표시되어 있으며 FLOW-3D/MP v6.1 에서 사용할 수 있습니다. 새로운 개발 기능에 대한 자세한 설명은 FLOW-3D v11.1에서 새로운 기능을 참조하십시오.

Meshing & Geometry

  • Structured finite difference/control volume meshes for fluid and thermal solutions
  • Finite element meshes in Cartesian and cylindrical coordinates for structural analysis
  • Multi-Block gridding with nested, linked, partially overlapping and conforming mesh blocks
  • Fractional areas/volumes (FAVOR™) for efficient & accurate geometry definition
  • Mesh quality checking
  • Basic Solids Modeler
  • Import CAD data
  • Import/export finite element meshes via Exodus-II file format
  • Grid & geometry independence
  • Cartesian or cylindrical coordinates
Flow Type Options
  • Internal, external & free-surface flows
  • 3D, 2D & 1D problems
  • Transient flows
  • Inviscid, viscous laminar & turbulent flows
  • Hybrid shallow water/3D flows
  • Non-inertial reference frame motion
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media
Physical Modeling Options
  • Fluid structure interaction
  • Thermally-induced stresses
  • Plastic deformation of solids
  • Granular flow
  • Moisture drying
  • Solid solute dissolution
  • Sediment transport and scour
  • Cavitation (potential, passive tracking, active tracking)
  • Phase change (liquid-vapor, liquid-solid)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Visco-elastic-plastic fluids
  • Elastic membranes & walls
  • Evaporation residue
  • Electro-mechanical effects
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties
  • Spray cooling
Flow Definition Options
  • General boundary conditions
    • Symmetry
    • Rigid and flexible walls
    • Continuative
    • Periodic
    • Specified pressure
    • Specified velocity
    • Outflow
    • Grid overlay
    • Hydrostatic pressure
    • Volume flow rate
    • Non-linear periodic and solitary surface waves
    • Rating curve and natural hydraulics
    • Wave absorbing layer
  • Restart from previous simulation
  • Continuation of a simulation
  • Overlay boundary conditions
  • Change mesh and modeling options
  • Change model parameters
Thermal Modeling Options
  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transfer
  • Distributed energy sources/sinks in fluids and solids
  • Radiation
  • Viscous heating
  • Orthotropic thermal conductivity
  • Thermally-induced stresses
Turbulence Models
  • RNG model
  • Two-equation k-epsilon model
  • Two-equation k-omega model
  • Large eddy simulation
Metal Casting Models
  • Thermal stress & deformations
  • Iron solidification
  • Sand core blowing
  • Sand core drying
  • Permeable molds
  • Solidification & melting
  • Solidification shrinkage with interdendritic feeding
  • Micro & macro porosity
  • Binary alloy segregation
  • Thermal die cycling
  • Surface oxide defects
  • Cavitation potential
  • Lost-foam casting
  • Semi-solid material
  • Core gas generation
  • Back pressure & vents
  • Shot sleeves
  • PQ2 diagram
  • Squeeze pins
  • Filters
  • Air entrainment
  • Temperature-dependent material properties
  • Cooling channels
  • Fluid/wall contact time
Numerical Modeling Options
  • TruVOF Volume-of-Fluid (VOF) method for fluid interfaces
  • First and second order advection
  • Sharp and diffuse interface tracking
  • Implicit & explicit numerical methods
  • GMRES, point and line relaxation pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution
Fluid Modeling Options
  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter
Shallow Flow Models
  • General topography
  • Raster data interface
  • Subcomponent-specific surface roughness
  • Wind shear
  • Ground roughness effects
  • Laminar & turbulent flow
  • Sediment transport and scour
  • Surface tension
  • Heat transfer
  • Wetting & drying
Advanced Physical Models
  • General Moving Object model with 6 DOF–prescribed and fully-coupled motion
  • Rotating/spinning objects
  • Collision model
  • Tethered moving objects (springs, ropes, mooring lines)
  • Flexing membranes and walls
  • Porosity
  • Finite element based elastic-plastic deformation
  • Finite element based thermal stress evolution due to thermal changes in a solidifying fluid
  • Combusting solid components
Chemistry Models
  • Stiff equation solver for chemical rate equations
  • Stationary or advected species
Porous Media Models
  • Saturated and unsaturated flow
  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Heat transfer in porous media
  • Van Genunchten model for unsaturated flow
Discrete Particle Models
  • Massless marker particles
  • Mass particles of variable size/mass
  • Linear & quadratic fluid-dynamic drag
  • Monte-Carlo diffusion
  • Particle-Fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Charged particles
  • Probe particles
Two-Phase & Two-Component Models
  • Liquid/liquid & gas/liquid interfaces
  • Variable density mixtures
  • Compressible fluid with a dispersed incompressible component
  • Drift flux
  • Two-component, vapor/non-condensable gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport
  • Homogeneous bubbles
  • Super-cooling
Coupling with Other Programs
  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Direct interfaces with EnSight®, FieldView® & Tecplot® visualization software
  • Finite element solution import/export via Exodus-II file format
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Solid Properties Materials Database
Data Processing Options
  • State-of-the-art post-processing tool, FlowSight™
  • Batch post-processing
  • Report generation
  • Automatic or custom results analysis
  • High-quality OpenGL-based graphics
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving and stationary probes
  • Measurement baffles
  • Arbitrary sampling volumes
  • Force & moment output
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • Flow tracers
User Conveniences
  • Active simulation control (based on measurement of probes)
  • Mesh generators
  • Mesh quality checking
  • Tabular time-dependent input using external files
  • Automatic time-step control for accuracy & stability
  • Automatic convergence control
  • Mentor help to optimize efficiency
  • Change simulation parameters while solver runs
  • Launch and manage multiple simulations
  • Automatic simulation termination based on user-defined criteria
  • Run simulation on remote servers using remote solving
Multi-Processor Computing

FLOW-3D Features

The features in blue are newly-released in FLOW-3D v12.0.

Meshing & Geometry

  • Structured finite difference/control volume meshes for fluid and thermal solutions
  • Finite element meshes in Cartesian and cylindrical coordinates for structural analysis
  • Multi-Block gridding with nested, linked, partially overlapping and conforming mesh blocks
  • Conforming meshes extended to arbitrary shapes
  • Fractional areas/volumes (FAVOR™) for efficient & accurate geometry definition
  • Closing gaps in geometry
  • Mesh quality checking
  • Basic Solids Modeler
  • Import CAD data
  • Import/export finite element meshes via Exodus-II file format
  • Grid & geometry independence
  • Cartesian or cylindrical coordinates

Flow Type Options

  • Internal, external & free-surface flows
  • 3D, 2D & 1D problems
  • Transient flows
  • Inviscid, viscous laminar & turbulent flows
  • Hybrid shallow water/3D flows
  • Non-inertial reference frame motion
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media

Physical Modeling Options

  • Fluid structure interaction
  • Thermally-induced stresses
  • Plastic deformation of solids
  • Granular flow
  • Moisture drying
  • Solid solute dissolution
  • Sediment transport and scour
  • Sludge settling
  • Cavitation (potential, passive tracking, active tracking)
  • Phase change (liquid-vapor, liquid-solid)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Visco-elastic-plastic fluids
  • Elastic membranes & walls
  • Evaporation residue
  • Electro-mechanical effects
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties
  • Spray cooling

Flow Definition Options

  • General boundary conditions
    • Symmetry
    • Rigid and flexible walls
    • Continuative
    • Periodic
    • Specified pressure
    • Specified velocity
    • Outflow
    • Outflow pressure
    • Outflow boundaries with wave absorbing layers
    • Grid overlay
    • Hydrostatic pressure
    • Volume flow rate
    • Non-linear periodic and solitary surface waves
    • Rating curve and natural hydraulics
    • Wave absorbing layer
  • Restart from previous simulation
  • Continuation of a simulation
  • Overlay boundary conditions
  • Change mesh and modeling options
  • Change model parameters

Thermal Modeling Options

  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transfer
  • Distributed energy sources/sinks in fluids and solids
  • Radiation
  • Viscous heating
  • Orthotropic thermal conductivity
  • Thermally-induced stresses

Numerical Modeling Options

  • TruVOF Volume-of-Fluid (VOF) method for fluid interfaces
  • Steady state accelerator for free-surface flows
  • First and second order advection
  • Sharp and diffuse interface tracking
  • Implicit & explicit numerical methods
  • Immersed boundary method
  • GMRES, point and line relaxation pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution

Fluid Modeling Options

  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter

Shallow Flow Models

  • General topography
  • Raster data interface
  • Subcomponent-specific surface roughness
  • Wind shear
  • Ground roughness effects
  • Manning’s roughness
  • Laminar & turbulent flow
  • Sediment transport and scour
  • Surface tension
  • Heat transfer
  • Wetting & drying

Turbulence Models

  • RNG model
  • Two-equation k-epsilon model
  • Two-equation k-omega model
  • Large eddy simulation

Advanced Physical Models

  • General Moving Object model with 6 DOF–prescribed and fully-coupled motion
  • Rotating/spinning objects
  • Collision model
  • Tethered moving objects (springs, ropes, breaking mooring lines)
  • Flexing membranes and walls
  • Porosity
  • Finite element based elastic-plastic deformation
  • Finite element based thermal stress evolution due to thermal changes in a solidifying fluid
  • Combusting solid components

Chemistry Models

  • Stiff equation solver for chemical rate equations
  • Stationary or advected species

Porous Media Models

  • Saturated and unsaturated flow
  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Heat transfer in porous media
  • Van Genunchten model for unsaturated flow

Discrete Particle Models

  • Massless marker particles
  • Multi-species material particles of variable size and mass
  • Solid, fluid, gas particles
  • Void particles tracking collapsed void regions
  • Non-linear fluid-dynamic drag
  • Added mass effects
  • Monte-Carlo diffusion
  • Particle-fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Initial particle blocks
  • Heat transfer with fluid
  • Evaporation and condensation
  • Solidification and melting
  • Coulomb and dielectric forces
  • Probe particles

Two-Phase & Two-Component Models

  • Liquid/liquid & gas/liquid interfaces
  • Variable density mixtures
  • Compressible fluid with a dispersed incompressible component
  • Drift flux with dynamic droplet size
  • Two-component, vapor/non-condensable gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport
  • Homogeneous bubbles
  • Super-cooling
  • Two-field temperature

Coupling with Other Programs

  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Direct interfaces with EnSight®, FieldView® & Tecplot® visualization software
  • Finite element solution import/export via Exodus-II file format
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Solid Properties Materials Database

Data Processing Options

  • State-of-the-art post-processing tool, FlowSight™
  • Batch post-processing
  • Report generation
  • Automatic or custom results analysis
  • High-quality OpenGL-based graphics
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving and stationary probes
  • Visualization of non-inertial reference frame motion
  • Measurement baffles
  • Arbitrary sampling volumes
  • Force & moment output
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • Flow tracers

User Conveniences

  • Active simulation control (based on measurement of probes)
  • Mesh generators
  • Mesh quality checking
  • Tabular time-dependent input using external files
  • Automatic time-step control for accuracy & stability
  • Automatic convergence control
  • Mentor help to optimize efficiency
  • Units on all variables
  • Custom units
  • Component transformations
  • Moving particle sources
  • Change simulation parameters while solver runs
  • Launch and manage multiple simulations
  • Automatic simulation termination based on user-defined criteria
  • Run simulation on remote servers using remote solving
  • Copy boundary conditions to other mesh blocks

Multi-Processor Computing

  • Shared memory computers
  • Distributed memory clusters

FlowSight

  • Particle visualization
  • Velocity vector fields
  • Streamlines & pathlines
  • Iso-surfaces
  • 2D, 3D and arbitrary clips
  • Volume render
  • Probe data
  • History data
  • Vortex cores
  • Link multiple results
  • Multiple data views
  • Non-inertial reference frame
  • Spline clip