The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션

ZhenyanXiaaYangZhaoaZhenYangabcChengjuanYangabLinanLiaShibinWangaMengWangabaSchool of Mechanical Engineering, Tianjin University, Tianjin, 300054, ChinabKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin, 300072, ChinacSchool of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Abstract

Super-hydrophobicity is one of the significant natural phenomena, which has inspired researchers to fabricate artificial smart materials using advanced manufacturing techniques. In this study, a super-hydrophobic aluminum surface was prepared by nanosecond laser texturing and FAS modification in sequence. The surface wettability turned from original hydrophilicity to super-hydrophilicity immediately after laser treatment. Then it changed to super-hydrophobicity showing a WCA of 157.6 ± 1.2° with a SA of 1.7 ± 0.7° when the laser-induced rough surface being coated with a layer of FAS molecules. The transforming mechanism was further explored from physical and chemical aspects based on the analyses of surface morphology and surface chemistry. Besides, the motion process of droplet impacting super-hydrophobic surface was systematically analyzed via the optimization of simulation calculation grid and the simulation method of volume of fluid (VOF). Based on this simulation method, the morphological changes, the inside pressure distribution and velocity of the droplet were further investigated. And the motion mechanism of the droplet on super-hydrophobic surface was clearly revealed in this paper. The simulation results and the images captured by high-speed camera were highly consistent, which indicated that the computational fluid dynamics (CFD) is an effective method to predict the droplet motion on super- hydrophobic surfaces. This paper can provide an explicit guidance for the selection of suitable methods for functional surfaces with different requirements in the industry.

초 소수성은 연구원들이 첨단 제조 기술을 사용하여 인공 스마트 재료를 제작하도록 영감을 준 중요한 자연 현상 중 하나 입니다. 이 연구에서 초 소수성 알루미늄 표면은 나노초 레이저 텍스처링과 FAS 수정에 의해 순서대로 준비되었습니다.

레이저 처리 직후 표면 습윤성은 원래의 친수성에서 초 친수성으로 바뀌 었습니다. 그런 다음 레이저 유도 거친 표면을 FAS 분자 층으로 코팅했을 때 WCA가 157.6 ± 1.2 °이고 SA가 1.7 ± 0.7 ° 인 초 소수성으로 변경되었습니다.

변형 메커니즘은 표면 형태 및 표면 화학 분석을 기반으로 물리적 및 화학적 측면에서 추가로 탐구 되었습니다. 또한, 초 소수성 표면에 영향을 미치는 물방울의 운동 과정은 시뮬레이션 계산 그리드의 최적화와 유체 부피 (VOF) 시뮬레이션 방법을 통해 체계적으로 분석되었습니다.

이 시뮬레이션 방법을 바탕으로 형태학적 변화, 내부 압력 분포 및 액 적의 속도를 추가로 조사했습니다. 그리고 초 소수성 표면에 있는 물방울의 운동 메커니즘이 이 논문에서 분명하게 드러났습니다.

시뮬레이션 결과와 고속 카메라로 캡처한 이미지는 매우 일관적 이었습니다. 이는 전산 유체 역학 (CFD)이 초 소수성 표면에서 액적 움직임을 예측하는 효과적인 방법임을 나타냅니다.

이 백서는 업계의 다양한 요구 사항을 가진 기능 표면에 적합한 방법을 선택하기 위한 명시적인 지침을 제공 할 수 있습니다.

Keywords: Laser irradiation; Wettability; Droplet impact; Simulation; VOF

Introduction

서식지에 적응하기 위해 많은 자연 식물과 동물에서 특별한 습윤 표면이 진화되었습니다 [1-3]. 연잎은 먼지에 의한 오염으로부터 스스로를 보호하기 위해 우수한 자가 청소 특성을 나타냅니다 [4]. 사막 딱정벌레는 공기에서 물을 수확할 수 있는 기능적 표면 때문에 건조한 사막에서 생존 할 수 있습니다 [5].

자연 세계에서 영감을 받아 고체 기질의 표면 습윤성을 수정하는데 더 많은 관심이 집중되었습니다 [6-7]. 기능성 표면의 우수한 성능은 고유 한 표면 습윤성에 기인하며, 이는 고체 표면에서 액체의 확산 능력을 반영하는 중요한 특성 중 하나입니다 [8].

일반적으로 물 접촉각 (WCA) 값에 따라 90 °는 친수성과 소수성의 경계로 간주됩니다. WCA가 90 ° 이상인 소수성 표면, WCA가 90 ° 미만인 친수성 표면 [9 ]. 특히 고체 표면은 WCA가 10 ° 미만의 슬라이딩 각도 (SA)에서 150 °를 초과 할 때 특별한 초 소수성을 나타냅니다 [10-11].

<내용 중략> ……

 The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.

MODELING AND CHARACTERIZATION OF MICROFABRICATED EMITTERS: IN PURSUIT OF IMPROVED ESI-MS PERFORMANCE

미세 가공 방사체의 모델링 및 특성화 : 개선된 ESI-MS 성능 추구

by XINYUN WU

A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada December, 2011 Copyright © Xinyun Wu, 2011

Abstract

ESI (Electrospray ionization)는 특히 탁월한 감도, 견고성 및 단순성으로 대형 생체 분자를 분석하는 데있어 질량 분석 (MS)에 매우 귀중한 기술이었습니다. ESI 기술 개발에 많은 노력을 기울였습니다. 그 형태와 기하학적 구조가 전기 분무 성능과 추가 MS 감지에 중추적 인 것으로 입증 되었기 때문입니다.

막힘 및 낮은 처리량을 포함하여 전통적인 단일 홀 이미터의 본질적인 문제는 기술의 적용 가능성을 제한합니다. 이 문제를 해결하기 위해 현재 프로젝트는 향상된 ESI-MS 분석을위한 다중 전자 분무(MES) 방출기를 개발하는데 초점을 맞추고 있습니다.

이 논문에서는 스프레이 전류 측정을 위한 전기 분무와 오프라인 전기 분무 실험을 위한 전산 유체 역학 (CFD) 시뮬레이션의 공동 작업이 수행되었습니다. 전기 분무 성능에 대한 다양한 이미터 설계의 영향을 테스트하기 위해 수치 시뮬레이션이 사용되었으며 실험실 결과는 가이드 및 검증으로 사용되었습니다.

CFD 코드는 Taylor-Melcher 누설 유전체 모델(LDM)을 기반으로 하며 과도 전기 분무 공정이 성공적으로 시뮬레이션되었습니다.

이 방법은 750 μm 내경 (i.d.) 이미 터를 통해 먼저 검증되었으며 20 μm i.d.에 추가로 적용되었습니다. 모델. 전기 분무 공정의 여러 단계가 시각적으로 시연되었으며 다양한 적용 전기장 및 유속에서 분무 전류의 변화에 ​​대한 정량적 조사는 이전 시뮬레이션 및 측정과 잘 일치합니다.

단일 조리개 프로토 타입을 기반으로 2 홀 및 3 홀 이미터로 MES 시뮬레이션을 수행했습니다. 시뮬레이션 예측은 실험 결과와 유사하게 비교되었습니다. 이 작업의 증거는 CFD 시뮬레이션이 MES의 이미 터 설계를 테스트하는 효과적인 수치 도구로 사용될 수 있음을 입증했습니다.

이 작업에서 달성 된 마이크로 스케일 에미 터 전기 분무의 성공적인 시뮬레이션에 대한 벤치마킹 결과는 현재까지 발표 된 전기 분무에 대한 동적 시뮬레이션의 가장 작은 규모로 여겨집니다.

Co-Authorship

공동 저자: 이 논문에 대한 모든 연구는 Natalie M. Cann 박사와 Richard D. Oleschuk 박사의 지도하에 완료되었습니다. 다중 전자 분무에 관한 4 장에서 제시된 연구 작업의 일부는 Ramin Wright가 공동 저술했으며, 이 작업은 press에서 다음 논문에서 인용되었습니다.

ibson,G.T.T.; Wright, R.D.; Oleschuk, R.D. Multiple electrosprays generated from a single poly carbonate microstructured fibre. Journal of Mass Spectrometry, 2011, in press.

Chapter 1 Introduction

소프트 이온화 방법으로 ESI (electrospray ionization)의 도입은 질량 분석법 (MS)의 적용 가능성에 혁명을 일으켰습니다. 이 기술의 부드러운 특징은 상대적으로 높은 전하를 가진 이온을 생성하는 고유한 이점으로 인해 액상에서 직접 펩티드 및 단백질과 같은 큰 생체 분자를 분석 할 수 있게했습니다 [1].

지난 10 년 동안 ESI-MS는 놀라운 성장을 보였으며 현재는 단백질 체학, 대사 체학, 글리코 믹스, 합성 화학자를 위한 식별 도구 등 다양한 생화학 분야에서 광범위하게 채택되고 있습니다 [2-3].

ESI-MS는 겔 전기 영동과 같은 생물학적 분자에 대한 기존의 질량 측정 기술보다 훨씬 빠르고 민감하며 정확합니다. 또한, 액체상에서 직접 분석 할 수 있는 큰 비 휘발성 분자의 능력은 고성능 액체 크로마토 그래피 (HPLC) 및 모세관 전기 영동 (CE)과 같은 업스트림 분리 기술과의 결합을 가능하게합니다 [4].

일반적인 ESI 공정은 일반적으로 액적 형성, 액적 수축 및 기상 이온의 최종 형성을 포함합니다. 일렉트로 스프레이의 성능에 영향을 미치는 많은 요소 중에서 스프레이를 위한 이미터의 구조 (즉, 기하학, 모양 등)가 중요한 요소입니다.

전통적인 전기 분무 이미터는 일반적으로 풀링 또는 에칭 기술로 제작 된 단일 채널 테이퍼 형 또는 비 테이퍼 형입니다. 그러나 이러한 이미터는 종종 막힘, 부적절한 처리량 등과 같은 문제로 어려움을 겪습니다. [5]

향상된 감도 및 샘플 활용을 위해 다중 스프레이를 생성하는 새로운 이미터 설계 개발로 분명한 발전이 있었습니다. 새로운 ESI 이미터 설계에 대한 연구는 실험적으로나 이론적으로 큰 관심을 불러 일으켰습니다 [3]. 그러나 ESI의 복잡한 물리적 과정은 팁 형상 외에도 많은 다른 변수에 의존하기 때문에 연구간 직접 비교의 어려움은 장애물이 됩니다.

또한 새로운 나노 이미터 제조 및 테스트 비용이 상당히 높을 수 있습니다. 이 논문은 CFD 시뮬레이션 도구를 활용하여 가상 랩을 설정함으로써 이러한 문제를 해결합니다. 다른 매개 변수로 인해 상호 연결된 변경 없이 다양한 이미터 설계를 비교할 수 있도록 이상적으로 균일한 물리적 조건을 제공합니다.

맞춤 제작된 프로토 타입의 실험 측정 값도 수집되어 더 나은 계산 체계를 형성하는 데 도움이 되는 지침과 검증을 모두 제공합니다. 특히 이 분야의 주요 미래 플랫폼으로 여겨지는 다중 노즐 이미 터 설계에 중점을 둘 것입니다.

전기 분무 거동에 영향을 미치는 요인에 대한 추가 기본 연구는 다양한 기하학적 및 작동 매개 변수와 관련하여 수행됩니다. 이는 보다 효율적이고 견고한 이미터의 개발을 가능하게 할 뿐만 아니라 더 넓은 영역에서 ESI의 적용을 향상시킬 수 있습니다.

Figure 1.1Schematic setup for ESI-MS technique
Figure 1.1Schematic setup for ESI-MS technique
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.4 (A)Externally tapered emitter  (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.4 (A)Externally tapered emitter (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times    (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).

Omit below: Please refer to the original text for the full content.

Bibliography

1. Mclafferty, F.W., Tandem Fourier-Transform Mass-Spectrometry of Large Molecules.Abstracts of Papers of the American Chemical Society, 1986. 192: p. 21-Anyl. 2. Griffiths, W.J. and Y.Q. Wang, Mass spectrometry: from proteomics to metabolomics and lipidomics. Chemical Society Reviews, 2009. 38(7): p. 1882-1896. 3. Gibson, G.T.T., S.M. Mugo, and R.D. Oleschuk, Nanoelectrospray Emitters: Trends and Perspective. Mass Spectrometry Reviews, 2009. 28(6): p. 918-936. 4. Cech, N.B. and C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews, 2001. 20(6): p. 362-387. 5. Su, S., Development and Application of Non-tapered Electrospray Emitters for Nano-ESI Mass Spectrometry, in Chemistry. 2008, Queen’s University: Kingston. p. 185. 6. Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914. 3(2): p. 69-91. 7. Dole, M., L.L. Mack, and R.L. Hines, Molecular Beams of Macroions. Journal of Chemical Physics, 1968. 49(5): p. 2240-&. 8. Yamashita, M. and J.B. Fenn, Negative-Ion Production with the Electrospray Ion-Source.Journal of Physical Chemistry, 1984. 88(20): p. 4671-4675. 9. Kebarle, P. and U.H. Verkerk, Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrometry Reviews, 2009. 28(6): p. 898-917. 10. Taylor, G., Disintegration of Water Drops in Electric Field. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1964. 280(138): p. 383. 11. Cole, R.B., Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2000. 35(7): p. 763-772. 12. Rayleigh, L., On the equilibrium of liquid conducting masses charged with electricity.Philos. Mag., 1882. 14: p. 184-186. 13. Mack, L.L., et al., Molecular Beams of Macroions .2. Journal of Chemical Physics, 1970. 52(10): p. 4977-&. 14. Gamero-Castano, M. and J.F. de la Mora, Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. Journal of Mass Spectrometry, 2000. 35(7): p. 790-803. 15. Gamero-Castano, M. and J.F. de la Mora, Modulations in the abundance of salt clusters in electrosprays. Analytical Chemistry, 2000. 72(7): p. 1426-1429. 16. Loscertales, I.G. and J.F. Delamora, Experiments on the Kinetics of Field Evaporation of Small Ions from Droplets. Journal of Chemical Physics, 1995. 103(12): p. 5041-5060. 17. Rohner, T.C., N. Lion, and H.H. Girault, Electrochemical and theoretical aspects of electrospray ionisation. Physical Chemistry Chemical Physics, 2004. 6(12): p. 3056-3068.

18. Iribarne, J.V. and B.A. Thomson, Evaporation of Small Ions from Charged Droplets.Journal of Chemical Physics, 1976. 64(6): p. 2287-2294. 19. Meng, C.K. and J.B. Fenn, Formation of Charged Clusters during Electrospray Ionization of Organic Solute Species. Organic Mass Spectrometry, 1991. 26(6): p. 542-549. 20. Nohmi, T. and J.B. Fenn, Electrospray Mass-Spectrometry of Poly(Ethylene Glycols) with Molecular-Weights up to 5 Million. Journal of the American Chemical Society, 1992. 114(9): p. 3241-3246. 21. de la Mora, J.F., Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chimica Acta, 2000. 406(1): p. 93-104. 22. Iavarone, A.T., J.C. Jurchen, and E.R. Williams, Supercharged protein and peptide lone formed by electrospray ionization. Analytical Chemistry, 2001. 73(7): p. 1455-1460. 23. Hogan, C.J., et al., Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization. Journal of the American Chemical Society, 2008. 130(22): p. 6926-+. 24. Nguyen, S. and J.B. Fenn, Gas-phase ions of solute species from charged droplets of solutions. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(4): p. 1111-1117. 25. Luedtke, W.D., et al., Nanojets, electrospray, and ion field evaporation: Molecular dynamics simulations and laboratory experiments. Journal of Physical Chemistry A, 2008. 112(40): p. 9628-9649. 26. Enke, C.G., A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Analytical Chemistry, 1997. 69(23): p. 4885-4893. 27. Maze, J.T., T.C. Jones, and M.F. Jarrold, Negative droplets from positive electrospray.Journal of Physical Chemistry A, 2006. 110(46): p. 12607-12612. 28. Kebarle, P. and M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analytica Chimica Acta, 2000. 406(1): p. 11-35. 29. Loeb, L.B., A.F. Kip, and G.G. Hudson, Pulses in negative point-to-plane corona.Physical Review, 1941. 60(10): p. 714-722. 30. Cole, R.B., Electrospray ionization mass spectrometry : fundamentals, instrumentation, and applications. 1997, New York: Wiley. xix, 577 p. 31. Smith, D.P.H., The Electrohydrodynamic Atomization of Liquids. Ieee Transactions on Industry Applications, 1986. 22(3): p. 527-535. 32. Taylor, G.I. and A.D. Mcewan, Stability of a Horizontal Fluid Interface in a Vertical Electric Field. Journal of Fluid Mechanics, 1965. 22: p. 1-&. 33. Ikonomou, M.G., A.T. Blades, and P. Kebarle, Electrospray Mass-Spectrometry of Methanol and Water Solutions Suppression of Electric-Discharge with Sf6 Gas. Journal of the American Society for Mass Spectrometry, 1991. 2(6): p. 497-505.

34. Wampler, F.M., A.T. Blades, and P. Kebarle, Negative-Ion Electrospray Mass-Spectrometry of Nucleotides – Ionization from Water Solution with Sf6 Discharge Suppression. Journal of the American Society for Mass Spectrometry, 1993. 4(4): p. 289-295. 35. Marginean, I., P. Nemes, and A. Vertes, Order-chaos-order transitions in electrosprays: The electrified dripping faucet. Physical Review Letters, 2006. 97(6): p. -. 36. Marginean, I., P. Nemes, and A. Vertes, Astable regime in electrosprays. Physical Review E, 2007. 76(2): p. -. 37. Nemes, P., I. Marginean, and A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays. Analytical Chemistry, 2007. 79(8): p. 3105-3116. 38. Marginean, I., et al., Electrospray characteristic curves: In pursuit of improved performance in the nanoflow regime. Analytical Chemistry, 2007. 79(21): p. 8030-8036. 39. Page, J.S., et al., Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Analytical Chemistry, 2008. 80(5): p. 1800-1805. 40. Delamora, J.F. and I.G. Loscertales, The Current Emitted by Highly Conducting Taylor Cones. Journal of Fluid Mechanics, 1994. 260: p. 155-184. 41. Ganan-Calvo, A.M., On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 2004. 507: p. 203-212. 42. Smith, D.R., G. Sagerman, and T.D. Wood, Design and development of an interchangeable nanomicroelectrospray source for a quadrupole mass spectrometer.Review of Scientific Instruments, 2003. 74(10): p. 4474-4477. 43. Barnidge, D.R., S. Nilsson, and K.E. Markides, A design for low-flow sheathless electrospray emitters. Analytical Chemistry, 1999. 71(19): p. 4115-4118. 44. Guzzetta, A.W., R.A. Thakur, and I.C. Mylchreest, A robust micro-electrospray ionization technique for high-throughput liquid chromatography/mass spectrometry proteomics using a sanded metal needle as an emitter. Rapid Communications in Mass Spectrometry, 2002. 16(21): p. 2067-2072. 45. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source.Analytical Chemistry, 1996. 68(1): p. 1-8. 46. Covey, T.R. and D. Pinto, Practical Spectroscopy. Vol. 32. 2002. 47. Kelly, R.T., et al., Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Analytical Chemistry, 2008. 80(14): p. 5660-5665. 48. Choi, Y.S. and T.D. Wood, Polyaniline-coated nanoelectrospray emitters treated with hydrophobic polymers at the tip. Rapid Communications in Mass Spectrometry, 2007. 21(13): p. 2101-2108. 49. Tojo, H., Properties of an electrospray emitter coated with material of low surface energy. Journal of Chromatography A, 2004. 1056(1-2): p. 223-228.

50. Liu, J., et al., Electrospray ionization with a pointed carbon fiber emitter. Analytical Chemistry, 2004. 76(13): p. 3599-3606. 51. Sen, A.K., et al., Modeling and characterization of a carbon fiber emitter for electrospray ionization. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 620-630. 52. Tang, K.Q., et al., Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Analytical Chemistry, 2001. 73(8): p. 1658-1663. 53. Deng, W. and A. Gomez, Influence of space charge on the scale-up of multiplexed electrosprays. Journal of Aerosol Science, 2007. 38(10): p. 1062-1078. 54. Su, S.Q., et al., Microstructured Photonic Fibers as Multichannel Electrospray Emitters.Analytical Chemistry, 2009. 81(17): p. 7281-7287. 55. Sen, A.K., J. Darabi, and D.R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI-MS applications. Microfluidics and Nanofluidics, 2007. 3(3): p. 283-298. 56. Hayati, I., A. Bailey, and T.F. Tadros, Investigations into the Mechanism of Electrohydrodynamic Spraying of Liquids .2. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. Journal of Colloid and Interface Science, 1987. 117(1): p. 222-230. 57. Glonti, G.A., On the Theory of the Stability of Liquid Jets in an Electric Field. Soviet Physics Jetp-Ussr, 1958. 7(5): p. 917-918. 58. Nayyar, N.K. and G.S. Murty, The Stability of a Dielectric Liquid Jet in the Presence of a Longitudinal Electric Field. Proceedings of the Physical Society of London, 1960. 75(483): p. 369-373. 59. Allan, R.S. and S.G. Mason, Particle Behaviour in Shear and Electric Fields .1. Deformation and Burst of Fluid Drops. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1962. 267(1328): p. 45-&. 60. Melcher, J.R. and G.I. Taylor, Electrohydrodynamics – a Review of Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1969. 1: p. 111-&. 61. Saville, D.A., Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 1997. 29: p. 27-64. 62. Carretero Benignos, J.A. and Massachusetts Institute of Technology. Dept. of Mechanical Engineering., Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode. 2005. p. 117 leaves. 63. Hartman, R.P.A., et al., The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. Journal of Electrostatics, 1999. 47(3): p. 143-170. 64. Hartman, R.P.A., et al., Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 1999. 30(7): p. 823-849.

65. Yoon, S.S., et al., Modeling multi-jet mode electrostatic atomization using boundary element methods. Journal of Electrostatics, 2001. 50(2): p. 91-108. 66. Zeng, J., D. Sobek, and T. Korsmeyer, Electro-hydrodynamic modeling of electrospray ionization: Cad for a mu fluidic device – Mass spectrometer interface. Boston Transducers’03: Digest of Technical Papers, Vols 1 and 2, 2003: p. 1275-1278, 1938. 67. Lastow, O. and W. Balachandran, Numerical simulation of electrohydrodynamic (EHD) atomization. Journal of Electrostatics, 2006. 64(12): p. 850-859. 68. http://www.flow3d.com. 69. Valaskovic, G.A., et al., Attomole-Sensitivity Electrospray Source for Large-Molecule Mass-Spectrometry. Analytical Chemistry, 1995. 67(20): p. 3802-3805. 70. Kriger, M.S., K.D. Cook, and R.S. Ramsey, Durable Gold-Coated Fused-Silica Capillaries for Use in Electrospray Mass-Spectrometry. Analytical Chemistry, 1995. 67(2): p. 385-389. 71. Fang, L.L., et al., Online Time-of-Flight Mass-Spectrometric Analysis of Peptides Separated by Capillary Electrophoresis. Analytical Chemistry, 1994. 66(21): p. 3696-3701. 72. Cao, P. and M. Moini, A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. Journal of the American Society for Mass Spectrometry, 1997. 8(5): p. 561-564. 73. Fong, K.W.Y. and T.W.D. Chan, A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. Journal of the American Society for Mass Spectrometry, 1999. 10(1): p. 72-75. 74. Emmett, M.R. and R.M. Caprioli, Micro-Electrospray Mass-Spectrometry – Ultra-High-Sensitivity Analysis of Peptides and Proteins. Journal of the American Society for Mass Spectrometry, 1994. 5(7): p. 605-613. 75. Gatlin, C.L., et al., Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Analytical Biochemistry, 1998. 263(1): p. 93-101. 76. Aturki, Z., et al., On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis, 2006. 27(23): p. 4666-4673. 77. Edwards, J.L., et al., Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 2006. 1106(1-2): p. 80-88. 78. http://www.kiriama.com/kiriama%20single-mode%20polymer%20fibers_009.htm. 79. Wilm, M.S. and M. Mann, Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last. International Journal of Mass Spectrometry, 1994. 136(2-3): p. 167-180.

80. Hirt, C.W. and B.D. Nichols, Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 1981. 39(1): p. 201-225. 81. Melcher, J.R., Continuum electromechanics. 1981, Cambridge, Mass.: MIT Press. 1 v. (various pagings). 82. http://www.flow3d.com/cfd-101/cfd-101-FAVOR.html. 83. http://www.flow3d.com/cfd-101/cfd-101-FAVOR-no-loss.html. 84. Savage, B.M. and M.C. Johnson, Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering-Asce, 2001. 127(8): p. 640-649. 85. http://www.flow3d.com/cfd-101/cfd-101-free-surface-fluid-flow.html. 86. Graham T. T. Gibson, R.D.W.a.R.D.O., Multiple electrosprays generated from a single poly carbonate microstructured fibre. Mass Spectrometry, 2011. 87. Smith, R.D., et al., Analytical characterization of the electrospray ion source in the nanoflow regime. Analytical Chemistry, 2008. 80(17): p. 6573-6579. 88. Hirt, C.W., Electro-hydrodynamics of semi-conductive fluids: with application to electro-spraying. Flow Science Technical Note, 2004. 70(FSI–04–TN70): p. 1-7. 89. de la Mora, J.F., The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 2007. 39: p. 217-243. 90. Cloupeau, M. and B. Prunetfoch, Electrostatic Spraying of Liquids in Cone-Jet Mode.Journal of Electrostatics, 1989. 22(2): p. 135-159. 91. Hayati, I., A.I. Bailey, and T.F. Tadros, Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids .1. Effect of Electric-Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization. Journal of Colloid and Interface Science, 1987. 117(1): p. 205-221. 92. FLOW-3D User Manual, Ver. 9.4. 93. Sen, A.K., J. Darabi, and D.R. Knapp, Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter. Journal of Fluids Engineering-Transactions of the Asme, 2011. 133(7).

Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.

Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles

기판 냉각 및 액적 모양 및 조성이 액적 증발 및 입자 증착에 미치는 영향

by Vahid Bazargan
M.A.Sc., Mechanical Engineering, The University of British Columbia, 2008
B.Sc., Mechanical Engineering, Sharif University of Technology, 2006
B.Sc., Chemical & Petroleum Engineering, Sharif University of Technology, 2006

고착 방울은 평평한 기판에 놓인 액체 방울입니다. 작은 고정 액적이 증발하는 동안 액적의 접촉선은 고정된 접촉 영역이 있는 고정된 단계와 고정된 접촉각이 있는 고정 해제된 단계의 두 가지 단계를 거칩니다. 고정된 접촉 라인이 있는 증발은 액적 내부에서 접촉 라인을 향한 흐름을 생성합니다.

이 흐름은 입자를 운반하고 접촉 선 근처에 침전시킵니다. 이로 인해 일반적으로 관찰되는 “커피 링”현상이 발생합니다. 이 논문은 증발 과정과 고착성 액적의 증발 유도 흐름에 대한 연구를 제공하고 콜로이드 현탁액에서 입자의 침착에 대한 통찰력을 제공합니다. 여기서 우리는 먼저 작은 고착 방울의 증발을 연구하고 증발 과정에서 기판의 열전도도의 중요성에 대해 논의합니다.

현재 증발 모델이 500µm 미만의 액적 크기에 대해 심각한 오류를 생성하는 방법을 보여줍니다. 우리의 모델에는 열 효과가 포함되어 있으며, 특히 증발 잠열의 균형을 맞추기 위해 액적에 열을 제공하는 기판의 열전도도를 포함합니다. 실험 결과를 바탕으로 접촉각의 진화와 관련된 접촉 선의 가상 움직임을 정의하여 고정 및 고정 해제 단계의 전체 증발 시간을 고려합니다.

우리의 모델은 2 % 미만의 오차로 500 µm보다 작은 물방울에 대한 실험 결과와 일치합니다. 또한 유한한 크기의 라인 액적의 증발을 연구하고 증발 중 접촉 라인의 복잡한 동작에 대해 논의합니다. 에너지 공식을 적용하고 접촉 선이 구형 방울의 후퇴 접촉각보다 높은 접촉각을 가진 선 방울의 두 끝에서 후퇴하기 시작 함을 보여줍니다. 그리고 라인 방울 내부의 증발 유도 흐름을 보여줍니다.

마지막으로, 계면 활성제 존재 하에서 접촉 라인의 거동을 논의하고 입자 증착에 대한 Marangoni 흐름 효과에 대해 논의합니다. 열 Marangoni 효과는 접촉 선 근처에 증착 된 입자의 양에 영향을 미치며, 기판 온도가 낮을수록 접촉 선 근처에 증착되는 입자의 양이 많다는 것을 알 수 있습니다.

Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
Figure 2.5: Schematic of the sessile droplet on a substrate
Figure 2.5: Schematic of the sessile droplet on a substrate. The evaporation rate at the surface of the droplet is enhanced toward the edge of the droplet.
Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.
Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.

Bibliography

[1] R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” Journal of Colloid and Interface Science, vol. 61, pp. 336–350, Sept. 1977. → pages viii, 8, 9, 18, 42
[2] H. Y. Erbil, “Evaporation of pure liquid sessile and spherical suspended drops: A review,” Advances in Colloid and Interface Science, vol. 170, pp. 67–86, Jan. 2012. → pages 1
[3] R. Sharma, C. Y. Lee, J. H. Choi, K. Chen, and M. S. Strano, “Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets,” Nano Lett., vol. 7, no. 9, pp. 2693–2700, 2007. → pages 1, 54, 71
[4] S. Tokonami, H. Shiigi, and T. Nagaoka, “Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications,” Analytica Chimica Acta, vol. 641, pp. 7–13, May 2009. →pages 71
[5] A. A. Sagade and R. Sharma, “Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature,” Sensors and Actuators B: Chemical, vol. 133, pp. 135–143, July 2008. → pages
[6] W. R. Small, C. D. Walton, J. Loos, and M. in het Panhuis, “Carbon nanotube network formation from evaporating sessile drops,” The Journal of Physical Chemistry B, vol. 110, pp. 13029–13036, July 2006. → pages 71
[7] S. H. Ko, H. Lee, and K. H. Kang, “Hydrodynamic flows in electrowetting,” Langmuir, vol. 24, pp. 1094–1101, Feb. 2008. → pages 42
[8] T. T. Nellimoottil, P. N. Rao, S. S. Ghosh, and A. Chattopadhyay, “Evaporation-induced patterns from droplets containing motile and nonmotile bacteria,” Langmuir, vol. 23, pp. 8655–8658, Aug. 2007. → pages 1
[9] R. Sharma and M. S. Strano, “Centerline placement and alignment of anisotropic nanotubes in high aspect ratio cylindrical droplets of nanometer diameter,” Advanced Materials, vol. 21, no. 1, p. 6065, 2009. → pages 1, 54, 71
[10] V. Dugas, J. Broutin, and E. Souteyrand, “Droplet evaporation study applied to DNA chip manufacturing,” Langmuir, vol. 21, pp. 9130–9136, Sept. → pages 2, 71
[11] Y.-C. Hu, Q. Zhou, Y.-F. Wang, Y.-Y. Song, and L.-S. Cui, “Formation mechanism of micro-flows in aqueous poly(ethylene oxide) droplets on a substrate at different temperatures,” Petroleum Science, vol. 10, pp. 262–268, June 2013. → pages 2, 34, 54
[12] T.-S. Wong, T.-H. Chen, X. Shen, and C.-M. Ho, “Nanochromatography driven by the coffee ring effect,” Analytical Chemistry, vol. 83, pp. 1871–1873, Mar. 2011. → pages 71
[13] J.-H. Kim, S.-B. Park, J. H. Kim, and W.-C. Zin, “Polymer transports inside evaporating water droplets at various substrate temperatures,” The Journal of Physical Chemistry C, vol. 115, pp. 15375–15383, Aug. 2011. → pages 54
[14] S. Choi, S. Stassi, A. P. Pisano, and T. I. Zohdi, “Coffee-ring effect-based three dimensional patterning of Micro/Nanoparticle assembly with a single droplet,” Langmuir, vol. 26, pp. 11690–11698, July 2010. → pages
[15] D. Wang, S. Liu, B. J. Trummer, C. Deng, and A. Wang, “Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells,” Nature biotechnology, vol. 20, pp. 275–281, Mar. PMID: 11875429. → pages 2, 54, 71
[16] H. K. Cammenga, “Evaporation mechanisms of liquids,” Current topics in materials science, vol. 5, pp. 335–446, 1980. → pages 3
[17] C. Snow, “Potential problems and capacitance for a conductor bounded by two intersecting spheres,” Journal of Research of the National Bureau of Standards, vol. 43, p. 337, 1949. → pages 9
[18] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Physical Review E, vol. 62, p. 756, July 2000. → pages 10, 14, 18, 27, 53, 54, 71, 84
[19] H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” The Journal of Physical Chemistry B, vol. 106, pp. 1334–1344, Feb. 2002. → pages 12, 18, 29, 43, 44, 48, 49, 53, 61, 71, 84
[20] Y. O. Popov, “Evaporative deposition patterns: Spatial dimensions of the deposit,” Physical Review E, vol. 71, p. 036313, Mar. 2005. → pages 14, 27, 43, 44, 45, 54
[21] H. Gelderblom, A. G. Marin, H. Nair, A. van Houselt, L. Lefferts, J. H. Snoeijer, and D. Lohse, “How water droplets evaporate on a superhydrophobic substrate,” Physical Review E, vol. 83, no. 2, p. 026306,→ pages
[22] F. Girard, M. Antoni, S. Faure, and A. Steinchen, “Influence of heating temperature and relative humidity in the evaporation of pinned droplets,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 323, pp. 36–49, June 2008. → pages 18
[23] Y. Y. Tarasevich, “Simple analytical model of capillary flow in an evaporating sessile drop,” Physical Review E, vol. 71, p. 027301, Feb. 2005. → pages 19, 54, 62, 72
[24] A. J. Petsi and V. N. Burganos, “Potential flow inside an evaporating cylindrical line,” Physical Review E, vol. 72, p. 047301, Oct. 2005. → pages 22, 55, 62, 68, 71
[25] A. J. Petsi and V. N. Burganos, “Evaporation-induced flow in an inviscid liquid line at any contact angle,” Physical Review E, vol. 73, p. 041201, Apr.→ pages 23, 53, 55, 72
[26] H. Masoud and J. D. Felske, “Analytical solution for stokes flow inside an evaporating sessile drop: Spherical and cylindrical cap shapes,” Physics of Fluids, vol. 21, pp. 042102–042102–11, Apr. 2009. → pages 23, 55, 62, 71, 72
[27] H. Hu and R. G. Larson, “Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet,” Langmuir, vol. 21, pp. 3972–3980, Apr. 2005. → pages 24, 28, 53, 54, 56, 62, 68, 71, 72, 74, 84
[28] R. Bhardwaj, X. Fang, and D. Attinger, “Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study,” New Journal of Physics, vol. 11, p. 075020, July 2009. → pages 28
[29] A. Petsi, A. Kalarakis, and V. Burganos, “Deposition of brownian particles during evaporation of two-dimensional sessile droplets,” Chemical Engineering Science, vol. 65, pp. 2978–2989, May 2010. → pages 28
[30] J. Park and J. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir, vol. 22, pp. 3506–3513, Apr. 2006. → pages 28
[31] H. Hu and R. G. Larson, “Marangoni effect reverses coffee-ring depositions,” The Journal of Physical Chemistry B, vol. 110, pp. 7090–7094, Apr. 2006. → pages 29, 74
[32] K. H. Kang, S. J. Lee, C. M. Lee, and I. S. Kang, “Quantitative visualization of flow inside an evaporating droplet using the ray tracing method,” Measurement Science and Technology, vol. 15, pp. 1104–1112, June 2004. → pages 34
[33] S. T. Beyer and K. Walus, “Controlled orientation and alignment in films of single-walled carbon nanotubes using inkjet printing,” Langmuir, vol. 28, pp. 8753–8759, June 2012. → pages 42, 71
[34] G. McHale, “Surface free energy and microarray deposition technology,” Analyst, vol. 132, pp. 192–195, Feb. 2007. → pages 42
[35] R. Bhardwaj, X. Fang, P. Somasundaran, and D. Attinger, “Self-assembly of colloidal particles from evaporating droplets: Role of DLVO interactions and proposition of a phase diagram,” Langmuir, vol. 26, pp. 7833–7842, June→ pages 42
[36] G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “The strong influence of substrate conductivity on droplet evaporation,” Journal of Fluid Mechanics, vol. 623, no. 1, p. 329351, 2009. → pages 44
[37] M. S. Plesset and A. Prosperetti, “Flow of vapour in a liquid enclosure,” Journal of Fluid Mechanics, vol. 78, pp. 433–444, 1976. → pages 44
[38] S. Das, P. R. Waghmare, M. Fan, N. S. K. Gunda, S. S. Roy, and S. K. Mitra, “Dynamics of liquid droplets in an evaporating drop: liquid droplet coffee stain? effect,” RSC Advances, vol. 2, pp. 8390–8401, Aug. 2012. → pages 53
[39] B. J. Fischer, “Particle convection in an evaporating colloidal droplet,” Langmuir, vol. 18, pp. 60–67, Jan. 2002. → pages 54
[40] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology, vol. 7, p. 452, Dec. 1996. → pages 54
[41] T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, “Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits,” Advanced Materials, vol. 13, no. 21, p. 16011605, 2001. → pages 71
[42] B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Advanced Materials, vol. 16, no. 3, p. 203213, 2004. → pages 71
[43] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123–2126, Dec. 2000. PMID:→ pages
[44] D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir, vol. 24, pp. 2224–2231, Mar. 2008. → pages 54
[45] R. Tadmor and P. S. Yadav, “As-placed contact angles for sessile drops,” Journal of Colloid and Interface Science, vol. 317, pp. 241–246, Jan. 2008. → pages 56
[46] J. Drelich, “The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 116, pp. 43–54, Sept. 1996. → pages 56
[47] R. Tadmor, “Line energy, line tension and drop size,” Surface Science, vol. 602, pp. L108–L111, July 2008. → pages 69
[48] C.-H. Choi and C.-J. C. Kim, “Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights,” Langmuir, vol. 25, pp. 7561–7567, July 2009. → pages 71
[49] K. F. Baughman, R. M. Maier, T. A. Norris, B. M. Beam, A. Mudalige, J. E. Pemberton, and J. E. Curry, “Evaporative deposition patterns of bacteria from a sessile drop: Effect of changes in surface wettability due to exposure to a laboratory atmosphere,” Langmuir, vol. 26, pp. 7293–7298, May 2010.
[50] D. Brutin, B. Sobac, and C. Nicloux, “Influence of substrate nature on the evaporation of a sessile drop of blood,” Journal of Heat Transfer, vol. 134, pp. 061101–061101, May 2012. → pages 71
[51] D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Condra, and H. Durou, “Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor,” Journal of Power Sources, vol. 195, pp. 1266–1269, Feb. 2010. → pages 71
[52] J. Bachmann, A. Ellies, and K. Hartge, “Development and application of a new sessile drop contact angle method to assess soil water repellency,” Journal of Hydrology, vol. 231232, pp. 66–75, May 2000. → pages 71
[53] H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surfaces: constant contact angle mode,” Langmuir, vol. 18, no. 7, pp. 2636–2641, 2002. → pages
[54] X. Fang, B. Li, J. C. Sokolov, M. H. Rafailovich, and D. Gewaily, “Hildebrand solubility parameters measurement via sessile drops evaporation,” Applied Physics Letters, vol. 87, pp. 094103–094103–3, Aug.→ pages
[55] Y. C. Jung and B. Bhushan, “Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces,” Journal of Microscopy, vol. 229, no. 1, p. 127140, 2008. → pages 71
[56] J. Drelich, J. D. Miller, and R. J. Good, “The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,”
Journal of Colloid and Interface Science, vol. 179, pp. 37–50, Apr. 1996. →pages 72, 75
[57] D. Bargeman and F. Van Voorst Vader, “Effect of surfactants on contact angles at nonpolar solids,” Journal of Colloid and Interface Science, vol. 42, pp. 467–472, Mar. 1973. → pages 73
[58] J. Menezes, J. Yan, and M. Sharma, “The mechanism of alteration of macroscopic contact angles by the adsorption of surfactants,” Colloids and Surfaces, vol. 38, no. 2, pp. 365–390, 1989. → pages
[59] T. Okubo, “Surface tension of structured colloidal suspensions of polystyrene and silica spheres at the air-water interface,” Journal of Colloid and Interface Science, vol. 171, pp. 55–62, Apr. 1995. → pages 73, 76
[60] R. Pyter, G. Zografi, and P. Mukerjee, “Wetting of solids by surface-active agents: The effects of unequal adsorption to vapor-liquid and solid-liquid interfaces,” Journal of Colloid and Interface Science, vol. 89, pp. 144–153, Sept. 1982. → pages 73
[61] T. Mitsui, S. Nakamura, F. Harusawa, and Y. Machida, “Changes in the interfacial tension with temperature and their effects on the particle size and stability of emulsions,” Kolloid-Zeitschrift und Zeitschrift fr Polymere, vol. 250, pp. 227–230, Mar. 1972. → pages 73
[62] S. Phongikaroon, R. Hoffmaster, K. P. Judd, G. B. Smith, and R. A. Handler, “Effect of temperature on the surface tension of soluble and insoluble surfactants of hydrodynamical importance,” Journal of Chemical & Engineering Data, vol. 50, pp. 1602–1607, Sept. 2005. → pages 73, 80
[63] V. S. Vesselovsky and V. N. Pertzov, “Adhesion of air bubbles to the solid surface,” Zh. Fiz. Khim, vol. 8, pp. 245–259, 1936. → pages 75
[64] Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito, “Effects of surface roughness on wettability,” Acta Materialia, vol. 46, pp. 2313–2318, Apr. 1998. → pages
[65] R. J. Good and M. Koo, “The effect of drop size on contact angle,” Journal of Colloid and Interface Science, vol. 71, pp. 283–292, Sept. 1979. → pages

Damascene templates

High-Rate Nanoscale Offset Printing Process Using Directed Assembly and Transfer of Nanomaterials

지난 10 년 동안 나노 크기의 재료와 공정을 제품에 통합하는 데 제한적인 성공을 거두면서 나노 기술에 상당한 투자와 발전이 있었습니다.

잉크젯, 그라비아, 스크린 프린팅과 같은 접근 방식은 나노 물질을 사용하여 구조와 장치를 만드는 데 사용됩니다. [1–7] 그러나 상당히 느리고 µm 스케일 분해능 만 제공 할 수 있습니다. 다양한 모양과 크기의 100nm 미만의 특징을 달성하기 위해 딥펜 리소그래피 (DPN) [8-11] 및 소프트 리소그래피 [12-16]와 같은 다양한 기술이 개발되고 광범위하게 연구되었습니다.

DPN은 직접 쓰기 기술로, atomic force microscopy 현미경 팁을 사용하여 다양한 기판에 여러 패턴을 생성합니다. DPN을 사용한 확장 성을 해결하기 위해 단일 AFM 팁 대신 2D 형식으로 배포 된 AFM (Atomic Force Microscopy) 팁 [17,18]이 사용되었습니다. 소프트 리소그래피에서는 나노 물질을 포함하는 잉크로 적셔진 원하는 릴리프 패턴을 가진 경화된 엘라스토머가 기판과 컨 포멀 접촉하게 되며, 여기서 패턴 화 된 나노 물질이 전달되어 기판에서 원하는 특징을 달성합니다.

이 논문에서는 작거나 큰 영역에서 몇 분 만에 나노, 마이크로 또는 거시적 구조를 인쇄 할 수 있는 다중 스케일 오프셋 인쇄 접근 방식을 제시합니다. 이 프로세스는 나노 입자 (NP), 탄소 나노 튜브 (CNT) 또는 용해 된 폴리머를 포함하는 서스펜션 (잉크)에서 나노 물질의 전기 영동 방향 조립을 사용하여 특별히 제작 된 재사용 가능한 Damascene 템플릿에 패턴을 “inking” 하는 것으로 시작됩니다. 이 잉크 프로세스는 실온과 압력에서 수행됩니다.

두 번째 단계는 템플릿에 조립된 나노 물질이 다른 기판으로 전송되는 “printing”로 구성됩니다. 전송 프로세스가 끝나면 템플릿은 다음 조립 및 전송주기에서 즉시 재사용 할 수 있습니다. 이 오프셋 인쇄 프로세스를 통해 NP (폴리스티렌 라텍스 (PSL), 실리카,은) 및 CNT (다중 벽 및 단일 벽)를 100μm에서 500nm까지의 크기 범위를 가진 패턴에 조립하고 유동성 기판에 성공적으로 옮깁니다.

다양한 나노 물질을 다양한 아키텍처로 조립하기 위해 템플릿 유도 유동, 대류, 유전 영동 (DEP) 및 전기 영동 조립과 같은 몇 가지 직접 조립 프로세스가 조사되었습니다. 모세관력이 지배적인 조립 메커니즘인 유체 조립 공정은 다양한 나노 물질에 적용 할 수 있습니다.

대류 조립 공정은 현탁 메니 스커 스와 증발을 활용하여 단일 나노 입자 분해능으로 정밀 조립을 가능하게 합니다. 이러한 조립 공정 중 많은 부분이 트렌치와 같은 마이크로 및 나노 스케일 기능으로 고해상도의 직접 조립을 보여 주었지만, 확장성 부족, 느린 공정 속도 및 반복성과 같은 많은 단점이 있습니다.

DEP 어셈블리는 NP와 전극 사이에 고배향 탄소 나노 튜브 어셈블리를 사용하여 나노 와이어 및 구조를 만드는 데 사용되었습니다. 조립 효율은 전기장과 전기장 구배에 상당한 영향을 미치는 전극의 기하학적 구조와 간격에 크게 좌우됩니다. 전기 영동 기반 조립 공정은 유체 조립에 비해 훨씬 짧은 시간에 전도성 표면에 표면 전하를 가진 나노 물질을 조립하는 것을 포함합니다. [34–37]

그러나 전기 영동 조립은 조립이 전도성 표면에 발생해야 하므로 다양한 장치를 만드는 데 실용적이지 않습니다. 한 가지 해결책은 원하는 나노 스케일 구조를 기반으로 전도성 패턴이 있는 템플릿을 만들고, 전기 영동 공정을 사용하여 패턴 위에 나노 물질을 조립 한 다음 조립 된 구조를 수용 기판에 옮기는 것입니다.

그림 1a와 같이 절연 필름에 전도성 와이어와 같은 패턴 구조가있는 기존 템플릿을 사용하면 나노 스케일 와이어의 잠재적 인 큰 강하로 인해 어셈블리가 불균일 해지며 대부분의 입자는 그림 1에 표시된 마이크로 와이어 b. 또한 NP는 3D 와이어의 측벽에도 조립되므로 바람직하지 않습니다. 또한 나노 스케일 와이어와 템플릿 사이의 작은 접촉 면적으로 인해 나노 스케일 와이어는 이송 과정에서 쉽게 벗겨집니다.

Damascene templates
Figure 1. Damascene templates: a) A schematic of a conventional wire template used for electrophoretic assembly. In these templates nanowire are connected to a micrometer scale electrodes, which are in turn connected, to a large metal pad through which the potential is applied. b) SEM images of a typical nanoparticle assembly result obtained for confi guration shown in (a). c) A schematic of a Damascene template where all of the wires (nano- or micrometer scale) and the metal pad are connected to a conductive fi lm underneath the insulating fi lm. d) A schematic of Damascene template fabrication. Inset is artifi cially colored cross-sectional SEM image showing the metal nanowires to be at the same height as that of the SiO 2 and showing the conductive fi lm underneath the insulator. e) An optical image of a 3 inch Damascene template.
Offset printing
Figure 2. Offset printing: a) A schematic of the nanoscale offset printing approach. The insulating (SiO 2 ) surface of the Damascene template is selectively coated with a hydrophobic SAM (OTS). Using electrophoresis, nanomaterials are assembled on the conductive patterns of the Damascene template (“inking”), which are then transferred to a recipient substrate (“printing”). After the transfer, the template is ready for the next assembly and transfer cycle. b) SEM image of 50 nm PSL particles assembly with high density on 1 µm wide electrodes. c) Silica particles (20 nm) assembly on crossbar 2D patterns demonstrating the versatility of the Damascene template. Inset fi gure is a high-resolution image of assembled silica particles. d) SEM image of assembled SWNTs on micrometer scale patterns. e) MWNTs assembled on 100 µm features. f) Cellulose assembled on 2 µm electrodes. g) SWNTs assembled in cross bar architecture patterns. h) Flexible devices with array of transferred SWNTs and metal electrodes (printed on PEN). Inset is the microscopy image of two electropads and transferred SWNTs on PEN fi lm.
Analysis of nanomaterial assembly on electrodes
Figure 3. Analysis of nanomaterial assembly on electrodes

이것은 또한 그림 3b에 표시된대로 유한 체적 모델링 (Flow 3D)을 사용하는 전기장 윤곽 시뮬레이션 결과에 의해 확인됩니다. 전기장 강도의 윤곽은 전도성 패턴의 가장자리에있는 전기장이 중앙에있는 것보다 더 강하다는 것을 나타냅니다. 그러나 적용된 전위가 2.5V로 증가하면 그림 3c에 표시된대로 100nm 실리카 입자가 Damascene 템플릿을 가로 질러 전도성 패턴의 표면에 완전히 조립되어 조립을위한 임계 전기장 강도에 도달했음을 나타냅니다. 정렬 된 SWNT는 여과 전달 경로를 피하고 나노 튜브 사이의 접합 저항을 최소화하여 소자 성능의 최소 변화를 가져 오기 때문에 많은 응용 분야에서 고도로 조직화 된 SWNT가 필요합니다.

References

[1] M.Abulikemu, E.H.Da’as, H.Haverinen, D.Cha, M.A.Malik, G.E.Jabbour, Angew.Chem.Int.Ed.2014, 53, 599.
[2] a) Z.Lu, M.Layani, X.Zhao, L.P.Tan, T.Sun, S.Fan, Q.Yan, S.Magdassi, H.H.Hng, Small 2014, 10, 3551; b) H.Ko, J.Lee, Y.Kim, B.Lee, C.H.Jung, J.H.Choi, O.S.Kwon, K.Shin, Adv.Mater.2014, 26, 2286.
[3] C.J.Hansen, R.Saksena, D.B.Kolesky, J.J.Vericella, S.J.Kranz, G.P.Muldowney, K.T.Christensen, J.A.Lewis, Adv.Mater.2013, 25, 2.
[4] F.C.Krebs, N.Espinosa, M.Hösel, R.R.Søndergaard, M.Jørgensen, Adv.Mater.2014, 26, 29.
[5] W.Honda, S.Harada, T.Arie, S.Akita, K.Takei, Adv.Funct.Mater. 2014, 24, 3298.
[6] R.Guo, Y.Yu, Z.Xie, X.Liu, X.Zhou, Y.Gao, Z.Liu, F.Zhou, Y.Yang, Z.Zheng, Adv.Mater.2013, 25, 3343.
[7] A.Dzwilewski, T.Wågberg, L.Edman, J.Am.Chem.Soc.2009, 131, 4006.
[8] R.D.Piner, J.Zhu, F.Xu, S.Hong, C.A.Mirkin, Science 1999, 283, 661.
[9] J.-H.Lim, C.A.Mirkin, Adv.Mater.2002, 14, 1474.
[10] X.Liu, L.Fu, S.Hong, V.P.Dravid, C.A.Mirkin, Adv.Mater.2002,14, 231.
[11] D.A.Weinberger, S.Hong, C.A.Mirkin, B.W.Wessels, T.B.Higgins, Adv.Mater.2000, 12, 1600.
[12] J.P.Rolland, E.C.Hagberg, G.M.Denison, K.R.Carter, J.M.DeSimone, Angew.Chem.2004, 116, 5920.
[13] T.Granlund, T.Nyberg, L.S.Roman, M.Svensson, O.Inganäs, Adv.Mater.2000, 12, 269.
[14] Y.Xia, G.M.Whitesides, Annu.Rev.Mater.Sci.1998, 28, 153.
[15] W.S.Beh, I.T.Kim, D.Qin, Y.Xia, G.M.Whitesides.Adv.Mater. 1999, 11, 1038.
[16] Y.Yin, B.Gates, Y.Xia.Adv.Mater.2000, 12, 1426.
[17] K.Salaita, Y.Wang, J.Fragala, R.A.Vega, C.Liu, C.A.Mirkin,Angew.Chem.2006, 118, 7378.
[18] D.Bullen, S.-W.Chung, X.Wang, J.Zou, C.A.Mirkin, C.Liu, Appl.Phys.Lett.2004, 84, 789.
[19] Y.L.Kim, H.Y.Jung, S.Park, B.Li, F.Liu, J.Hao, Y.-K.Kwon, Y.J.Jung, S.Kar, Nat.Photonics 2014, 8, 239.
[20] X.Xiong, L.Jaberansari, M.G.Hahm, A.Busnaina, Y.J.Jung, Small 2007, 3, 2006.
[21] A.B.Marciel, M.Tanyeri, B.D.Wall, J.D.Tovar, C.M.Schroeder, W.L.Wilson, Adv.Mater.2013, 25, 6398.
[22] J.T.Wang, J.Wang, J.J.Han, Small 2011, 7, 1728.
[23] S.Y.Lee, S.H.Kim, H.Hwang, J.Y.Sim, S.M.Yang, Adv.Mater. 2014, 26, 2391.
[24] J.Y.Oh, J.T.Park, H.J.Jang, W.J.Cho, M.S.Islam, Adv.Mater. 2014, 26, 1929.
[25] K.W.Song, R.Costi, V.Bulovi, Adv.Mater.2013, 25, 1420.
[26] P.Maury, M.Escalante, D.N.Reinhoudt, J.Huskens, Adv.Mater. 2005, 17, 2718.
[27] Y.Xia, Y.Yin, Y.Lu, J.McLellan, Adv.Funct.Mater.2003, 13, 907.
[28] L.Jaber-Ansari, M.G.Hahm, S.Somu, Y.E.Sanz, A.Busnaina, Y.J.Jung, J.Am.Chem.Soc.2008, 131, 804.
[29] T.Kraus, L.Malaquin, H.Schmid, W.Riess, N.D.Spencer, H.Wolf,Nat.Nanotechnol.2007, 2, 570.
[30] K.D.Hermanson, S.O.Lumsdon, J.P.Williams, E.W.Kaler, O.D.Velev, Science 2001, 294, 1082.
[31] H.-W.Seo, C.-S.Han, D.-G.Choi, K.-S.Kim, Y.-H.Lee, Microelectron.Eng.2005, 81, 83.
[32] E.M.Freer, O.Grachev, X.Duan, S.Martin, D.P.Stumbo, Nat.Nanotechnol.2010, 5, 525.
[33] D.Xu, A.Subramanian, L.Dong, B.J.Nelson, IEEE Trans.Nanotechnol.2009, 8, 449.
[34] X.Xiong, P.Makaram, A.Busnaina, K.Bakhtari, S.Somu, N.McGruer, J.Park, Appl.Phys.Lett.2006, 89, 193108.
[35] R.C.Bailey, K.J.Stevenson, J.T.Hupp, Adv.Mater.2000, 12, 1930.
[36] Q.Zhang, T.Xu, D.Butterfi eld, M.J.Misner, D.Y.Ryu, T.Emrick, T.P.Russell, Nano Lett.2005, 5, 357.
[37] E.Kumacheva, R.K.Golding, M.Allard, E.H.Sargent, Adv.Mater. 2002, 14, 221.
[38] M.Wei, Z.Tao, X.Xiong, M.Kim, J.Lee, S.Somu, S.Sengupta, A.Busnaina, C.Barry, J.Mead, Macromol.Rapid Commun.2006, 27, 1826.
[39] a) D.Schwartz, S.Steinberg, J.Israelachvili, J.Zasadzinski, Phys.Rev.Lett.1992, 69, 3354; b) W.Yang, P.Thordarson, J.J.Gooding, S.P.Ringer, F.Braet, Nanotechnology 2007, 18, 412001.
[40] S.Siavoshi, C.Yilmaz, S.Somu, T.Musacchio, J.R.Upponi, V.P.Torchilin, A.Busnaina, Langmuir 2011, 27, 7301.
[41] E.Artukovic, M.Kaempgen, D.Hecht, S.Roth, G.Grüner, NanoLett.2005, 5, 757.
[42] L.Hu, D.Hecht, G.Grüner, Nano Lett.2004, 4, 2513.
[43] M.Fuhrer, J.Nygård, L.Shih, M.Forero, Y.G.Yoon, H.J.Choi, J.Ihm, S.G.Louie, A.Zettl, P.L.McEuen, Science 2000, 288,
494.
[44] J.J.Gooding, A.Chou, J.Liu, D.Losic, J.G.Shapter, D.B.Hibbert,Electrochem.Commun.2007, 9, 1677.
[45] A.Chou, T.Böcking, N.K.Singh, J.J.Gooding, Chem.Commun. 2005, 7, 842.
[46] D.Hines, V.Ballarotto, E.Williams, Y.Shao, S.Solin, J.Appl.Phys. 2007, 101, 024503.
[47] H.Park, A.Afzali, S.-J.Han, G.S.Tulevski, A.D.Franklin, J.Tersoff, J.B.Hannon, W.Haensch, Nat.Nanotechnol.2012, 7, 787.
[48] S.Somu, H.Wang, Y.Kim, L.Jaberansari, M.G.Hahm, B.Li, T.Kim, X.Xiong, Y.J.Jung, M.Upmanyu, A.Busnaina, ACS Nano 2010, 4, 4142.
[49] L.Jaber-Ansari, M.G.Hahm, T.H.Kim, S.Somu, A.Busnaina, Y.J.Jung, Appl.Phys.A 2009, 96, 373.
[50] B.Li, M.G.Hahm, Y.L.Kim, H.Y.Jung, S.Kar, Y.J.Jung, ACS Nano 2011, 5, 4826.
[51] B.Li, H.Y.Jung, H.Wang, Y.L.Kim, T.Kim, M.G.Hahm, A.Busnaina, M.Upmanyu, Y.J.Jung, Adv.Funct.Mater.2011, 21, 1810.
[52] M.A.Meitl, Z.T.Zhu, V.Kumar, K.J.Lee, X.Feng, Y.Y.Huang, I.Adesida, R.G.Nuzzo, J.A.Rogers, Nat.Mater.2005, 5, 33.
[53] F.N.Ishikawa, H.Chang, K.Ryu, P.Chen, A.Badmaev, L.GomezDe Arco, G.Shen, C.Zhou, ACS Nano 2008, 3, 73.
[54] N.Inagaki, Plasma Surface Modifi cation and Plasma Polymerization, CRC, Boca Raton, FL, USA 1996.
[55] E.Liston, L.Martinu, M.Wertheimer, J.Adhes.Sci.Technol.1993, 7, 1091.
[56] T.Tsai, C.Lee, N.Tai, W.Tuan, Appl.Phys.Lett.2009, 95, 013107.
[57] J.G.Bai, Z.Z.Zhang, J.N.Calata, G.-Q.Lu, IEEE Trans.Compon.Packag.Technol.2006, 29, 589.
[58] J.G.Toffaletti, Crit.Rev.Clin.Lab.Sci.1991, 28, 253.
[59] J.-L.Vincent, P.Dufaye, J.Berré, M.Leeman, J.-P.Degaute, R.J.Kahn, Crit.Care Med.1983, 11, 449.
[60] R.Henning, M.Weil, F.Weiner, Circ.Shock 1982, 9, 307.

Agitational Stresses

Agitational Stresses / 동요 스트레스

This article was contributed by Ge Bai, Scientist, MedImmune LLC.

Agitation instruments and glass vial

Agitation 연구는 생물 요법 발달에 있어 흔하고 중요한 부분이지만, 관련된 스트레스의 근본적인 특성과 단백질 안정성에 대한 영향은 완전히 이해되지 않았습니다. 동요된 스트레스 방법의 특성화는 단백질 분해 메커니즘이나 특정 민감도를 식별하는데 매우 중요합니다. 전단, 경계면, 캐비 테이션 또는 기타 유체 및 계면 장력에 의한 응력은 실험적 방법으로 측정하기 어렵거나 불가능합니다. 최근에는 다양한 주파수에서 회전 장치(Rotator), 궤도 셰이커, 자석 교반기, 와류 혼합기(그림 1참조)를 포함한 다양한 계측기를 사용하여 3-4S 유리 바이알에서 동요하는 액체의 유체 역학을 모델링하여 단백질 안정성에 잠재적으로 중요한 응력을 확인하고 정량화하였습니다. 25°C에서 물의 유동성 특성이 이러한 시뮬레이션에 사용되었습니다.

Gaining better understanding on agitational stresses applied to proteins for biopharmaceutical development

표준 FLOW3D코드는 최대 시스템 전단율, 볼륨 평균 전단률, 공기-액체 및 고체-액체 인터페이스 근처의 볼륨 평균 전단률, 총 전단, 고체-액체 인터페이스의 면적, 그리고 공기음 재생 인터페이스와 같은 단백질에 대한 잠재적으로 유해한 응력을 수치적으로 계산할 수 있도록 맞춤화하였다. 표준 소프트웨어 패키지의 추가 출력으로 표시됩니다. 시뮬레이션과 실험 사이에 바이알에 있는 유체의 자유 표면 형태를 비교하여 CFD모델을 검증하였습니다(그림 2).

Orbital schaker simulation
그림 2. CFD시뮬레이션과 300rpm정상 상태에서의(A)궤도 쉐이커와(B)35rpm, 55°위치에서의 회전 장치(Rotator)회전 장치(Rotator)에 대한 실험 사이의 유체 없는 표면 형태 비교.
Instantaneous shear rates
그림 3. 최대 진동 주파수(A)궤도 쉐이커,(B)자기 교반기,(C)와류 혼합기 및(D)회전 장치(Rotator)에서의 경계면 부근에서의 순간 전단율.

응력(전단 속도 및 인터페이스 생성 속도)의 예와 공기 액상 및 고체 액체 인터페이스에서의 비교는 그림 3과 그림 4에 나와 있다. 전체적으로, 와류 혼합기는 가장 강한 응력을 제공하는 반면, 자석 교반기는 소수성 절 표면에 국소적으로 강한 전단을 제시하였다. 회전 장치(Rotator)는 부드러운 유체 응력을 제공하지만 낮은 회전 주파수를 고려할 때 공기-물 내부 영역 및 표면 응력은 상대적으로 높습니다. 궤도 셰이커는 중간 수준의 스트레스를 제공하지만 일관된 생체-생체 동질성을 위한 크고 안정적인 플랫폼의 이점을 제공합니다.

Air-liquid interface generation rates
그림 4. 최대 진동 주파수(A)궤도 쉐이커,(B)자기 교반기,(C)와류 혼합기 및(D)회전 장치(Rotator)에서의 공기 액상 인터페이스 생성 속도.

우리는 설명한 각각의 동요된 방법에서 유리 용기 안의 액체에 복수의 응력이 동시에 작용한다는 것을 발견했다. 이러한 스트레스는 다양한 방법에 따라 다양했으며 종종 교란 주파수의 강력한 기능으로 밝혀졌다. 또한 알려진 유형과 강도의 스트레스를 가진 적절한 촉진 방법을 선택하면 단백질 저하 메커니즘에 대한 영향을 더 잘 이해하는 데 도움이 될 수 있다는 것도 알아냈다. 우리는 CFD가 실험 시스템에서 유체 응력의 특성을 파악하고 실제 조건에 대한 관련성을 검증하는 데 중요한 역할을 할 수 있다고 결론지었습니다.

생명 공학 응용 분야

표준 FLOW-3D 코드는 시스템 전단 속도, 부피 평균 전단 속도, 공기-액체 및 고체-액체 계면 근처의 부피 평균 전단 속도, 총 전단, 고체 면적과 같은 단백질에 잠재적으로 유해한 응력이 발생하도록 맞춤화되었습니다. 액체 인터페이스 및 공기-액체 인터페이스 재생률을 수치적으로 계산하고, 표준 소프트웨어 패키지의 추가 출력과 비교할 수 있습니다. 시뮬레이션과 실험 사이에 VIAL에있는 유체의 자유 표면 모양을 비교하여 CFD 모델을 검증했습니다 (그림 2).

Orbital schaker simulation
Figure 2. Comparison of the shape of fluid free surface between CFD simulation and experiment for (A) orbital shaker at 300 rpm at steady state and (B) rotator at 35 rpm, 55° position.
Instantaneous shear rates
Figure 3. Instantaneous shear rates near interfaces at maximum agitation frequencies (A) orbital shaker, (B) magnetic stirrer, (C) vortex mixer and (D) rotator.

응력(전단 속도 및 인터페이스 생성 속도)의 예와 공기 액상 및 고체 액체 인터페이스에서의 비교는 그림 3과 그림 4에 나와 있습니다. 전체적으로, 와류 혼합기는 가장 강한 응력을 제공하는 반면, 자석 교반기는 hydrophobic stir bar 표면에 국소적으로 강한 전단을 제시합니다. 회전 장치(Rotator)는 부드러운 유체 응력을 제공하지만 낮은 회전 주파수를 고려할 때 공기-물 내부 영역 및 표면 응력은 상대적으로 높습니다. 궤도 셰이커는 중간 수준의 스트레스를 제공하지만 일관된 생체-생체 동질성을 위한 크고 안정적인 플랫폼의 이점을 제공합니다.

Air-liquid interface generation rates
Figure 4. Air-liquid interface generation rates at maximum agitation frequencies (A) orbital shaker, (B) magnetic stirrer, (C) vortex mixer and (D) rotator.

우리는 설명한 각각의 교반 방법에서 유리 용기 안의 액체에 여러가지 응력이 동시에 작용한다는 것을 발견했다. 이러한 스트레스는 다양한 방법에 따라 다양했으며 종종 교란 주파수의 강력한 기능으로 밝혀졌다. 또한 알려진 유형과 강도의 스트레스를 가진 적절한 촉진 방법을 선택하면 단백질 분해 메커니즘에 대한 영향을 더 잘 이해하는 데 도움이 될 수 있다는 것도 알아냈습니다. 우리는 CFD가 실험 시스템에서 유체 응력의 특성을 파악하고 실제 조건에 대한 관련성을 검증하는 데 중요한 역할을 할 수 있다고 결론지었습니다.

Lab-on-a-chip – Thermocapillary actuation (열 모세관 작동)

Thermocapillary actuation (열 모세관 작동)

  • 열 효과를 사용한 랩온어칩의 미세 액체의 길
    – 온도에 의존하는 표면 장력
    – 외부의 기계적인 힘이 필요하지 않음
    – 프로그래밍이 가능한 마이크로 히터 어레이를 통해 열 효과 추가
  • 유체의 고유한 습윤성으로 인해 유체 손실이 발생
    – 열 모세관 작동 외에도 패턴화 된 (친수성 또는 소수성) 표면을 배치하여 손실을 최소화 할 수 있음

공간의 다양한 표면 장력

  • 차가운 유체에서 표면 장력이 높기 때문에 공간의 변화가 발생함
    – 높은 표면 장력으로 유체를 함께 유지
    – 유체가 따뜻한 곳에서 차가운 곳으로 당겨짐
    – 유체의 움직임은 다음의 식을 통해 알 수 있음

FLOW-3D에서의 시뮬레이션

  • 미세 액체는 인접 구역의 온도에 따라 움직임 (소수성과 친수성)

Computational Analysis of Drop Formation and Detachment

Computational Analysis of Drop Formation and Detachment

Introduction and Problem Statement

신속, 반복, 작은 물방울의 생성 및 증착, 작은 형상의 프린팅 또는 패터닝 (예 : l = 10-3-1 mm), 스프레이로  균일한 두께의 박막 형성은 다양한 산업에 매우 중요합니다(1-5). 액체 이동과 액적 형성 / 증착 공정은 복잡한 자유 표면 흐름, 자연적인 모세관운동 형성, thinning, pinch-off를 수반한다 (1-5). 단순한 뉴턴 및 비탄성 유체에 대해 액적 생성 및 액적 이동을 분석하기위한 실험적, 이론적 및 1 차원 시뮬레이션 연구가 진행되었지만 프린팅 또는 패터닝에 대한 기계론적인 이해는 여전히 과제로 남아 있습니다. 현재의 계산에 대한 주된 목표는 뉴턴 유체의 pinch-off에 대한 기계론적 이해를 얻기 위해 FLOW-3D에 내장된 VOF(volume-of-fluid) 접근법으로 시험하는 것입니다. 전산해석은 모세관, 관성, 점성 응력의 복잡한 상호 작용을 포착하여 자기유사 모세관의 thinning and pinch-off를 결정합니다. 뉴턴 유체의 물방울 형성 ​​및 분리현상은  전산해석으로부터 얻어진 자기유사 모세관현상 이론, 보편적인 축소화 기법인 1D 시뮬레이션 (1-7)과 실험 (1, 2, 8-12)을 이용하여 설명될 수 있음을 보여준다. 이러한 우리가 진행한 원형흐름 시뮬레이션은 유한한 시간의 비선형 역학, 위성 낙하현상, 복잡한 형상의 프린팅과 같이 어려운 전산해석의 기반이 될 것 입니다.

방울 형성의 전산 분석
그림 1 : FLOW-3D를 사용하여 시뮬레이션 한 저점도 유체의 드롭 형성 및 분리에 대한 전산해석 : (a) 5개의 저점도 유체에 대한 물방울의 necking에 대한 반경이 시간변화에 따라 표시됩니다. 물방울 necking의 반지름이 오른쪽에서 왼쪽으로 시간에 따른 전개를 보여줍니다. 마찬가지로 스냅 샷은 necking의 반경이 오른쪽에서 왼쪽으로 줄어듭니다. 속도의 크기 (단위 : cm/s) 와 화살표의 방향에 대한 컬러 맵을 사용하면 변형장을 결정할 수 있으며 Fluid 5 (표 1 참조)의 경우에는 순식간에 신장이됩니다. 이미지 II에 캡처 된 pinch-off 하기 전에 형성된 원추형 necking은 실험을 통해 얻은 necking 모양과 유사합니다.

Modeling Approach and Parameter Space

표면 장력 및 중력 모델을 적용한 FLOW-3D 에서 균일한 메쉬 크기를 사용하여 노즐에서 드롭 형성 및 분리에 대한 시뮬레이션을 수행하였습니다. 유한 체적의 유체를 떨어뜨리거나 분리하는 일은 물방울의 성장과 드롭, 노즐에 연결되는 모세관 현상, 관성, 점도 및 중력에 대한 상호 작용을 수반합니다. 시뮬레이션에서 스테인레스 강 노즐 ( {{D} _ {0}} = 2 {{R} _ {0}} = 1.7 \, \ text {mm}) 에서 유한 체적의 뉴턴 유체가 발생합니다. 표면 장력이 중력을 겪으면 새로 형성된 액적 분리가 발생합니다 (mg> 2 \ pi \ sigma {{R} _ {0}}). 시뮬레이션은 유체점도의 영향을 설명하기 위해 두 그룹으로 나누어져 있습니다: 저점도 유체 (글리세롤 함량이 40 % 미만인 물과 글리세롤/물 혼합물) 및 점도가 높은 유체 (예 : 글리세롤과 글리세롤/물 혼합물 점도 > 100x 물 점도). 두 그룹의 유체 특성은 각각 표 1과 2에 나와 있습니다.

계산 분석 드롭 형성 저점도

그림 2 : FLOW-3D를 사용하여 시뮬레이션 한 저점도 유체의 드롭형성 및 분리에 대한 전산 해석 : 반경 플롯에서 4개의 고점도 뉴톤유체에 대해 necking 반경을 시간변화에 따라 표시합니다. 낙하 분리 중 모세관 현상이 스냅 샷으로 표시됩니다. 컬러 맵은 Fluid 8의 속도 크기 (단위 : cm/s)의 변화를 포착합니다 (표2 참조). 화살표는 성장하는 물방울과 얇아지는 물방울내에서 흐름방향을 나타냅니다. FLOW-3D 시뮬레이션으로 얻은 necking 모양은 고점도의 뉴턴유체에 대한 특징인 원통형 유체요소로 이어집니다.

 

<표 1 : FLOW-3D를 사용하여 시뮬레이션 된 저점도 유체의 특성>
Fluid Property Fluid 1 Fluid 2 Fluid 3 Fluid 4 Fluid 5
Viscosity [Pa · s] 0.05 0.02 0.01 0.0075 0.005
Surface Tension  [mN / m] 68 68 68 68 68
Density [g / cm 3 ] 1 1 1 1 1
Ohnesorge Number 0.21 0.08 0.04 0.03 0.021
 저점도 유체 (표 1의 유체 2) 가 노즐에서 떨어지는 것을 시뮬레이션 합니다. 색상변수는 속도크기 (단위 : cm / s)이며 속도벡터가 표시됩니다.

 

<표 2 : FLOW-3D를 사용하여 시뮬레이션 된 고점도 유체의 특성>
Fluid Property Fluid 6 Fluid 7 Fluid 8 Fluid 9
Viscosity [Pa · s] 1.5 0.8 0.5 0.25
Surface Tension  [mN / m ] 68 68 68 68
Density [g / cm 3 ] 1 1 1 1
Ohnesorge Number 6.24 3.33 2.08 1.04

고점도 유체 (표 2의 유체 8) 가 노즐에서 떨어지는 것을 시뮬레이션 합니다. 색상변수는 속도크기 (단위 : cm / s) 이며 속도 벡터가 표시됩니다.

Discussion of the Simulation Results

드롭 형성 및 분리는 표1과 표2에 열거 된 유체에 대해 FLOW-3D 를 사용하여 시뮬레이션 하였고, 시간 경과에 따른 necking 모양, 반경을 분석하였습니다. 물방울의 necking 모양과 저점도에서의 necking에 대한 역학(그림 1 참조)은 실험, 흐름 이론, 1D 시뮬레이션, 자기유사 관성에 대한 모세현상의 특성을 나타냅니다 (1, 2, 6, 7, 13) :

(1)  \ displaystyle \ frac {{R (t)}} {{{{R} _ {0}}}} \ approx 0.8 R {{{{왼쪽} {R} {0} 3}}} 오른쪽}) ^ {{{{frac {1} {3}}} {{왼쪽 {{{{왼쪽}}} {2} {3}}}}

여기서 R (t)가  necking의 순간 반경이고, R0는 노즐의 외부반경이며,  \ displaystyle \ sigma 는 표면 장력,  \ displaystyle \ rho 는 유체의 밀도 tC 는 pinch-off 시간이다. 마찬가지로, 이러한 더 높은 점도의 뉴턴유체에 대한 반경 변화데이터는 시간에 따른 반경의 감소를 나타내는 것이며,  Papageorgiou’s visco-capillary scaling (8, 9)은 아래의 식으로 표현된다.

(2)  \ {0 \} {} {} {} {} {} {} {} {} {} {} {} {} { } ({{t} _ {p}} - t)

모세관 속도(표면 장력과 점도의 비)의 측정 값은 McKinley와 Tripathi (8)에 의해 Capillary Break-Up Extensional Rheometer (CaBER)라고 불리는 상업적으로 이용 가능한 장비를 사용하여 얻은 값과 모세관 속도는 공칭 표면 장력과 점도를 사용하여 계산됩니다.

FLOW-3D 는 물방울의 necking부분을 속도 벡터로 시각화하여 유체의 흐름을 나타낼 수 있습니다. 또한, 이는 그림 1과 같이 전단, 확장을 겪은 후 얇아지는 물방울이 흐르는 과정의 순간을 결정할 수 있는 가능성을 줍니다. 추가로, 낮은 점도의 뉴턴유체는 높은 점도의 뉴턴 유체에 비해 질적으로 다른 거동을 보여준다(그림 2참조). 낮은 점도의 뉴턴 유체에 대한 necking 프로파일은 이론(6,13)에 따라 자기 유사성이 됩니다.

Conclusions, Outlook and Ongoing work

우리의 예비결과는 FLOW-3D 기반의 전산해석이 액적 형성과 탈착의 기초가 되는 프로토타입의 자유 표면흐름을 시뮬레이션하는데 사용될 수 있음을 보여줍니다 . 시뮬레이션된 반경변화 프로파일이 실험적으로 관찰된 높은 유체 및 이론적으로 예측된 유체인 스케일링 법칙 및 pinch-off dynamics과 일치하는 것을 발견하였습니다.

자주 사용되는 1D 또는 2D 모델과 달리 FLOW-3D 는 기본 응력 및 확장 유동장 (균일도 및 크기)의 강도와 얇은 액체 필라멘트 내 흐름에 대한 시각화를 나타낼 수 있습니다(그림1과 2 참조). 확장 유동장과 연관된 흐름 방향 속도 구배는 모세관현상이 나타나는 물방울의 얇은 부분 내에서 발생합니다. 유동학적으로 복잡한 유체에서 non Newtonian shear 및 신장, 점도뿐만 아니라 그외의 탄성 응력이 nonlinear pinch-off dynamics을 급격하게 변화시킵니다(2, 10-12). 우리는 현재 점탄성과 non-Newtonian 유동학을 사용하여 FLow-3D에 복합 유체의 처리 성능평가를 위한 강력한 연산 프로토콜을 개발하고 있습니다.

References

  1. J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865-929 (1997).
  2. G. H. McKinley, Visco-elasto-capillary thinning and break-up of complex fluids. Rheology Reviews, 1-48 (2005).
  3. B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annual Review of Materials Research 40, 395-414 (2010).
  4. O. A. Basaran, H. Gao, P. P. Bhat, Nonstandard Inkjets. Annual Review of Fluid Mechanics 45, 85-113 (2013).
  5. S. Kumar, Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines. Annual Review of Fluid Mechanics 47, 67-94 (2014).
  6. R. F. Day, E. J. Hinch, J. R. Lister, Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80, 704-707 (1998).
  7. J. Eggers, M. A. Fontelos, Singularities: Formation, Structure, and Propagation. (Cambridge University Press, Cambridge, UK, 2015), vol. 53.
  8. G. H. McKinley, A. Tripathi, How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J. Rheol. 44, 653-670 (2000).
  9. D. T. Papageorgiou, On the breakup of viscous liquid threads. Phys. Fluids 7, 1529-1544 (1995).
  10. J. Dinic, L. N. Jimenez, V. Sharma, Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids. Lab on a Chip 17, 460-473 (2017).
  11. J. Dinic, Y. Zhang, L. N. Jimenez, V. Sharma, Extensional Relaxation Times of Dilute, Aqueous Polymer Solutions. ACS Macro Letters 4, 804-808 (2015).
  12. V. Sharma et al., The rheology of aqueous solutions of Ethyl Hydroxy-Ethyl Cellulose (EHEC) and its hydrophobically modified Analogue (hmEHEC): Extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter 11, 3251-3270 (2015).
  13. J. R. Castrejón-Pita et al., Plethora of transitions during breakup of liquid filaments. Proc. Natl. Acad. Sci. U.S.A. 112, 4582-4587 (2015).