Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

연속 잉크젯 인쇄

Continuous Inkjets

연속 잉크젯 인쇄는 약 150 년 동안 축적 된 기술입니다. 간단히 말해, 프린트 헤드가 작동하면 연속적인 유체 흐름이있는 액적 생성 방법입니다. 이 개념은 1867 년 Lord Kelvin에 의해 처음 특허를 받았지만 80 년 이상 지난 1951 년 Siemens가 최초의 상용 장치를 선보였습니다. 처음에 이 기술은 만료일, 배치 코드, 이름 및 제품 로고와 같은 가변 정보의 비접촉식 고속 인쇄에 사용되었습니다.

물방울 생성

노즐 크기 선택

액적 생성을위한 시스템 매개 변수를 계산하기 위해 Rayleigh 제트 불안정성 이론을 사용할 수 있습니다. 이 이론에 따르면 물방울 형성으로 이어지는 제트 분리에 대한 자극의 최적 파장 (λ)은 대략 다음과 같습니다.

Nozzle size selection
Nozzle size selection

작동 주파수 선택

최적의 드롭 생성 주파수는 최적의 파장에서 직접 계산할 수 있습니다. 위의 이론과 알려진 산업 매개 변수를 사용하여 FLOW-3D 에서 계산 모델을 설정하는 동안 125μm의 노즐 반경과 10kHz의 주파수가 사용되었습니다

FLOW-3D 결과 검증

FLOW-3D 는 강력하고 정확한 표면 장력 모델로 인해 연속 잉크젯 인쇄와 같은 액적 기반 공정을 시뮬레이션하는 데 적합합니다.

아래 시뮬레이션 결과에서 10kHz의 주파수에서 진동하는 입력 압력 펄스를 볼 수 있습니다. 평균 액적 크기는 약 240 μm이며 이론적으로 추정 된 액적 크기 약 250 μm와 잘 일치합니다.

Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse
Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

OLED Mura Problem

이론적으로는 정확히 동일한 진폭으로 압력 펄스를 생성 할 수 있습니다. 그러나 OLED의 잉크젯 인쇄와 같은 산업 응용 분야에서 모든 노즐은 본질적으로 불완전한 제조 또는 작동 매개 변수로 인해 약간 다릅니다. 이러한 모든 결함은 액적 부피의 변동을 일으켜 OLED 패널의 각 하위 픽셀에 증착 된 유기 화합물의 부피를 변화시켜 증착 된 필름 두께의 비례적인 변화를 초래합니다. 이러한 두께 변화는 잉크젯 인쇄 OLED 디스플레이에서 패널 휘도 불균일의 가장 중요한 원인 중 하나입니다 (Madigan et al. ). 이러한 패널 휘도의 불균일성을 “무라 효과”라고합니다.

무라 문제를 해결하는 한 가지 접근 방식은 평균 법칙을 사용하는 것입니다. 이것이 의미하는 바는 서로 다른 노즐 (픽셀 내 혼합)의 방울을 무작위로 결합하여 방울 부피의 양 및 음 오류를 평균화하여 방울 부피 오류를 거의 0에 가깝게 만드는 것입니다.

FLOW-3D 에서 픽셀 내 혼합 과정을 시뮬레이션하기 위해 입력 압력 펄스 진폭에 약간의 임의성이 추가되었습니다. 최대 변동의 크기는 1.7MPa의 원래 압력 진폭에 더하여 200kPa로 설정되었습니다. 아래 애니메이션은 무작위성이있는 케이스와 무작위성이없는 초기 케이스의 비교를 보여줍니다.

압력 펄스의 무작위성 대 일정한 진폭의 경우를 비교하는 애니메이션.

예상대로 액적 생성은 액적 모양, 액적 크기, 액적 간 간격 및 비행 속도 측면에서 균일하지 않습니다. 그러나 오른쪽의 일정한 진폭 케이스는 균일 한 모양과 크기의 균일 한 간격의 물방울을 생성합니다.

연속 잉크젯 인쇄는 저장소에서 마이크로 미터 크기의 노즐 뱅크로 액체를 보내는 고압 펌프로 시작하여 진동하는 압전 결정의 진동에 의해 결정되는 주파수에서 연속적인 물방울 흐름을 생성합니다. 특히 인쇄 응용 분야의 경우, 잉크 방울은 외부 전기장의 존재로 인해 연속 흐름에서 편향됩니다. 이것은 인쇄 매체의 표면에 패턴을 생성합니다. 이 기술의 장점 중 일부는 높은 처리량, 높은 액적 속도, 프린트 헤드에서 기판까지의 거리 증가, 연속 작동으로 인한 노즐 막힘 없음입니다. 이러한 긍정적 인 특성 덕분에이 기술은 오늘날 종이에 일반 인쇄 잉크에서 다양한 재료 (생존 세포 포함)를 증착하는 것으로 발전했습니다.

Continuous inkjet animation

결론

FLOW-3D 는 연속 잉크젯 인쇄 프로세스와 관련된 물리학에 대한 이해를 촉진하는 데 사용되었습니다. 강력한 표면 장력 모델 덕분에 FLOW-3D 는 다양한 고급 액적 생성 및 증착 응용 분야에서도 유용 할 수 있습니다. 예를 들어 OLED 프린팅의 경우 FLOW-3D 를 사용하여 픽셀 내 혼합 중에 발생하는 액 적의 변화를 효과적으로 이해하여 OLED 패널의 품질을 높일 수 있습니다.

References

Madigan C. F., Hauf C. R., Barkley L. D., Harjee N., Vronsky E., Slyke S. A. V., Advancements in Inkjet Printing for OLED Mass Production. Kateeva, Inc.

Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed Assembly of Nanoparticles

나노 입자의 직접 조립을 사용한 3 차원 결정질 및 균질 금속 나노 구조

Cihan Yilmaz,† Arif E. Cetin,‡ Georgia Goutzamanidis,† Jun Huang,† Sivasubramanian Somu,†
Hatice Altug,‡,§ Dongguang Wei,^ and Ahmed Busnaina†,*

†NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, Massachusetts 02115, United States, ‡
Photonics Center and Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States, §
Bioengineering Department, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015, Switzerland, and ^
Carl Zeiss Microscopy, One Zeiss Drive, Thornwood, New York 10594, United States

ABSTRACT

나노 빌딩 블록의 직접 조립은 고유 한 특성을 가진 복잡한 나노 구조를 생성하는 다양한 경로를 제공합니다. 나노 입자의 상향식 조립은 이러한 기능적이고 새로운 나노 구조를 제작하는 가장 좋은 방법 중 하나로 간주되었습니다.

그러나 결정질, 고체 및 균질 나노 구조를 만드는 데 대한 연구가 부족합니다. 이를 위해서는 나노 입자의 조립을 유도하는 힘에 대한 근본적인 이해와 원하는 나노 구조의 형성을 가능하게하는 이러한 힘의 정밀한 제어가 필요합니다. 여기에서, 우리는 콜로이드 나노 입자가 외부에서 적용된 전기장을 사용하여 단일 단계로 조립되고 동시에 3D 고체 나노 구조로 융합 될 수 있음을 보여줍니다.

다양한 조립 매개 변수의 영향을 이해함으로써, 우리는 1 분 이내에 25nm의 작은 피처 크기를 가진 나노 기둥, 나노 박스 및 나노 링과 같은 복잡한 형상을 가진 3D 금속 재료의 제조를 보여주었습니다.

제작된 금 나노 기둥은 다결정 성질을 가지며 전기 도금 된 금보다 낮거나 동등한 전기 저항을 가지며 강력한 플라즈몬 공명(plasmonic resonances)을 지원합니다. 또한 제조 공정이 전기 도금만큼 빠르며 밀리미터 단위로 확장 할 수있는 다용도성을 보여줍니다. 이러한 결과는 제시된 접근법이 실온과 압력에서 수용액에서 새로운 3D 나노 물질 (균질 또는 하이브리드)의 제조를 용이하게 하는 동시에 반도체 나노 전자 공학 및 나노 포토닉스의 많은 제조 과제를 해결함을 의미합니다.

. Fabricating 3-D nanostructures through electric field-directed assembly of NPs. (a,b) NPs suspended in aqueous
solution are (a) assembled and (b) fused in the patterned via geometries under an applied AC electric field. (c) Removal of the
patterned insulator film after the assembly process produces arrays of 3-D nanostructures on the surface.

복잡한 지오메트리와 3 차원 (3-D) 아키텍처를 가진 나노 구조는 우수한 장치 성능과 소형화를 가능하게하기 때문에 최근 전자, 광학, 에너지 및 생명 공학을 포함한 많은 분야에서 상당한 관심을 받고 있습니다. 이러한 나노 구조를 제조하기위한 대부분의 접근 방식은 진공 기반 박막 증착 또는 전기 도금에 의존하며, 이는 시드 층과 많은 화학 첨가제를 필요로합니다. 나노 입자 (NPs)의 직접 조립은 실온과 압력에서 수용액에서 기능성 나노 물질과 나노 구조를 구축하는 유망한 대안 인 것으로 나타났습니다 .

중략…

 

Effect of via geometries on nanopillar formation. (ac) SEM images of (a) 50, (b) 100, (c) 200 nm-wide nanopillars.
The nanostructure height is 150 nm. (df) Cross-sectional view (from the 3-D simulation) of different size vias, revealing the
simulated localized electric field. (g) Electric field intensity in the via (at the center of the via) as a function of the aspect ratio
(depth/diameter) for different via diameters. The spacing between the vias is 1 μm in these simulations. (h) Electric field
intensity in the via (at the center of the via) as a function of the spacing between the vias. The via depth was 150 nm in these
simulations. The scale bars in the inset figures in (g) and (h) are 100 nm.

결정질, 고체 및 균질 나노 구조를 제조하는 연구는 부족합니다. 이것은 주로 NP의 조립 및 원하는 형상으로의 융합을 제어하는 ​​데 어려움이 있기 때문입니다. 입자 구성, 기능화 및 크기에 따라 NP의 조립 및 융합을 제어하는 ​​힘과 에너지가 다를 수 있습니다. 예를 들어, 현탁 매체를 기반으로하여 NP는 표면 에너지 및 전하와 같은 다른 표면 특성을 가질 수 있으며, 이는 조립 공정 및 기판과의 NP 상호 작용에 영향을 줄 수 있습니다 .

마찬가지로 더 큰 크기의 NP는 작은 것은 단단한 구조로 융합하기 어렵습니다. 원하는 재료와 기하학적 구조로 나노 구조를 성공적으로 제작하려면 조립 공정에 관련된 힘을 제어하는 ​​지배적 인 매개 변수를 식별하는 것이 중요합니다. 이 연구에서 우리는 다양한 금속 NP의 조립 및 융합을 가능하게하는 직접 조립 기술을 개발하여 표면에 고도로 조직화 된 3D 결정질, 고체 나노 구조를 제작했습니다.

이 기술에서는 콜로이드 NP가 조립되고 동시에 외부에서 적용된 전기장을 사용하여 3D 나노 구조로 융합됩니다. 이 방법을 사용하여 금, 구리, 알루미늄 및 텅스텐으로 만든 3 차원 나노 구조체를 시드 층과 화학 첨가제없이 실온과 압력에서 1 분 이내에 25nm의 작은 피처 크기로 제작했습니다.

나노 구조 치수의 제어는 전압, 주파수, 조립 시간 및 입자 농도와 같은 많은 지배 매개 변수의 함수로 조사되었습니다. 재료 및 전기적 특성은 제작 된 금 나노 구조가 다결정 특성을 가지며 매우 낮은 저항률 (1.96 10 7 Ω 3 m)을 가지고 있음을 보여줍니다. 제작 된 고체 3D 나노 구조는 또한 13nm의 좁은 선폭으로 강력한 플라즈 모닉 공명을 지원하는 높은 광학 품질을 보여줍니다. 이것은 단백질의 매우 민감한 플라즈몬 기반 바이오 센싱을 가능하게합니다.

자세한 내용은 본문을 참고하시기 바랍니다.

Electrokinetics

Dielectrophoresis

유전 영동은 분극성 입자에 힘을 생성하여 균일하지 않은 전기장 (일반적으로 AC 전기장)에서 움직임을 유도합니다. 유전 영동력은 마이크로스케일 및 나노스케일 바이오 입자를 특성화, 처리 또는 조작하는 데 사용할 수 있습니다. 여기에는 세포, 바이러스, 박테리아, DNA 등의 분류, 포획 및 분리가 포함될 수 있습니다. 유전 영동은 FLOW-3D에서 완전히 설명 할 수 있으며 날카로운 인터페이스가 있거나 없는 단일 유체 또는 2 유체 흐름과 같이 코드에서 사용할 수있는 다른 모든 유체 흐름 옵션과 함께 활성화 될 수 있습니다.

Electro-wetting

전도성 액적에서 액체와 전극 사이에 인가되는 얇은 유전체 코팅 전위를 갖는 전극 상에 배치되면, 드롭 평면화와 전극 표면 확산이 일어납니다. 이 현상은 종종electro-wetting라 부릅니다. 현상은 전하 층의 발달과 관련되어 있으므로, 외부 전기장을 그들을 이동, 합체, 깨지거나 하는 원인을 조작하기 위해 사용될 수 있습니다.

 

Lab-On-Chip Electro-wetting Applications

Lab-on-chip 기반electro-wetting 은 분리된 물방울을 조절할 수 있어 설계자들이 복잡한 절차를 전통적인 실험실 장치를 달지만 훨씬 작은 volumes 으로 비슷한 실험을 수행할 수 있습니다. 이러한 기기는 효율적으로 운송, 병합되어 있으며 분리된 물방울들이 요구합니다. FLOW-3D는 사용자가이 장치를 조작하는 데 사용되는 기하학적 파라미터들 및 전압의 영향을 시뮬레이션 할 수 있도록 하여 설계 프로세스에 유용한 도구가 될 수 있습니다.

아래의 애니메이션은 수송 시뮬레이션 병합 및 분할 방울에 FLOW-3D의 기능을 보여줍니다. Lab-on-chip은 약 300 ㎛로 분리 된 두 개의 평행 한 플레이트로 구성됩니다. 바닥 판은 방울을 조작하기 위해 사용되는 그 안에 삽입 된 전극을 보유하고 있습니다. 액 적은 물 (약간 도전성) 실리콘 오일에 의해 둘러싸여 있습니다. 액체 방울의 부피가 800nl 관한 것입니다.

This lab-on-a-chip electrowetting simulation demonstrates an electric field being applied in order to split a small droplet.

Here an electric field is being applied in order to merge two small droplets.

This simulation shows an electric field being applied to a small droplet to control its motion.

Digital Microfluidics

Electrowetting은 전기장을 사용하여 표면 습윤 특성을 변경하는 과정입니다. Digital microfluidics는 전기 습식이 개별 유체 방울을 제어하고 조작하는데 사용되는 미세 유체 분야입니다. 이 아이디어는 디지털 마이크로 일렉트로닉스에서 영감을 얻었지만 전류 대신 이산 (또는 디지털화 된)액적을 사용하여 특정 시간 내에 특정 거리에 포함된 특정 양의 유체 또는 반응물을 이동합니다. 디지털 마이크로 플루이딕스는 높은 재구성 가능성과 대규모 병렬화를 통해 프로세스 속도를 높일 수있는 능력 때문에 다양한 바이오칩 설계에서 응용 분야를 찾습니다.

가장 중요한 표면 습윤 특성은 유체와 표면 사이의 접촉각입니다. FLOW-3D의 강력한 표면장력 모델은 전기 운동 모델과 함께 유전 영동, 열 모세관 작동 (온도에 따른 표면 장력을 통한 작동) 및 전기 습윤 자체와 같은 디지털 미세 유체 공정에서 습윤 역학을 포착하는 데 사용됩니다.

FLOW-3D AM

FLOW-3D AM 제품 배너

FLOW-3D AM 은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

L-PBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 사용하면 아래 동영상처럼 입자의 분포를 무작위로 떨어뜨려 파우더 베드 배치 프로세스를 시뮬레이션할 수 있습니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

파우더 베드 용해

파우더 베드를 놓은 후 FLOW-3D  WELD 에서 레이저 빔 공정 매개 변수를 지정 하여 고 충실도 용융 풀 시뮬레이션을 수행 할 수 있습니다  . 온도, 속도, 고체 분율, 온도 구배 및 고체 속도의 플롯을 자세히 분석 할 수 있습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

다층 적층 제조

첫 번째 용융 층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고 된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

dem9
dem10

FLOW DEM

FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법)공법인 입자의 거동을 분석해주는 모듈입니다.

주요 기능 :고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용 Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응 가변 밀도 / 가변 직경 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소 독립적인 DEM의 Sub Time Step 이용

Discrete Element Method : 개별 요소법

다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

dem1

입자 간의 충돌

Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

분석 모드

기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로
평가되는 항목이 추가되기 형태로되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

dem4

입자 유형

입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

dem7

응용 분야

1. Mechanical Engineering 분야

수지 충전, 스쿠류 이송, 분말 이송 / Resin filling, screw conveyance, powder conveyance

2. Civil Engineering분야

3. Civil Engineering 분야

파편, 자갈, 낙 성/ Debris flow, gravel, falling rock

dem11

3. Chemical Engineering, Pharmaceutics 분야

유동층, 사이클론, 교반기 / Fluidized bed, cyclone, stirrer

dem12

4. MEMS, Electrical Engineering 분야

하전 입자를 포함한 전기장 해석 등

dem15

입자 그룹 가시화

그룹 가시화

DEM은 일반적으로 다수의 입자를 필요로하는 분석을 상정하고 있습니다. 
다만 이 경우, 계산 부하가 높아 지므로 현실적인 계산자원을 고려하면, 입자 수가 너무 많아 현실적으로 취급 할 수 없는 경우 입자의 특성은 유지하고 숫자를 줄여 가시화할 필요가 있습니다 .
일반적인 유동해석 계산의 메쉬 해상도에 해당합니다.
메쉬 수 많음 (계산 부하 큼) → 소 (계산 부하 적음)
입자 수 다 (계산 부하 큼) → 소 (계산 부하 적음)

원래 입자수
입자 사이즈를 키운경우
그룹 가시화
  • 입자 수를 줄이기 위해 그대로 입경을 크게했을 경우와 그룹 가시화 한 경우의 비교.
  • 입자 크기를 크게하면 개별 입자 특성이 달라지기 때문에 거동이 달라진다. (본 사례에서는 부력이 커진다.)
  • 그룹 가시화의 경우 개별 특성은 동일 원래의 거동과 대체로 일치한다.

주조 시뮬레이션에 DEM 적용

그룹 가시화 비교 예

그룹 가시화한 경우와 입경을 크게하여 수를 줄인 경우, 입경을 크게하면
개별 입자 특성이 변화하여 거동이 바뀌어 버리기 때문에 실제 계산으로는 사용할 수 어렵습니다.

중자 모래 분사 분석

DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

Reference :

  • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
  • Development and use of simulation in the Design of Blown Cores and Moulds

Lab-on-a-chip – Joule heating and circulation in conducting fluid (전도성 유체의 줄 가열 및 순환)

Joule heating and circulation in conducting fluid (전도성 유체의 줄 가열 및 순환)

  • 줄 가열은 전류가 전도성 유체를 통과 할 때 발생함
    – 유체가 유전체인 경우에 전기장이 있을 경우 분극이 발생하여 유동이 발생
  • 많은 미세 유체의 공정은 마이크로 채널 내부의 유체를 조작하기 위해 외부의 자기력 및 전기력을 필요로 함
    – 유체에 대하여 이러한 외력이 미치는 영향을 이해하는 것이 중요함

FLOW-3D에서의 줄 가열 및 유동 시뮬레이션

  • 시뮬레이션 파라미터
    – 파란색 전극은 +9V, 분홍색 전극은 -9V
    – 전극 위의 유전체 유체 전도
  • 줄 가열은 유체의 온도를 500도로 상승시킴
  • 분극 유체는 전기장 윤곽을 따라 유체의 속도를 유도함

Liquid Metal 3D Printing

Liquid Metal 3D Printing

This article was contributed by V.Sukhotskiy1,2, I. H. Karampelas3, G. Garg 1, A. Verma1, M. Tong 1, S. Vader2, Z. Vader2, and E. P. Furlani1
1
University at Buffalo SUNY, 2Vader Systems, 3Flow Science, Inc.

이 연구의 초점은 3D 고체 금속 구조의 인쇄에 잉크젯 기술의 확장에 있습니다 [3, 4]. 현재 대부분의 3D 금속 인쇄 프로그램에는 금속 물체를 형성하는 레이저 [6] 또는 전자빔 [7]과 같은 외부 지향 에너지 소스를 이용한 금속 분말 소결 또는 용해를 포함합니다. 그러나, 이러한 방법은 비용 및 공정 복잡성, 예를 들어, 3D 인쇄 공정에 앞서 분말을 생성하는 시간 및 에너지 집약적 기술에 대한 필요성과 같은 단점을 갖고 있습니다.

이 기사에서는 움직이는 기판에서의 MHD (magnetohydrodynamic) Drop-on-demand 방출 및 액체 방울 증착에 기반한 3D 금속 구조의 첨가제 제조에 대한 새로운 접근 방시에 대해 설명합니다.

이 과정의 각 부분을 연구하기 위해 많은 시뮬레이션을 수행했습니다. 단순화를 위해 이 연구는 두 부분으로 나누었습니다.

첫 번째 부분에서는 MHD 분석을 사용하여 프린트 헤드 내부의 로렌츠 힘 밀도에 의해 생성 된 압력을 추정한 다음 FLOW-3D 모델의 경계 조건으로 사용합니다. 그것은 방울 분사 동력학을 연구하는 데 사용되었습니다.
두 번째 부분에서는 FLOW-3D 파라 메트릭 분석을 수행하여 이상적인 액적 증착 조건을 확인했습니다.

모델링 노력의 결과는 위 그림에 표시된 장치 설계를 가이드하는데 사용되었습니다. 코일은 분사 챔버를 둘러싸고 전기적으로 펄싱되어 액체 금속을 투과시키고, 순환 루프를 유도하는 과도 자기장을 생성합니다. 그것 내의 일시적인 전기장. 전기장은 순환 전류 밀도를 발생 시키며, 이는 일시적인 전계에 다시 커플 링되고 챔버 내에서 마젠 토 히드로 다이나믹 로렌츠 힘 밀도를 생성한다. 힘의 반경 방향 성분은 오리피스에서 금속 액체를 배출하는 역할을하는 압력을 생성합니다. 방출된 금속 액체 방울은 기판으로 이동하여 합체되고 응고되어 확장된 견고한 구조를 형성합니다. 임의 형상의 3 차원 구조는 방출하는 금속 방울의 정확한 패턴화 증착을 가능하게하는 움직이는 기판을 사용하여 층별로 인쇄 할 수 있습니다. 이 기술은 MagnadoJet라는 상품명으로 Vader Systems (www.vadersystems.com)에 의해 특허 및 상용화되었습니다.

MagnetoJet 프린팅 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의 형상의 3D 금속 구조를 인쇄하는 것입니다 [8, 9]. 또한 고유한 금속 입자 구조가 존재하기 때문에 기계적 특성이 개선 된 부품을 인쇄 할 수 있습니다.

프로토타입 디바이스 개발

Vader Systems의 3D 인쇄 시스템의 핵심 구성 요소는 두 부분의 노즐과 솔레노이드 코일로 구성된 프린트 헤드 어셈블리입니다. 액체화는 노즐의 상부에서 발생합니다. 하부에는 직경이 100μm ~ 500μm 인 서브 밀리미터 오리피스가 있습니다. 수냉식 솔레노이드 코일은 위 그림에 표시된 바와 같이 오리피스 챔버를 둘러싸고있습니다 (냉각 시스템은 도시되지 않음). 다수의 프린트 헤드 디자인의 반복적인 개발은 액체 금속 배출 거동뿐만 아니라, 액체 금속 충전 거동에 대한 사출 챔버 기하적인 효과를 분석하기 위해 연구되었습니다. 이 프로토타입 시스템은 일반적인 알루미늄 합금으로 만들어진 견고한 3D 구조를 성공적으로 인쇄했습니다 (아래 그림 참조). 액적 직경, 기하학, 토출 빈도 및 기타 매개 변수에 따라 직경이 50 μm에서 500 μm까지 다양합니다. 짧은 버스트에서 최대 5000 Hz까지 40-1000 Hz의 지속적인 방울 분사 속도가 달성되었습니다.

전산 모델

프로토 타입 디바이스 개발의 일부로서, 프로토 타입 제작에 앞서 계산 시뮬레이션을 수행하여 성능, 즉 액적 방출 동역학, 액적 – 공기 및 액적 – 기판 상호 작용에 대한 설계 개념을 선별했습니다. 분석을 단순화하기 위해 CFD 분석뿐만 아니라, 전산 전자기 (CE)를 사용하는 두 가지 상보 모델이 개발되었습니다. 첫 번째 모델에서는 2 단계 CE 및 CFD 분석을 사용하여 MHD 기반의 액적 방출 동작과 효과적인 압력 생성을 연구했습니다. 두 번째 모델에서, 열 유동성 CFD 분석은 기판상의 물방울의 패터닝, 유착 및 고형화를 연구하기 위해 사용되었습니다.

MHD 분석에 이어 등가 압력 프로파일을 첫 번째 모델에서 추출하고, FLOW-3D 모델의 입력으로 사용하여 액적 배출 및 액적 – 기판 상호 작용의 일시적인 동력학을 탐구하도록 설계되었습니다. 플로우 – 3D 시뮬레이션은 액적 분사에 대한 오리피스 내부 및 주변의 습윤 효과를 이해하기 위해 수행되었습니다. 오리피스 내부 및 외부의 유체 초기화 레벨을 변경하고 펄싱 주파수에 의해 결정된 펄스 사이의 시간 간격을 허용함으로써, 크기 및 속도를 포함하여 방출 된 액 적의 특성 차이를 확인할 수있었습니다.

Droplet 생성

MagnetoJet 인쇄 프로세스에서, 방울은 전압 펄스 매개 변수에 따라 일반적으로 1 – 10m/s 범위의 속도로 배출되고 기판에 충돌하기 전에 비행 중에 약간 냉각됩니다. 기판상의 액적들의 패터닝 및 응고를 제어하는 ​​능력은 정밀한 3D 솔리드 구조의 형성에 중요합니다. 고해상도 3D 모션베이스를 사용하여 패터닝을 위한 정확한 Droplet 배치가 이루어집니다. 그러나 낮은 다공성과 원하지 않는 레이어링 artifacts가 없는 잘 형성된 3D 구조를 만들기 위해 응고를 제어하는 ​​것은 다음과 같은 제어를 필요로하기 때문에 어려움이 있습니다.

  • 냉각시 액체 방울로부터 주변 물질로의 열 확산,
  • 토출된 액 적의 크기,
  • 액적 분사 빈도 및
  • 이미 형성된 3D 물체로부터의 열 확산.

이들 파라미터를 최적화함으로써, 인쇄 된 형상의 높은 공간 분해능을 제공하기에 충분히 작으며, 인접한 액적들 및 층들 사이의 매끄러운 유착을 촉진하기에 충분한 열 에너지를 보유 할 것입니다. 열 관리 문제에 직면하는 한 가지 방법은 가열된 기판을 융점보다 낮지만 상대적으로 가까운 온도에서 유지하는 것입니다. 이는 액체 금속방울과 그 주변 사이의 온도 구배를 감소시켜 액체 금속방울로부터의 열의 확산을 늦춤으로써 유착을 촉진시키고 고형화하여 매끄러운 입체 3D 덩어리를 형성합니다. 이 접근법의 실행 가능성을 탐구하기 위해 FLOW-3D를 사용한 파라 메트릭 CFD 분석이 수행되었습니다.

액체 금속방울 응집과 응고

우리는 액체 금속방울 분사 주파수뿐만 아니라 액체 금속방울 사이의 중심 간 간격의 함수로서 가열된 기판에서 내부 층의 금속방울 유착 및 응고를 조사했습니다. 이 분석에서 액체 알루미늄의 구형 방울은 3mm 높이에서 가열 된 스테인리스 강 기판에 충돌합니다. 액적 분리 거리 (100)로 변화 될 때 방울이 973 K의 초기 온도를 가지고, 기판이 다소 943 K.도 3의 응고 온도보다 900 K로 유지됩니다. 실선의 인쇄 중에 액적 유착 및 응고를 도시 50㎛의 간격으로 500㎛에서 400㎛까지 연속적으로 유지하고, 토출 주파수는 500Hz에서 일정하게 유지 하였습니다.

방울 분리가 250μm를 초과하면 선을 따라 입자가 있는 응고된 세그먼트가 나타납니다. 350μm 이상의 거리에서는 세그먼트가 분리되고 선이 채워지지 않은 간극이 있어 부드러운 솔리드 구조를 형성하는데 적합하지 않습니다. 낮은 온도에서 유지되는 기질에 대해서도 유사한 분석을 수행했습니다(예: 600K, 700K 등). 3D 구조물이 쿨러 기질에 인쇄될 수 있지만, 그것들은 후속적인 퇴적 금속 층들 사이에 강한 결합의 결여와 같은 바람직하지 않은 공예품을 보여주는 것이 관찰되었습니다. 이는 침전된 물방울의 열 에너지 손실률이 증가했기 때문입니다. 기판 온도의 최종 선택은 주어진 용도에 대해 물체의 허용 가능한 인쇄 품질에 따라 결정될 수 있습니다. 인쇄 중에 부품이 커짐에 따라 더 높은 열 확산에 맞춰 동적으로 조정할 수도 있습니다.

FLOW-3D 결과 검증

위 그림은 가열된 기판 상에 인쇄된 컵 구조 입니다. 인쇄 과정에서 가열된 인쇄물의 온도는 인쇄 된 부분의 순간 높이를 기준으로 실시간으로 733K (430 ° C)에서 833K (580 ° C)로 점차 증가했습니다. 이것은 물체 표면적이 증가함에 따라 국부적 인 열 확산의 증가를 극복하기 위해 행해졌습니다. 알루미늄의 높은 열전도율은 국부적 인 온도 구배에 대한 조정이 신속하게 이루어져야하기 때문에 특히 어렵습니다. 그렇지 않으면 온도가 빠르게 감소하고 층내 유착을 저하시킵니다.

결론

시뮬레이션 결과를 바탕으로, Vader System의 프로토 타입 마그네슘 유체 역학 액체 금속 Drop-on-demand 3D 프린터 프로토 타입은 임의의 형태의 3D 솔리드 알루미늄 구조를 인쇄 할 수 있었습니다. 이러한 구조물은 서브 밀리미터의 액체 금속방울을 층 단위로 패턴화하여 성공적으로 인쇄되었습니다. 시간당 540 그램 이상의 재료 증착 속도는 오직 하나의 노즐을 사용하여 달성되었습니다. 이 기술의 상업화는 잘 진행되고 있지만 처리량, 효율성, 해상도 및 재료 선택면에서 최적의 인쇄 성능을 실현하는 데는 여전히 어려움이 있습니다. 추가 모델링 작업은 인쇄 과정 중 과도 열 영향을 정량화하고, 메니스커스 동작뿐만 아니라 인쇄된 부품의 품질을 평가하는 데 초점을 맞출 것입니다.

References
[1] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J. and Boland, T., “Inkjet printing for high-throughput cell patterning,” Biomaterials 25(17), 3707-3715 (2004).

[2] Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P., “High-resolution inkjet printing of all-polymer transistor circuits,” Science 290(5499), 2123-2126 (2000).

[3] Tseng, A.A., Lee, M.H. and Zhao, B., “Design and operation of a droplet deposition system for freeform fabrication of metal parts,” Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology 123(1), 74-84 (2001).

[4] Suter, M., Weingärtner, E. and Wegener, K., “MHD printhead for additive manufacturing of metals,” Procedia CIRP 2, 102-106 (2012).

[5] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D.Q., “Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,” International Journal of Heat and Mass Transfer 80, 288-300 (2015).

[6] Simchi, A., “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A 428(1), 148-158 (2006).

[7] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. and Wicker, R.B., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” Journal of Materials Science & Technology, 28(1), 1-14 (2012).

[8] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors & Actuators: A. Physical, 80(1), 84-89 (2000).

[9] M. Orme and R. F. Smith, “Enhanced aluminum properties by means of precise droplet deposition,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 122(3), 484-493, (2000)

[FLOW-3D 물리모델]Electro-mechanics / 기전역학

1. Electric Fields / 전기장

전기포텐셜은 계산영역 내에서 전하와 포텐셜 분포의 함수로 계산될 수 있다. 전기포텐셜은 Model Setup Physics Electro-mechanics 에서 활성화된다. Permittivity of vacuum 는 해석을 위해 시스템 단위에 맞게 지정되어야 한다. 해석하는 동안에 입자가 존재하면 입자전하가 정의되어야 한다. ; 영역 내 존재하는 모든 입자는 같은 전하를 갖는 것으로 가정한다. 게다가 Fluid electric charge field 모델은 또한 전기적으로 부하가 걸린 유체를 해석하도록 활성화 될 수가 있다.

유체#1 과 유체#2 의 전도도 및 유전체상수는 Fluids Properties Electrical Properties 에서 정의된다. Fluid electric charge field 가 사용되면 초기유체전하밀도는 Model Setup Meshing & Geometry Initial 에서 정의 된다. 그러나 전기포텐셜(전기장)은 계산영역 내에서 유체가 없이도 활성화 될 수 있다.

격자 경계에서의 조건들은 Model Setup Meshing & Geometry Mesh Boundaries 에서 정의된다. 전기 포텐셜의 경계조건은 전도 또는 절연일 수 있다. 한 경계는 Specified potential boundary 을 선택하고 그 경계에서의 전기 포텐셜의 특정 값을 지정함으로써 전도를 할 수가 있다. 또한 시간의 함수로 주어질 수도 있다. Fluid electric charge field 가 사용되면 밀도가 시간의 함수로 입구경계에서 정의될 수 있다.

계산영역 내에 고체구성요소가 존재하면 이들은 두 가지 형태를 갖는다: IOEPOTM 의 값에 따라 유전체거나 전도체. IOEPOTM 가 지정되지 않으면 그 구성요소는 고정 포텐셜을 갖는 것으로 간주된다. 이 속성들은 Meshing & Geometry Component Properties Electrical Properties 에서 정의된다. 구성요소의 초기부하밀도는 Meshing & Geometry Geometry Component Initial Electric Charge Density 에서 정의 된다.

포텐셜을 지배하는 Poisson 방정식의 해는 GMRES 반복법에 의해 구해진다. 수렴기준과 최대 반복수는 EPSELE 과 MAXPHIT에서 각기 정의된다. 두 매개변수 모두 적당한 디폴트 값을 가지며 일반적으로 이들을 변화시키지 않아야 한다. 이 모두 input (File Edit Simulation) 파일을 편집하여 변경된다.

See also:

  • Input Variable Summary and Units section Scalar Electrostatics, Electro-osmosis and Electromechanics Model Parameters
  • Model Reference -> Dielectrophoresis
  • Model Reference -> Electro-osmosis (Zeta Potential)
  • Model Reference -> Particles

2, Electro-osmosis (Zeta Potential) / 전기 삼투

많은 물질들(즉 실리카 또는 유리 같은)은 물(극성을 띠는)같은 매질(전해용액)과 접촉하게 될 때 표면전하를 가질 것이다. 이런 경우가 발생할 때에 EDL (Electric Double Layer)을 생성한다. EDL 이란 표면전하를 중립화하기 위해 양이온보다 많은 음이온이 존재하는 부하표면 가까이의 층을 말한다. 전기 포텐셜(zeta-potential) 이 실험적으로 측정될 수 있는 액체 고체쌍의 물성을 보여주는 EDL에 의해 생성된다. 전기삼투유동이 EDL 의 존재와 그 위에 부과된 외부 포텐셜로 인해 발생한다. 전기삼투를 모델링하기 위해 electric potential 모델이 Electric Fields 에서 기술된 바와 같이 Physics Electro-mechanics 에서 활성화되어야 한다. 전기삼투모델은 이때 같은 window 에서 활성화된다.

 

이 모델은 Physics Electro-mechanics 에서 정의되는 2개의 집중변수, F*C F/R*T 를 필요로 하는데 여기서 F 는 Faraday 상수, C 는 체적용액내의 이온농도, R 은 보편기체상수 그리고 T 는 Kelvin 단위의 주위 온도이다. 유체의 전기 물성치는 Fluids Properties Electrical Properties 에서 정의된다.

구성요소들의 전기적물성은 Meshing & Geometry Geometry Component Electrical Properties 에서 정의된다. 전기포텐셜 모델에서 필요한 물성에 추가하여 Zeta-potential 이 또한 정의되어야 한다. Zeta-potential 은 단지 개체(모든 격자 경계에서는 Zeta-potential 의 구배가 0으로 가정되어 있다.)와 관련되어 있고 디폴트 Zeta-potential 은 0이다.

See also:

3. Electro-thermal Effects / 전기열 효과

자유전하 및 Joule 발열은 물질의 전기전도에 따라 나타나는 두 결과이다. 전하의 형성, 이완 그리고 대류이송을 기술하는 전하밀도 방정식은 전기장 방정식과 함께 해석된다. 그 때에 전하층은 유체 경계면이나 유체와 전기와 유전체 힘을 유도하는 고체면사이의 경계에서 나타난다.

Joule 발열과 추가력이 전류에 의한 고체와 유체의 가열을 포함하도록 더해질 수 있다. 이런 모델들의 선택은 Physics Heat Transfer Fluid internal energy advectionPhysics Heat Transfer Full energy equation 에서 열에너지 전달의 활성화를 필요로 한다. 전기포텐셜모델 역시 Physics Electro-mechanics 에서 활성화되어야 한다.

electro-thermal forces 선택을 갖는 Joule 발열은 유전율과 온도에 따른 전도의 변화로 인해 발생하는 유체내의 힘들을 포함한다. 각 속성은 Permittivity temperature sensitivity, Conductivity temperature sensitivity 그리고 Electric field angular frequency 와 같이 Physics Electromechanics and Fluids에서 정의된다.

전기 전도도는 전기 열 효과가 작동하기 위해 유체에서 정의되어야 한다. 이는 Model Setup → Fluids → Fluid 1 or 2 → Electrical Properties 에서 정의된다.

4. Dielectrophoresis / 유전영동

유전력은 적용되는 전기장에서 유체분자 및 입자의 극성화에 의해 발생한다. 우선 전기 포텐셜 모델이 Physics → Electro-mechanics 에서 활성화되어야 한다. 그 후에 유전영동 모델은 같은 창에서 활성화된다. 유체에 대한 유전 속성은 Fluids → Properties → Electrical Properties 에서 정의된다.

형상 구성요소에서 관련물성은 Meshing & Geometry → Geometry → Component 에서 정의된다.

Electrical Properties:

유전영동 모델이 Physics → Electro-mechanics 에서 활성화되면 유전력은 1보다 큰 유전상수를 갖는 유체 안에서 작용한다. 유전력은 또한 모든 계산영역에 있는 질량입자에 적용된다. 이 경우 입자 유전율은 Physics → Electro-mechanics 에서 정의되어야 한다. 유전이동은 각 힘이 영향을 미치는 척도가 다르기 때문에 전기삼투모델과는 같이 사용될 수 없다. 유전이동모델은 전기삼투가 작동되면 자동적으로 비활성화된다. 전기삼투모델은 Physics → Electro-mechanics 에서 작동되는데 이 경우 추가 input 이 필요하고 같은 Electro-mechanics 창에서 주어질 수 있다. Meshing & Geometry → Geometry → Component Properties → Electrical Properties 에 있는 각 고체 구성요소에 대해 Zeta-potential 이 정의된다. Permittivity of vacuum (ELPERM)은 electrical units 에서 지정되는데 적정한 전기단위(즉, MKS 단위의 경우 볼트의 포텐셜, 쿨롱의 전하에 대해 ELPERM = 8.8542×10-12 C/(V m))를 반영하도록 정의되어야 한다. 모든 유전율들은 물질의 유전상수에 대한 진공의 유전상수 비율로 나타난다.

두 implicit solver, GMRES ADI 가 전기 포텐셜 방정식 풀이에 이용된다.
See also:
• Model Reference -> Electric Fields.
• Model Reference -> Electro-osmosis (Zeta Potential).
• Flow Science Technical Note 56 on modeling dielectric phenomena at http://users.flow3d.com/technotes/default.asp.