Continuous Flow Microfluidics

Continuous Flow Microfluidics

연속 흐름 미세 유체는 연속성을 깨지 않고 제작 된 마이크로 채널을 통해 액체 흐름을 조작하는 것입니다. 유체 흐름은 마이크로 펌프 (예 : 연동 펌프 또는 주사기 펌프)와 같은 외부 소스 또는 전기, 자기 또는 모세관 힘과 같은 내부 메커니즘에 의해 설정됩니다. 연속 유동 미세 유체 학은 미세 및 나노 입자 분리기, 입자 집속, 화학적 분리는 물론 단순한 생화학 적 응용을 포함한 다양한 응용 분야에서 응용 분야를 찾아 내지 만 높은 수준의 제어가 필요한 경우에는 선택 방법이 아닐 수 있습니다.

이 범주에 속하며 FLOW-3D를 사용하여 성공적으로 시뮬레이션한 프로세스 또는 장치로는 Joule 가열, 액체 게이트, 마이크로 유체 회로, 전기-오토믹 밸브, 입자 집중, 분류 및 분리, POC(Point-of-Care) 모세관 유량 장치 및 패턴 있는 표면 장치가 있습니다.

Sketch of cross section of the device
Capillary Flows
Electro osmosis
Electro-osmosis
Simulating joule heating
Joule Heating
Patterned surfaces in micro channels
Lab-on-a-chip
Magnetic fields
Magnetic Fields
Pneumatic valve
Microfluidic Circuits
Hong chamber simulations
Mixing Dynamics
Buoyancy dominant sorting
Particle Sorting

Electro (&magneto) hydro-dynamics

Electro (&magneto) hydro-dynamics 사례

  • FLOW-3D models
  • Electrophoresis
  • Dielecrophoresis
  • Conductive fluid model
  • Electro-wetting
  • Electro-osmosis
  • Joules heating

Electrophoresis

  • Electric charge / electrophoresis
  • Particle sorting

Electro-wetting

  • Integrates effects of electrophoresis and dielectrophoresis
  • Induced charges manipulate fluid at micro/nano volumes
  • Electrowetting on dielectric (EWOD).

Dielectrophoresis (DEP)

DEP는 particle/fluid의 dielectric 특성이 주변 매체의 dielectric 특성과 다를 때만 발생한다.

Inputs required:

  • Dielectric constant of the fluid and or particles
  • Dielectric constant of any components, that may influence the electric field
  • Define electric potential on the components or on the mesh boundaries
  • Permittivity of vacuum.

섬세한 경계를 가진 두 개의 유체, 표면 장력, electric potential, fluid electric charge, dielectrophoresis, newtonian viscosity

Electro osmosis

Micro-pump example

  • Zeta potential
  • Electric field defined by the electric potential on the components or on the mesh boundaries.
  • Permittivity of vacuum
  • Flow rate control through device

Inputs required:

  • Zeta potential
  • Electric field defined by the electric potential on the components or on the mesh boundaries.
  • Permittivity of vacuum
  • Flow rate control through device

Electro-thermal effects (Joules heating)

  • 전류가 물질을 통해 흐를 때 그 저항성은 물질을 가열하게 하며, 이 효과를 joule heating이라고 한다.
  • 온도 구배 설정 속도 필드 및 장치의 유체 순환

Magneto Hydrodynamics

  • 자력에 의해 입자가 유선으로부터 이탈한다.

Xiaozheng Xue1, Ioannis H. Karampelas1, Chenxu Liu2 and Edward P. Furlani1,2
1 Department of Chemical and Biological Engineering
2 Department of Electrical Engineering
SUNY at Buffalo
FLOW-3D Americas User Conference , Toronto, 2014

Magneto Hydrodynamics

  • 자기 제어로 유체 혼합 사용

Use of magnetic field to align beads

John Wendelbo MEng, MSc.
Senior CFD Engineer, Flow Science
john.wendelbo@flow3d.com

[FLOW-3D 물리모델]Electro-mechanics / 기전역학

1. Electric Fields / 전기장

전기포텐셜은 계산영역 내에서 전하와 포텐셜 분포의 함수로 계산될 수 있다. 전기포텐셜은 Model Setup Physics Electro-mechanics 에서 활성화된다. Permittivity of vacuum 는 해석을 위해 시스템 단위에 맞게 지정되어야 한다. 해석하는 동안에 입자가 존재하면 입자전하가 정의되어야 한다. ; 영역 내 존재하는 모든 입자는 같은 전하를 갖는 것으로 가정한다. 게다가 Fluid electric charge field 모델은 또한 전기적으로 부하가 걸린 유체를 해석하도록 활성화 될 수가 있다.

유체#1 과 유체#2 의 전도도 및 유전체상수는 Fluids Properties Electrical Properties 에서 정의된다. Fluid electric charge field 가 사용되면 초기유체전하밀도는 Model Setup Meshing & Geometry Initial 에서 정의 된다. 그러나 전기포텐셜(전기장)은 계산영역 내에서 유체가 없이도 활성화 될 수 있다.

격자 경계에서의 조건들은 Model Setup Meshing & Geometry Mesh Boundaries 에서 정의된다. 전기 포텐셜의 경계조건은 전도 또는 절연일 수 있다. 한 경계는 Specified potential boundary 을 선택하고 그 경계에서의 전기 포텐셜의 특정 값을 지정함으로써 전도를 할 수가 있다. 또한 시간의 함수로 주어질 수도 있다. Fluid electric charge field 가 사용되면 밀도가 시간의 함수로 입구경계에서 정의될 수 있다.

계산영역 내에 고체구성요소가 존재하면 이들은 두 가지 형태를 갖는다: IOEPOTM 의 값에 따라 유전체거나 전도체. IOEPOTM 가 지정되지 않으면 그 구성요소는 고정 포텐셜을 갖는 것으로 간주된다. 이 속성들은 Meshing & Geometry Component Properties Electrical Properties 에서 정의된다. 구성요소의 초기부하밀도는 Meshing & Geometry Geometry Component Initial Electric Charge Density 에서 정의 된다.

포텐셜을 지배하는 Poisson 방정식의 해는 GMRES 반복법에 의해 구해진다. 수렴기준과 최대 반복수는 EPSELE 과 MAXPHIT에서 각기 정의된다. 두 매개변수 모두 적당한 디폴트 값을 가지며 일반적으로 이들을 변화시키지 않아야 한다. 이 모두 input (File Edit Simulation) 파일을 편집하여 변경된다.

See also:

  • Input Variable Summary and Units section Scalar Electrostatics, Electro-osmosis and Electromechanics Model Parameters
  • Model Reference -> Dielectrophoresis
  • Model Reference -> Electro-osmosis (Zeta Potential)
  • Model Reference -> Particles

2, Electro-osmosis (Zeta Potential) / 전기 삼투

많은 물질들(즉 실리카 또는 유리 같은)은 물(극성을 띠는)같은 매질(전해용액)과 접촉하게 될 때 표면전하를 가질 것이다. 이런 경우가 발생할 때에 EDL (Electric Double Layer)을 생성한다. EDL 이란 표면전하를 중립화하기 위해 양이온보다 많은 음이온이 존재하는 부하표면 가까이의 층을 말한다. 전기 포텐셜(zeta-potential) 이 실험적으로 측정될 수 있는 액체 고체쌍의 물성을 보여주는 EDL에 의해 생성된다. 전기삼투유동이 EDL 의 존재와 그 위에 부과된 외부 포텐셜로 인해 발생한다. 전기삼투를 모델링하기 위해 electric potential 모델이 Electric Fields 에서 기술된 바와 같이 Physics Electro-mechanics 에서 활성화되어야 한다. 전기삼투모델은 이때 같은 window 에서 활성화된다.

 

이 모델은 Physics Electro-mechanics 에서 정의되는 2개의 집중변수, F*C F/R*T 를 필요로 하는데 여기서 F 는 Faraday 상수, C 는 체적용액내의 이온농도, R 은 보편기체상수 그리고 T 는 Kelvin 단위의 주위 온도이다. 유체의 전기 물성치는 Fluids Properties Electrical Properties 에서 정의된다.

구성요소들의 전기적물성은 Meshing & Geometry Geometry Component Electrical Properties 에서 정의된다. 전기포텐셜 모델에서 필요한 물성에 추가하여 Zeta-potential 이 또한 정의되어야 한다. Zeta-potential 은 단지 개체(모든 격자 경계에서는 Zeta-potential 의 구배가 0으로 가정되어 있다.)와 관련되어 있고 디폴트 Zeta-potential 은 0이다.

See also:

3. Electro-thermal Effects / 전기열 효과

자유전하 및 Joule 발열은 물질의 전기전도에 따라 나타나는 두 결과이다. 전하의 형성, 이완 그리고 대류이송을 기술하는 전하밀도 방정식은 전기장 방정식과 함께 해석된다. 그 때에 전하층은 유체 경계면이나 유체와 전기와 유전체 힘을 유도하는 고체면사이의 경계에서 나타난다.

Joule 발열과 추가력이 전류에 의한 고체와 유체의 가열을 포함하도록 더해질 수 있다. 이런 모델들의 선택은 Physics Heat Transfer Fluid internal energy advectionPhysics Heat Transfer Full energy equation 에서 열에너지 전달의 활성화를 필요로 한다. 전기포텐셜모델 역시 Physics Electro-mechanics 에서 활성화되어야 한다.

electro-thermal forces 선택을 갖는 Joule 발열은 유전율과 온도에 따른 전도의 변화로 인해 발생하는 유체내의 힘들을 포함한다. 각 속성은 Permittivity temperature sensitivity, Conductivity temperature sensitivity 그리고 Electric field angular frequency 와 같이 Physics Electromechanics and Fluids에서 정의된다.

전기 전도도는 전기 열 효과가 작동하기 위해 유체에서 정의되어야 한다. 이는 Model Setup → Fluids → Fluid 1 or 2 → Electrical Properties 에서 정의된다.

4. Dielectrophoresis / 유전영동

유전력은 적용되는 전기장에서 유체분자 및 입자의 극성화에 의해 발생한다. 우선 전기 포텐셜 모델이 Physics → Electro-mechanics 에서 활성화되어야 한다. 그 후에 유전영동 모델은 같은 창에서 활성화된다. 유체에 대한 유전 속성은 Fluids → Properties → Electrical Properties 에서 정의된다.

형상 구성요소에서 관련물성은 Meshing & Geometry → Geometry → Component 에서 정의된다.

Electrical Properties:

유전영동 모델이 Physics → Electro-mechanics 에서 활성화되면 유전력은 1보다 큰 유전상수를 갖는 유체 안에서 작용한다. 유전력은 또한 모든 계산영역에 있는 질량입자에 적용된다. 이 경우 입자 유전율은 Physics → Electro-mechanics 에서 정의되어야 한다. 유전이동은 각 힘이 영향을 미치는 척도가 다르기 때문에 전기삼투모델과는 같이 사용될 수 없다. 유전이동모델은 전기삼투가 작동되면 자동적으로 비활성화된다. 전기삼투모델은 Physics → Electro-mechanics 에서 작동되는데 이 경우 추가 input 이 필요하고 같은 Electro-mechanics 창에서 주어질 수 있다. Meshing & Geometry → Geometry → Component Properties → Electrical Properties 에 있는 각 고체 구성요소에 대해 Zeta-potential 이 정의된다. Permittivity of vacuum (ELPERM)은 electrical units 에서 지정되는데 적정한 전기단위(즉, MKS 단위의 경우 볼트의 포텐셜, 쿨롱의 전하에 대해 ELPERM = 8.8542×10-12 C/(V m))를 반영하도록 정의되어야 한다. 모든 유전율들은 물질의 유전상수에 대한 진공의 유전상수 비율로 나타난다.

두 implicit solver, GMRES ADI 가 전기 포텐셜 방정식 풀이에 이용된다.
See also:
• Model Reference -> Electric Fields.
• Model Reference -> Electro-osmosis (Zeta Potential).
• Flow Science Technical Note 56 on modeling dielectric phenomena at http://users.flow3d.com/technotes/default.asp.

FLOW-3D/MP Features List

FLOW-3D/MP Features

FLOW-3D/MP v6.1 은 FLOW-3D v11.1 솔버에 기초하여 물리 모델, 특징 및 그래픽 사용자 인터페이스가 동일합니다. FLOW-3D v11.1의 새로운 기능은 아래 파란색으로 표시되어 있으며 FLOW-3D/MP v6.1 에서 사용할 수 있습니다. 새로운 개발 기능에 대한 자세한 설명은 FLOW-3D v11.1에서 새로운 기능을 참조하십시오.

Meshing & Geometry

  • Structured finite difference/control volume meshes for fluid and thermal solutions
  • Finite element meshes in Cartesian and cylindrical coordinates for structural analysis
  • Multi-Block gridding with nested, linked, partially overlapping and conforming mesh blocks
  • Fractional areas/volumes (FAVOR™) for efficient & accurate geometry definition
  • Mesh quality checking
  • Basic Solids Modeler
  • Import CAD data
  • Import/export finite element meshes via Exodus-II file format
  • Grid & geometry independence
  • Cartesian or cylindrical coordinates
Flow Type Options
  • Internal, external & free-surface flows
  • 3D, 2D & 1D problems
  • Transient flows
  • Inviscid, viscous laminar & turbulent flows
  • Hybrid shallow water/3D flows
  • Non-inertial reference frame motion
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media
Physical Modeling Options
  • Fluid structure interaction
  • Thermally-induced stresses
  • Plastic deformation of solids
  • Granular flow
  • Moisture drying
  • Solid solute dissolution
  • Sediment transport and scour
  • Cavitation (potential, passive tracking, active tracking)
  • Phase change (liquid-vapor, liquid-solid)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Visco-elastic-plastic fluids
  • Elastic membranes & walls
  • Evaporation residue
  • Electro-mechanical effects
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties
  • Spray cooling
Flow Definition Options
  • General boundary conditions
    • Symmetry
    • Rigid and flexible walls
    • Continuative
    • Periodic
    • Specified pressure
    • Specified velocity
    • Outflow
    • Grid overlay
    • Hydrostatic pressure
    • Volume flow rate
    • Non-linear periodic and solitary surface waves
    • Rating curve and natural hydraulics
    • Wave absorbing layer
  • Restart from previous simulation
  • Continuation of a simulation
  • Overlay boundary conditions
  • Change mesh and modeling options
  • Change model parameters
Thermal Modeling Options
  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transfer
  • Distributed energy sources/sinks in fluids and solids
  • Radiation
  • Viscous heating
  • Orthotropic thermal conductivity
  • Thermally-induced stresses
Turbulence Models
  • RNG model
  • Two-equation k-epsilon model
  • Two-equation k-omega model
  • Large eddy simulation
Metal Casting Models
  • Thermal stress & deformations
  • Iron solidification
  • Sand core blowing
  • Sand core drying
  • Permeable molds
  • Solidification & melting
  • Solidification shrinkage with interdendritic feeding
  • Micro & macro porosity
  • Binary alloy segregation
  • Thermal die cycling
  • Surface oxide defects
  • Cavitation potential
  • Lost-foam casting
  • Semi-solid material
  • Core gas generation
  • Back pressure & vents
  • Shot sleeves
  • PQ2 diagram
  • Squeeze pins
  • Filters
  • Air entrainment
  • Temperature-dependent material properties
  • Cooling channels
  • Fluid/wall contact time
Numerical Modeling Options
  • TruVOF Volume-of-Fluid (VOF) method for fluid interfaces
  • First and second order advection
  • Sharp and diffuse interface tracking
  • Implicit & explicit numerical methods
  • GMRES, point and line relaxation pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution
Fluid Modeling Options
  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter
Shallow Flow Models
  • General topography
  • Raster data interface
  • Subcomponent-specific surface roughness
  • Wind shear
  • Ground roughness effects
  • Laminar & turbulent flow
  • Sediment transport and scour
  • Surface tension
  • Heat transfer
  • Wetting & drying
Advanced Physical Models
  • General Moving Object model with 6 DOF–prescribed and fully-coupled motion
  • Rotating/spinning objects
  • Collision model
  • Tethered moving objects (springs, ropes, mooring lines)
  • Flexing membranes and walls
  • Porosity
  • Finite element based elastic-plastic deformation
  • Finite element based thermal stress evolution due to thermal changes in a solidifying fluid
  • Combusting solid components
Chemistry Models
  • Stiff equation solver for chemical rate equations
  • Stationary or advected species
Porous Media Models
  • Saturated and unsaturated flow
  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Heat transfer in porous media
  • Van Genunchten model for unsaturated flow
Discrete Particle Models
  • Massless marker particles
  • Mass particles of variable size/mass
  • Linear & quadratic fluid-dynamic drag
  • Monte-Carlo diffusion
  • Particle-Fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Charged particles
  • Probe particles
Two-Phase & Two-Component Models
  • Liquid/liquid & gas/liquid interfaces
  • Variable density mixtures
  • Compressible fluid with a dispersed incompressible component
  • Drift flux
  • Two-component, vapor/non-condensable gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport
  • Homogeneous bubbles
  • Super-cooling
Coupling with Other Programs
  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Direct interfaces with EnSight®, FieldView® & Tecplot® visualization software
  • Finite element solution import/export via Exodus-II file format
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Solid Properties Materials Database
Data Processing Options
  • State-of-the-art post-processing tool, FlowSight™
  • Batch post-processing
  • Report generation
  • Automatic or custom results analysis
  • High-quality OpenGL-based graphics
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving and stationary probes
  • Measurement baffles
  • Arbitrary sampling volumes
  • Force & moment output
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • Flow tracers
User Conveniences
  • Active simulation control (based on measurement of probes)
  • Mesh generators
  • Mesh quality checking
  • Tabular time-dependent input using external files
  • Automatic time-step control for accuracy & stability
  • Automatic convergence control
  • Mentor help to optimize efficiency
  • Change simulation parameters while solver runs
  • Launch and manage multiple simulations
  • Automatic simulation termination based on user-defined criteria
  • Run simulation on remote servers using remote solving
Multi-Processor Computing

FLOW-3D Features

The features in blue are newly-released in FLOW-3D v12.0.

Meshing & Geometry

  • Structured finite difference/control volume meshes for fluid and thermal solutions
  • Finite element meshes in Cartesian and cylindrical coordinates for structural analysis
  • Multi-Block gridding with nested, linked, partially overlapping and conforming mesh blocks
  • Conforming meshes extended to arbitrary shapes
  • Fractional areas/volumes (FAVOR™) for efficient & accurate geometry definition
  • Closing gaps in geometry
  • Mesh quality checking
  • Basic Solids Modeler
  • Import CAD data
  • Import/export finite element meshes via Exodus-II file format
  • Grid & geometry independence
  • Cartesian or cylindrical coordinates

Flow Type Options

  • Internal, external & free-surface flows
  • 3D, 2D & 1D problems
  • Transient flows
  • Inviscid, viscous laminar & turbulent flows
  • Hybrid shallow water/3D flows
  • Non-inertial reference frame motion
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media

Physical Modeling Options

  • Fluid structure interaction
  • Thermally-induced stresses
  • Plastic deformation of solids
  • Granular flow
  • Moisture drying
  • Solid solute dissolution
  • Sediment transport and scour
  • Sludge settling
  • Cavitation (potential, passive tracking, active tracking)
  • Phase change (liquid-vapor, liquid-solid)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Visco-elastic-plastic fluids
  • Elastic membranes & walls
  • Evaporation residue
  • Electro-mechanical effects
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties
  • Spray cooling

Flow Definition Options

  • General boundary conditions
    • Symmetry
    • Rigid and flexible walls
    • Continuative
    • Periodic
    • Specified pressure
    • Specified velocity
    • Outflow
    • Outflow pressure
    • Outflow boundaries with wave absorbing layers
    • Grid overlay
    • Hydrostatic pressure
    • Volume flow rate
    • Non-linear periodic and solitary surface waves
    • Rating curve and natural hydraulics
    • Wave absorbing layer
  • Restart from previous simulation
  • Continuation of a simulation
  • Overlay boundary conditions
  • Change mesh and modeling options
  • Change model parameters

Thermal Modeling Options

  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transfer
  • Distributed energy sources/sinks in fluids and solids
  • Radiation
  • Viscous heating
  • Orthotropic thermal conductivity
  • Thermally-induced stresses

Numerical Modeling Options

  • TruVOF Volume-of-Fluid (VOF) method for fluid interfaces
  • Steady state accelerator for free-surface flows
  • First and second order advection
  • Sharp and diffuse interface tracking
  • Implicit & explicit numerical methods
  • Immersed boundary method
  • GMRES, point and line relaxation pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution

Fluid Modeling Options

  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter

Shallow Flow Models

  • General topography
  • Raster data interface
  • Subcomponent-specific surface roughness
  • Wind shear
  • Ground roughness effects
  • Manning’s roughness
  • Laminar & turbulent flow
  • Sediment transport and scour
  • Surface tension
  • Heat transfer
  • Wetting & drying

Turbulence Models

  • RNG model
  • Two-equation k-epsilon model
  • Two-equation k-omega model
  • Large eddy simulation

Advanced Physical Models

  • General Moving Object model with 6 DOF–prescribed and fully-coupled motion
  • Rotating/spinning objects
  • Collision model
  • Tethered moving objects (springs, ropes, breaking mooring lines)
  • Flexing membranes and walls
  • Porosity
  • Finite element based elastic-plastic deformation
  • Finite element based thermal stress evolution due to thermal changes in a solidifying fluid
  • Combusting solid components

Chemistry Models

  • Stiff equation solver for chemical rate equations
  • Stationary or advected species

Porous Media Models

  • Saturated and unsaturated flow
  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Heat transfer in porous media
  • Van Genunchten model for unsaturated flow

Discrete Particle Models

  • Massless marker particles
  • Multi-species material particles of variable size and mass
  • Solid, fluid, gas particles
  • Void particles tracking collapsed void regions
  • Non-linear fluid-dynamic drag
  • Added mass effects
  • Monte-Carlo diffusion
  • Particle-fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Initial particle blocks
  • Heat transfer with fluid
  • Evaporation and condensation
  • Solidification and melting
  • Coulomb and dielectric forces
  • Probe particles

Two-Phase & Two-Component Models

  • Liquid/liquid & gas/liquid interfaces
  • Variable density mixtures
  • Compressible fluid with a dispersed incompressible component
  • Drift flux with dynamic droplet size
  • Two-component, vapor/non-condensable gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport
  • Homogeneous bubbles
  • Super-cooling
  • Two-field temperature

Coupling with Other Programs

  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Direct interfaces with EnSight®, FieldView® & Tecplot® visualization software
  • Finite element solution import/export via Exodus-II file format
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Solid Properties Materials Database

Data Processing Options

  • State-of-the-art post-processing tool, FlowSight™
  • Batch post-processing
  • Report generation
  • Automatic or custom results analysis
  • High-quality OpenGL-based graphics
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving and stationary probes
  • Visualization of non-inertial reference frame motion
  • Measurement baffles
  • Arbitrary sampling volumes
  • Force & moment output
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • Flow tracers

User Conveniences

  • Active simulation control (based on measurement of probes)
  • Mesh generators
  • Mesh quality checking
  • Tabular time-dependent input using external files
  • Automatic time-step control for accuracy & stability
  • Automatic convergence control
  • Mentor help to optimize efficiency
  • Units on all variables
  • Custom units
  • Component transformations
  • Moving particle sources
  • Change simulation parameters while solver runs
  • Launch and manage multiple simulations
  • Automatic simulation termination based on user-defined criteria
  • Run simulation on remote servers using remote solving
  • Copy boundary conditions to other mesh blocks

Multi-Processor Computing

  • Shared memory computers
  • Distributed memory clusters

FlowSight

  • Particle visualization
  • Velocity vector fields
  • Streamlines & pathlines
  • Iso-surfaces
  • 2D, 3D and arbitrary clips
  • Volume render
  • Probe data
  • History data
  • Vortex cores
  • Link multiple results
  • Multiple data views
  • Non-inertial reference frame
  • Spline clip