CFD Predicts Air Gap and Wave Impact Loads of Offshore Structures
This article was contributed by Anup Paul & Chris Matice of Stress Engineering Services1.
연안 플랫폼 갑판 아래의 간격은 중요한 설계 매개변수이며 극한 설계 조건에서 요구되는 최소 공극 격차에 의해 결정된다. 반잠수재 및 다리구조물과 같은 구조의 경우 최소 공극과 갑판에 대한 충격영향을 예측하는 것은 어렵다.
Dynamic response of a spar with a 12 m wave
파도는 공극 설계에서 설명되어야 하는 플랫폼 다리와 상호작용으로 인해 상당한 비선형적 행동과 파장의 증폭을 보여준다. 극한의 환경에서 음의 공기 격차가 발생하는 경우 갑판 충격하중에 대한 예측이 중요해집니다. 석유 및 가스 생산이 더 깊은 물로 이동함에 따라 부양 장치가 필요하며 갑판 높이는 중량 및 안정성 요구사항에 따라 제한됩니다. 극한의 환경에서 이러한 구조물의 성능을 예측하는 데 있어 자유 표면 및 갑판 충격하중에 대한 구조물의 성능을 정확하게 예측하는 것이 중요합니다.
Computational Fluid Dynamics
CFD(전산 유체 역학)방법은 다양한 산업 분야에 광범위하게 적용되어 유체 흐름과 열 전달 특성을 나타냅니다. CFD는 VOF(Volume of Fluid) 모델과 함께 연안 플랫폼의 공극 차이와 파장 영향 부하를 예측하는데 효과적으로 사용할 수 있습니다. VOF방법은 자유 표면 형상과 비선형 파형 동작을 정확하게 예측하는 데 사용할 수 있습니다. 부유식 시스템의 경우 CFD를 FEA와 결합하여 파형 충격 시 플랫폼의 동적 및 구조적 반응을 예측할 수 있습니다.
Wave Interaction of a SPAR Platform
Figure 1: Dynamic response of SPAR
그림 1은 10m및 20m파에 대한 SPAR의 동적 응답을 보여 줍니다. 두 파 모두 20초의 주기를 가지며 선형 파형 경계 조건을 사용하여 생성됩니다. SPAR은 질량 중심에 6도의 자유도를 가진 강체로 모형화 됩니다. 그림 2는 질량의 SPAR중심의 수직 변위를 보여 줍니다. 그림 3은 파형 상호 작용으로 인한 SPAR의 수평 방향 힘을 보여 줍니다.
Wave Impact on a Gravity Based Structure (GBS)
그림 4는 중력 기반 구조 (GBS)의 갑판에 대한 파동의 영향을 보여줍니다. 평균 수심은 151.1 미터이고 초기 공극은 21.7 미터입니다. 이 파도는 40 미터의 높이와 17 초의 주기를 가집니다. 그림 5는 상단부분의 웨이브 충격으로 인한 GBS의 수평 및 수직력을 보여줍니다. 힘의 급상승은 그림 4에서와 같이 GBS 전면의 파동과 갑판 상단의 2 차 충격에 대한 초기 충격과 일치합니다.
Figure 2: Vertical displacement of SPAR
Figure 3: Horizontal forces on SPAR
Figure 4: Wave impact on GBS .
Figure 5: Force history of GBS due to wave impact on deck
Anup Paul is an Associate with SES, specializing in fluid dynamic analysis of structures, products and processes
Chris Matice, Ph.D., P.E. is a Principal with SES and heads their Process Technology Group, specializing in fluid dynamic and structural evaluation of plant and equipment.
Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>