Energy

Energy

전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.

  • Fuel or cargo sloshing inside containers on the high seas
  • Wave effects on offshore platforms
  • Performance optimization for separation devices undergoing 6 DOF motion
  • Design of devices to capture energy from waves

Energy Case Studies

천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.

잔해물 수송 테스트를 CFD 모델링과 결합하면 ECCS 스트레이너가 견딜 수 있어야 하는 잔해물 부하를 다른 방법으로는 가정해야하는 지나치게 보수적 인 값에서 크게 줄일 수 있습니다. CFD는 또한 수두 손실 테스트를 지원하기 위해 ECCS 스트레이너 주변의 흐름 패턴, 수두 손실 테스트 및 플랜트 설계 수정을 식별하는데 있어 containment pool 수위 변화를 식별하는데 유용함이 입증되었습니다.
( By combining debris transport testing with CFD modeling, the debris loads that the ECCS strainers must be able to withstand can be significantly reduced from the overly conservative values that must otherwise be assumed. CFD has also proved to be valuable in identifying containment pool water level changes, flow patterns in the vicinity of the ECCS strainer to support head loss testing, and plant design modifications.
-Tim Sande & Joe Tezak, Alion Science and Technology)


Architects Achieve LEED Certification in Sustainable Buildings

Comparing HVAC System Designs

Debris Transport in a Nuclear Reactor Containment Building

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

모터 냉각에 관한 성능 연구

모터 냉각에 관한 성능 연구

본 연구는 모터 냉각 성능을 실험적으로, 그리고 수치적으로 조사한다. 모터는 원심 팬, 2개의 축 팬, 축, 스테이터, 로터, 637개의 냉각 튜브가 있는 열 교환기로 구성된다.

1800rpm에서 냉각팬의 압력 상승-유량(P-Q) 성능 곡선은 중국 국가표준(CNS) 2726을 준수하는 시험 장치를 사용하여 시험한다. 수치해석 결과, 실험 측정과 비교했을 때 축방향 팬과 원심형 팬의 P-Q 성능 곡선은 각각 약 2%와 6% 이내에서 추정할 수 있다.

단순화된 모델을 사용하여 열교환기와 스테이터를 다공성 매체로 설정함으로써 모터의 흐름장을 계산한다. 로터와 스테이터 근처의 유장 결과를 사용하고, 열 발생 속도를 경계조건으로 하여 스테이터와 로터의 온도분포도 계산한다.

시뮬레이션 결과 축 팬 근처에 있는 스테이터 권선의 계산온도는 측정값보다 약 5% 낮으며, 스테이터 중심에 위치한 스테이터 코어의 계산온도는 측정값보다 약 1% 높다. 이외에도 모터 냉각 성능 향상을 위한 논의가 이루어지고 있다.

모터는 우리 생활에서 널리 사용되고 있지만, 온도는은 모터 생산에서 중요한 고려사항이 된다. 과열은 모터의 수명을 감소시키는 결과를 가져올 것이다. 따라서 비용을 절감하고 최적화된 성능을 얻는 방법은 노력을 기울여야 한다.

CFD(Computational Fluid Dynamics) 코드를 통해 모터의 열 전달을 이해하고 모터의 열 관리를 개선하는 데 유용할 것이다.

모터 성능을 향상시키기 위해, 많은 연구들이 팬의 성능 예측과 최적화에 전념하였다[1-6]. 좋은 팬은 기하학 및 블레이드 번호를 포함하여 모터의 냉각 용량에 영향을 미친다. 게다가, 선풍기에서 발생하는 소음과 진동은 데시벨을 낮추는 방법을 제안할 필요가 있는 핵심이다.

모터 온도와 관련하여 모터 온도를 결정하기 위해 전력 소산 및 모터 열 저항을 고려할 수 있다[7]. 밀폐된 모터 냉각 시스템의 흐름 구조에 따라 달라지는 대류 열전달 때문에 밀폐된 전기 모터의 유체 흐름은 수치적 방법에 의해 연구된다[8]. 모터 성능 연구에서는 CFD 모델링 기법을 사용하여 모터의 열 관리를 조사한다.

[9-13]. 본 연구는 주로 원심 팬(외부 팬), 2개의 축 팬(내부 팬), 샤프트, 스테이터, 로터 및 637개의 냉각 튜브가 장착된 열 교환기로 구성된 2350kW TEAC(Tall Closed Air to Air Cooling) 모터를 조사한다. 이 모델에서 흐름은 외부 흐름과 내부 흐름으로 구분할 수 있다. 그림 1에서, 파란색 화살표는 외부의 차가운 흐름을 나타낸다.

원심 팬이 회전하면서 주변 공기가 공기 장막을 통해 흐른 뒤 637개의 열교환 튜브로 들어가 밖으로 나가는 데서 유래한다. 빨간색 화살표의 순환은 축 팬의 회전으로 인한 내부 열류, 스테이터를 의미한다. 그런 다음 열교환기로 들어가 외부 저온 흐름으로 열교환한다.

Flow fields of the axial fan
Path lines of the axial fan
Calculation results of the pressure and flow fields

본 연구에서는 모터 성능을 Fluent[14]와 상업용 코드인 Flow-3D[15]로 시뮬레이션하고, Gambit을 사용하여 Fluent용 메쉬를 생성한다.

이 모터의 복잡한 지오메트리를 다루기 위해서는 구조화되지 않은 메쉬나 하이브리드 메쉬가 우선 고려되었다. 아쉽게도 멀티 블록 구조 메시 생성 방식을 시도했지만 효과가 없었다. 또한 심하게 치우친 요소를 생성하지 않고 메쉬 확인을 위한 메쉬 테스트도 시뮬레이션 과정에서 중요하다.

본 연구의 첫 번째 부분은 축 및 원심 팬의 성능을 조사하는 것이다. 두 번째는 스테이터와 로터 부근의 전체 모터의 유량장, 압력장, 온도에 대해 논의한다. 모델의 정확성을 입증하기 위해 팬 성능 및 스테이터 온도의 계산 결과를 실험 데이터와 비교한다.

상세한 내용은 첨부된 논문을 참조하기 바랍니다.

The-Investigation-of-Motor-Cooling-Performance.pdf

환기시스템 열유동 해석

Comparing HVAC System Designs

HVAC 시스템 설계 비교이 기사의 내용은 TecsultInc. 의 AlecMercier에 의해 기고되었습니다.

최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.

이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.

Comparing Design Alternatives

시뮬레이션을 통해 두 대안에 대한 발전소 전체의 온도와 흐름 패턴을 상세히 비교하고 Tecsult의 HVAC시스템 엔지니어에게 중요한 데이터를 제공했습니다. 디자인 선택을 하다 이 발전소의 상세 설계의 일환으로, 기술 팀은 에어컨 시스템의 두 가지 다른 구성을 제안했고, 그 수, 크기, 분포를 결정했습니다. 각 유량, 흡기/배기 가스 속도, 투영 각도와 함께 펄스와 환기구를 사용합니다. 두 구성에서 이 시스템은 25ºC의 온도에서 파워 트레인으로 냉기를 불어넣는 덕트 3개와 천장 근처에 위치한 리턴 벤트 3개로 구성됩니다. 두 가지 대안의 차이는 공기 덕트 중 하나의 위치에 있습니다. 첫 번째 대안으로 공기 덕트는 바닥에서 5.6m위에 있는 업 스트림 벽을 따라 움직입니다. 두 번째 대안으로, 에어 덕트는 바닥에서 11.1 m높이의 하류 벽을 따라 달립니다. 그림 1은 대체 1에 해당하는 기류의 동력과 레이아웃을 보여 줍니다.


Figure 1. Alternative 1: General view of the inside of the powerhouse, heat-generating equipment (green), and ducts (light blue).

이러한 유형의 문제에서 흐름 패턴을 지배하는 가장 중요한 현상은 일반적으로 바닥에있는 열 발생 장비에 의해 유도 된 대류 전류와 온도 (즉, 부력)에 따른 공기 밀도의 변화입니다

Modeling Diffusers and Vents with Mass/Momentum Sources

질량/운동량 소스로 디퓨저 및 벤트 모델링

시스템 엔지니어는 FLOW-3D의 mass momentum sources 기능을 사용하여 지정된 속도와 방향으로 정의 된 영역으로 공기를 흐르게 합니다. mass momentum sources 기능은  확산 영역과 배출구가 있는 HVAC 시스템을 시뮬레이션 할 때 특히 유용합니다. 확산 영역과 배출 영역은 수없이 많으며 계산 영역의 가장자리에서 멀리 떨어져 있기 때문입니다. 이것은 구조화 된 메쉬에서 그 설정을 어렵게 만듭니다. mass momentum sources는 메쉬 경계에 대한 근접성을 고려하지 않고 임의로 도메인에 배치 할 수 있습니다.

Conclusion

이 시뮬레이션은 두 가지 대안 모두에 대해 강국 전체의 온도와 흐름 패턴을 상세하게 비교하고 Tecsult의 HVAC 시스템 엔지니어에게 설계 선택을 지원하는 중요한 데이터를 제공했습니다. 그림 2는 층 위 약 1m의 강국의 평면도에서의 온도 분포를 보여줍니다. 표시된 온도는 일반적으로 29 ~ 30.5ºC이며 열 발생 장비 주변의 값이 로컬 값이 높습니다. 최대 온도는 왼쪽 벽에서 약 34ºC입니다.