Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).

Laser powder bed fusion of 17-4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties

17-4 PH 스테인리스강의 레이저 분말 베드 융합: 열처리가 미세조직의 진화 및 기계적 특성에 미치는 영향에 대한 비교 연구

panelS.Saboonia, A.Chaboka, S.Fenga,e, H.Blaauwb, T.C.Pijperb,c, H.J.Yangd, Y.T.Peia
aDepartment of Advanced Production Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
bPhilips Personal Care, Oliemolenstraat 5, 9203 ZN, Drachten, The Netherlands
cInnovation Cluster Drachten, Nipkowlaan 5, 9207 JA, Drachten, The Netherlands
dShi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
eSchool of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China

Abstract

17-4 PH (precipitation hardening) stainless steel is commonly used for the fabrication of complicated molds with conformal cooling channels using laser powder bed fusion process (L-PBF). However, their microstructure in the as-printed condition varies notably with the chemical composition of the feedstock powder, resulting in different age-hardening behavior. In the present investigation, 17-4 PH stainless steel components were fabricated by L-PBF from two different feedstock powders, and subsequently subjected to different combinations of post-process heat treatments. It was observed that the microstructure in as-printed conditions could be almost fully martensitic or ferritic, depending on the ratio of Creq/Nieq of the feedstock powder. Aging treatment at 480 °C improved the yield and ultimate tensile strengths of the as-printed components. However, specimens with martensitic structures exhibited accelerated age-hardening response compared with the ferritic specimens due to the higher lattice distortion and dislocation accumulation, resulting in the “dislocation pipe diffusion mechanism”. It was also found that the martensitic structures were highly susceptible to the formation of reverted austenite during direct aging treatment, where 19.5% of austenite phase appeared in the microstructure after 15 h of direct aging. Higher fractions of reverted austenite activates the transformation induced plasticity and improves the ductility of heat treated specimens. The results of the present study can be used to tailor the microstructure of the L-PBF printed 17-4 PH stainless steel by post-process heat treatments to achieve a good combination of mechanical properties.

17-4 PH(석출 경화) 스테인리스강은 레이저 분말 베드 융합 공정(L-PBF)을 사용하여 등각 냉각 채널이 있는 복잡한 금형 제작에 일반적으로 사용됩니다. 그러나 인쇄된 상태의 미세 구조는 공급원료 분말의 화학적 조성에 따라 크게 달라지므로 시효 경화 거동이 다릅니다.

현재 조사에서 17-4 PH 스테인리스강 구성요소는 L-PBF에 의해 두 가지 다른 공급원료 분말로 제조되었으며, 이후에 다양한 조합의 후처리 열처리를 거쳤습니다. 인쇄된 상태의 미세구조는 공급원료 분말의 Creq/Nieq 비율에 따라 거의 완전히 마르텐사이트 또는 페라이트인 것으로 관찰되었습니다.

480 °C에서 노화 처리는 인쇄된 구성 요소의 수율과 극한 인장 강도를 개선했습니다. 그러나 마텐자이트 구조의 시편은 격자 변형 및 전위 축적이 높아 페라이트 시편에 비해 시효 경화 반응이 가속화되어 “전위 파이프 확산 메커니즘”이 발생합니다.

또한 마르텐사이트 구조는 직접 시효 처리 중에 복귀된 오스테나이트의 형성에 매우 민감한 것으로 밝혀졌으며, 여기서 15시간의 직접 시효 후 미세 조직에 19.5%의 오스테나이트 상이 나타났습니다.

복귀된 오스테나이트의 비율이 높을수록 변형 유도 가소성이 활성화되고 열처리된 시편의 연성이 향상됩니다. 본 연구의 결과는 기계적 특성의 우수한 조합을 달성하기 위해 후처리 열처리를 통해 L-PBF로 인쇄된 17-4 PH 스테인리스강의 미세 구조를 조정하는 데 사용할 수 있습니다.

Keywords

Laser powder bed fusion17-4 PH stainless steelPost-process heat treatmentAge hardeningReverted austenite

Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).
Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).
Fig. 2. Optical (a, b) and TEM (c) micrographs of the wrought 17-4 PH stainless steel.
Fig. 2. Optical (a, b) and TEM (c) micrographs of the wrought 17-4 PH stainless steel.
Fig. 3. EBSD micrographs of the as-printed 17-4 PH steel fabricated with “powder A” (a, b) and “powder B” (c, d) on two different cross sections: (a, c) perpendicular to the building direction, and (b, d) parallel to the building direction.
Fig. 3. EBSD micrographs of the as-printed 17-4 PH steel fabricated with “powder A” (a, b) and “powder B” (c, d) on two different cross sections: (a, c) perpendicular to the building direction, and (b, d) parallel to the building direction.
Fig. 4. Microstructure of the as-printed 17-4 PH stainless steel fabricated with “powder A” (a) and “powder B” (b).
Fig. 4. Microstructure of the as-printed 17-4 PH stainless steel fabricated with “powder A” (a) and “powder B” (b).
Fig. 5. Simulated temperature history of the probes located at the cross section of the L-PBF 17-4 PH steel sample.
Fig. 5. Simulated temperature history of the probes located at the cross section of the L-PBF 17-4 PH steel sample.
Fig. 6. Dependency of the volume fraction of delta ferrite in the final microstructure of L-PBF printed 17-4 PH steel as a function of Creq/Nieq.
Fig. 6. Dependency of the volume fraction of delta ferrite in the final microstructure of L-PBF printed 17-4 PH steel as a function of Creq/Nieq.
Fig. 7. IQ + IPF (left column), parent austenite grain maps (middle column) and phase maps (right column, green color = martensite, red color = austenite) of the post-process heat treated 17-4 PH stainless steel: (a-c) direct aged, (d-f) HIP + aging, (g-i) SA + Aging, and (j-l) HIP + SA + aging (all sample were printed with “powder A”).
Fig. 7. IQ + IPF (left column), parent austenite grain maps (middle column) and phase maps (right column, green color = martensite, red color = austenite) of the post-process heat treated 17-4 PH stainless steel: (a-c) direct aged, (d-f) HIP + aging, (g-i) SA + Aging, and (j-l) HIP + SA + aging (all sample were printed with “powder A”).
Fig. 8. TEM micrographs of the post process heat treated 17-4 PH stainless steel: (a) direct aging and (b) HIP + aging (printed with “powder A”).
Fig. 8. TEM micrographs of the post process heat treated 17-4 PH stainless steel: (a) direct aging and (b) HIP + aging (printed with “powder A”).
Fig. 9. XRD patterns of the post-process heat treated 17-4 PH stainless steel printed with “powder A”.
Fig. 9. XRD patterns of the post-process heat treated 17-4 PH stainless steel printed with “powder A”.
Fig. 10. (a) Volume fraction of reverted austenite as a function of aging time for “direct aging” condition, (b) phase map (green color = martensite, red color = austenite) of the 15 h direct aged specimen printed with “powder A”.
Fig. 10. (a) Volume fraction of reverted austenite as a function of aging time for “direct aging” condition, (b) phase map (green color = martensite, red color = austenite) of the 15 h direct aged specimen printed with “powder A”.
Fig. 11. Microhardness variations of the “direct aged” specimens as a function of aging time at 480 °C.
Fig. 11. Microhardness variations of the “direct aged” specimens as a function of aging time at 480 °C.
Fig. 12. Kernel average misorientation graphs of the as-printed 17-4 PH steel with (a) martensitic structure (printed with “powder A”) and (b) ferritic structure (printed with “powder b”).
Fig. 12. Kernel average misorientation graphs of the as-printed 17-4 PH steel with (a) martensitic structure (printed with “powder A”) and (b) ferritic structure (printed with “powder b”).
Fig. 13. Typical stress-strain curves (a) along with the yield and ultimate tensile strengths (b) and elongation (c) of the as-printed and post-process heat treated 17-4 PH stainless steel (all sample are fabricated with “powder A”).
Fig. 13. Typical stress-strain curves (a) along with the yield and ultimate tensile strengths (b) and elongation (c) of the as-printed and post-process heat treated 17-4 PH stainless steel (all sample are fabricated with “powder A”).
Fig. 14. (a) IQ + IPF and (b) phase map (green color = martensite, red color = austenite) of the “direct aged” specimen after tensile test at a location nearby the rupture point (tension direction from left to right).
Fig. 14. (a) IQ + IPF and (b) phase map (green color = martensite, red color = austenite) of the “direct aged” specimen after tensile test at a location nearby the rupture point (tension direction from left to right).

References

[1]

P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jagle

Steels in additive manufacturing: A review of their microstructure and properties

Materials Science and Engineering: A, 772 (2020), Article 138633

ArticleDownload PDFView Record in ScopusGoogle Scholar

[2]

Y. Sun, R.J. Hebert, M. Aindow

Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel

Mater. Des., 156 (2018), pp. 429-440

ArticleDownload PDFView Record in ScopusGoogle Scholar

[3]

Zemin Wang, Xulei Fang, Hui Li, Wenqing Liu

Atom Probe Tomographic Characterization of nanoscale cu-rich Precipitates in 17-4 precipitate hardened stainless steel tempered at different temperatures

Microsc. Microanal., 23 (2017), pp. 340-349

View Record in ScopusGoogle Scholar

[4]

C.N. Hsiao, C.S. Chiou, J.R. Yang

Aging reactions in a 17-4 PH stainless steel

Mater. Chem. Phys., 74 (2002), pp. 134-142

ArticleDownload PDFView Record in ScopusGoogle Scholar

[5]

Hamidreza Riazi, Fakhreddin Ashrafizadeh, Sayed Rahman Hosseini, Reza Ghomashchi

Influence of simultaneous aging and plasma nitriding on fatigue performance of 17-4 PH stainless steel

Mater. Sci. Eng. A, 703 (2017), pp. 262-269

ArticleDownload PDFView Record in ScopusGoogle Scholar

[6]

M.S. Shinde, K.M. Ashtankar

Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes

Adv. Mech. Eng., 9 (2017), pp. 1-14

View Record in ScopusGoogle Scholar

[7]

A. Armillotta, R. Baraggi, S. Fasoli

SLM tooling for die casting with conformal cooling channels

Int. J. Adv. Manuf. Technol., 71 (2014), pp. 573-583

CrossRefView Record in ScopusGoogle Scholar

[8]

Amar M. Kamat, Yutao Pei

An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion

Additive Manufacturing, 29 (2019), Article 100796

ArticleDownload PDFView Record in ScopusGoogle Scholar

[9]

K.S. Prakash, T. Nancharaih, V.V. Subba Rao

Additive Manufacturing Techniques in Manufacturing – An Overview

Materials Today: Proceedings, 5 (2018), pp. 3873-3882

ArticleDownload PDFView Record in ScopusGoogle Scholar

[10]

R. Singh, A. Gupta, O. Tripathi, S. Srivastava, B. Singh, A. Awasthi, S.K. Rajput, P. Sonia, P. Singhal, K.K. Saxena

Powder bed fusion process in additive manufacturing: An overview

Materials Today: Proceedings, 26 (2020), pp. 3058-3070

ArticleDownload PDFGoogle Scholar

[11]

L. Zai, Ch Zhang, Y. Wang, W. Guo, D. Wellmann, X. Tong, Y. Tian

Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review

Metals, 10 (2020), p. 255

CrossRefView Record in ScopusGoogle Scholar

[12]

H. Khalid Rafi, Deepankar Pal, Nachiket Patil, Thomas L. Starr, Brent E. Stucker

Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

J. Mater. Eng. Perf, 23 (2014), pp. 4421-4428

Google Scholar

[13]

A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian

Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel

Int. J. Fatigue, 94 (2017), pp. 218-235

ArticleDownload PDFView Record in ScopusGoogle Scholar

[14]

M. Alnajjar, Frederic Christien, Cedric Bosch, Krzysztof Wolski

A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17–4 PH stainless steel

Materials Science and Engineering: A, 785 (2020), Article 139363

ArticleDownload PDFView Record in ScopusGoogle Scholar

[15]

M. Alnajjar, F. Christien, K. Wolski, C. Bosch

Evidence of austenite by-passing in a stainless steel obtained from laser melting additive manufacturing

Addit. Manuf, 25 (2019), pp. 187-195

ArticleDownload PDFView Record in ScopusGoogle Scholar

[16]

P.D. Nezhadfar, K. Anderson-Wedge, S.R. Daniewicz, N. Phan, Sh Shao, N. Shamsaei

Improved high cycle fatigue performance of additively manufactured 17-4 PH stainless steel via in-process refining micro-/defect-structure

Additive Manufacturing, 36 (2020), Article 101604

ArticleDownload PDFView Record in ScopusGoogle Scholar

[17]

S. Feng, A.M. Kamat, S. Sabooni, Y. Pei

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

Virtual and Physical Prototyping, 16 (2021), pp. S66-S84, 10.1080/17452759.2021.1896970

CrossRefView Record in ScopusGoogle Scholar

[18]

W. Liu, J. Ma, M. Mazar Atabaki, R. Pillai, B. Kumar, U. Vasudevan, H. Sreshta, R. Kovacevic

Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

Lasers in Manufacturing and Materials Processing, 2 (2015), pp. 74-90

CrossRefView Record in ScopusGoogle Scholar

[19]

J.C. Lippold, D.J. Kotecki

Welding metallurgy and weldability of stainless steels

Wiley (2005)

Google Scholar

[20]

M. Shirdel, H. Mirzadeh, M.H. Parsa

Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

Mater. Charact., 103 (2015), pp. 150-161

ArticleDownload PDFView Record in ScopusGoogle Scholar

[21]

S. Kou

Solidification and liquation cracking issues in welding

JOM, 55 (2003), pp. 37-42

CrossRefView Record in ScopusGoogle Scholar

[22]

T.J. Lienert, J.C. Lippold

Improved Weldability Diagram for Pulsed Laser Welded Austenitic Stainless Steels

Sci. Technol. Weld. Join., 8 (2003), pp. 1-9

CrossRefView Record in ScopusGoogle Scholar

[23]

Ch Qiu, M. Al Kindi, A.S. Aladawi, I. Al Hatmi

A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel

Sci. Rep., 8 (2018), p. 7785

View Record in ScopusGoogle Scholar

[24]

P.A. Hooper

Melt pool temperature and cooling rates in laser powder bed fusion

Addit. Manuf, 22 (2018), pp. 548-559

ArticleDownload PDFView Record in ScopusGoogle Scholar

[25]

T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. Ded, W. Zhang

Additive manufacturing of metallic components – Process, structure and properties

Prog. Mater. Sci., 92 (2018), pp. 112-224

ArticleDownload PDFView Record in ScopusGoogle Scholar

[26]

S. Vunnam, A. Saboo, Ch Sudbrack, T.L. Starr

Effect of powder chemical composition on the as-built microstructure of 17- 4 PH stainless steel processed by selective laser melting

Additive Manufacturing, 30 (2019), Article 100876

ArticleDownload PDFView Record in ScopusGoogle Scholar

[27]

L. Couturier, F. De Geuser, M. Descoins, A. Deschamps

Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment

Mater. Des., 107 (2016), pp. 416-425

ArticleDownload PDFView Record in ScopusGoogle Scholar

[28]

C. Cayron, B. Artaud, L. Briottet

Reconstruction of parent grains from EBSD data

Mater. Charact., 57 (2006), pp. 386-401

ArticleDownload PDFView Record in ScopusGoogle Scholar

[29]

R. Bhambroo, S. Roychowdhury, V. Kain, V.S. Raja

Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainless steel

Mater. Sci. Eng. A, 568 (2013), pp. 127-133

ArticleDownload PDFView Record in ScopusGoogle Scholar

[30]

T. LeBrun, T. Nakamoto, K. Horikawa, H. Kobayashi

Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel

Mater. Des., 81 (2015), pp. 44-53

ArticleDownload PDFView Record in ScopusGoogle Scholar

[31]

T.H. Hsu, Y.J. Chang, C.Y. Huang, H.W. Yen, C.P. Chen, K.K. Jen, A.Ch Yeh

Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel

J. Alloys. Compd., 803 (2019), pp. 30-41

ArticleDownload PDFView Record in ScopusGoogle Scholar

[32]

Li Wang, Chaofang Dong, Cheng Man, Decheng Kong, Kui Xiao, Xiaogang Li

Enhancing the corrosion resistance of selective laser melted 15-5 PH martensite stainless steel via heat treatment

Corrosion Science, 166 (2020), Article 108427

ArticleDownload PDFView Record in ScopusGoogle Scholar

[33]

H. Kimura

Precipitation Behavior and 2-step Aging of 17-4PH Stainless Steel

Tetsu-to-Hagane, 86 (2000), pp. 343-348

CrossRefView Record in ScopusGoogle Scholar

[34]

G. Yeli, M.A. Auger, K. Wilford, G.D.W. Smith, P.A.J. Bagot, M.P. Moody

Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties

Acta. Mater., 125 (2017), pp. 38-49

ArticleDownload PDFView Record in ScopusGoogle Scholar

[35]

J.B. Ferguson, Benjamin F. Schultz, Dev Venugopalan1, Hugo F. Lopez, Pradeep K. Rohatgi, Kyu Cho, Chang-Soo Kim

On the Superposition of Strengthening Mechanisms in Dispersion Strengthened Alloys and Metal-Matrix Nanocomposites: Considerations of Stress and Energy

Met. Mater. Int., 20 (2014), pp. 375-388

CrossRefView Record in ScopusGoogle Scholar

[36]

H. Mirzadeh, A. Najafizadeh

Aging kinetics of 17-4 PH stainless steel

Mater. Chem. Phys., 116 (2009), pp. 119-124

ArticleDownload PDFView Record in ScopusGoogle Scholar

[37]

L.E. Murr, E. Martinez, J. Hernandez, Sh Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo

Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting

J. Mater. Res. Technol, 1 (2012), pp. 167-177

ArticleDownload PDFView Record in ScopusGoogle Scholar

[38]

Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, D. Raabe

Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

Mater. Sci. Eng. A, 636 (2015), pp. 551-564

ArticleDownload PDFView Record in ScopusGoogle Scholar

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy

전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.

  • 공해에서 컨테이너 내부의 연료 또는화물 슬로싱 / Fuel or cargo sloshing inside containers on the high seas
  • 해양 플랫폼에 대한 파도 효과 / Wave effects on offshore platforms
  • 6 자유도 모션을 받는 분리 장치의 성능 최적화 / Performance optimization for separation devices undergoing 6 DOF motion
  • 파동 에너지 포착 장치 / Design of devices to capture energy from waves

Energy Case Studies

천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.

Tailing Breach Simulation – CFD Analysis with FLOW-3D

점성이 높은 유체, 비 뉴턴 흐름, 슬러리 또는 심지어 세분화 된 흐름의 형태를 취할 수있는 많은 채광 응용 프로그램의 잔여 물인 테일링은 악명 높은 시뮬레이션 전제를 제공합니다. FLOW-3D  는 비 뉴턴 유체, 슬러리 및 입상 흐름에 대한 특수 모델을 포함하여 이러한 분석을 수행하는 데 필요한 모든 도구를 제공합니다. FLOW-3D 의 자유 표면 유동 모델링 기능 과 결합되어  이러한 어렵고 환경 적으로 민감한 문제에 대한 탁월한 모델링 솔루션을 제공합니다.

관련 응용 분야에는 바람 강제 분석에 따른 광석 비축 더미 먼지 드리프트가 포함되며, 여기서 FLOW-3D 의 드리프트 플럭스 모델을 통해 엔지니어는 광석 침착 및 유입 패턴과 개선 솔루션의 효과를 연구 할 수 있습니다.

액화와 기계적 방해가 물과 같은 뉴턴 흐름과는 대조적으로 입자 흐름의 매우 독특한 속성 인 결국 저절로 멈추는 위반의 동적 특징의 일부라는 점에 유의하십시오.

오일 및 가스 분리기

FLOW-3D  는 기름과 물과 같은 혼합 불가능한 유체를 모델링 할 수 있으며 개방 된 환경 (주변 공기)과 관련된 구성 요소 간의 뚜렷한 인터페이스를 정확하게 추적 할 수 있습니다. 유체는 전체 도메인에 영향을 미치는 역학으로 인해 자유롭게 혼합 될 수 있습니다. 시간이 지남에 따라 유체는 연속 상과 분산 상 간의 드리프트 관계에 따라 다시 분리됩니다. 중력 분리기의 성능은 CFD 모델링을 통해 향상 될 수 있습니다.

  • 기체 및 액체 흐름의 균일성을 개선하고 파도에 의한 슬로싱으로 인한 오일과 물의 혼합을 방지하기 위해 용기 입구 구성을 개발합니다.
  • 유압 효율 및 분리 성능에 대한 내부 장비의 영향을 결정합니다.
  • 작동 조건 변화의 영향 측정
  • 소규모 현상 (다상 흐름, 방울, 입자, 기포)을 정확하게 모델링

생산 파이프 | Production Pipes

생산에 사용되는 공정 파이프의 청소 과정에서 유체가 위로 흘러도 고밀도 입자가 침전될 수 있습니다. 침전 입자를 포착하도록 장치를 설계 할 수 있습니다. 파이프 중앙에 있는 “버킷”이 그러한 잠재적 장치중 하나 입니다. 흐름 변위로 인해 버킷 외부의 상류 속도는 고밀도 입자에 대한 침전 속도보다 높으며 버킷 내부에 모여 있습니다. 표시된 디자인에서 버킷 주변의 상향 유체 속도는 입자 안정화 속도보다 높습니다. 이로 인해 입자가 버킷과 파이프 벽 사이의 틈새를 통해 빠져 나갈 수 없습니다. 따라서 시뮬레이션된 입자는 버킷을 통과하여 아래에 정착하지 않습니다.

파동 에너지 장치 모델링 | Modeling Wave Energy Devices

포인트 흡수 장치 | Point Absorber Devices

이 시뮬레이션은 상단에 부력이있는 구형 구조가있는 점 흡수 장치를 보여 주며, 들어오는 파도의 볏과 골과 함께 위아래로 이동합니다. FLOW-3D 의 움직이는 물체 모델은 x 또는 y 방향으로의 움직임을 제한하면서 z 방향으로 결합 된 움직임을 허용하는 데 사용됩니다. 진폭 5m, 파장 100m의 스톡 스파를 사용했다. RNG 모델은 파도가 점 흡수 장치와 상호 작용할 때 발생하는 난류를 포착하는 데 사용되었습니다. 예상대로 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 플롯은 난류로 인해 장치 근처의 복잡한 속도 장의 진화로 인해 질량 중심의 불규칙한 순환 운동을 보여줍니다.

다중 플랩, 하단 경첩 파동 에너지 변환기 | Multi-Flap, Bottom-Hinged Wave Energy Converter

진동하는 플랩은 바다의 파도에서 에너지를 추출하여 기계 에너지로 변환합니다. Arm은 물결에 반응하여 피벗된 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 다중 플랩 파동 에너지 변환기를 만들 수 있습니다. 아래 상단에 표시된 CFD 시뮬레이션에서 3 개의 플랩 배열이 시뮬레이션됩니다. 모든 플랩은 바닥에 경첩이 달려 있으며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 30m 깊이에서 10 초의 주파수로 4m 진폭파에서 작동합니다. 시뮬레이션은 중앙 평면을 따라 복잡한 속도 등 가면을 보여줍니다. 이는 한 플랩이 어레이 내의 다른 플랩에 미치는 영향을 연구하는 데 중요합니다. 3 개의 플랩이 유사한 동적 동작으로 시작하는 동안 플랩의 상호 작용 효과는 곧 동작을 위상에서 벗어납니다. 유사한 플랩 에너지 변환기가 오른쪽 하단에 표시됩니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 물에 완전히 잠 깁니다. 이러한 에너지 변환기를 Surface Piercing 플랩 에너지 변환기라고합니다. 이 두 시뮬레이션 예제는 모두 미네르바 역학 .

진동 수주 | Oscillating Water Column

진동하는 수주는 부분적으로 잠긴 중공 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수면 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수 있는 터빈을 통해 대기로 흐르게 됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

아래의 CFD 시뮬레이션은 진동하는 수주를 보여줍니다. FLOW-3D에서 포착한 물리학을 강조하기 위해 중공 구조에서 물기둥이 상승 및 하강하는 부분만 모델링  합니다. 시뮬레이션은 다른 파형 생성 선택을 제외하고 유사한 결과를 전달합니다. 아래의 시뮬레이션은 웨이브 유형 경계 조건을 사용하는 반면 그 아래의 시뮬레이션은  움직이는 물체 모델  을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

사례 연구

eadership-in-energy-and-environmental-design

Architects Achieve LEED Certification in Sustainable Buildings

LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다.

FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.

Comparing HVAC System Designs

최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.

이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.

Modeling velocity of debris types

Debris Transport in a Nuclear Reactor Containment Building

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

관련 기술자료


Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).

그리스 수로의 작은 수력 전위를 활용하는 관형 아르키메데스 스크류 터빈의 CFD 시뮬레이션

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses Alkistis Stergiopoulou1, Vassilios Stergiopoulos21Institut für Wasserwirtschaft, ...
더 보기
Fig. 1. Nysted Offshore Wind Farm

FLOW-3D 모형을 이용한 해상풍력기초 세굴현상 분석

박영진1, 김태원2*1 서일대학교 토목공학과, 2 (주)지티이 Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode Abstract 국내․외에서 다양한 ...
더 보기
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).

Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey Abstract: 차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 ...
더 보기
Figure 6. Scour depth (in negative value) at different views around pier

Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software

Flow-3D 소프트웨어를 이용한 원형 교각 주변 지역 scour의 3 차원 수치 시뮬레이션 To cite this article: Halah Kais Jalal and ...
더 보기
Abb. 3 Detail des Rechens am Vorversuch zum Seilrechen – Blick in Fließrichtung

Implementation of an angled trash rack in the 3D-numerical simulation with FLOW-3D

Abstract Sebastian Krzyzagorski · Roman Gabl · Jakob Seibl · Heidi Böttcher · Markus AuflegerOnline publiziert: 17. Februar 2016© Die ...
더 보기
Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

Innovative Die Material and Lubrication Strategies for Clean and Energy Conserving Forging Technologies

청정 및 에너지 절약 단조 기술을 위한 혁신적인 다이 재료 및 윤활 전략 이 최종 기술 보고서에는 수상 번호 DE-FC07-01ID14206에 ...
더 보기
(a) Moving Reference Frame

Study on Swirl and Cross Flow of 3D-Printed Rotational Mixing Vane in 2×3 Subchannel

A thesis/dissertationsubmitted to the Graduate School of UNISTin partial fulfillment of therequirements for the degree ofMaster of ScienceHaneol Park07/09/2019Approved by_________________________AdvisorIn ...
더 보기
Figure 8 Evaluation test of thermal sprayed coatings

Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines

고효율 가스 터빈용 신소재 및 제조 기술 개발 Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4 (December 2015) 가스 ...
더 보기
Figure 2. Diagram. Schematic design of a living snow fence. Source: Wyatt et al., 2012b

Design of Living Barriers to Reduce the Impacts of Snowdrifts on Illinois Freeways

눈사태가 일리노이 고속도로에 미치는 영향을 줄이기 위한 생활장벽 설계 John Petrie, et al. (2020) 일리노이 교통 센터 시리즈 번호 20-019, 연구 ...
더 보기
aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics 우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 ...
더 보기

지속 가능한 건축물 LEED 인증 획득한 건축사례

USGBC LEED4.1

LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다. LEED 자발적 참여는 리더십, 혁신, 환경 보호 및 사회적 책임을 보여 줍니다. LEED는 건물 소유자와 운영자에게 건물의 성능과 수익에 즉시 영향을 미치는데 필요한 도구를 제공하는 동시에 건물 거주자에게 건강한 실내 공간을 제공합니다.

FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.

The model has been easily created using Google SketchUp® and exported directly to FLOW-3D in STL format. The STL model was imported as STL baffles in FLOW-3D.

외부 에너지 시뮬레이션 소프트웨어를 통해 공간 및 열 하중(또는 손실)의 초기 조건을 파악했습니다. 이 소프트웨어는 태양열 복사, 열 관성, 단열, 내부 부하, 단열, 유리 및 건물의 열 동작을 정의하는 기타 모든 매개 변수를 고려합니다. 열 하중은 FLOW-3D에 포함되어 있어 CFD시뮬레이션이 수행될 때 최종 온도 분포를 제공합니다.

<좌측>건물 내부의 공기 흐름이 간소화됩니다.     <우측>건물 내부 온도 분포

왼쪽 그림에서 2개의 열 굴뚝은 바람이 전혀 없는 상태에서도 실외 공기 유입을 유발합니다. 환기 효율, 시간당 공기 변화, 국소 난류, 공기 잔류 시간은 설계 프로세스에서 검사할 수 있는 변수 중 일부입니다. 오른쪽 그림에서 FLOW-3D는 건물 내부의 온도 분포를 제공하여 설계 과정에서 열적 쾌적성 평가를 수행할 수 있도록 합니다. 그릴 크기는 모든 공간에서 원하는 쾌적한 온도를 얻을 수 있도록 조정할 수 있습니다.

외부 공기 온도와 기압은 경계 조건(흡입 및 배출 공기 그릴)에서 설정되었습니다. 나머지는 건물 내부에서 상세한 공기 이동을 분석한 것입니다. 시뮬레이션은 에너지가 정상 상태 조건이 달성될 때까지 수행되었다.

건물 내 공기를 올바르게 분배하고 적절한 쾌적한 온도를 확보하기 위해 건물 구조와 그릴 치수를 조정해야 했습니다. 이 과정을 반복한 후 모델을 검증하여 LEED 인증 조건을 충족한 사례입니다.