Embankment Dams Overtopping Breach: A Numerical Investigation of Hydraulic Results

Embankment Dams Overtopping Breach: A Numerical Investigation of Hydraulic Results

Mahdi EbrahimiMirali MohammadiSayed Mohammad Hadi Meshkati & Farhad Imanshoar

Abstract

The overtopping breach is the most probable reason of embankment dam failures. Hence, the investigation of the mentioned phenomenon is one of the vital hydraulic issues. This research paper tries to utilize three numerical models, i.e., BREACH, HEC-RAS, and FLOW-3D for modeling the hydraulic outcomes of overtopping breach phenomenon. Furthermore, the outputs have been compared with experimental model results given by authors. The BREACH model presents a desired prediction for the peak flow. The HEC-RAS model has a more realistic performance in terms of the peak flow prediction, its occurrence time (5-s difference with observed status), and maximum flow depth. The variations diagram in the reservoir water level during the breach process has a descending trend. Whereas it initially ascended; and then, it experienced a descending trend in the observed status. The FLOW-3D model computes the flow depth, flow velocity, and Froude number due to the physical model breach. Moreover, it revealed a peak flow damping equals to 5% and 5-s difference in the peak flow occurrence time at 4-m distance from the physical model downstream. In addition, the current research work demonstrates the mentioned numerical models and provides a possible comprehensive perspective for a dam breach scope. They also help to achieve the various hydraulic parameters computations. Besides, they may calculate unmeasured parameters using the experimental data.

월류 현상은 제방 댐 실패의 가장 유력한 원인입니다. 따라서 언급된 현상에 대한 조사는 중요한 수리학적 문제 중 하나입니다.

본 연구 논문에서는 월류 침해 현상의 수리적 결과를 모델링하기 위해 BREACH, HEC-RAS 및 FLOW-3D의 세 가지 수치 모델을 활용하려고 합니다. 또한 출력은 저자가 제공한 실험 모델 결과와 비교되었습니다. BREACH 모델은 최대 유량에 대해 원하는 예측을 제시합니다.

HEC-RAS 모델은 최고유량 예측, 발생시간(관찰상태와 5초 차이), 최대유량수심 측면에서 보다 현실적인 성능을 가지고 있습니다. 위반 과정 중 저수지 수위의 변동 다이어그램은 감소하는 추세를 보입니다. 처음에는 상승했지만 그런 다음 관찰된 상태가 감소하는 추세를 경험했습니다.

FLOW-3D 모델은 물리적 모델 위반으로 인한 흐름 깊이, 흐름 속도 및 Froude 수를 계산합니다. 또한, 실제 모델 하류로부터 4m 거리에서 최대유량 발생시간이 5%, 5초 차이에 해당하는 최대유량 감쇠를 나타냈습니다.

또한, 현재 연구 작업은 언급된 수치 모델을 보여주고 댐 침해 범위에 대한 가능한 포괄적인 관점을 제공합니다. 또한 다양한 유압 매개변수 계산을 수행하는 데 도움이 됩니다. 게다가 실험 데이터를 사용하여 측정되지 않은 매개변수를 계산할 수도 있습니다.

Keywords

DOI

  • https://doi.org/10.1007/s40996-024-01387-9

References

  • Association of state dam safety officials (2023) Kentucky, USA. Available from https://damsafety.org
  • ASTM D1557 (2007) Standard test methods for laboratory compaction characteristics of soil using standard effort. West Conshohocken, PA, USA
  • ASTM D422–63 (2002) Standard test method for particle size analysis of soils
  • Azimi H, Shabanlou S (2016) Comparison of subcritical and supercritical flow patterns within triangular channels along the side weir. Int J Nonlinear Sci Numer Simul 17(7–8):361–368Article MathSciNet Google Scholar 
  • Azimi H, Shabanlou S (2018) Numerical study of bed slope change effect of circular channel with side weir in supercritical flow conditions. Appl Water Sci 8(6):166Article ADS Google Scholar 
  • Azimi H, Shabanlou S, Kardar S (2017) Characteristics of hydraulic jump in U-shaped channels. Arab J Sci Eng 42:3751–3760Article Google Scholar 
  • Brunner GW (2016) HEC-RAS Reference Manual, version 5.0. Hydrologic Engineering Center, Institute for Water Resources, US Army Corps of Engineers, Davis, California
  • Brunner GW (2016) HEC-RAS users Manual, version 5.0. Hydrologic Engineering Center, Institute for Water Resources, US Army Corps of Engineers, Davis, California
  • Chanson H, Wang H (2013) Unsteady discharge calibration of a large V-notch weir. Flow Meas Instrum 29:19–24Article Google Scholar 
  • Committee on Dam Safety (2019) ICOLD incident database bulletin 99 update: statistical analysis of dam failures, technical report, international commission on large dams. Available from: https://www.icoldchile.cl/boletines/188.pdf
  • Engomoen B, Witter DT, Knight K, Luebke TA (2014) Design Standards No 13: Embankment Dams. United States Bureau of Reclamation
  • Flow Science Corporation (2017) Flow-3D v11.0 User Manual. Available from: http://flow3d.com
  • Froehlich DC (2016) Predicting peak discharge from gradually breached embankment dam. J Hydrol Eng 21(11):04016041Article Google Scholar 
  • Hakimzadeh H, Nourani V, Amini AB (2014) Genetic programming simulation of dam breach hydrograph and peak outflow discharge. J Hydrol Eng 19:757–768Article Google Scholar 
  • Hooshyaripor F, Tahershamsi A, Golian S (2014) Application of copula method and neural networks for predicting peak outflow from breached embankments. J Hydro-Environ Res 8(3):292–303Article Google Scholar 
  • Irmakunal CI (2019) Two-dimensional dam break analyses of Berdan dam. MSC thesis, Middle East Technical University, Turkey
  • kumar Gupta A, Narang I, Goyal P, (2020) Dam break analysis of JAWAI dam PALI, Rajasthan using HEC-RAS. IOSR J Mech Civ Eng 17(2):43–52Google Scholar 
  • Mo C, Cen W, Le X, Ban H, Ruan Y, Lai S, Shen Y (2023) Simulation of dam-break flood and risk assessment: a case study of Chengbi river dam in Baise, China. J Hydroinformatics 25(4):1276–1294Article Google Scholar 
  • Morris M, Kortenhaus A, Visser P (2009) Modelling breach initiation and growth. FLOODsite report: T06–08–02, FLOODsite Consortium, Wallingford, UK
  • Novak P, Moffat AIB, Nalluri C, Narayanan RAIB (2017) Hydraulic structures. CRC PressGoogle Scholar 
  • Pierce MW, Thornton CI, Abt SR (2010) Predicting peak outflow from breached embankment dams. J Hydrol Eng 15(5):338–349Article Google Scholar 
  • Saberi O (2016) Embankment dam failure outflow hydrograph development. PhD thesis, Graz University of Technology, Austria
  • Sylvestre J, Sylvestre P (2018) User’s guide for BRCH GUI. 2018. Available from: http://rivermechanics.net
  • USACE) 2004) General design and construction considerations for Earth and rockfill dams, US Army Corps of Engineers, Washington DC, USA
  • USBR (1987) Design of small dams, Bureau of Reclamation, Water Resources Technical Publication
  • Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. Pearson education
  • Wang Z, Bowles DS (2006) Three-dimensional non-cohesive earthen dam breach model. Part 1: theory and methodology. Adv Water Resour 29(10):1528–1545Article ADS Google Scholar 
  • Webby MG (1996) Discussion of peak outflow from breached embankment dam by David C. Froehlich. J Water Resour Plan Manag 122(4):316–317
  • Wu W, Marsooli R, He Z (2012) Depth-averaged two-dimensional model of unsteady flow and sediment transport due to noncohesive embankment break/breaching. J Hydraul Eng 138(6):503–516Article Google Scholar 
  • Xu Y, Zhang LM (2009) Breaching parameters for earth and rockfill dams. J Geotech Geoenviron Eng 135(12):1957–1970Article Google Scholar 
Thermo-fluid modeling of influence of attenuated laser beam intensity profile on melt pool behavior in laser-assisted powder-based direct energy deposition

레이저 보조 분말 기반 직접 에너지 증착에서 용융 풀 거동에 대한 감쇠 레이저 빔 강도 프로파일의 영향에 대한 열유체 모델링

Thermo-fluid modeling of influence of attenuated laser beam intensity profile on melt pool behavior in laser-assisted powder-based direct energy deposition

Mohammad Sattari, Amin Ebrahimi, Martin Luckabauer, Gert-willem R.B.E. Römer

Research output: Chapter in Book/Conference proceedings/Edited volume › Conference contribution › Professional

5Downloads (Pure)

Abstract

A numerical framework based on computational fluid dynamics (CFD), using the finite volume method (FVM) and volume of fluid (VOF) technique is presented to investigate the effect of the laser beam intensity profile on melt pool behavior in laser-assisted powder-based directed energy deposition (L-DED). L-DED is an additive manufacturing (AM) process that utilizes a laser beam to fuse metal powder particles. To assure high-fidelity modeling, it was found that it is crucial to accurately model the interaction between the powder stream and the laser beam in the gas region above the substrate. The proposed model considers various phenomena including laser energy attenuation and absorption, multiple reflections of the laser rays, powder particle stream, particle-fluid interaction, temperature-dependent properties, buoyancy effects, thermal expansion, solidification shrinkage and drag, and Marangoni flow. The latter is induced by temperature and element-dependent surface tension. The model is validated using experimental results and highlights the importance of considering laser energy attenuation. Furthermore, the study investigates how the laser beam intensity profile affects melt pool size and shape, influencing the solidification microstructure and mechanical properties of the deposited material. The proposed model has the potential to optimize the L-DED process for a variety of materials and provides insights into the capability of numerical modeling for additive manufacturing optimization.

Original languageEnglish
Title of host publicationFlow-3D World Users Conference
Publication statusPublished – 2023
EventFlow-3D World User Conference – Strasbourg, France
Duration: 5 Jun 2023 → 7 Jun 2023

Conference

ConferenceFlow-3D World User Conference
Country/TerritoryFrance
CityStrasbourg
Period5/06/23 → 7/06/23
Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

M. BAYAT1,* , AND J. H. HATTEL1

  • Corresponding author
    1 Technical University of Denmark (DTU), Building 425, Kgs. 2800 Lyngby, Denmark

ABSTRACT

Spatter and denudation are two very well-known phenomena occurring mainly during the laser powder bed fusion process and are defined as ejection and displacement of powder particles, respectively. The main driver of this phenomenon is the formation of a vapor plume jet that is caused by the vaporization of the melt pool which is subjected to the laser beam. In this work, a 3-dimensional transient turbulent computational fluid dynamics model coupled with a discrete element model is developed in the finite volume-based commercial software package Flow-3D AM to simulate the spatter phenomenon. The numerical results show that a localized low-pressure zone forms at the bottom side of the plume jet and this leads to a pseudo-Bernoulli effect that drags nearby powder particles into the area of influence of the vapor plume jet. As a result, the vapor plume acts like a momentum sink and therefore all nearby particles point are dragged towards this region. Furthermore, it is noted that due to the jet’s attenuation, powder particles start diverging from the central core region of the vapor plume as they move vertically upwards. It is moreover observed that only particles which are in the very central core region of the plume jet get sufficiently accelerated to depart the computational domain, while the rest of the dragged particles, especially those which undergo an early divergence from the jet axis, get stalled pretty fast as they come in contact with the resting fluid. In the last part of the work, two simulations with two different scanning speeds are carried out, where it is clearly observed that the angle between the departing powder particles and the vertical axis of the plume jet increases with increasing scanning speed.

스패터와 denudation은 주로 레이저 분말 베드 융합 과정에서 발생하는 매우 잘 알려진 두 가지 현상으로 각각 분말 입자의 배출 및 변위로 정의됩니다.

이 현상의 주요 동인은 레이저 빔을 받는 용융 풀의 기화로 인해 발생하는 증기 기둥 제트의 형성입니다. 이 작업에서 이산 요소 모델과 결합된 3차원 과도 난류 ​​전산 유체 역학 모델은 스패터 현상을 시뮬레이션하기 위해 유한 체적 기반 상용 소프트웨어 패키지 Flow-3D AM에서 개발되었습니다.

수치적 결과는 플룸 제트의 바닥면에 국부적인 저압 영역이 형성되고, 이는 근처의 분말 입자를 증기 플룸 제트의 영향 영역으로 끌어들이는 의사-베르누이 효과로 이어진다는 것을 보여줍니다.

결과적으로 증기 기둥은 운동량 흡수원처럼 작용하므로 근처의 모든 입자 지점이 이 영역으로 끌립니다. 또한 제트의 감쇠로 인해 분말 입자가 수직으로 위쪽으로 이동할 때 증기 기둥의 중심 코어 영역에서 발산하기 시작합니다.

더욱이 플룸 제트의 가장 중심 코어 영역에 있는 입자만 계산 영역을 벗어날 만큼 충분히 가속되는 반면, 드래그된 나머지 입자, 특히 제트 축에서 초기 발산을 겪는 입자는 정체되는 것으로 관찰됩니다. 그들은 휴식 유체와 접촉하기 때문에 꽤 빠릅니다.

작업의 마지막 부분에서 두 가지 다른 스캔 속도를 가진 두 가지 시뮬레이션이 수행되었으며, 여기서 출발하는 분말 입자와 연기 제트의 수직 축 사이의 각도가 스캔 속도가 증가함에 따라 증가하는 것이 명확하게 관찰되었습니다.

Fig 1. Two different views of the computational domain for the fluid domain. The vapor plume is simulated by a moving momentum source with a prescribed temperature of 3000 K.
Fig 1. Two different views of the computational domain for the fluid domain. The vapor plume is simulated by a moving momentum source with a prescribed temperature of 3000 K.
Fig 2. (a) and (b) are two snapshots taken at an x-y plane parallel to the powder layer plane before and 0.008 seconds after the start of the scanning process. (c) Shows a magnified view of (b) where detailed powder particles' movement along with their velocity magnitude and directions are shown.
Fig 2. (a) and (b) are two snapshots taken at an x-y plane parallel to the powder layer plane before and 0.008 seconds after the start of the scanning process. (c) Shows a magnified view of (b) where detailed powder particles’ movement along with their velocity magnitude and directions are shown.
Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.
Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.

References

[1] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure
and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, 2018, doi:
10.1016/j.pmatsci.2017.10.001.
[2] M. Markl and C. Körner, “Multiscale Modeling of Powder Bed–Based Additive
Manufacturing,” Annu. Rev. Mater. Res., vol. 46, no. 1, pp. 93–123, 2016, doi:
10.1146/annurev-matsci-070115-032158.
[3] A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, “Evolution
of grain structure during laser additive manufacturing. Simulation by a cellular automata
method,” Mater. Des., vol. 106, pp. 321–329, 2016, doi: 10.1016/j.matdes.2016.05.125.
[4] Y. Zhang and J. Zhang, “Modeling of solidification microstructure evolution in laser
powder bed fusion fabricated 316L stainless steel using combined computational fluid
dynamics and cellular automata,” Addit. Manuf., vol. 28, no. July 2018, pp. 750–765,
2019, doi: 10.1016/j.addma.2019.06.024.
[5] A. A. Martin et al., “Ultrafast dynamics of laser-metal interactions in additive
manufacturing alloys captured by in situ X-ray imaging,” Mater. Today Adv., vol. 1, p.
100002, 2019, doi: 10.1016/j.mtadv.2019.01.001.
[6] Y. C. Wu et al., “Numerical modeling of melt-pool behavior in selective laser melting
with random powder distribution and experimental validation,” J. Mater. Process.
Technol., vol. 254, no. July 2017, pp. 72–78, 2018, doi:
10.1016/j.jmatprotec.2017.11.032.
[7] W. Gao, S. Zhao, Y. Wang, Z. Zhang, F. Liu, and X. Lin, “Numerical simulation of
thermal field and Fe-based coating doped Ti,” Int. J. Heat Mass Transf., vol. 92, pp. 83–
90, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.082.
[8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J. H. Hattel, and S. Scholz, “Elucidation of
dross formation in laser powder bed fusion at down-facing surfaces: Phenomenonoriented multiphysics simulation and experimental validation,” Addit. Manuf., vol. 50,
2022, doi: 10.1016/j.addma.2021.102551.
[9] C. Meier, R. W. Penny, Y. Zou, J. S. Gibbs, and A. J. Hart, “Thermophysical phenomena
in metal additive manufacturing by selective laser melting: Fundamentals, modeling,
simulation and experimentation,” arXiv, 2017, doi:
10.1615/annualrevheattransfer.2018019042.
[10] W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, and S. A. Khairallah,
“Overview of modelling and simulation of metal powder bed fusion process at Lawrence
Livermore National Laboratory,” Mater. Sci. Technol. (United Kingdom), vol. 31, no. 8,
pp. 957–968, 2015, doi: 10.1179/1743284714Y.0000000728.

Fig. 2 Schematic diagram of the experimental Rijke tube

RIJKE 튜브 내부의 열음향 장에 대한 새로운 조사

A novel investigation of the thermoacoustic field inside a Rijke tube

B. EntezamW. Van Moorhem and J. MajdalaniPublished Online:22 Aug 2012 https://doi.org/10.2514/6.1998-2582

Abstract

이 논문에서는 Rijke 튜브 내부의 시간 종속 유동장의 실험 연구 및 계산 시뮬레이션에서 진행한 결과를 제시하고 해석합니다. 기존의 추측과 스케일링 분석을 기반으로 한 이론적 논의가 진행됩니다. 주요 결과에는 열 구동 진동에서 중요한 역할을 하는 것으로 보이는 유사성 매개변수가 포함됩니다. 이 매개변수는 열 섭동을 속도, 압력 및 특성 길이의 제곱과 관련시킵니다. 열 진동을 압력 및 속도 진동의 결합된 효과에 기인하는 간단한 이론은 계산, 실험 및 스케일링 고려 사항을 통해 논의됩니다. 이전의 분석 이론은 열 진동을 속도 또는 압력 진동에 연결했기 때문에 현재 분석 모델은 기존 추측에 동의하고 조정합니다. Rayleigh 기준에 따라 열원은 Rijke-tube 하단에서 1/4의 임계 거리에 위치해야 공명이 발생합니다. 이 관찰은 결합이 최대화되는 임계점이 음향 속도와 압력의 곱인 음향 강도가 가장 큰 공간 위치에 해당하기 때문에 제안된 해석을 확인합니다. 수치 시뮬레이션은 Rijke 튜브 내부의 압력 진동이 열 입력이 증가함에 따라 기하급수적으로 증가한다는 것을 보여줍니다. 충분히 작은 열 입력으로 음향 싱크가 소스를 초과하고 음향 감쇠가 발생합니다. 열 입력이 임계 임계값 이상으로 증가하면 음향 싱크가 불충분해져서 ​​내부 에너지 축적으로 인해 빠른 음향 증폭이 발생합니다.

In this paper, results proceeding from experimental studies and computational simulations of the time-dependent flowfield inside a Rijke tube are presented and interpreted. A theoretical discussion based on existing speculations and scaling analyses is carried out. The main results include a similarity parameter that appears to play an important role in the heat driven oscillations. This parameter relates heat perturbations to velocity, pressure, and the square of a characteristic length. A simple theory that attributes heat oscillations to the combined effects of pressure and velocity oscillations is discussed via computational, experimental, and scaling considerations. Since previous analytical theories link heat oscillations to either velocity or pressure oscillations, the current analytical model agrees with and reconciles between existing speculations. In compliance with the Rayleigh criterion, it is found that the heat source must be positioned at a critical distance of 1/4 from the Rijke-tube lower end for resonance to occur. This observation confirms our proposed interpretation since the critical point where coupling is maximized corresponds to a spatial location where the acoustic intensity, product of both acoustic velocities and pressures, is largest. Numerical simulations show that pressure oscillations inside the Rijke tube grow exponentially with increasing heat input With a sufficiently small heat input, the acoustic sinks exceed the sources and acoustic damping takes place. When the heat input is augmented beyond a critical threshold, acoustic sinks become insufficient causing rapid acoustic amplification by virtue of internal energy accumulation.

Fig. 2 Schematic diagram of the experimental Rijke tube
Fig. 2 Schematic diagram of the experimental Rijke tube
A novel investigation of the thermoacoustic field inside a Rijke tube
A novel investigation of the thermoacoustic field inside a Rijke tube

References

‘Entezam, B., Majdalani, J., and Van Moorhem, W. K.,
“Modeling of a Rijke-Tube Pulse Combustor Using
Computational Fluid Dynamics,” AIAA Paper 97-2718,
Seattle, WA, July 1997.

2George, W., and Reethof, G., “On the Fragility of
Acoustically Agglomerated Submicron Fly Ash
Particles,” Journal of Vibration, Acoustics, Stress, and
Reliability in Design, Vol. 108, July 1986, pp. 322-329.
3Tiwary R., and Reethof, G., “Hydrodynamic
Interaction of Spherical Aerosol Particles in a High
Intensity Acoustic Field,” Journal of Sound and
Vibration, Vol. 108, 1986, pp. 33-49.
4Reethof, G., “Acoustic Agglomeration of Power Plant
Fly Ash for Environmental and Hot Gas Clean-up,”
Transaction of the ASME, Vol. 110, Oct., 1988, pp.
552-557.
5
Song, L., Reethof, G., and Koopmann, G. H., “An
Improved Simulation Model of Acoustic
Agglomeration,” NCA Vol. 5, 89-WA, American
Society of Mechanical Engineers, Winter Annual
Meeting, San Francisco, CA, Dec., 10-15, 1989.
6Reethof, G., Koopmann, G. H., and Dorchak, T.,
“Acoustic Agglomeration for Paniculate Control at
High Temperature and high Pressure – Some Recent
results,” NCA Vol. 4, 89-WA, American Society of
Mechanical Engineers, Winter Annual Meeting, San
Francisco, CA, Dec., 10-15, 1989.
7Richards , G. A., and Bedick, R. C, “Application of
Acoustics in Advanced Energy Systems,” NCA Vol. 3,
89-WA, American Society of Mechanical Engineers,
Winter Annual Meeting, San Francisco, CA, Dec., 10-
15, 1989.
8Yavuzkurt, S., Ha, M. Y., Reethof, G., and Koopmann,
G., “Effect of Acoustic Field on the Combustion of
Coal Particles in a Rat Flame Burner,” Proceedings of
the Ist
Annual Pittsburgh Coal Conference, Pittsburgh,
PA, Sep., 1984, pp. 53-58.
^rice, E. W., “Review of Combustion Instability
Characteristics of Solid Propellants,” Advances in
Tactical Rocket Propulsion, AGARD Conference
Proceedings, No. 1, Part 2, Chap. 5, Technivision
Services, Maidenhead, England, 1968, pp. 141-194.
10Zinn, B.T., “State of the Art and Research Needs of
Pulsating Combustion,” NCA Vol. 19, 84-WA,
American Society of Mechanical Engineers, 1984.
“Rayleigh, J.W.S., The Theory of Sound, Vol. 1 and 2,
Dover Publications, New York, 1945, pp. 231-235.
12Zinn, B.T., Miller, N., Carvalho, J.A. Jr., and Daniel.
B. R., “Pulsating Combustion of Coal in a Rijke Type
Combustor,” Proceedings of the 19th International
Symposium on Combustion, 1982, pp. 1197-1203.
13Evans, R.E., and Putnam, A.A., “Rijke Tube
Apparatus,” Journal of Applied Physics, Vol. 360,
1966.
14Feldman, K. T., “Review of the Literature on Rijke
Thermoacoustic Phenomena, ” Journal of Sound and
Vibration, Vol. 7, 1968, pp. 83-89.
15Carvalho, J.R., Ferreira, C., Bressan, C., and Ferreira,
G., “Definition of Heater Location to Drive Maximum
Amplitude Acoustic Oscillations hi a Rijke Tube,”
Combustion and Flame, Vol. 76, 1989, pp. 17-27.
16Raun, R.L., Beckstead, M. W., Finlinson, J. C. , and
Brooks, K. P., “A Review of Rijke Tubes, Rijke
Burners and Related Devices,” Progress in Energy and
Combustion Science, Vol. 19, 1993, pp. 313-364.
17Chu, B. T., “Stability of Systems Containing a HeatSource-The Rayleigh Criterion, “NACA Research
Memorandum 56D27, 1956.
18Zinn, B. T., Daniel, B. R., and Shesdari, T.S.,
“Application of Pulsating Combustion in the Burning of
Solid Fuels,” Proceedings of the Symposium on Pulse
Combustion Technology for Heating Applications,
Argonne National Laboratory, 1979, pp. 239-248.
19Feldman, K.T., “Review of the Literature on
Soundhauss Thermoacoustic Phenomena ” Journal of
Sound and Vibration, Vol. 7, 1968, pp. 71-82.
20Flow Science Incorporated, Los Alamos, New
Mexico.

Experimental and Numerical Investigation of Hydrodynamic Performance of a Sloping Floating Breakwater with and Without Chain-Net

Chain-Net이 있거나 없는 경사 부유식 방파제의 유체역학적 성능에 대한 실험 및 수치적 조사

Experimental and Numerical Investigation of Hydrodynamic Performance of a Sloping Floating Breakwater with and Without Chain-Net

Keywords

  • Sloping floating breakwater
  • Chain net
  • Anchorage system
  • Hydrodynamic performance

Abstract

두 개의 부유체 사이에 간격이 있는 경사진 부유식 방파제(FB)에 대한 새로운 연구가 제안되었습니다. 구조물의 기울기는 파동 에너지 소산을 유발할 수 있습니다. 경사진 구조물의 문제는 파도가 넘친다는 것입니다. 이 문제를 해결하기 위해 두 플로터 사이의 간격을 고려합니다. 

오버 토핑이 발생하면 마루를 통과하는 물이 두 플로터 사이의 틈으로 쏟아지며 결과적으로 파도 에너지가 감쇠됩니다. 체인 네트가 모델에 추가되고 전송 계수에 대한 영향이 연구됩니다. 또한, 구조물의 유체역학적 성능에 대한 자유도의 영향을 조사하기 위해 말뚝으로 고정된(1 자유도) 계류 라인으로 고정된(3도의 자유도) 두 가지 고정 시스템에서 자유 모델을 연구했습니다.

게다가, 실험은 5개의 다른 파도 주기와 4개의 다른 파도 높이를 가진 규칙파에서 수행됩니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 

체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 

체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다.

체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 

체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 

흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다.

A novel study of sloping floating breakwater (FB) that has a gap between two floaters is proposed. The slope of a structure can cause wave energy dissipation. A problem with sloping structures is wave overtopping. To solve this problem, a gap is considered between the two floaters. If overtopping occurs, water passing the crest will pour into the gap between the two floaters, as a result wave energy will be attenuated. A chain net is added to the model and its effect on the transmission coefficient is studied. Furthermore, in order to investigate the effects of the degree of freedom on the hydrodynamic performance of the structure, the model is studied in the two anchorage systems which are anchored by pile (1 degree of freedom) and anchored by mooring lines (3 degree of freedom). Moreover, the experiments are performed under regular waves with five different wave periods and four different wave heights. The results of the experiments show a sloping floating breakwater that has a better performance than that of rectangular box type by 15% as maximum value. The transmission coefficients for the FB anchored by pile are lower about 14% as maximum value than that of the FB anchored by cable in shorter waves and are higher about 4–10% in longer waves. With increasing the draft, the transmission coefficient decreases but the freeboard should meet the minimum requirements to restrict overtopping in the allowable rate. The model with a chain net exhibits a better performance as compared with the model without it by a maximum 14% reduction in the transmission coefficients.

  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10
  • Fig. 11extended data figure 11
  • Fig. 12extended data figure 12
  • Fig. 13extended data figure 13
  • Fig. 14extended data figure 14
  • Fig. 15extended data figure 15
  • Fig. 16extended data figure 16
  • Fig. 17extended data figure 17
  • Fig. 18extended data figure 18
  • Fig. 19extended data figure 19
  • Fig. 20extended data figure 20
  • Fig. 21extended data figure 21
  • Fig. 22extended data figure 22
  • Fig. 23extended data figure 23
  • Fig.24extended data figure 24
  • Fig. 25extended data figure 25
  • Fig. 26extended data figure 26
  • Fig. 27extended data figure 27

References

  1. Abul-Azm AG, Gesraha MR (2000) Approximation to the hydrodynamics of floating pontoons under oblique waves. Ocean Eng 27:365–384Article Google Scholar 
  2. Biesheuvel AC (2013) Effectiveness of floating breakwaters. Delf University of Technology, DissertaionGoogle Scholar 
  3. Chen Zh, Wang Y, Dong H, Zheng B (2012) Time-domain hydrodynamic analysis of pontoon-plate floating breakwater. J Water Sci Eng 5(3):291–303Google Scholar 
  4. Daneshfaraz R, Kaya B (2008) solution of the propagation of the waves in open channels by the transfer matrix method. J Ocean Eng 35:1075–1079Article Google Scholar 
  5. Daneshfaraz R, Sadeghfam S, Tahni A (2020) exprimental investigation of screen as energy dissipators in the movable-Bed channel. Iran J Sci Technol Trans Civil Eng 44:1237–1246Article Google Scholar 
  6. Deng Zh, Wang L, Zhao X, Huang Zh (2019) Hydrodynamic performance of a T-shaped floating breakwater. J Appl Ocean Res 82:325–336Article Google Scholar 
  7. Dong GH, Zheng YN, Li YC, Teng B, Guan CT, Lin DF (2008) Experiments on wave transmission coefficients of floating breakwaters. Ocean Eng 35:931–938Article Google Scholar 
  8. Duan WY, Xu SP, Xu QL et al (2017) Performance of an F-type floating break water: a numerical and experimental study. Proc I MechE Part M 231(2):583–599Google Scholar 
  9. Gesraha MR (2006) Analysis of π shaped floating breakwater in oblique waves: I. Impervious rigid wave boards. Appl Ocean Res 28:327–338Article Google Scholar 
  10. He F, Huang Zh, Wing-Keung Law A (2013) An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. J Appl Energy 106:222–231Article Google Scholar 
  11. Ikeno M, Shimoda N, Iwata K (1988) A new type of breakwater utilizing air compressibility. In: Proceedings of the 21st Coastal Engineering Conference, ASCE. pp 2426–2339
  12. Ji Ch, Cheng Y, Cui J, Yuan Zh, Gaidai O (2018) Hydrodynamic performance of floating breakwaters in long wave regime: an experimental study. J Ocean Eng 152:154–166Article Google Scholar 
  13. Koutandos E, Prinos P, Gironella X (2005) Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics. J Hydraul Res 43(2):174–188Article Google Scholar 
  14. Liu Zh, Wang Y, Wang W, Hua X (2019) Numerical modeling and optimization of a winged box-type floating breakwater by Smoothed Particle Hydrodynamics. J Ocean Eng 188:106246Article Google Scholar 
  15. LotfollahiYaghin MA, Mojtahedi A, Aminfar MH (2012) Physical model studies and system identification of hydrodynamics around a vertical square-section cylinder in irregular sea waves. J Ocean Eng 55:10–22Article Google Scholar 
  16. Mansard E, Funke E (1980) The measurement of the incident and reflected spectra using the least squares method. In: Proceedings of the 17th Coastal Engineering Conference ASCE, Sydney. pp 154–172
  17. Mojtahedi A, ShokatianBeiragh M, Farajpour I, Mohammadian M (2020) Investigation on hydrodynamic performance of an enviromentally friendly pile breakwater. J Ocean Eng 217:107942Article Google Scholar 
  18. Noroozi B, Bazargan J, Safarzadeh A (2021) Introducing the T-shaped weir: a new nonlinear weir. Water Supply. https://doi.org/10.2166/ws.2021.144Article Google Scholar 
  19. Pena E, Ferreras J, Sanchez-Tembleque F (2011) Experimental study on wave transmission coefficient, mooring lines and module connector forces with different designs of floating breakwaters. J Ocean Eng 38:1150–1160Article Google Scholar 
  20. Safarzadeh A, Zaji AH, Bonakdari H (2017) Comparative Assessment of the Hybrid Genetic Algorithm-Artificial neural network and genetic programming methods for the predicition of longitudinal velocity field around a single straight groyne. Appl Soft Comput 60:213–228Article Google Scholar 
  21. Tang HJ, Huang CC, Chen WM (2011) Dynamics of dual pontoon floating structure for cage aquaculture in a two-dimensional numerical wave tank. J Fluid Struct 27:918–936Article Google Scholar 
  22. U.S. Army coastal engineering research center (1984) Shore protection manual. U.S. Government Printing Office, WashingtonGoogle Scholar 
  23. Williams AN, Lee HS, Huang Z (2000) Floating pontoon breakwaters. Ocean Eng 27:221–240Article Google Scholar 
  24. Yang Zh, Xie M, Gao Zh, Xu T, Guo W, Ji X, Yuan Ch (2018) Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater. J Ocean Eng 167:77–94Article Google Scholar 
  25. Zhang X, Ma Sh, Duan W (2018) A new L type floating breakwater derived from vortex dissipation simulation. J Ocean Eng 164:455–464Article Google Scholar 
Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.
Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

Abf - Three-dimensional view of the abbot from short to long to short

Flow-3D 수치 모형을 이용한 파동 감소에 대한 규칙적인 레이아웃으로 식생 고도 변화 효과 연구

세예드 아마드가 헤리 네 자드 1 , Mehdi Behdarvandi Askar  2 , 모하마드 안사리 고이 가르 3, 에산 파르시 4
1 공학, 해안, 항만 및 & amp; 해양 구조물 _ 코람 샤르 해양 과학 기술 대학교
2 코람 샤르 해양 과학 기술 대학교 해양 공학부 해양 구조학과
3 이란 카라 지 테헤란 대학교 농업 및 천연 자원 대학 관개 및 매립 공학과.
4 연구 전문가, Arvand Water and Energy Consulting Engineers Company, Ahvaz, Iran.

Abstract

The development of water waves through submerged and non-submerged vegetation is accompanied by a loss of energy through the resistive force of the vegetation, resulting in a decrease in wave height. Wave damping by vegetation is a function of cover characteristics such as geometry and structure, immersion ratio, density, hardness, and spatial arrangement, as well as wave conditions such as input wave height, duration, and wave direction. In the present study, the effect of geometric arrangement of vegetation with variable height on wave damping has been investigated using the Flow 3D numerical model. For this purpose, a channel with a length of 480 cm and a width of 10.8 cm, which has been previously used by Cox and Wu (2015) to study the effect of plant density with variable height on wave damping, is modeled. The operation of the three arrangements, including long to short arrangement, short to long arrangement, and zigzag arrangement, is examined under four different waves, all of which are linear waves. It should be noted that in this study, wave height is considered as an damping index. The results obtained by measuring the height of the waves at four different points along the channel show that the behavior of the waves in dealing with different arrangements follows a fixed pattern and also changes in the geometry of the vegetation can greatly lead to Increase the damping of the waves. The results show that a change in height arrangement can cause a change in damping of up to 7.1%.

Keywords : Green belt , wave , geometric layout , vegetation

물에 잠긴 초목과 물에 잠기지 않은 초목을 통한 물결의 발달은 초목의 저항력을 통한 에너지 손실을 동반하여 파고가 감소합니다. 식생에 의한 파동감쇠는 기하와 구조, 몰입도, 밀도, 경도, 공간배열 등 커버 특성과 입력파동 높이, 지속시간, 파동방향 등의 파동조건의 함수입니다.

본 연구에서는 Flow 3D 수치 모델을 사용하여 가변 높이 식물이 파동 댐핑에 미치는 기하학적 배치가 조사되었습니다. 이를 위해 Cox와 Wu (2015)가 이전에 파동 댐핑에 대한 가변 높이의 발전소 밀도가 미치는 영향을 연구하기 위해 사용한 길이 480cm, 폭 10.8cm의 채널을 모델링합니다.

장파에서 단파, 단파에서 장파까지, 지그재그 배열을 포함한 세 가지 배열의 작동은 4개의 다른 파장에서 조사됩니다. 모두 선형파입니다.

본 연구에서는 파고가 감쇠 지수로 간주된다는 점에 유의해야 합니다.

채널을 따라 네 곳의 서로 다른 지점에서 파도의 높이를 측정하여 얻은 결과는 다른 배열을 다루는 파도의 동작이 고정된 패턴을 따르며 또한 초목의 기하학적인 변화가 파도의 감쇠를 증가 시키는 것으로 크게 이어질 수 있다는 것을 보여줍니다.

결과는 높이 배열의 변화가 최대 7.1%의 댐핑 변화를 일으킬 수 있음을 보여줍니다.

Figure 1 - Geometry used by Cox and Wu (2015) to study the effect of plant density on wave damping
Figure 1 – Geometry used by Cox and Wu (2015) to study the effect of plant density on wave damping
Figure 2 - Schematic of Erie wave
Figure 2 – Schematic of Erie wave
Abf - Three-dimensional view of the abbot from short to long to short
Abf – Three-dimensional view of the abbot from short to long to short

References

خلیلی نفت­چالی، آ. خزیمه­نژاد، ح. اکبرپور، ا. ورجاوند، پ. 1394. بررسی آزمایشگاهی تأثیر تراکم پوشش گیاهی بر مشخصه‌های جریان غلیظ. نشریه آبیاری و زهکشی ایران. 9 (1): 95-83.
زارعی، م. فتحی­مقدم، م. داوودی، ل. 1395. بررسی اثر پوشش گیاهی ساحلی بر میرایی نیروی مخرب امواج منفرد ناشکنا در سواحل شیبدار. نشریه مهندسی آبیاری و آب ایران. 7 (26): 75-62.
گرمئی، ا. امامی، ح. خراسانی، ر. 1396. اثر تراکم سه نوع پوشش گیاهی بر میزان رواناب و رسوب در حاشیه شهر مشهد. نشریه آبیاری و زهکشی ایران. 11 (1): 20-11.
فضلی، س. نور، ح. 1396. شبیه‌سازی و ارزیابی اثر سناریوهای مختلف درصد پوشش گیاهی بر فرسایش خاک. نشریه آبیاری و زهکشی ایران. 11 (4): 571-562.
قنبری عدیوی، ا. فتحی مقدم، م. 1393. مروری بر تحقیقات استهلاک و میرایی امواج دریا از طریق پوشش گیاهی ساحلی. فصلنامه علوم و فناوری دریا. 18 (70): 62-54.
معتمدی­نژاد، ع. فتحی­مقدم، م. زارعی، م. 1394. بررسی آزمایشگاهی اثر پوشش گیاهی ساحلی بر کاهش نیروی امواج شکنا. دهمین سمینار بین المللی مهندسی رودخانه. دانشگاه شهید چمران اهواز، اهواز، ایران.
میرزاخانی، گ. قنبری عدیوی، ا. فتاحی­نافچی، ر. 1398. میرایی موج توسط پوشش گیاهی صلب در سواحل. دومین همایش ملی مدیریت منابع طبیعی با محوریت آب، سیل و محیط زیست. دانشگاه گنبد کاووس، گنبد کاووس، ایران.
Asano, T. S. Sutsui, T. and Sakai.T. 1988. Wave damping characteristics due to seaweed. Proceedings of the 35th Coastal Engineering Conference in Japan. JSCE. 138-142 (in Japanese).
Asano, T., Deguchi, H. and N. Kobayashi. 1992. Interactions between water waves and vegetation. Proceedings of the 23rd International Conference on Coastal Engineering. ASCE. 2710-2723.
Augustin, L.N., Irish, J.L. and Lynett, P. 2009. Laboratory and numerical studies of wave damping by emergent and nearemergent wetland vegetation. Coastal Engineering. 56(3): 332-340.
Cavallaro L., Re, C.L., Paratore, G., Viviano, A. and Foti, E. 2010. Response of Posidonia oceanic to wave motion in shallowwaters: Preliminary experimental results. Proceedings of the 32nd International Conference on Coastal Engineering. Coastal Engineering Research Council. 1-10.
Cook, H.L. and Campbell, F.B. 1939. Characteristics of some meadow strip vegetation. Agricultural Engineering. 20:345-348.
Cooper, N.J. 2005. Wave dissipation across intertidal surfaces in the Wash Tidal inlet, Eastern England. Journal of Coastal Research. 21(1): 28-40.
Dean, R.G. 1979. Effects of vegetation on shoreline erosional processes. Wetland Function and Values: The State of Our Understanding. 1: 415-426.
Dean, R.G., and Dalrymple, R.A. 1991. Water Wave Mechanics for Engineers and Scientist. World Scientific Publishing.Singapore.
Dubi, A. 1995. Damping of water waves by submerged vegetation: A case study on Laminaria hyperborea. PhD thesis. University of Trondheim, the Norwegian Institute of Technology, Trondheim, Norway.
Fathi Moghadam, M., Drikundi, K.h., Masjidi, A. and M. 2012. Investigation of the Effect of Vegetation Density and Flexibility on Roughness Coefficients in Riverside and Flood Plains, Iranian Water Resources Research Quarterly, Year 8, Issue 2, Fall 91.
Fathi Moghadam, M. and Zaraei, M. 2016. Investigation of the Effect of Coastal Vegetation on the Damping of Destructive Force of Unbreakable Individual Waves on Shabidar Coasts, Journal of Irrigation and Water Engineering, Year 7, No. 26.
Furukawa, K., Wolanski, E. and Mueller, H. 1997. Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44:301–310.
Harada, K. and Imamura, F. 2006. Experimental study on the resistance by mangrove under unsteady flow, Proc. Congress. Asian and Pacific Coastal Engineering Dalia, 984-975.
Jellilund, R., M. Zeid Ali, L. Nouri Hindi and M. 2012. Investigating the advantages and disadvantages of protection and organization of beaches with vegetation against morphological changes, Fifth National Conference and Specialized Environment Exhibition, 90.
Journal 629, Guide to the Design and Implementation of a Coastal Protection Structure.
Kongko, W. 2004. Study on tsunami energy dissipation in mangrove forest, Master Thesis Report, wate University, Japan, 43 pages.
Kutija, V. and Erduran, K. S. 2003. Quasi-three-dimensional numerical model for flow through flexible, rigid, submerged and non-sub merged vegetation. Journal of Hydro informatics. 35(3): 189-202.
Li, R.M. and Shen, H.W. 1973. Effect of tall vegetations on flow and sediment. Journal of the Hydraulics Division, ASCE. 99(5):739-814.
Wu, W.C. and Cox, D, T. 2015. Effects of Vertical Variation in Vegetation Density on Wave Attenuation. Journal of Waterway, Port, Coastal and Ocean Engineering. Volume 142 Issue 2.

FLOW-3D (x) Workflow

Optimizing Design Performance with Baffle Placement

배플 배치로 설계 성능 최적화

최적화 목표

배플이 있는 액체 저장 탱크의 슬로시 댐핑

최적화 과제

사용자가 슬로싱 시뮬레이션을 여러번 반복하여 대형 원통형 탱크에서 댐핑을 최대화하는 최적의 링 배플 위치를 찾을 수 있는 워크플로를 생성합니다. 여기에서 시뮬레이션된 사례는 Maleki 및 Ziyaeifar (2008)1 의 물리적 실험을 기반으로합니다 .

액체 저장 탱크 개략도

최적화 솔루션

시뮬레이션은 수직으로 배치된 원통형 탱크에서 0.6m의 유체 높이에서 처음에 수평에서 5도 배치된 유체의 슬로싱의 자유 붕괴를 나타냅니다. 링 배플의 위치는 z 방향으로 변환할 수 있습니다. 목표는 가장 많은 양의 슬로시 댐핑을 발생시키는 배플의 위치를 ​​찾는 것입니다. 각 시뮬레이션은 12 개의 CPU 코어에서 약 10 분 동안 실행됩니다.

예산 범위에서 30 회 반복 또는 허용되는 시뮬레이션 반복 횟수가 지정됩니다. FLOW-3D (x) 는 30 개의 시뮬레이션을 실행하여 시스템의 동작을 나타내는 반응 표면을 생성합니다. 이를 통해 최상의 솔루션을 찾을 수 있습니다.  

FLOW-3D (x) 워크 플로우

FLOW-3D (x) 는 노드를 사용하여 최적화를 위한 자동화된 워크 플로를 구성합니다. 이 워크 플로우를 시작할 때 z 방향의 초기 배플 위치가 제공됩니다. 배플 위치는 규정된 경계 사이에서 수직으로 이동하도록 허용됩니다. 그런 다음 각 시뮬레이션은 반복 시뮬레이션을 실행하는 FLOW-3D 노드로 공급됩니다. 시뮬레이션 결과는 감쇠 계산을 수행하는 계산기 노드에 연결됩니다. 그런 다음 최적화 엔진은 지속적으로 개선되는 응답 표면을 기반으로 배플의 또 다른 z 좌표를 선택하고 다른 시뮬레이션 실행을 계속합니다.  

FLOW-3D (x) 최적화 워크 플로우 배플 성능 설계

결과

FLOW-3D(x)의 내장 데이터 분석 도구를 사용하여 결과를 그래픽으로 표시하면 0.55m의 배플 높이가 최대 댐핑 비율을 제공한다는 것을 알 수 있습니다. 시뮬레이션 및 반복 설계 기능은 모두 프로그램과 함께 자동화됩니다. 또한 각 시뮬레이션의 영상과 비디오를 출력으로 설정할 수 있습니다.

성능 설계 최적화-슬로 싱

References

1Maleki, A. and Ziyaeifar, M., 2008. Sloshing damping in cylindrical liquid storage tanks with baffles. Journal of Sound and Vibration, 311(1-2), pp.372-385.

(a) Moving Reference Frame

Study on Swirl and Cross Flow of 3D-Printed Rotational Mixing Vane in 2×3 Subchannel

A thesis/dissertation
submitted to the Graduate School of UNIST
in partial fulfillment of the
requirements for the degree of
Master of Science
Haneol Park
07/09/2019
Approved by
_________________________
Advisor
In Cheol Bang

Abstract

가압 수로 (PWR)에서는 연료봉 번들 사이에 위치한 연료봉 번들을 지지하기 위해 스페이서 그리드가 설치됩니다. 혼합 베인은 스페이서 그리드 위에 설치되어 소용돌이 및 교차 흐름을 생성합니다. 소용돌이와 교차 흐름은 열 전달을 향상시키고 PWR의 임계 열유속을 촉진 할 수 있습니다.

PWR의 안전 마진은 열 전달 성능과 CHF로 추정 할 수 있습니다. 따라서 소용돌이 및 교차 흐름 생성은 안전 마진과 전력 증가율 향상을 가져올 수 있습니다.

3D 프린팅 기술을 통해 정교한 믹싱 베인 블레이드 부품을 생산할 수 있습니다. 믹싱 베인 부분은 3D 프린팅으로 제작되었습니다. 일반적인 재료는 석고이고 다른 하나는 금속, 스테인레스 스틸입니다.

믹싱 베인은 3D 프린팅으로도 만들어진 스페이서 그리드 위에 부착됩니다. 회전 혼합 베인은 연료봉 사이의 소용돌이 발생기이며 교차 흐름 및 열 전달 특성을 향상시킵니다. 원심력은 연료봉 표면에서 기포를 분리합니다. 다양한 유형의 회전 혼합 베인 (RV)이 연구됩니다.

팬 베인 (FV), 임펠러 베인 (IV), 풍력 터빈 베인 (WT)입니다. 각 RV는 서로 다른 혼합 성능과 압력 강하를 보여줍니다. FV는 평균 혼합 성능과 압력 강하 증가를 보여줍니다. IV는 혼합 성능이 가장 높고 WT는 압력 강하가 가장 적습니다. 실험적 접근 방식 인 입자 이미지 유속계 (PIV) 실험 기술은 유동장을 시각화하고 혼합 성능을 평가합니다.

흐름 패턴 시각화는 2×3 하위 채널, 2.5 배 확장 테스트 섹션 내에서 수행됩니다. 테스트는 흐름 패턴 추적을 보여주고 압력 강하를 측정합니다. 이 테스트는 서브 채널에 장착 된 3D 프린팅 믹싱 베인 부품의 내구성과 유지 보수성을 보장합니다. 수치 분석은 CFD (전산 유체 역학) 코드 FLOW-3D를 사용하여 광고를 사용하여 수행됩니다.

GMO (General Moving Object) 방법은 유동 구동 결합 회전 동작을 시뮬레이션하는 데 사용됩니다. 유체-구조 상호 작용 (FSI) 문제는 분석적으로 해결하기에는 너무 복잡하므로 회전 운동을 검증하는 계산 기술도 연구됩니다.

회전 혼합 베인의 혼합 성능은 냉각수의 소용돌이와 교차 흐름에 의해 평가됩니다. 교차 흐름 및 소용돌이는 혼합 매개 변수로서 혼합 성능을 검증합니다. 측면 속도, 와도 및 기포 추적 방법은 혼합 매개 변수로 냉각수의 혼합을 보여줍니다.

압력 강하도 측정되고 마찰 계수 평가는 원자로의 시스템 안전을 보장하기 위해 수행됩니다. 권장 사항을 위해 3D 프린팅 된 믹싱 베인의 추가 최적화는 계속 연구 될 것입니다. 실험 및 수치 분석을위한 열 전달 특성 및 열 성능 향상은 확장 된 하위 채널에서 검증됩니다. PWR에 회전식 혼합 베인을 채택하면 열 전달 성능, 안전 마진 및 전력 향상이 향상 될 수 있습니다.

INTRODUCTION

Figure. 1. 1 Mesh structure of rotational motion CFD simulation models

(a) Moving Reference Frame
(a) Moving Reference Frame
(b) Sliding Mesh Model
(b) Sliding Mesh Model
(c) Dynamic Mesh Model
(c) Dynamic Mesh Model
(d) General Moving Object
(d) General Moving Object

Table. 1. 1 Previous research of experiment of subchannel with mixing vane

Table. 1. 1 Previous research of experiment of subchannel with mixing vane
Table. 1. 1 Previous research of experiment of subchannel with mixing vane
(a) Bare Grid (BG) and Fixed Split Vane (SV) (b) Rotational Vane (RV)
(a) Bare Grid (BG) and Fixed Split Vane (SV) (b) Rotational Vane (RV)
(a) Fan Vane (FV) (b) Impeller Vane (IV) (c) Wind Turbine Vane (WT)
(a) Fan Vane (FV) (b) Impeller Vane (IV) (c) Wind Turbine Vane (WT)
Figure. 2.3 The Gypsum 3D printed rotational mixing vanes (a) Fixed Split Vane (FSV) (b) Rotational Fan Vane (RFV) (c) Rotational Impeller Vane (RIV) (d) Rotational Wind Turbine vane (RWT)
Figure. 2.3 The Gypsum 3D printed rotational mixing vanes (a) Fixed Split Vane (FSV) (b) Rotational Fan Vane (RFV) (c) Rotational Impeller Vane (RIV) (d) Rotational Wind Turbine vane (RWT)
Figure 2. 5 Mixing vane test section
Figure 2. 5 Mixing vane test section
Figure. 3. 1 Rotational speed evaluation (a) from GMO model of FLOW-3D (10 FPS) (b) from high speed camera experiment (16 FPS)
Figure. 3. 1 Rotational speed evaluation (a) from GMO model of FLOW-3D (10 FPS) (b) from high speed camera experiment (16 FPS)
Figure 3. 2 Lateral velocity flow field by PIV experiment (Q=145 lpm, v=0.7 m/s, Re=12,750)
Figure 3. 2 Lateral velocity flow field by PIV experiment (Q=145 lpm, v=0.7 m/s, Re=12,750)
Figure. 3. 5 (b) 2D-Flow field with lateral velocity vector (m/s), Fixed mixing vane
Figure. 3. 5 (b) 2D-Flow field with lateral velocity vector (m/s), Fixed mixing vane
Figure. 3. 11 Bubble generation test in CFD analysis, Q=145 lpm
Figure. 3. 11 Bubble generation test in CFD analysis, Q=145 lpm

3D 프린팅 된 믹싱 베인과 스페이서 그리드 부품은 석고와 금속으로 제조되었습니다. 회전 운동과 부착, 내구성은 PWR 채택의 첫 단계로 테스트되었습니다. 회전 혼합 베인 (RV)은 소용돌이 및 교차 흐름을 제공하며, 흐름 구동 회전 운동을 통해 CHF 향상 및 압력 강하 감소를 제공합니다.

팬 베인 (FV), 임펠러 베인 (IV) 및 풍력 터빈 베인 (WT)이 RV 유형의 후보로 설계되었습니다. 유동 구동 운동은 GMO (General Moving Object) 방법을 사용하여 FLOW-3D 코드로 실험 방법과 CFD 분석으로 검증되었습니다. 교차 흐름 및 소용돌이는 2×3 서브 채널이 장착 된 혼합 베인에서 표시되었습니다.

FLOW-3D 코드를 사용한 PIV 실험 및 CFD 분석은 흐름 패턴을 보여줍니다. 유동 구동 회전 혼합 베인의 혼합 효과는 혼합 베인에 의해 구동되는 소용돌이 및 교차 흐름으로 평가되었습니다. 흐름의 혼합을 평가하기 위해 소용돌이와 교차 흐름을 횡 속도와 와도로 연구했습니다.

Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.

Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

NASA/TM—2010-216749

Kevin Breisacher and Jeffrey Moder
Glenn Research Center, Cleveland, Ohio

Prepared for the57th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meetingsponsored by the JANNAF Interagency Propulsion CommitteeColorado Springs, Colorado, May 3–7, 2010

Abstract

극저온 추진제의 장기 공간 저장을 위해 축류 제트 믹서는 탱크 압력을 제어하고 열 층화를 줄이기위한 하나의 개념입니다. 1960 년대부터 현재까지 10 피트 이하의 탱크 직경에 대한 광범위한 지상 테스트 데이터가 존재합니다.

Ares V EDS (Earth Departure Stage) LH2 탱크 용으로 계획된 것과 같이 직경이 30 피트 정도 인 탱크 용 축류 제트 믹서를 설계하려면 훨씬 더 작은 탱크에서 사용 가능한 실험 데이터를 확장하고 미세 중력을 설계해야 합니다.

이 연구는 10 배 차이가 나는 2 개의 탱크 크기에서 기존의 지상 기반 축류 제트 혼합 실험의 시뮬레이션을 수행하여 이러한 규모의 변화를 처리하는 전산 유체 역학 (CFD)의 능력을 평가합니다. 저궤도 (LEO) 해안 동안 Ares V 스케일 EDS LH2 탱크에 대한 여러 축 제트 구성의 시뮬레이션이 평가되고 선택된 결과도 제공됩니다.

두 가지 탱크 크기 (직경 1 및 10 피트)의 물을 사용하여 General Dynamics에서 1960 년대에 수행한 제트 혼합 실험 데이터를 사용하여 CFD 정확도를 평가합니다. 제트 노즐 직경은 직경 1 피트 탱크 실험의 경우 0.032 ~ 0.25 인치, 직경 10 피트 탱크 실험의 경우 0.625 ~ 0.875 인치였습니다.

제트 믹서를 켜기 전에 두 탱크에서 열 층화 층이 생성되었습니다. 제트 믹서 효율은 층화 층이 섞일 때까지 탱크의 열전대 레이크의 온도를 모니터링하여 결정되었습니다. 염료는 층화된 탱크에 자주 주입되었고 침투가 기록되었습니다. 실험 데이터에서 사용 가능한 속도나 난류량은 없었습니다.

제시된 시뮬레이션에는 자유 표면 추적 (Flow Science, Inc.의 FLOW-3D)이 포함된 시판되고 시간 정확도가 높은 다차원 CFD 코드가 사용됩니다. 서로 다른 시간에 탱크의 다양한 축 위치에서 계산 된 온도와 실험적으로 관찰된 온도를 비교합니다. 획득한 합의에 대한 다양한 모델링 매개 변수의 영향을 평가합니다.

Introduction

Constellation 프로그램의 일부인 Ares V는 우주 비행사를 달로 돌려 보내도록 설계된 무거운 리프트 발사기입니다. Ares V 스택의 일부인 EDS (Earth Departure Stage)는 지구의 중력에서 벗어나 승무원 차량과 달 착륙선을 달로 보내는데 필요합니다.

이러한 차량의 질량과 달로 보내는 데 필요한 에너지 때문에 EDS의 액체 수소(LH2)와 액체 산소(LO2) 추진제 탱크는 매우 클 것입니다(직경 10m). 탱크 내부로의 환경적 열 누출로 인해 혼합 장치를 포함한 열역학적 환기 시스템(TV)은 설계 한계 내에서 탱크 압력을 유지하고 엔진 시동에 필요한 한도 내에서 액체 온도를 유지하기 위해 며칠의 순서에 따라 공간 내 저장 기간 동안 필요할 수 있습니다.

이러한 혼합 장치 중 하나는 그림 1과 2와 같이 탱크 바닥 근처에 있는 (순가속과 관련하여) 탱크 축을 따라 중심에 있는 축 제트입니다. 축방향 제트 혼합기와 TVS에 통합된 것은 1960년대 중반부터 연구되어 왔으며(참조 1~5), 광범위한 축방향 제트 접지 테스트 데이터(비사이로젠(참조 1~9), 극저온(참조 10~16) 유체 사용), 에탄올을 사용한 일부 드롭 타워 테스트 데이터(참조 17 및 18)가 있습니다. 극저온 추진제를 사용하는 축방향 제트에 대한 기존 접지 테스트 데이터는 3m(10ft) 이하의 탱크 직경으로 제한됩니다.

저자가 알고 있는 바와 같이, 현재 임계 미달의 극저온 추진체를 사용하는 폐쇄형 탱크에 축방향 제트가 포함된 낙하탑, 항공기 또는 우주 비행 시험 데이터는 없습니다.

축방향 제트(Axial jet)는 지구 저궤도(LEO) 연안의 며칠 동안 EDS LH2 탱크에서 작동하는 혼합 장치의 후보 중 하나입니다. 제안된 EDS 탱크 척도의 극저온 저장 탱크에서 작동하는 축 제트 실험 데이터가 존재하지 않기 때문에, EDS 탱크를 위한 축 제트 TV의 초기 설계는 기존 데이터에 대해 고정된 상관 관계 및 CFD 분석에 의존할 필요가 있습니다.

이 연구는 두 개의 탱크 척도에서 크기 순서로 다른 축방향 제트 열분해 성능을 예측하기 위한 CFD 정확도 평가의 현재 진행 상황을 보고합니다. CFD 시뮬레이션은 물을 작동 유체로 사용하는 접지 테스트 축 제트 데이터(참조 1 – 4)와 비교됩니다. 이 평가를 위해 선택된 CFD 코드는 Flow Science(참조 21)의 상용 코드 FLOW-3D로, 극저온 저장 탱크 및 축방향 제트(참조 22~24)의 이전 분석에서 사용되었습니다.

LEO의 대표적인 EDS LH2 탱크에 대한 예비 축 제트 시뮬레이션도 여러 축 제트 구성에 대해 수행됩니다. 이러한 축방향 제트 구성의 열분해 성능을 평가하고 선택된 결과를 제시합니다.

이러한 예비 축방향 제트 EDS 시뮬레이션은 비교적 짧은 시간 동안 혼합기 성능만 평가합니다. 탱크 열 누출, 위상 변화 및 일반적인 자기 압력(제트 오프)/압력 붕괴(제트 온) 사이클을 포함한 보다 상세한 시뮬레이션이 향후 작업에서 추진될 수 있습니다.

Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)

상세 내용은 원문을 참조하시기 바랍니다.


Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity

Summary and Conclusions

사용 가능한 유사성 상관 관계를 사용하는 스케일링 전략은 EDS 클래스 제트 믹서에 대한 적절한 제트 크기 및 작동 조건을 결정하기 위해 개발되었습니다. 물 탱크 시뮬레이션에서 결정된 모델링 매개 변수를 사용하여 열 층화를 제어하기 위해 제트 믹서를 사용하여 EDS 등급 추진제 탱크의 혼합 이력에 대한 CFD 시뮬레이션을 수행했습니다.

시뮬레이션 결과는 다양한 믹싱 동작을 보여 주며 유사성 매개 변수의 사용에서 예상되는 것과 일치했습니다. 이러한 결과는 하위 규모 테스트 및 유사성 상관 관계와 함께 CFD 시뮬레이션이 EDS 등급 탱크를위한 효율적인 제트 믹서 설계를 허용 할 것이라는 확신을 제공합니다.

CFD 시뮬레이션은 다양한 크기의 직경과 제트를 가진 탱크의 제트 믹서에서 수행되었습니다. 1 피트 직경의 물 탱크에서 제트 혼합에 대해 사용 가능한 실험 데이터와 합리적으로 일치하는 모델링 매개 변수가 결정되었습니다. 동일한 모델링 매개 변수를 사용하여 대략 10 배 정도 떨어져있는 스케일로 워터 제트 혼합 실험에서 혼합을 시뮬레이션했습니다. 시뮬레이션 결과는 실험 온도 데이터와 잘 일치하는 것으로 나타났습니다.

References 1.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 1 – Mixer design and experimental investigations,” NASA CR-73908, Nov 1968. 2.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 2 – Experimental data Final report,” NASA CR-73909, Nov 1968. 3.Scale Experimental Mixing Investigations and Liquid-Oxygen Mixer Design,” NASA CR-113897, Sep 1970. 4.Van Hook, J.R. and Poth, L.J., “Study of Cryogenic Fluid Mixing Techniques. Volume 1 – Large-Van Hook, J.R., “Study of Cryogenic Fluid Mixing Techniques. Volume 2 – Large-Scale Mixing Data,” NASA CR-113914, Sep 1970. 5.Poth, L.J. and Van Hook, J.R., “Control of the Thermodynamic State of Space-Stored Cryogens by Jet Mixing,” J. Spacecraft, Vol. 9, No. 5, 1972. 6.Lovrich, T.N. and Schwartz, S.H., “Development of Thermal Stratification and Destratification Scaling Concepts – Volume II. Stratification Experimental Data,” NASA CR-143945, 1975. 7.Dominick, S.M., “Mixing Induced Condensation Inside Propellant Tanks,” AIAA–1984–0514. 8.Meserole, J.S., Jones, O.S., Brennan, S.M. and Fortini, A., “Mixing-Induced Ullage Condensation and Fluid Destratification,” AIAA–1987–2018. 9.Barsi, S., Kassemi, M., Panzarella, C.H. and Alexander, J.I., “A Tank Self-Pressurization Experiment Using a Model Fluid in Normal Gravity,” AIAA–2005–1143. 10.Stark, J.A. and Blatt, M.H., “Cryogenic Zero-Gravity Prototype Vent System,” NAS8-20146, Convair Report GDC-DDB67-006, Oct 1967. 11.Bullard, B.R., “Liquid Propellant Thermal Conditioning System Test Program,” NAS3-12033, Lockheed Missiles & Space Co., NASA CR-72971, July 1972. 12.Erickson, R.C., “Space LOX Vent System,” NAS8-26972, General Dynamics Convair Report CASD-NAS 75-021, April 1975.

13.Lin, C.S., Hasan, M.M. and Nyland, T.W., “Mixing and Transient Interface Condensation of a Liquid Hydrogen Tank,” NASA TM-106201 (or AIAA–1993–1968), 1993. 14.Lin, C.S., Hasan, M.M. and Van Dresar, N.T., “Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank,” NASA TM-106629 (or AIAA–1994–2079), 1994. 15.Olsen, A.D., Cady, E.C., Jenkins, D.S. and Hastings, L., “Solar Thermal Upper Stage Cryogenic System Engineering Checkout Test,” AIAA–1999–2604. 16.Van Overbeke, T.J., “Thermodynamic Vent System Test in a Low Earth Orbit Simulation,” NASA/TM—2004-213193 (or AIAA–2004–3838), Oct 2004. 17.Aydelott, J.C., “Axial Jet Mixing of Ethanol in Cylindrical Containers During Weightlessness,” NASA-TP-1487, July 1979. 18.Aydelott, J.C., “Axial Modeling of Space Vehicle Propellant Mixing,” NASA-TP-2107, Jan 1983. 19.Bentz, M.D., “Tank Pressure Control in Low Gravity by Jet Mixing,” NASA CR–191012, Mar. 1993. 20.Hasan, M.M., Lin, C.S., Knoll, R.H. and Bentz, M.D., “Tank Pressure Control Experiment: Thermal Phenomena in Microgravity,” NASA-TP-3564, 1996. 21.FLOW-3D User’s Manual, version 9.4, Flow Science, Inc., Santa Fe, NM 2009. 22.Grayson, G.D., Lopez, A., Chandler, F.O., Hastings, L.J. and Tucker, S.P., “Cryogenic Tank Modeling for the Saturn AS-203 Experiment,” AIAA–2006–5258. 23.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J., and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks,” AIAA–2007–5552. 24.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J. and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity,” AIAA–2008–5104. 25.Thomas, R.M., “Condensation of Steam on Water in Turbulent Motion,” Int. J. Multiphase Flow, Vol. 5, No. 1, pp. 1–15, 1979. 26.Zimmerli, G.A., Asipauskas, M., Chen, Y. and Weislogel, M.M., “A Study of Fluid Interface Configurations in Exploration Vehicle Propellant Tanks,” AIAA–2010–1294.

collapsed-raised-fluid-column-figure-1-1

Steady-State Accelerator for Free-Surface Flows

자유 표면 흐름을 위한 정상 상태 가속기

이 기사에서 Tony Hirt 박사는 다가오는 FLOW-3D  v12.0 릴리스에서 사용할 수있는 새로운 Steady-State Accelerator에 대해 설명합니다  .

일시적인 흐름의 점근 적 상태를 계산하는 것보다 안정된 자유 표면 흐름을 생성하는 더 빠른 방법이 자주 필요합니다. 상황은 압축성 흐름 솔버를 사용하여 비압축성 흐름을 해결하는 것과 유사합니다. 후자의 경우 압축 파는 붕괴하는 데 오랜 시간이 걸리고 결과적으로 비압축성 흐름을 남길 수 있습니다. 이에 따라 자유 표면 흐름에서 유체는 비압축성이지만 표면 파동은 안정된 자유 표면 구성을 생성하는 데 오랜 시간이 걸릴 수 있습니다.

비압축성 흐름의 경우, 압축 파를 심각하게 감쇠시키는 반복적 인 프로세스 (즉, 압력-속도 반복)를 사용합니다. 물리적으로 반복은 압력과 같은 파동이 국부적 인 영역에 영향을 미치는 짧은 거리를 이동하도록 허용하지만 압력 장에 상당한 노이즈를 유발할 수있는 장거리 전파 및 반사를 피할 수있을만큼 빠르게 감쇠됩니다.

이 노트에서 자유 표면 셀에 적용된 간단한 압력 조정은 표면 교란에 대한 감쇠력으로 작용합니다. 이 댐핑은 안정적인 자유 표면 구성에 대한 접근을 가속화합니다.

Steady-State Accelerator Idea

유체 인터페이스 또는 자유 표면은  VOF (Volume-of-Fluid) 기술을 사용하여 FLOW-3D 에서 추적됩니다 . 유체 변수 F의 비율은 유체가 차지하는 영역을 찾습니다. 유체에 고정 된 자유 표면이있는 경우 유체를 정의하는 F 값도 안정된 값을 유지해야합니다. F가 일정하려면 표면에 수직 인 유체 속도가 0이어야합니다. 물론 표면에서의 접선 유체 속도는 0 일 필요는 없습니다. 예를 들어, 위어 위의 흐름에는 일정한 흐름이 있지만 계단에서 나오는 흐름의 위치와 모양은 변하지 않습니다.

자유 표면 흐름에 대한 정상 상태 솔버를 사용하려면 흐름의 비압축성을 유지하면서 정상 표면 속도를 0으로 유도하는 방법을 찾아야합니다.

이를 수행하는 한 가지 방법은 정상 속도를 0으로 유도하는 방식으로 표면 압력을 조정하는 것입니다. 특히 정상 속도에 비례하는 총 표면 압력에 “댐핑”압력 기여를 추가하는 것입니다. 속도는 표면 밖으로 향하고 그렇지 않으면 음수입니다.

정상 속도가 0에 가까워지면 수정 압력도 0이되어야 표면이 고정 위치를 초과하지 않게됩니다. 물론 보정이 너무 크면 오버 슈트가 발생할 수 있습니다. 따라서 안정적인 보정 적용을 위해서는 몇 가지 제한 요소가 있어야합니다.

계수 약어 ssacc 을 나타내며, S는 teady- S 테이트 액세서리 elerator이 새로운 옵션을 활성화하는 프로그램 입력에 추가되었다. ssacc 의 값 은 편리한 상한 인 1.0보다 작거나 같아야합니다. 프로그램 내에서 댐핑 압력에 자동으로 적용되는 여러 제한 기가 불안정 해 지거나 일시적인 현상에 악영향을 미치는 것을 방지합니다.

안정성 및 댐핑 리미터에 대한 이전 문제는 강조되어야합니다. 정상 상태 가속기를 사용하면 자유 표면 흐름의 모든 과도 현상이 더 이상 완전히 사실적인 것으로 볼 수 없습니다. 댐핑 압력은 물리적 인 힘이 아니라 파동 전파와 반사를 줄이는 메커니즘입니다. 댐퍼는 큰 과도 현상의 발생을 방해하지 않도록 고안되었으며 흐름이 안정됨에 따라 안정된 결과를보다 빠르게 얻는 데에만 기여해야합니다. 그러나 사용자는 리미터가 예상하지 못한 초과 댐핑에 대해 주의를 기울여야 합니다. 이는 댐핑 계수 ssacc 의 입력 값을 줄임으로써 제거 할 수 있습니다 .

두 가지 예는 정상 상태 가속기의 댐핑 메커니즘이 어떻게 작동하는지 보여줍니다.

Steady-State Accelerator Examples

Collapse of Raised Fluid Column

첫 번째 예는 길이 100cm, 깊이 5cm의 2 차원 물 웅덩이로 구성됩니다. 물을 담은 탱크의 모든 경계는 대칭 경계입니다. 수영장 중앙에는 폭 10cm, 높이 3cm의 수영장 위에 물 블록이 있습니다. 이 블록은 중력으로 인해 물에 떨어지고 충돌 지점에서 멀리 이동 한 다음 탱크 끝에서 반사되는 파도를 생성합니다. 100 초 후에도 반복되는 반사 때문에 여전히 상당한 파동 작용이 있습니다 (그림 1).

새로운 정상 상태 가속기를 계수 ssacc = 1.0 과 함께 사용하면 모든 파동이 빠르게 감쇠되어 거의 평평한 표면이됩니다. 일부 잔류 흐름은 표면 아래에 남아 있지만 점도의 작용으로 서서히 감쇠됩니다 (그림 2). 이 예에서 추가 된 댐핑은 특히 인상적입니다.

Figure 1. Column collapse without damping. Times of flow plots are 0.0, 10.0, and 100.0s. Bottom figure is the mean kinetic energy vs. time.
Figure 2. Column collapse with damping coefficient ssacc=1.0 at times of 0.0, 10.0 and 100.0s. Bottom figure is the mean kinetic energy vs. time.

 

사각형 격자에서 45 °의 정사각형 채널에서 모세관 상승

수직 채널에서 유체의 모세관 상승은 간단한 분석할 수 있으며 솔루션이 있는 양호한 정상 상태 문제입니다. 중력에 대해 상승 된 유체의 양은 벽의 접착력, 즉 접촉각의 코사인에 표면 장력 곱하기 접촉 선 길이에 의해 결정됩니다. 이 예에서 유체는 물이며 표면 장력은 70 dynes / cm이고 접촉각은 30 °입니다. 채널은 단면이 정사각형이며 가장자리 길이가 0.707cm이고 직사각형 격자에서 45 ° 회전합니다. 문제가 x 및 y 방향으로 대칭을 이루기 때문에 그리드의 사분면 만 모델링됩니다. 그리드의 바닥에는 제로 게이지 압력의 물이 있으며 그리드의 가장자리 길이는 0.0125cm (41x41x80 셀)입니다. 상승시켜야하는 이론적 유체 량은 0.04373cc입니다. 그림 3a는 정상 상태 결과를 보여줍니다. 이는 감쇠 사용 여부와 비슷합니다. 댐핑없이 계산된 유체의 양은 이론 값보다 1.74 % 높습니다. 그림 3b와 같이 댐핑이 있는 경우에는 2.24 %가 너무 높습니다. 가속기를 사용하면 정상 상태는 약 0.15 초에 도달하는 반면 표준 솔버는 0.8 초 후에 만 ​​정상 상태 솔루션을 생성하므로 5 배 이상 더 오래 걸립니다.

Figure 3a. Capillary rise in square channel without damping pressures.
Figure 3b. Histories of fluid volume in the two simulations (blue is with damping).

ssacc가 1.0보다 작으면 댐핑이 적어 수렴에 더 빨리 도달합니다. 1.0을 포함한 모든 ssacc 값은 댐핑되지 않은 ssacc = 0.0 경우와 비교하여 이론과 밀접하게 일치하고 후면 벽에 적은 양의 유체를 나타내는 수렴된 솔루션을 만듭니다.

뒤쪽 벽에있는 작은 유체 조각은 평형 위치를 초과하는 유체의 오버 슈트에서 발생하며, 이는 점성력으로 인해 정착하는 데 오랜 시간이 필요한 소량의 유체를 벽에 남기고 뒤로 떨어집니다. 이 오버 슈트는 ssacc 가 0이 아닐 때 제거됩니다 .

그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

Hydraulic Energy Losses|유압 에너지 손실

유압 에너지 손실

이 기사는 Laurent Bilodeau, ing에 의해 기고되었습니다. Conception des aménagements de production  Hydro-Québec Équipement .

이 내용은 특히 유압 에너지 소산율 평가를 위해 FLOW-3D가 제공하는 유압 에너지 흐름과 총 수두의 연산을 검토한다. FLOW-3D 에서는 모델 출력에서 직접 시각화할 수 있는 변수 중 총 유압 헤드가 포함되었다. 그림 1은 강 우회 터널(a river diversion tunnel)을 통한 절토에 걸친 총 유압 헤드 분포(total hydraulic head distribution)를 보여준다. 버전 10에서 FLOW-3D는 플럭스 배플로 계산하고 시계열로 시각화하고 외부 도구로 분석할 수 있는 일체형 값으로 유압 에너지 흐름과 총 수두를 도입했다.

하천변환터널을 통한 단면내 총 유압높이 분포
그림 1. 하천변환터널을 통한 단면내 총 유압높이 분포

총 유압 에너지

베르누이의 방정식

수압 에너지, eG는 흐름에서 물의 입자의 잠재력과 운동 에너지의 합이다. 에너지 밀도로서 J/m³으로 표현되며, 베르누이의 방정식(Eq. 1)에 의해 주어진다.

(1) \displaystyle {{e}_{G}}\quad =\quad p\ -g\rho z+\rho \frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{2}

기호 의미가 있는 곳

e G유압 에너지 밀도(J/m3 )
p압력(Pa ≡ N/m2 ≡ J/m3 )
g중력의 가속도( – 9,81m/s2 )
ρ밀도(kg/m3)
u, v, wx, y 및 z(m/s) 단위의 속도
z일부 기준 수준 이상의 높이(m) 또는 고도

수력 에너지 단순화된 계단식

일반적으로 에너지는 스스로를 변형시키지만 결코 손실되지 않는 전통적인 양으로 간주된다. 토목 공학에서 물의 흐름을 나타내기 위해, 에너지 변환을 중력 전위 에너지로 시작하여 운동 에너지로 변환한 다음 열 에너지로 변환하는 계단식 에너지로 상상하기에 충분한 경우가 많다. 또한 처음 두 형태(잠재성과 운동성)의 양만을 명시적으로 모델링하여 에너지 캐스케이드의 범위를 더욱 제한하는 것이 일반적이다.

상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.
그림 2. 상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.

수압 에너지 캐스케이드는 그림 2와 같이 보에서 풀로의 유량이 떨어지는 경우에 잘 나타난다.

그림에 표시된 입자의 트랙을 따라가십시오.

  • 위치 A에서는 저수지의 상류에서 물 입자는 거의 움직이지 않고 있다.
  • 위치 B에서 입자는 B 위의 자유 표면이 약간 낮아짐에 따라 일부 위치 에너지를 희생하여 속도를 얻었다.
  • 위치 C에서는 입자가 자유 낙하 궤적으로 유체를 따르므로 더 많은 위치 에너지가 운동에너지로 변형되었다.
  • 하강 흐름이 하부 풀의 물과 접촉하면 활발한 모멘텀 교환이 이루어지며 초기 유압 에너지의 상당 부분이 격동의 에너지 폭포와 점성 공정을 통해 열로 손실되었다.
  • 위치 D에서 입자는 위치 A, B, C에 비해 낮은 유압 에너지로 영역을 떠난다.

A에서 B, C로 이동하는 동안, 점성과 난류 과정은 대개 흐름에 거의 영향을 미치지 않는다. 총 유압 에너지 eG는 필요시 작은 손실 조건을 고려하여 질량처럼 보존된 양으로 취급될 수 있다. C의 다운 스트림에서, 이 전통적인 수력 에너지(conservative hydraulic energy)의 모델은 더 큰 규모의 에너지 손실 조건과 흐름에 미치는 영향을 고려함으로써 확장될 수 있다.

질량 및 에너지 예산

볼륨 컨트롤

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단순히 당연하게 여겨지고 있다.

흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.
eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.

CV는 다음 규칙을 따르는 한 하나의 선택사항의 정의 표면으로 둘러싸인 볼륨이다.

  • 정의 표면은 스스로 교차하지 않는 한 임의의 형태를 가질 수 있다.
  • 표면은 각 패치가 다른 패치와 물샐틈없는 가장자리로 연결되어 있는 한 패치로 구성될 수 있다.

CV의 부피는 밀폐된 질량이나 에너지와 같은 적분, 자체 보존 수량을 계산하는 데 사용된다.

CV의 표면은 들어오고 나가는 플럭스를 정의하기 위해 사용되며, 밀폐된 수량에 대한 예산을 세우고 그 시간 이력을 감시할 수 있다.

그림 3은 떨어지는 물 분사기의 특성을 분석하는 데 사용할 수 있는 제어 부피의 예를 제시한다. 이 제어 볼륨으로 유입되고 유출되는 유일한 것은 제트기 자체로서 왼쪽 상단에서 들어오고 오른쪽 하단에서 떠난다.

FLOW-3D의 고정형상 제어량

FLOW-3D를 사용하면 고정된 형태와 위치의 CV를 세 가지 기본 형태의 플럭스 배플의 도움을 받아 쉽게 정의할 수 있다.

  • 구(Sphere)들은 닫힌 표면이다.
  • 실린더는 양끝이 개방되어 있으므로, 실린더의 끝이 흐르지 않도록 유량 한계 밖으로 뻗어나가도록 주의해야 한다.
  • 전체 흐름 영역 또는 하위 도메인을 교차시켜 CV를 조립하는 데 사용할 수 있는 평면 직사각형 패치

그림 4는 세 가지 유형의 플럭스 배플을 계산 메쉬로 렌더링한 후에 볼 수 있는 실제 모델에서 그린 예다. 그것들은 불투명한 것으로 렌더링되지만 그것들이 배플을 측정하는 유일한 플럭스로 정의된다면 흐름에 완전히 스며들 수 있다.

(2) hG≡eG/-gρ

(3) hG=z+

그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.
그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.

그림 5는 평면 배플 표면을 사용하여 두 가지 제어 볼륨을 정의하는 방법을 보여준다.

  • 제어 볼륨 DC, 긴 입방형 모양은 6개의 면으로 구성되어 있다. 반대편 두 면은 C와 D라고 불리는 배플이다. 밑면과 윗면이 그려지고 그 위치는 흐름 영역보다 훨씬 위아래 있는 한 중요하지 않다. 앞면과 뒷면은 큐브의 남은 두 면이며, 그들의 위치 또한 앞과 뒤가 잘 있는 한 중요하지 않다. 흐름 영역의
  • 제어 볼륨 BA도 마찬가지로 정의된다. 그것은 자유로운 표면 흐름을 포함하는 하위 도메인인 입구 포탈의 일부를 둘러싸고 있다. 자유 표면 흐름은 면 B와 A의 유입량 차이가 수위(및 수량)에 변화 속도를 부여하고 진동을 유발하여 천천히 감쇠하거나 전혀 감쇠하지 않기 때문에 진정한 안정 상태에 이르기 더 어렵다. 이 경우, 질량과 에너지의 신뢰할 수 있는 예산은 성질의 진화가 정지해 있는 에피소드를 식별하고 평균화를 수행하기 위해 흐름의 시계열을 처리함으로써 이루어진다.

그림 5의 수직 플럭스 배플은 사용 가능한 수직 표면(DB, DA, CB, CA)의 순열을 사용하여 몇 개의 다른 CV를 정의하는데 사용할 수 있다.

에너지 예산

수력 에너지 균형은 점성 열 생성을 손실로 명시적으로 표시하기 때문에 정의에 따라 누출된다. 이상적으로, 수력 에너지 캐스케이드는 다른 원인으로 인해 에너지를 잃지 않아야 하며 어떤 것도 얻지 않아야 한다. 여기서 다시 수치 모델로 연습하면 약간 다른 그림이 그려진다. 모든 수치 모델에는 인위적인 소스 또는 수력 에너지 싱크가 있다.

예를 들어, 셀 크기가 에너지 전달 흐름 특징보다 훨씬 작을 때 계산 메쉬에 흐름 간섭이 발생한다. 셀 크기가 충분히 작지 않을 때, 속도 대비는 자연 흐름에서보다 더 큰 공간 범위에 걸쳐 확산된다. 그 확산은 운동 에너지를 약간 작게 만들고 자연 현상보다는 그리드 효과에 기인하는 에너지 방산 역할을 한다.

에너지 예산을 모니터링하면 모델의 신뢰성에 대한 단서를 얻을 수 있으며 다른 매개변수 값이나 그리드 셀 크기를 사용하는 런을 비교하는 데 사용할 수 있다. 인위적인 손익이 관리되고 있을 때 유압 에너지 소산 속도는 종종 수치 모델에서 얻은 중요한 결과 중 하나이며 설계 변동을 구별하는 데 중요하다.

총 유압 헤드

에너지 밀도로서의 총 유압 헤드

아래 hG로 상징되는 총 유압 헤드는 Eq. 1의 총 유압 에너지 eG를 단순히 (-g ρ )로 나눈 값이다.

(2) \displaystyle {{h}_{G}}~\equiv ~{{e}_{G}}/\text{ }-g\text{ }\rho

(3) \displaystyle {{h}_{G}}\ =\quad z\ \ +\frac{p}{{-g\rho }}\ \ +\frac{{\left( {{{u}^{2}}+{{v}^{2}}+{{w}^{2}}} \right)}}{{-2g}}

다음과 같은 경우를 제외하고 기호가 모두 이미 소개된 경우:

hG, 총 유압 헤드(m)

총 유압 헤드는 다음과 같은 합이기 때문에 합계로 인정된다.

  • 입면체 헤드 z + p/(-gρ)
  • 운동 에너지 헤드 u²/(-2g)

유량에서 측정한 입압 헤드는 물의 국부적 자유 표면 고도를 잘 측정할 수 있는 것으로 간주된다.

저수지 및 강의 평온한 범위에서는 흐름 속도가 운동 에너지 헤드가 무시해도 될 정도로 충분히 낮아서 때때로 hG가 입압 헤드와 동일하다고 간주될 수 있다.

총 유압 헤드 hG는 때로 정체 높이라고 불리기도 한다. 흐름 내에 유체의 입자가 있는 경우, 모든 속도가 갑자기 위쪽으로 향하게 되고 주변 유체가 장애물이 되지 않을 경우 입자가 도달하는 최종 높이다.

총 유압 헤드 hG는 교각과 교대 등 유압 설계에 있어 유비쿼터스 변수다. 그것은 또한 채널과 펜스탁과 같이 에너지가 관리된 방식으로 전달되거나 소멸되어야 할 때마다 흐름의 수압 에너지를 나타낸다. hG는 다른 엔지니어링 작업의 키 높이와 동일한 고도 척도를 사용하여 엔지니어링 도면에 주석으로 나타날 수 있기 때문에 선택의 변수다.

총 유압헤드의 통합값으로부터의 유압에너지 소산

두 흐름 단면 A와 B 사이에 발생하는 에너지 소산에 대한 일체적 접근방식은 흐름의 하향 방향에서 HG의 감소로부터 계산된다.

HG의 도움을 받아 A와 B 사이의 에너지 소산을 계산하기 위해 각 단면에서의 HG 값을 먼저 –ρg에 곱하여 에너지 밀도 흐름으로 만든 다음 Q에 곱하여 총 유압 에너지 흐름으로 주조한다.
두 횡단면의 에너지 흐름의 차이를 보면, 두 횡단면에서 부피 흐름 Q가 동일한 상황에서, 아래와 같이 상류 횡단면에서 다운스트림 단면으로 이동하는 흐름에서 발생하는 유압 에너지 손실을 산출한다.

그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.
그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.

업스트림 리치는 유입과 배출 흐름의 차이에 따라 수위가 변동하는 볼륨 밸런스의 예를 제시한다. 동시에, 터널을 통과하는 유량의 비율은 상류와 하류 사이의 압력 균형에서 기인하며, 터널 벽의 마찰과 분리된 구조물에서의 흐름 에너지 손실과 통로를 따라의 전환이 큰 역할을 한다. 그림 10은 FLOW-3D에서 플럭스 배플로 알려진 수많은 흐름 측정 단면을 보여준다. 이들의 용도는 다음과 같다.

  • 추가 분석을 위한 유용한 기준으로 특정 모델 실행의 흐름 체계의 안정성 평가
  • 종단 종단 수위 및 수력 에너지 흐름의 그래프 작성 및 분석(수력 에너지 소산율 포함)
  • 설계 변이 간 미세 비교 허용
  • 일반적으로 흐름 동작이 예상에 부합하는지 검증하고, 체크하지 않을 경우 흐름의 진부도를 감소시킬 수 있는 수치적 아티팩트를 검출하고 수정한다.

예제 2 – 자연 암석 표면을 통한 고속 자유 주행

그림 8은 자연 암석의 유유히트레이스와 자유 주행의 예를 보여준다.

이 모델은 지표면의 단위 면적당 수압 에너지 소산율을 평가하는 것을 목적으로 했다. 이 속도는 W/m² 단위로, 자유 주행을 따라 암석 표면의 침식 잠재력을 평가하기 위한 입력값이었다.

그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.
그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.

그림 9는 도구 자체를 확인하고 소산율 평가를 수행하는 데 사용된 계량장치를 나타낸다. 망사블록도 윤곽이 잡힌다.

원하는 소산 속도를 측정하고, 마찬가지로 중요한 것은 흐름의 품질 및 측정 도구의 평가를 위해 평면 및 원통형 플럭스 배플의 종류가 배치되었다.

평면 플럭스 배플은 제어 볼륨을 구성하고 이를 사용하여 CV 내에서 볼륨 흐름의 안정성과 에너지 소산을 모니터링할 수 있다. 테일레이스에서는 사이드월(sidewall)에 의해 흐름이 잘 담겨 있고 횡단면을 가로질러 상당히 균일하다. 에너지 소산율은 25~50kW/m²이었다.

배출 관문 발치에 원통형 유동 배플이 위치한다. 실린더를 통과하는 평균 체적 유량은 정상적인 유량 변동 때문에 시간 경과에 따라 가변적이었지만 적절한 평균 구간을 취할 때 0이 되는 경향이 있었다. 배플을 통한 순유압 에너지 흐름에 대해 동일한 평균을 취했을 때, 예상대로 음의 값이 산출되었고, 이는 면적으로 나누면 30 kW/m²에 가까웠다. 타원형 수평 단면으로 확장된 또 다른 원통형 흐름 배플도 꼬리 경주가 끝날 무렵에 위치했다. 거기서 만들어진 유사한 검증도 비슷한 합의를 보여주었다.

원통형 유동 배플이 유압 에너지 소산 측정에 예상대로 작용했다는 결론이 나왔다. 그런 다음 방산이 가장 높을 것으로 예상되었던 아래쪽 경사면에 놓인 원통형 배플에 주의를 돌렸다.

그림 10은 자유 주행 위에 위치한 원통형 배플 번호 3을 통해 순 부피와 에너지 흐름의 시계열로, 꼬리표에서 자연 암석 표면으로의 전환 근처를 보여준다. 그림은 두 흐름의 높은 진폭 변동이 존재하며 그 흐름들에 의해 어떤 경향도 잘 숨겨져 있음을 보여준다.

그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)
그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)

그림 11은 그림 10의 순 부피와 에너지 플럭스의 시간 통합을 나타낸다. 시간 통합은 부피(m³)와 에너지(J)의 값을 산출한다. 볼륨 시계열은 정권이 정지해 있는 시간 간격을 선택할 수 있고, 순 볼륨 변화가 0에 가까워지도록 통합 시간 경계를 선택할 수 있다. 에너지 시계열은 에너지 소산의 예상대로 정기적으로 하향 추세를 보여준다. W/s 단위의 추세의 기울기는 소산율을 추정한다. 그런 다음 원통형 배플 인클로저 베이스의 표면적 영역으로 나누어 면적 단위당 원하는 산란율을 얻을 수 있다. 실린더의 반지름을 선택하여 면적이 100m²에 가까울 수 있도록 했다. 이 경우 소산율이 286kW/m²로 나타났다.

그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.
그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.

이러한 결과는 다른 분야의 엔지니어들과의 토론에서 사용되었다. 다른 요인 중에서도 암석 표면이 예비 추정에서 비롯된 공기 주입식 개미가 아니었기 때문에 불확실성의 여백이 크다는 것이 명백해졌다. 또한 수압 에너지가 바위가 아닌 물 속에서 소멸되고, 최대 소산의 위치가 반드시 바위에 대한 최대 작용의 위치가 아니라는 것도 모듈러에 의해 지적되었다. 위에 제시된 분석의 미니어처는 상당한 부담이었지만, 배플이 모델러에게 참신한 방법으로 사용되고 있기 때문에 필요하다고 여겨졌다. 학문 간 논의와 값의 규모 순서는 수치 그 자체보다는 모형의 가장 유용한 결과였다.

결론

FLOW-3D의 플럭스 배플은 이를 통과하는 부피와 유압 에너지 순 흐름에 대한 정밀한 평가를 제공한다. 이들의 연산 알고리즘은 제어 볼륨 접근방식과 함께 사용되는 FLOW-3D의 기본 수치 체계로 정교하게 조정되며, 높은 수준의 일관성이 요구되는 상황에서 대량 보존에 관한 FLOW-3D 자체의 성능 검증을 포함한 수많은 측정을 위해 잘 설계되어 있다.

토탈 유압 헤드의 연산은 수많은 방법으로 이루어질 수 있는데, 토목 및 유압 엔지니어에게 수량의 매우 높은 유용성을 볼 때 놀라운 일이 아니다. FLOW-3D가 제공하는 방법 중 하나는 플럭스 평균 총 유압 헤드의 배플 유량 면적에 대한 계산이다. 여기에서 주어진 유량관을 가로지르는 두 플럭스 배플에서의 값 사이의 차이로 측정한 유량에서의 수압 에너지 손실률은 가우스 발산 정리에 의해 원시 유량 변수와 연결된 제어 볼륨 접근법으로 계산될 수 있는 유량 손실률이 정확히 여기에 나타난다.

논문자료 알아보기

FLOW-3D RESIN

FLOW-3D RESIN 모듈

FLOW-3D RESIN 는 FLOW Science Japan에서 개발된 열 경화성 수지 유동과 열 특성을 해석하는 모듈입니다.
열 경화성 수지 재료는 강한 접착성 구조 강도, 열 및 화학적 내구성이 뛰어나며, 반도체 장치, 발전기, 변압기, 개폐기, 전기 자동차 및 하이브리드 전기 자동차의 코일이나 다른 파트, 프린트 기판, MRI등에 사용되고 있습니다.

주요 기능:Castro-Macosko, Cross-WLF등의 점성 모델 지수 감쇠, Kamal등의 발열 모델 겔화 이후의 경화 수축 모델 수지 함침 해석용 포러스 체내 유동 모델(점성 의존 저항, 이방성 저항 등) 2-domain Tait pvT밀도식 모델 구조 해석 인터페이스 F.SAI 경유의 압력, 온도 데이터 내보내기

적용 사례

resin3 트랜스퍼 성형
resin4
사출 성형
background_phone_case_compare
실제 제품과 비교
resin5
트랜스퍼 몰드(충전의 결과:온도[위] / 속도[하단])
resin6
트랜스퍼 몰드(발열의 결과:온도[위]총 / 변형[하단])
resin7
트랜스퍼 몰드(냉각의 결과:온도)
background_resin1
FLOW-3D의 온도 데이터를 기반으로 수지에 매핑
background_resin2
구조 해석의 결과(Von Mises stress)
background_resin3
구조 해석의 결과(Total translation)
resin8
트랜스퍼 몰드(충전 해석:온도[위] / 공기 흡입[하단])
resin9
트랜스퍼 몰드(냉각 해석:응력[좌측]총 변형[오른쪽 위] / 온도[아래])
background_resin4
트랜스퍼 몰드 반응률[시간 추이]
background_resin5
트랜스퍼 몰드 응력[시간 추이]
background_resin6
FLOW-3D의 온도 데이터를 기반으로 수지에 매핑
background_resin7
구조 해석의 결과(변위[왼쪽] / Von Mises stress[오른쪽])

^back to top

FLOW-3D What’s New Ver.12.0

FLOW-3D v12는 그래픽 사용자 인터페이스 (GUI)의 설계 및 기능에서 매우 큰 변화를 이룬 제품으로 모델 설정을 단순화하고 사용자 워크 플로를 향상시킵니다. 최첨단 Immersed Boundary Method(침수경계 방법)은 FLOW-3D v12 솔루션의 정확성을 높여줍니다. 다른 주요 기능으로는 슬러지 침강 모델, 2-Fluid 2-Temperature 모델 및 Steady State Accelerator가 있으며,이를 통해 사용자는 자유 표면 흐름을 더욱 빠르게 모델링 할 수 있습니다.

Physical and Numerical Model

Immersed boundary method

힘과 에너지 손실에 대한 정확한 예측은 고체 주위의 흐름과 관련된 많은 엔지니어링 문제를 모델링하는 데 중요합니다. 새 릴리스 FLOW-3D v12에는 이러한 문제점 해결을 위해 설계된 새로운 고스트 셀 기반 Immersed Boundary Method (IBM)가 있습니다. IBM은 내 외부 흐름 해석을 위해, 벽 근처에서 보다 정확한 해를 제공하여 드래그 앤 리프트 힘의 계산을 향상시킵니다.힘과 에너지 손실의 정확한 예측은 고체 주위의 흐름을 포함하는 많은 공학적 문제를 모델링 하는데 중요합니다.

Two-field temperature for the two-fluid model

2 유체 열전달 모델은 각 유체에 대한 에너지 전달 방정식을 분리하기 위해 확장되었습니다. 각 유체는 이제 자체 온도 변수를 가지므로 인터페이스 근처의 열 및 물질 전달 솔루션의 정확도가 향상됩니다. 인터페이스에서의 열전달은 이제 시간의 표 함수가 될 수 있는 사용자 정의 열전달 계수에 의해 제어됩니다.

블로그 보기

Sludge settling model

새로운 슬러지 정착 모델은 수처리 애플리케이션에 부가되어 사용자들이 수 처리 탱크와 클래리퍼의 고형 폐기물 역학을 모델링 할 수 있게 해 줍니다. 침전 속도가 분산상의 액적 크기의 함수 인 드리프트-플럭스 모델과 달리, 침전 속도는 슬러지 농도의 함수이며 기능 및 표 형식으로 입력 할 수 있습니다.

개발노트 읽기

Steady-state accelerator for free surface flows

이름에서 알 수 있듯이 정상 상태 가속기는 정상 상태 솔루션에 대한 접근을 빠르게합니다.
이것은 작은 진폭 중력과 모세관 표면파를 감쇠시킴으로써 달성되며 자유 표면 흐름에만 적용 할 수 있습니다.

개발노트 읽기

Void particles

Void particles 가 기포 및 상 변화 모델에 추가되었습니다. Void particles는 붕괴 된 Void 영역을 나타내며, 항력 및 압력을 통해 유체와 상호 작용하는 작은 기포로 작용합니다. 주변 유체 압력에 따라 크기가 변하고 시뮬레이션이 끝날 때의 최종 위치는 공기 유입 가능성을 나타냅니다.

Sediment scour model

퇴적물 수송 및 침식 모델은 정확성과 안정성을 향상시키기 위해 정비되었습니다. 특히 퇴적물 종의 질량 보존이 크게 개선되었습니다.

개발 노트 읽기>

Outflow pressure boundary condition

고정 압력 경계 조건에는 압력 및 유체 분율을 제외한 모든 유량이 해당 경계의 상류의 유량 조건을 반영하는 ‘유출’옵션이 포함됩니다. 유출 압력 경계 조건은 고정 압력 및 연속 경계 조건의 하이브리드입니다.

Moving particle sources

시뮬레이션 중에 입자 소스를 이동할 수 있습니다. 시간에 따른 병진 및 회전 속도는 표 형식으로 정의됩니다. 입자 소스의 운동은 소스에서 방출 된 입자의 초기 속도에 추가됩니다.

Variable center of gravity

기변 무게중심은 중력 및 비관 성 기준 프레임 모델에서, 시간의 함수로서 무게 중심의 위치는 외부 파일에서 테이블로서 정의 될 수있다. 이 기능은 연료를 소비하고 분리 단계를 수행하는 로켓과 같은 모형을 모델링 할 때 유용합니다.

공기 유입 모델

가장 간단한 부피 기반 공기 유입 모델 옵션이 기존 질량 기반 모델로 대체되었습니다. 질량 기반 모델은 부피와 달리 주변 유체 압력에 따라 부피가 변화하는 동안 흡입된 공기량이 보존되기 때문에 물리학적 모델입니다.

Tracer diffusion

유동 표면에서 생성된 추적 물질은 분자 및 난류 확산 과정에 의해 확산될 수 있으며, 예를 들어 실제 오염 물질의 동작을 모방한다.

Model Setup

Simulation units

온도를 포함하여 단위 시스템은 완전히 정의해야하는데 표준 단위 시스템이 제공됩니다. 또한 사용자는 다양한 옵션 중에서 질량, 시간 및 길이 단위를 정의 할 수 있으므로 사용자 정의가 가능한 편리한 단위를 사용할 수 있습니다. 사용자는 압력이 게이지 또는 절대 단위로 정의되는지 여부도 지정해야합니다. 기본 시뮬레이션 단위는 기본 설정에서 설정할 수 있습니다. 단위를 완전히 정의하면 FLOW-3D 가 물리량의 기본값을 정의하고 범용 상수를 설정하여 사용자가 요구하는 작업량을 최소화 할 수 있습니다.

Shallow water model

Manning’s roughness in shallow water model

Manning의 거칠기 계수는 지형 표면의 전단 응력 평가를 위해 천수(shallow water) 모델에서 구현되었습니다. 표면 결함의 크기를 기반으로 기존 거칠기 모델을 보완하며 이 모델과 함께 사용할 수 있습니다. 표준 거칠기와 마찬가지로 매닝 계수는 구성 요소 또는 하위 구성 요소의 속성이거나 지형 래스터 데이터 세트에서 가져올 수 있습니다.

Mesh generation

하단 및 상단 경계 좌표의 정의만으로 수직 방향의 메시 설정이 단순화되었습니다.

Component transformations

사용자는 이제 여러 하위 구성 요소로 구성된 구성 요소에 회전, 변환 및 스케일링 변환을 적용하여 복잡한 형상 어셈블리 설정 프로세스를 단순화 할 수 있습니다. GMO (General Moving Object) 구성 요소의 경우, 이러한 변환을 구성 요소의 대칭 축과 정렬되도록 신체에 맞는 좌표계에 적용 할 수 있습니다.

Changing the number of threads at runtime

시뮬레이션 중에 솔버가 사용하는 스레드 수를 변경하는 기능이 런타임 옵션 대화 상자에 추가되어 사용 가능한 스레드를 추가하거나 다른 태스크에 자원이 필요한 경우 스레드 수를 줄일 수 있습니다.

Probe-controlled heat sources

활성 시뮬레이션 제어가 형상 구성 요소와 관련된 heat sources로 확장되었습니다. 히스토리 프로브로 열 방출을 제어 할 수 있습니다.

Time-dependent temperature at sources     

질량 및 질량 / 운동량 소스의 유체 온도는 이제 테이블 입력을 사용하여 시간의 함수로 정의 할 수 있습니다.

Emissivity coefficients

공극으로의 복사 열 전달을위한 방사율 계수는 이제 사용자가 방사율과 스테판-볼츠만 상수를 지정하도록 요구하지 않고 직접 정의됩니다. 후자는 이제 단위 시스템을 기반으로 솔버에 의해 자동으로 설정됩니다.

Output

  • 등속 필드 솔버 옵션을 사용할 때 유량 속도를 선택한 데이터 로 출력 할 수 있습니다 .
  • 벽 접착력으로 인한 지오메트리 구성 요소의 토크 는 기존 벽 접착력의 출력 외에도 일반 이력 데이터에 별도의 수량으로 출력됩니다.
  • 난류 모델 출력이 요청 될 때 난류 에너지 및 소산과 함께 전단 속도 및 y +가 선택된 데이터로 자동 출력됩니다 .
  • 공기 유입 모델 출력에 몇 가지 수량이 추가되었습니다. 자유 표면을 포함하는 모든 셀에서 혼입 된 공기 및 빠져 나가는 공기의 체적 플럭스가 재시작 및 선택된 데이터로 출력되어 사용자에게 공기가 혼입 및 탈선되는 위치 및 시간에 대한 자세한 정보를 제공합니다. 전체 계산 영역 및 각 샘플링 볼륨 에 대해이 두 수량의 시간 및 공간 통합 등가물 이 일반 히스토리 로 출력됩니다.
  • 솔버의 출력 파일 flsgrf 의 최종 크기 는 시뮬레이션이 끝날 때보 고됩니다.
  • 2 유체 시뮬레이션의 경우, 기존의 출력 수량 유체 체류 시간 및 유체 가 이동 한 거리는 이제 유체 # 1 및 # 2와 유체의 혼합물에 대해 별도로 계산됩니다.
  • 질량 입자의 경우 각 종의 총 부피와 질량이 계산되어 전체 계산 영역, 샘플링 볼륨 및 플럭스 표면에 대한 일반 히스토리 로 출력되어 입자 종 수에 대한 현재 출력을 보완합니다.
  • 예를 들어 사용자가 가스 미순환을 식별하고 연료 탱크의 환기 시스템을 설계하는 데 도움이 되도록 마지막 국부적 가스 압력이 옵션 출력량으로 추가되었습니다. 이 양은 유체가 채워지기 전에 셀의 마지막 간극 압력을 기록하며, 단열 버블 모델과 함께 사용됩니다.

New Customizable Source Routines

사용자 정의 가능한 새로운 소스 루틴이 추가되었으며 사용자의 개발 환경에서 액세스 할 수 있습니다.

소스 루틴 이름설명
cav_prod_cal캐비 테이션 생산 및 확산 속도
sldg_uset슬러지 정착 속도
phchg_mass_flux증발 및 응축에 의한 질량 흐름
flhtccl유체#1과#2사이의 열 전달 계수
dsize_cal2상 유동에서의 동적 낙하 크기 모델의 충돌 및 이탈율
elstc_custom.점탄성 유체에 대한 응력 방정식의 소스 용어

Brand New User Interface

FLOW-3D의 사용자 인터페이스가 완전히 재설계되어 사용자의 작업 흐름을 획기적으로 간소화하는 최신의 타일 구조를 제공합니다.

Dock widgets 설정

Physics, Fluids, Mesh 및 FAVOR ™를 포함한 모든 설정 작업이 형상 창 주위의 dock widgets으로 변환되어 모델 설정을 단일 탭으로 압축 할 수 있습니다. 이 전환을 통해 이전 버전의 복잡한 트리가 훨씬 깔끔하고 효율적인 메뉴 표시로 바뀌어 모델 설정 탭을 떠나지 않고도 모든 매개 변수에 쉽게 액세스 할 수 있습니다.

New Model Setup icons
With our new Model Setup design comes new icons, representing each step of the setup process.
New Physics icons
Our Physics icons are designed to be easily differentiated from one another at a glance, while providing clear visual representation of each model’s purpose and use.

RSS feed

새 RSS 피드부터 FLOW-3D v12.0 의 시뮬레이션 관리자 탭이 개선되었습니다 . FLOW-3D 를 시작하면 사용자에게 Flow Science의 최신 뉴스, 이벤트 및 블로그 게시물이 표시됩니다.

Configurable simulation monitor

시뮬레이션을 실행할 때 중요한 작업은 모니터링입니다. FLOW-3Dv12.0에서는 사용자가 시뮬레이션을 더 잘 모니터링할 수 있도록 Simulation Manager의 플로팅 기능이 향상되었습니다. 사용자는 시뮬레이션 런타임 그래프를 통해 모니터링할 사용 가능한 모든 일반 기록 데이터 변수를 선택하고 각 그래프에 여러 변수를 추가할 수 있습니다. 이제 런타임에서 사용할 수 있는 일반 기록 데이터는 다음과 같습니다.

  • 최소/최대 유체 온도
  • 프로브 위치의 온도
  • 유동 표면 위치에서의 유량
  • 시뮬레이션 진단(예:시간 단계, 안정성 한계)
Runtime plots of the flow rate at the gates of the large dam / Large dam with flux surfaces at the gates

Conforming mesh visualization

사용자는 이제 새로운 FAVOR ™ 독 위젯을 통해 적합한 메쉬 블록을 시각화 할 수 있습니다 .

Large raster and STL data

데이터를 처리하는 데 걸리는 시간으로 인해 큰 형상 데이터를 처리하는 것은 어려울 수 있습니다. 대형 지오메트리 데이터를 처리하는 데 여전히 상당한 시간이 소요될 수 있지만 FLOW-3D는 이제 이러한 대형 데이터 세트를 백그라운드 작업으로로드하여 사용자가 데이터를 처리하는 동안 완벽하게 응답하고 중단없는 인터페이스에서 계속 작업 할 수 있습니다.

A vertical jet flowing into a moving cross stream

공기 유입 / Air Entrainment

Air Entrainment / 공기 유입

FLOW-3D 의 공기 혼입 모델(air entrainment model)은 자유 표면에서 용해되지 않은 공기 혼입을 시뮬레이션하는 강력한 도구입니다. 제트 및 방수로 충돌시 관찰되는 국부적이고 난류가없는 자유 표면 혼입 기능이 있습니다. 이러한 기능은 엔지니어가 설계시 공기 유입을 예측하고, 공기유입이 안전하게 작동하도록 적절한 수정을 할 수 있게 합니다.

Spillway hydraulics / 여수로 수리장치

여수로 구조는 다양한 작동 조건을 처리 할 수 ​​있도록 설계되어야 합니다. 유동 조건이 설계 범위의 상단에 도달하면 여수로 표면의 불규칙성으로 인해 유동이 분리 될 수 있습니다. 이는 여수로 표면의 압력이 캐비테이션을 일으킬 정도로 낮아지게 합니다. 캐비테이션은 구조물의 강도에 매우 해로우며 치명적인 손상을 초래할 수 있습니다.

공기 유입은 캐비테이션의 가능성을 줄이는 수단입니다. 물이 공기에 존재하면 캐비테이션 영역의 붕괴하는 기포에 감쇠 효과를 추가하여 캐비테이션 손상을 줄입니다. 여수로의 속도가 충분히 높으면 공기를 동반시키고 캐비테이션을 줄이기 위해 폭기 장치를 추가해야합니다.

폭기 흐름의 시뮬레이션과 폭기 장치에서 포획된 공기의 예측.

왼쪽 이미지는 거시적 인 밀도에 의해 착색됩니다. 오른쪽 그래프는 폭기 장치에 유입 된 수분의 일정한 부피와 폭기 장치 이후의 수분 및 공기의 양을 비교 한 것입니다.

아래 동영상은 FLOW-3D에서 공기 유입 과정을 시뮬레이션하는 방법을 보여줍니다. 여기에는 공기혼입 및 드리프트 플럭스 모델의 이론에 대한 세부 정보와 FLOW-3D에서 기본 공기혼입 시뮬레이션을 설정하는 방법에 대한 데모가 포함되어 있습니다.

Fish passage design / 물고기 개체수 유지를 위한 어도 설계

공기가 물로 혼입되면 미생물의 성장을 유지하고 건강한 어류 개체군의 생존을 보장 할 수 있습니다. 그러나 과포화 상태의 용존 기체는 수생 생물에 부정적인 영향을 미치는 수질 문제가 됩니다. 공기 동반 모델의 또 다른 용도는 강의 하류로 방출되는 배수로에서 동반되는 공기의 농도를 결정하기 위해 해양 생물학에서 사용됩니다.
이 모델에 대한 더 자세한 정보는 Air Entrainment 의 Flow Science Report를 다운로드하십시오.

FLOW-3D DEM

FLOW DEM

 

FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법) 기법인 입자의 거동을 분석해주는 제품입니다.

입자 – 입자 간, 입자 – 벽 사이의 접촉이나 상호 작용을 모델링 할 수 있으므로 보다 현실적인 입자 거동의 해석이 가능합니다. 
또한 유체 부분은 전문적인 FLOW-3D 분석 기능을 사용하기 때문에 유체 와 입자거동의 연성해석을 정밀하게 또한 효율적으로 분석할 수 있습니다.

주요 기능 :
  • 고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용
  • Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응
  • 가변 밀도 / 가변 직경
  • 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소
  • 독립적인 DEM의 Sub Time Step 이용

Discrete Element Method : 개별 요소법

다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

dem1
dem2

입자 간의 충돌

Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

 
  • 스프링 : 변형에 관련된 힘
  • 대시 포트 : 충돌시의 상대 속도에 관련된 힘
    (점성 감쇠)
  • 스프링 및 대시 포트를 병렬로 연결
    ⇒ Voigt model
  • 힘은 법선 방향과 접선 방향으로 나누어진다

분석 모드

기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로 평가되는 항목이 추가되는 형태로 되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

dem4
dem5
dem6
void + DEM1-fluid + DEM1-fluid 자유계면 + DEM

입자 유형

입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

dem7-균일
-밀도 변화
-입자크기 변화

응용 분야

1. Mechanical Engineering 분야

Resin filling, screw conveyance, powder conveyance

dem8
dem9
dem10

2. Civil Engineering분야

Debris flow, gravel, falling rock

dem11
dem2

3. Chemical Engineering, Pharmaceutics 분야

Fluidized bed, cyclone, stirrer

dem12
dem13
dem14

4. MEMS, Electrical Engineering 분야

전기 입자를 포함한 전기장 해석 등

dem15

dem16

 

 

 

 

 

 

 

Coarse Graining

DEM은 일반적으로 다수의 입자를 필요로 하는 해석에 사용이 되고 있습니다. 다만 이 경우, 계산 부하가 높아지므로 현실적인 계산자원을 고려하면, 입자 수가 줄여 해석할 필요가 있습니다 .

Particle Size Increase 경우

 

중자 모래 분사 분석

DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

Reference :

  • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
  • Development and use of simulation in the Design of Blown Cores and Moulds

FLOW-3D 제품소개

About FLOW-3D


FLOW-3D 2022R2
FLOW-3D 2022R2

FLOW-3D 개발 회사

Flow Science Inc Logo Green.svg
IndustryComputational Fluid Dynamics Software
Founded1980
FounderDr. C.W. “Tony” Hirt
Headquarters
Santa Fe, New Mexico, USA
United States
Key people
Dr. Amir Isfahani, President & CEO
ProductsFLOW-3D, FLOW-3D CAST, FLOW-3D AM, FLOW-3D CLOUD, FlowSight
ServicesCFD consultation and services

FLOW-3D 개요

FLOW-3D는 미국 뉴멕시코주(New Mexico) 로스알라모스(Los Alamos)에 있는 Flow Scicence, Inc에서 개발한 범용 전산유체역학(Computational Fluid Dynamics) 프로그램입니다. 로스알라모스 국립연구소의 수치유체역학 연구실에서 F.Harlow, B. Nichols 및 T.Hirt 등에 의해 개발된 MAC(Marker and Cell) 방법과 SOLA-VOF 방식을 기초로 하여, Hirt 박사가 1980년에 Flow Science, Inc사를 설립하여 계속 프로그램을 발전시켰으며 1985년부터 FLOW-3D를 전세계에 배포하였습니다.

유체의 3차원 거동 해석을 수행하는데 사용되는 CFD모형은 몇몇 있으나, 유동해석에 적용할 물리모델 선정은 해석의 정밀도와 밀접한 관계가 있으므로, 해석하고자 하는 대상의 유동 특성을 분석하여 신중하게 결정하여야 합니다.

FLOW-3D는 자유표면(Free Surface) 해석에 있어서 매우 정확한 해석 결과를 제공합니다. 해석방법은 자유표면을 포함한 비정상 유동 상태를 기본으로 하며, 연속방정식, 3차원 운동량 보전방정식(Navier-Stokes eq.) 및 에너지 보존방정식 등을 적용할 수 있습니다.

FLOW-3D는 유한차분법을 사용하고 있으며, 유한요소법(FEM, Finite Element Method), 경계요소법(Boundary Element Method)등을 포함하여 자유표면을 포함하는 유동장 해석(Fluid Flow Analysis)에서 공기와 액체의 경계면을 정밀하게 표현 가능합니다.

유체의 난류 해석에 대해서는 혼합길이 모형, 난류 에너지 모형, RNG(Renormalized Group Theory)  k-ε 모형, k-ω 모형, LES 모형 등 6개 모형을 적용할 수 있으며, 자유표면 해석을 위하여 VOF(Volume of Fluid) 방정식을 사용하고, 격자 생성시 사용자가 가장 쉽게 만들 수 있는 직각형상격자는 형상을 더욱 정확하게 표현하기 위해 FAVOR(Fractional Area Volume Obstacle Representation) 기법을 각 방정식에 적용하고 있습니다.

FLOW-3D는 비압축성(Incompressible Fluid Flow), 압축성 유체(Compressible Fluid Flow)의 유동현상 뿐만 아니라 고체와의 열전달 현상을 해석할 수 있으며, 비정상 상태의 해석을 기본으로 합니다.

FLOW-3D v12.0은 모델 설정을 간소화하고 사용자 워크 플로우를 개선하는 GUI(그래픽 사용자 인터페이스)의 설계 및 기능에 있어 중요한 변화를 가져왔습니다. 최첨단 Immersed Boundary Method는 FLOW-3Dv12.0솔루션의 정확도를 높여 줍니다. 다른 특징적인 주요 개발에는 슬러지 안착 모델, 2-유체 2-온도 모델, 사용자가 자유 표면 흐름을 훨씬 더 빠르게 모델링 할 수 있는 Steady State Accelerator등이 있습니다.

물리 및 수치 모델

Immersed Boundary Method

힘과 에너지 손실에 대한 정확한 예측은 솔리드 바디 주변의 흐름과 관련된 많은 엔지니어링 문제를 모델링하는 데 중요합니다. FLOW-3D v12.0의 릴리스에는 이러한 문제 해결을 위해 설계된 새로운 고스트 셀 기반 Immersed Boundary Method (IBM)가 포함되어 있습니다. IBM은 내부 및 외부 흐름을 위해 벽 근처 해석을 위해 보다 정확한 솔루션을 제공하여 드래그 앤 리프트 힘의 계산을 개선합니다.

Two-field temperature for the two-fluid model

2유체 열 전달 모델은 각 유체에 대한 에너지 전달 공식을 분리하도록 확장되었습니다. 이제 각 유체에는 고유한 온도 변수가 있어 인터페이스 근처의 열 및 물질 전달 솔루션의 정확도를 향상시킵니다. 인터페이스에서의 열 전달은 시간의 표 함수가 될 수 있는 사용자 정의 열 전달 계수에 의해 제어됩니다.

슬러지 침전 모델 / Sludge settling model

중요 추가 기능인 새로운 슬러지 침전 모델은 도시 수처리 시설물 응용 분야에 사용하면 수처리 탱크 및 정화기의 고형 폐기물 역학을 모델링 할 수 있습니다. 침전 속도가 확산된 위상의 방울 크기에 대한 함수인 드리프트-플럭스 모델과 달리, 침전 속도는 슬러지 농도의 함수이며 기능적인 형태와 표 형태로 모두 입력 할 수 있습니다.

Steady-state accelerator for free surface flows

이름이 암시하듯이, 정상 상태 가속기는 안정된 상태의 솔루션에 대한 접근을 가속화합니다. 이는 작은 진폭의 중력과 모세관 현상을 감쇠하여 이루어지며 자유 표면 흐름에만 적용됩니다.

꾸준한 상태 가속기

Void particles

보이드 입자가 버블 및 위상 변경 모델에 추가되었습니다. 보이드 입자는 항력과 압력 힘을 통해 유체와 상호 작용하는 작은 기포의 역할을 하는 붕괴된 보이드 영역을 나타냅니다. 주변 유체 압력에 따라 크기가 변경되고 시뮬레이션이 끝난 후 최종 위치는 공기 침투 가능성을 나타냅니다.

Sediment scour model

침전물의 정확성과 안정성을 향상시키기 위해 침전물의 운반과 침식 모델을 정밀 조사하였다. 특히, 침전물 종에 대한 질량 보존이 크게 개선되었습니다.

Outflow pressure boundary condition

고정 압력 경계 조건에는 이제 압력 및 유체 비율을 제외한 모든 유량이 해당 경계의 상류에 있는 흐름 조건을 반영하는 ‘유출’ 옵션이 포함됩니다. 유출 압력 경계 조건은 고정 압력 및 연속성 경계 조건의 혼합입니다.

Moving particle sources

시뮬레이션 중에 입자 소스는 이동할 수 있습니다. 시간에 따른 변환 및 회전 속도는 표 형식으로 정의됩니다. 입자 소스의 운동은 소스에서 방출 된 입자의 초기 속도에 추가됩니다.

Variable center of gravity

중력 및 비 관성 기준 프레임 모델에서 시간 함수로서의 무게 중심의 위치는 외부 파일의 표로 정의할 수 있습니다. 이 기능은 연료를 소모하는 로켓을 모델링하고 단계를 분리할 때 유용합니다.

공기 유입 모델

가장 간단한 부피 기반 공기 유입 모델 옵션이 기존 질량 기반 모델로 대체되었습니다.  질량 기반 모델은 부피와 달리 주변 유체 압력에 따라 부피가 변화하는 동안 흡입된 공기량이 보존되기 때문에 물리학적 모델입니다.

Air entrainment model in FLOW-3D v12.0

Tracer diffusion / 트레이서 확산

유동 표면에서 생성된 추적 물질은 분자 및 난류 확산 과정에 의해 확산될 수 있으며, 예를 들어 실제 오염 물질의 거동을 모방합니다.

모델 설정

시뮬레이션 단위

이제 온도를 포함하여 단위계 시스템을 완전히 정의해야 합니다. 표준 단위 시스템이 제공됩니다. 또한 사용자는 선택한 옵션에서 질량, 시간 및 길이 단위를 정의하여 편리하며, 사용자 정의된 단위를 사용할 수 있습니다. 사용자는 또한 압력이 게이지 단위로 정의되는지 절대 단위로 정의되는지 여부를 지정해야 합니다. 기본 시뮬레이션 단위는 Preferences(기본 설정)에서 설정할 수 있습니다. 단위를 완벽하게 정의하면 FLOW-3D는 물리적 수량에 대한 기본 값을 정의하고 범용 상수를 설정할 수 있으므로 사용자가 필요로 하는 작업량을 최소화할 수 있습니다.

Shallow water model

천수(shallow water) 모델에서 매닝의 거칠기

Manning의 거칠기 계수는 지형 표면의 전단 응력 평가를 위해 천수(shallow water) 모델에서 구현되었습니다. 표면 결함의 크기를 기반으로 기존 거칠기 모델을 보완하며이 모델과 함께 사용할 수 있습니다. 표준 거칠기와 마찬가지로 매닝 계수는 구성 요소 또는 하위 구성 요소의 속성이거나 지형 래스터 데이터 세트에서 가져올 수 있습니다.

메시 생성

하단 및 상단 경계 좌표의 정의만으로 수직 방향의 메시 설정이 단순화되었습니다.

구성 요소 변환

사용자는 이제 여러 하위 구성 요소로 구성된 구성 요소에 회전, 변환 및 스케일링 변환을 적용하여 복잡한 형상 어셈블리 설정 프로세스를 단순화 할 수 있습니다. GMO (General Moving Object) 구성 요소의 경우, 이러한 변환을 구성 요소의 대칭 축과 정렬되도록 신체에 맞는 좌표계에 적용 할 수 있습니다.

런타임시 스레드 수 변경

시뮬레이션 중에 솔버가 사용하는 스레드 수를 변경하는 기능이 런타임 옵션 대화 상자에 추가되어 사용 가능한 스레드를 추가하거나 다른 태스크에 자원이 필요한 경우 스레드 수를 줄일 수 있습니다.

프로브 제어 열원

활성 시뮬레이션 제어가 형상 구성 요소와 관련된 heat sources로 확장되었습니다.  history probes로 열 방출을 제어 할 수 있습니다.

소스에서 시간에 따른 온도

질량 및 질량/모멘트 소스의 유체 온도는 이제 테이블 입력을 사용하여 시간의 함수로 정의 할 수 있습니다.

방사율 계수

공극으로의 복사 열 전달을위한 방사율 계수는 이제 사용자가 방사율과 스테판-볼츠만 상수를 지정하도록 요구하지 않고 직접 정의됩니다. 후자는 이제 단위 시스템을 기반으로 솔버에 의해 자동으로 설정됩니다.

Output

  • 등속 필드 솔버 옵션을 사용할 때 유량 속도를 선택한 데이터로 출력 할 수 있습니다.
  • 벽 접착력으로 인한 지오메트리 구성 요소의 토크는 기존 벽 접착력 출력과 함께 별도의 수량으로 일반 이력 데이터에 출력됩니다.
  • 난류 모델 출력이 요청 될 때 난류 에너지 및 소산과 함께 전단 속도 및 y +가 선택된 데이터로 자동 출력됩니다.
  • 공기 유입 모델 출력에 몇 가지 수량이 추가되었습니다. 자유 표면을 포함하는 모든 셀에서 혼입 된 공기 및 빠져 나가는 공기의 체적 플럭스가 재시작 및 선택된 데이터로 출력되어 사용자에게 공기가 혼입 및 탈선되는 위치 및 시간에 대한 자세한 정보를 제공합니다. 전체 계산 영역 및 각 샘플링 볼륨 에 대해이 두 수량의 시간 및 공간 통합 등가물이 일반 히스토리 로 출력됩니다.
  • 솔버의 출력 파일 flsgrf 의 최종 크기는 시뮬레이션이 끝날 때 보고됩니다.
  • 2 유체 시뮬레이션의 경우, 기존의 출력 수량 유체 체류 시간 및 유체 가 이동 한 거리는 이제 유체 # 1 및 # 2와 유체의 혼합물에 대해 별도로 계산됩니다.
  • 질량 입자의 경우, 각 종의 총 부피 및 질량이 계산되어 전체 계산 영역, 샘플링 볼륨 및 플럭스 표면에 대한 일반 히스토리 로 출력되어 입자 종 수에 대한 현재 출력을 보완합니다.
  • 최종 로컬 가스 압력 은 사용자가 가스 포획을 식별하고 연료 탱크의 배기 시스템 설계를 지원하는 데 도움이되는 선택적 출력량으로 추가되었습니다. 이 양은 유체로 채워지기 전에 셀의 마지막 공극 압력을 기록하며 단열 버블 모델과 함께 사용됩니다.

새로운 맞춤형 소스 루틴

새로운 사용자 정의 가능 소스 루틴이 추가되었으며 사용자의 개발 환경에서 액세스 할 수 있습니다.

소스 루틴 이름기술
cav_prod_calCavitation 생성과 소산 비율
sldg_uset슬러지 침전 속도
phchg_mass_flux증발 및 응축으로 인한 질량 플럭스
flhtccl유체 # 1과 # 2 사이의 열전달 계수
dsize_cal2 상 흐름에서 동적 액적 크기 모델의 응집 및 분해 속도
elstc_custom점탄성 유체에 대한 응력 방정식의 Source Terms

새로운 사용자 인터페이스

FLOW-3D 사용자 인터페이스는 완전히 새롭게 디자인되어 현대적이고 평평한 구조로 사용자의 작업 흐름을 획기적으로 간소화합니다.

Setup dock widgets

Physics, Fluids, Mesh 및 FAVOR ™를 포함한 모든 설정 작업이 지오 메트리 윈도우 주변에서 독 위젯으로 변환되어 모델 설정을 단일 탭으로 요약할 수 있습니다. 이러한 전환으로 인해 이전 버전의 복잡한 접이식 트리가 훨씬 깨끗하고 효율적인 메뉴 프레젠테이션으로 대체되어 사용자는 ModelSetup탭을 떠나지 않고도 모든 매개 변수에 쉽게 액세스 할 수 있습니다.

New Model Setup icons

새로운 모델 설정 디자인에는 설정 프로세스의 각 단계를 나타내는 새로운 아이콘이 있습니다.

Model setup icons - FLOW-3D v12.0

New Physics icons

RSS feed

새 RSS 피드부터 FLOW-3D v12.0의 시뮬레이션 관리자 탭이 개선되었습니다. FLOW-3D 를 시작하면 사용자에게 Flow Science의 최신 뉴스, 이벤트 및 블로그 게시물이 표시됩니다.

RSS feed - FLOW-3D

Configurable simulation monitor

시뮬레이션을 실행할 때 중요한 작업은 모니터링입니다. FLOW-3Dv1.0에서는 사용자가 시뮬레이션을 더 잘 모니터링할 수 있도록 SimulationManager의 플로팅 기능이 향상되었습니다. 사용자는 시뮬레이션 런타임 그래프를 통해 모니터링할 사용 가능한 모든 일반 기록 데이터 변수를 선택하고 각 그래프에 여러 변수를 추가할 수 있습니다. 이제 런타임에서 사용할 수 있는 일반 기록 데이터는 다음과 같습니다.

  • 최소/최대 유체 온도
  • 프로브 위치의 온도
  • 유동 표면 위치에서의 유량
  • 시뮬레이션 진단(예:시간 단계, 안정성 한계)
출입문에 유동 표면이 있는 대형 댐
Runtime plots of the flow rate at the gates of the large dam

Conforming 메쉬 시각화

용자는 이제 새로운 FAVOR ™ 독 위젯을 통해 적합한 메쉬 블록을 시각화 할 수 있습니다.Visualize conforming mesh blocks

Large raster and STL data

데이터를 처리하는 데 걸리는 시간 때문에 큰 지오 메트리 데이터를 처리하는 것은 수고스러울 수 있습니다. 대형 지오 메트리 데이터를 처리하는 데는 여전히 상당한 시간이 걸릴 수 있지만, FLOW-3D는 이제 이러한 대규모 데이터 세트를 백그라운드 작업으로 로드하여 사용자가 데이터를 처리하는 동안 완전히 응답하고 중단 없는 인터페이스에서 작업을 계속할 수 있습니다

난류 / Turbulence

난류 / Turbulence

FLOW-3D 는 완전 3 차원 유동, 2 차원 깊이 평균 (천수(shallow water)) 흐름 및 3 차원/2 차원 깊이 혼합 평균 흐름을 위한 포괄적인 난류 모델링 제품군을 제공합니다.

그림1. 부두 하류에서의 와류 검출을위한 Q- 기준의 3D지도

FLOW-3D 에는 8 가지 난기류 옵션이 있습니다.

  • Prandtl 혼합 길이 모델은 3 차원 난류 효과를 설명하기 위한 가장 초기의 시도 중 하나입니다. 가장 복잡한 모델이 아니며 더 이상 널리 사용되지 않습니다. FLOW-3D 는 주로 학술 연구에서의 유용성을 포함합니다.
  • 소위 1 방정식 모델은 난기류를 나타내는 초기 노력이기도 합니다. 시간 평균 난류 운동 에너지 k를 계산하고 모든 위치에서 알려진 난류 혼합 길이 LT 가 필요합니다. LT 는 일반적으로 미리 알려지지 않기 때문에, one-equation 모델은 복잡한 유량을 모델링하는 데 적합하지 않습니다.
  • 표준 k-ε 모델 (Harlow & Nakayama 1967)은 난류 운동 에너지 k와 소산 속도 ε를 계산하고 난류 혼합 길이 LT를 동적으로 찾는 2 방정식 모델입니다. 이것은 업계 표준이며 광범위한 흐름을 표현하는데 유용하다는 것이 발견되었습니다 (Rodi 1980).
  • 재 정규화 그룹 (RNG) k-ε 모델 (Yakhot & Orszag 1986, Yakhot & Smith 1992)은 2 방정식 k-ε 모델의 보다 견고한 버전이며, 대부분의 산업에서의 문제에 권장됩니다. 표준 k-ε 모델의 기능을 확장하여 과도기 난류, 곡선 흐름, 벽 열 전달 및 물질 전달의 더 나은 적용 범위를 제공합니다.
  • k-ω 2 방정식 모델 (Wilcox 1988, 1998, 2008)은 두 번째 변수를 난류 소산 ε이 아니라 ω ≡ ε / k로 정의한다 (Kolmogorov 1942). Wilcox는 1988 년부터 k-ω 2 방정식 모델을 개선했으며 1998 년에는 자유 전단 유동에 대한 모델의 정확성을 크게 개선 한 새로운 계수를 도입했습니다. FLOW-3D 의 k-ω 2 방정식 모델은 제트, 후류 및 플럼을 퍼 뜨리는 것과 같은 유선형 압력 구배를 갖는 자유 전단 흐름을 모델링하는 데 적합합니다.
    LES 모델은 평균 난류 운동 에너지를 나타내기 위해 스칼라를 사용하지 않고 대부분의 난류 변동을 직접 해결합니다. 그것은 2 방정식 모델보다 훨씬 더 미세한 메쉬 해상도를 필요로하며 난기류에 대한 보다 광범위한 통계를 제공합니다.
  • 2-D 심도 평균 얕은물 난류 모델은 대수적인 완전 난류 속도를 가정합니다. 첫 번째 옵션은 일정한 항력 계수 CD를 가정하며, 이는 공간적으로 변화 할 수 있습니다.
  • 두 번째 2-D 심도 평균 천수(shallow water) 난류 모델은 항력 계수 CD 를 유체 깊이와 공간적으로 가변되는 표면 거칠기의 동적 함수로 만듭니다.

완전한 3-D 테스트를 통해 LES 모델 출력을 시간 평균화하면 2 방정식 Reynolds REN (Reynolds Averaged Navier-Stokes) 모델 (표준 k-ε, RNG k-ε 및 k- ω).

아래의 물고기 통로 비디오에 나와 있습니다.

난류 시뮬레이션 – 모델 비교 / Turbulence Simulations – A Model Comparison

첫 번째 비디오에서는 FLOW-3D 의 LES (Large-Eddy Simulation) 난류 모델을 사용하여 어류 통과를 시뮬레이션하여 속도 변동의 크기를 분석합니다. 두 번째 비디오는 동일한 시뮬레이션의 시간 평균 결과를 보여줍니다. 여기에서 간단한 사용자 정의는 시간 평균 LES가 레이놀즈 평균 Navier-Stokes (RANS) 난류 모델 결과와 매우 유사하다는 것을 보여줍니다. 세 번째 비디오는 RNG (Renormalized Group) k-ε 난류 모델을 사용하여 시연하기 위해 동일한 시뮬레이션을 사용합니다. RNG k-ε 모델은 대부분의 레이놀즈 평균 Navier-Stokes (RANS) 난류 모델과 마찬가지로 속도 변동을 등방성 스칼라 값으로 처리하여 시간에 따른 속도 변동을 감쇠시킵니다. 결과는 두 번째 비디오에서 볼 수 있듯이 직접 LES 결과를 시간 평균하여 찾은 결과와 유사합니다.

참고 문헌

  • Driver, DM and Seegmiller, HL, 1985, AIAA Journal (23), 163-171의 다양한 채널 유동에서 재 부착하는 난류 전단 층의 특징 .
  • Harlow, FH and Nakayama, PI, 1967, 난류 수송 방정식 , 유체 역학 (10), 2323-2332.
  • Harlow, FH 및 Nakayama, PI, 1968, 난기류 에너지 감쇠율의 전송 , Los Alamos Scienti fi c 실험실 보고서 LA-3854.
  • Kolmogorov, AN, 1942, 비압축성 유체에서의 난류 운동 방정식 , Izvestia Academy of Sciences, 소련; Physics (6), 56-58.
  • Pope, S. B, 2000, Turbulent Flows , Cambridge University Press.
  • Rodi, W., 1980, 난류 모델과 유압 장치의 적용 : 최첨단 검토 , 국제 유압 연구 협회 (IAHR), 델프트, 네덜란드.
  • Saffman, PG, 1970, Inhomogeneous Turbulent Flow의 모델 , Royal Society London A (317), 417-433의 절차.
  • Speziale, CG, Abid, R., and Anderson, EC, 1992, AIAA 저널 (30), 324-331, 벽 근처 난류에 대한 2 방정식 모델의 중요성 평가.
  • Wilcox, DC, 1988, AIAA Journal (26), 1299-1310의 진보 된 난류 모델에 대한 스케일 결정 방정식의 재평가.
  • Wilcox, DC, 1998, CFD의 난류 모델링 , DCW Industries, Inc., 제 2 판.
  • Wilcox, DC, 2008, k-omega 난류 모델의 공식화 , AIAA Journal (46), 2823-2838.
  • Yakhot, V. and Orszag, SA, 1986, 난류의 재 정규화 그룹 분석 I. 기본 이론 , Journal of Scientific Computing (1), 3-51.
  • Yakhot, V. 및 Smith, LM, 1992, 재 정규화 그룹, 난류 모델의 전자 확장 및 유도 , Journal of Scientific Computing (7), 35-61.

휴리스틱 분석

Heuristic Analysis

Finite-difference equations may have rapidly growing and oscillating solutions that in no way resemble the solutions expected from the partial differential equations they are meant to approximate. Such solutions are said to exhibit computational instability. Clearly, it is desirable to avoid these numerical disasters. For linear difference equations with constant coefficients, computational stability can be determined using a Fourier method pioneered by von Neumann (see the article in this series “Computational Stability.” Unfortunately, most equations of physical interest are either nonlinear, or have non-constant coefficients, or both.

유한 차분 방정식의 계산 결과에서 본래 근사하는 편미분 방정식에서 예상되는 것과 크게 다르게 급속하게 증가하고 부호가 자주 반전하는 솔루션을 얻을 수 있습니다.  이러한 솔루션이 나타내는 행동을 “계산 불안정성”라고합니다.  물론 이러한 해석은 바람직하지 않습니다.  상수 계수를 따른 선형 차분 방정식의 계산 안정성을 확인하는 방법으로는 von Neumann 의한 푸리에 방법을 사용할 수 있습니다 (본 시리즈 “계산 안정성” 참조).  불행히도, 물리 현상을 나타내는 대부분의 방정식은 비선형이거나 비 상수 계수를 수반하거나 또는 둘 다입니다.

Heuristic Analysis Methods

In this article a simple heuristic analysis method is described for investigating the computational stability of such finite-difference equations. An important by-product of this type of analysis is that it often suggests simple ways to eliminate the instabilities and at the same time increase the accuracy of the approximations.

이 책에서는 위의 유한 차분 방정식의 계산 안정성을 조사하기위한 간단한 휴리스틱 분석 방법에 대해 설명합니다.  이 유형의 분석은 많은 경우에 불안정을 제거하는 방법을 보여뿐만 아니라 근사치의 정확도를 높이는 방법도 보여주는 뛰어난 특징이 있습니다.

The approach described here is called “heuristic” because it is not rigorous or complete, but it often works and can provide a great deal of useful information. Reference [1] is the original publication describing the heuristic stability method from which much of this article has been taken.

여기서 설명하는 방법은 엄격하지도 완전하지도 않은 것으로부터 “추론”이라고되어 있지만, 많은 경우에 유효하고 유용한 정보를 많이 제공합니다.  안정성을 분석하기위한 휴리스틱 기법에 대해 작성된 참고 문헌 [1]은이 책에서 다루고 많은 정보 출처 소스입니다.

Heuristic analysis is based on the rather simple idea of reducing a finite-difference equation back to a partial differential equation by expanding each of its terms in a Taylor series and keeping only terms to a certain order in the expansion. This expansion is in powers of the space and time increments, which are assumed to be small to begin with.

휴리스틱 분석은 유한 차분 방정식을 전개하고 각항을 테일러 급수로 나타내 특정 차수까지의 항만을 남김으로 편미분 방정식에 귀착시키는 비교적 간단한 개념을 기반으로합니다.  이 확장은 처음에는 작은 것으로 예상되는 공간 증가 및 시간 증분의 거듭 제곱으로 표시됩니다.

Certainly such an expansion must, to lowest order, reproduce the original partial differential equation, otherwise, it would not be a good approximation. Oftentimes this requirement is referred to as the “consistency” of the approximation. Terms beyond the lowest order in the expansion are referred to as truncation errors.

이러한 확장은 원래의 미분 방정식을 최소 차수까지 재현하는 것이 필수적입니다.  그렇지 않으면 좋은 근사치를 얻을 수 없습니다.  이 요구 사항은 종종 근사치의 ‘일치 성’이라고 합니다.  전개 된 최소 차수 다음은 절단 오류라고합니다.

The basic concept of a heuristic analysis is that the Taylor-expanded equation is a more accurate representation of the difference equation than the original partial differential equation. Even keeping only a few truncation error terms should result in a partial differential equation that is more closely related to the difference equation. With this in mind, the following discussion will show that an examination of the truncated equation can sometimes reveal properties shared with the difference equation such as stability problems, necessary initial conditions and/or serious inaccuracies.

휴리스틱 분석은 테일러 전개 방정식 쪽이 원래 편미분 방정식보다 차분 방정식을보다 정밀하게 나타내고 있다는 기본 개념을 기반으로합니다.  절단 오차 부분을 일부 남긴 경우에도 항은 차분 방정식에 가까운 편미분 방정식입니다.  이 점을 염두에 두면서 여기에서 계산을 중단 한 식을 조사함으로써 안정성 문제 필요한 초기 조건 심각한 부정확성 등 차등 방정식과 일반적인 특성이 밝혀 질 것을 보여 있습니다.

To begin, we consider the same linear partial differential equation that was discussed in the first article on stability: Computational Stability.

첫째, 안정성에 쓰여진 ” 계산 안정성”에서 사용한 것과 동일한 선형 편미분 방정식 생각합니다.

Linear Equation Example

The equation for one-dimensional advection-diffusion of a variable u(x,t) is

여기에서는 변수 u (x, t)의 1 차의 이류 확산 방정식을 이용합니다.

(1)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}.

The convection velocity c and the diffusion coefficient ν are assumed to be constants. Solutions of this equation are known to be bounded and otherwise well-behaved.

대류 속도 c와 확산 계수 ν은 상수로 간주합니다.  이 방정식의 해는 경계이며, 양호한 거동을 나타내는 것을 알 수 있습니다.

What will be shown here is that the stability of a simple finite-difference approximation to Eq. 1 can be determined from an examination of the truncations errors resulting from a Taylor series expansion of a the difference equation. Not only does this process reveal that there are two basic types of instability, but we shall be able to make a direct comparison between the heuristic method and the von Neumann type of Fourier analysis carried out in Computational Stability. This comparison provides a useful rule-of-thumb for which truncation error terms to keep and which to eliminate from the Taylor expansion in order to evaluate the difference equation’s stability.

여기에서는 차분 방정식의 테일러 급수 전개로 인한 절단 오차를 조사하는 것으로, 식 1에 대한 간단한 유한 차분 근사의 안정성을 판단 할 수있는 것을 나타냅니다.  이 프로세스는 불안정성은 기본적으로 두 가지 유형이 있다는 것을 밝혀 질뿐만 아니라 휴리스틱 기법과 “계산 안정성”에서 이용한 von Neumann 유형의 푸리에 분석을 직접 비교할 수 있게 되는 것 있습니다.  이러한 비교를 통해 차이 방정식의 안정성을 평가하는데 테일러 전개로 인한 절단 오차 중 유지해야 할 항목과 배제 할 부분을 결정하는 데 유용한 경험규칙을 얻을 수 있습니다.

The simple, explicit finite-difference equation approximating Eq. 1 discussed in Computational Stability is

다음 수식은 “계산 안정성”에서 설명한 식 1을 근사하는 간결하고 양적인 유한 차분 방정식입니다.

(2)     \displaystyle \frac{u_{j}^{n+1}-u_{j}^{n}}{\delta t}=-\frac{c}{2\delta x}\left( u_{j+1}^{n}-u_{j-1}^{n} \right)+\frac{\nu }{\delta {{x}^{2}}}\left( u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n} \right)

where, e.g., ujn denotes u(jδx,nδt). This is called a forward-in-time approximation that allows all j location values to be computed at time step n+1, provided all the j values at step n are known. In other words, the difference equation requires one initial condition to start things off, just as the original partial differential equation also requires a single initial condition because it only involves a single time derivative.

여기서, u j n은 u (jδx, nδt)을 나타냅니다.  이것은 시간의 전진 차분 근사라는 것으로, 시간 단계 n의 공간 내의 위치 j 값이 모두 알려진이면 단계 n + 1의 모든 j 값을 계산할 수 있습니다.  즉, 원래의 미분 방정식에서 1 개의 초기 조건이 필요할뿐만 아니라 하나의 시간 미분만을 포함하기 때문에 차분 방정식에서 계산을 시작함에있어서 초기 조건이 하나 필요합니다.

It may be observed that difference equation, Eq. 2, has the property that each space and time location (jδx,nδt) will affect points at time step n+1 at locations j-1, j and j+1. That is, point (jδx,nδt) has a region of influence at later time bounded by lines having slopes ±δx/δt in x-t space. These are similar to characteristic lines along which signals can propagate. For example, the original equation, Eq. 1, has a characteristic line with slope c along which a disturbance advects. In the discrete equation, however, the characteristic lines are not physical characteristics but computational ones defining the region where the difference equation changes data values resulting from a change in value at a particular point.

차분 방정식 2는 공간 위치 및 시간 위치 (jδx, nδt)마다 타임 단계 n + 1의 위치 j-1, j, j + 1의 각 점에 영향을주는 특성을 볼 수 있습니다.  즉, 점 (jδx, nδt)는 현재보다 먼저있는 시간에서, xt 공간에서 기울기 ± δx / δt를 가진 선이 경계가되는 영향 영역을 가지고 있습니다.  이것은 신호의 전달을 나타내는 특성 곡선과 비슷합니다.  예를 들어, 원래 식 1은 교란의 이류를 나타내는 기울기 c의 특성 선을 가지고 있습니다.  그러나 이산 방정식의 특성 선은 물리적 특성을 나타내는 것이 아니라 특정 시점의 값의 변화에 따라 차이 방정식의 데이터 값이 변화하는 영역을 정의하는 계산의 특성을 나타냅니다.

We saw in the Computational Stability article that a Fourier series technique could be used to determine a set of three stability conditions for the difference equation, Eq.2. Here we shall see what can be learned from looking at the truncation errors associated with the approximating equation, Eq. 2.

” 계산 안정성”에서는 푸리에 급수에 의한 방법을 이용하여 차등 방정식 2에 대한 3 개의 안정 조건을 이끌어 낼 것을 알 수있었습니다.  이 책에서는 근사 식 2에 관련된 중단 오차를 조사함으로써 얻은 정보에 대해 설명합니다.

Truncation Error Evaluation

Assume that each term in Eq. 2 is a continuous and differentiable function of x and t. Then, for example, “uj+1,n would be u(xj+δx,tn) and can be expanded about the point (xj,tn) in a Taylor series in powers of δx. Carrying out the expansion in δx and δt for all the terms in Eq.2 yields,

식 2 절은 x 및 t의 연속 미분 가능한 함수로 간주합니다.  그러면 예를 들어, u j + 1, n, n은 u (x j + δx, t n)이되고, 점 (x j, t n)의 주위에 δx의 거듭 제곱에서 테일러 급수 전개를 할 수 있습니다.  식 2의 모든 사항에 대해 δx 및 δt로 확장하면 다음 식을 얻습니다.

(3)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}-\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=-\frac{1}{2}\delta t\frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+O\left( \delta {{x}^{2}},\delta {{t}^{2}} \right).

All second and higher order terms in δx and δt have been lumped into the order symbol O(δx2 ,δt2). This is a consistent approximation because it reduces to the original partial differential equation, Eq. 1, when δx and δt tend to zero.

2 차 이상의 δx 및 δt 절은 주문 기호를 사용하여 O (δx 2, δt 2)라고 기술되어 있습니다.  δx 및 δt가 제로에 접근 할 때, 원래의 편미분 방정식 1로 귀착하기 때문에 이것은 일관성 있는 근사치라고 할 수 있습니다.

Comparison of Fourier and Truncation Error Analysis

In the article Computational Stability a typical Fourier mode of the form

“계산 안정성”에서는 다음과 같은 형식의 전형적인 푸리에 모드

\displaystyle P_{j}^{n}\propto {{r}^{n}}{{e}^{{ikxj}}}

was substituted into the difference equation, Eq.2, to obtain an equation for r,

이를 차등 방정식 2에 대입하면 r을 구하는 식을 얻었습니다.

(4)     \displaystyle r=1-\left( \frac{ic\delta t}{\delta x} \right)\sin \left( k\delta x \right)-\left( \frac{2\nu \delta t}{\delta {{x}^{2}}} \right)\left[ 1-\cos \left( k\delta x \right) \right].

Computational stability of the difference equation requires that the magnitude of r remain less than or equal to 1.0.

차분 방정식의 계산 안정성을 실현하려면 r의 절대 값을 1.0 이하로하는 것이 필요합니다.

If we insert a Fourier mode of the form exp(i(kx+wt)) into the truncated Eq. 3, it will be seen that the result is the same as Eq. 4 with r=exp(iwδt) and then expanded in powers of wδt, plus the sine and cosine expanded in powers of kδx. This confirms that the two results are the same, as they should be to O(δx2,δt2) retained in Eq. 3.

exp (i (kx + wt)) 형식의 푸리에 모드를 계산을 중단 한 식 3에 대입하면 r = exp (iwδt)되고, wδt의 거듭 제곱에서 전개되고 더 sin과 cos는 kδx의 거듭 제곱 전개되고 식 4와 같은 결과를 얻을 수 있는 것을 알 수 있습니다.  식 3에서 개최 된 O (δx 2, δt 2)와 같이 두 결과는 동일하다고 확정됩니다.

However, the comparison also indicates that to keep the basic form of r in Eq. 4, with its real and imaginary parts, we must keep at least the first non-zero terms from the sine and cosine when they are expanded in powers of kδx. The first non-zero term in the imaginary contribution to r comes from sin(kδx) and is proportion to kδx, which corresponds to the first derivative with respect to x in Eq.3. The first non-zero term in the real part of r (other than 1) comes from cos(kδx) and is proportional to (kδx)2, which corresponds to the second derivative with respect to x in Eq. 3.

그러나 이 비교에서는 식 4의 실수 부와 허수 부로 구성된 r의 기본 형식을 유지하려면 kδx의 제곱으로 전개 된 때 적어도 sin과 cos의 첫 번째 non-zero 항을 유지 해야한다고 표시됩니다.  r의 허수 부분의 첫 번째 non-zero 항은 sin (kδx)로부터 유도 된 것으로, kδx에 비례합니다.  이것은 식 3의 x에 대한 1 차 도함수에 대응합니다.  r의 실수 부 최초의 non-zero 항 (1 제외)은 cos (kδx)로부터 유도 된 것으로, (kδx) 2에 비례합니다.  이것은 식 3의 x에 관한 2 차 도함수에 대응합니다.

These observations lead to the rule-of-thumb that for the truncated equation to reproduce the lowest order real and imaginary parts of the amplification factor r, it is necessary to retain the lowest order even and odd derivatives with respect to each independent variable in the truncation error. In Eq. 3 there is only one first order term proportional to δt and it is a second derivative with respect to t. There are no first order terms proportional to δx.

이러한 점에서 계산을 끊은 식으로 진폭 계수 r의 최소 차수의 실수 부와 허수 부를 재현하려면 중단 오차에서 각 독립 변수에 대해 최소 차수의 짝수와 홀수 함수 (도함수) 을 유지해야한다는 경험식을 지도합니다.  식 3에서 δt에 비례하는 1 차 항은 하나만에서 t에 대한 2 차 도함수입니다.  δx에 비례하는 1 차 항은 없습니다.

Examining the Truncated Equation for Stability

Using the above rule-of-thumb, the truncated equation is,

위의 경험식을 사용하면 계산을 중단 한 식은 다음과 같이됩니다.

(5)     \displaystyle \frac{\delta t}{2}\frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+\frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}-\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=0

The first important thing to note is that this is not identical to the original partial differential equation, Eq. 1. The claim made here is that Eq. 5 is a better approximation of the finite-difference equation than Eq. 1 and because of this we can obtain information about the stability properties of the difference equation. This, in fact, is the case.

여기에서 먼저주의해야 할 점은이 표현은 원래 편미분 방정식 1과 동일하지 않다는 것입니다.  여기에서 증명하고 싶은 것은, 식 5 식 1보다 유한 차분 방정식을 양호하게 근사 할 식이며, 따라서 차이 방정식의 안정성을 나타내는 특성에 대한 정보를 얻을 수 있다는 점입니다.  바로 이것이 증명됩니다.

Recall that the difference equation propagated information into a region of influence bounded by lines whose slopes are dx/dt=±δx/δt. Similarly, the truncated Eq. 5 has a hyperbolic (i.e., wave) character because of the second space and second time derivatives, and the effective wave speeds are ±(2ν/δt)½. If the difference equation is to have any hope of approximating the truncated equation then its region of influence must at least encompass the region of influence of the truncated equation, which leads to the condition

전술 한 바와 같이 차등 방정식은 기울기 dx / dt = ± δx / δt를 가진 선이 경계가되는 영향 영역에 정보가 전달됩니다.  마찬가지로 계산을 중단 한 식 5는 공간에 대한 2 차 도함수 및 시간에 대한 2 차 도함수에 의해 쌍곡선 (즉, 파동)의 특성을 가지고 유효한 파동 속도는 ± (2ν / δt ) ½입니다.  차분 방정식으로 계산을 중단 한 식을 근사하려면 그 영향 영역이 적어도 계산을 끊은 식의 영향 영역을 포함하고 있어야합니다.  그러면 다음의 조건이 도출됩니다.

(6)     \displaystyle \frac{2\nu }{\delta t}\le {{\left( \frac{\delta x}{\delta t} \right)}^{2}}   or   \displaystyle \frac{2\nu \delta t}{\delta {{x}^{2}}}\le 1.

Courant, Friedrichs and Lewy [2] used a similar region of influence condition, now called the Courant condition, which restricts the distance a wave travels in one time increment to less than one space increment. A violation of the Courant condition leads to an oscillating and exponentially growing instability. Condition Eq. 6 is precisely one of the stability conditions found from Fourier analysis in Computational Stability.

Courant, Friedrichs 및 Lewy [2]는 유사한 영향 영역에 관한 조건을 사용했습니다.  현재 이것은 “쿨랑 조건”이라고 불리며 하나의 시간 증분 사이에 파도가 전파하는 거리가 하나의 공간 증분 미만으로 제한된다는 것입니다.  쿨랑 조건이 충족되지 않은 경우, 부호의 빈번한 반전이나 기하 급수적 인 증가를 수반 불안정성이 생깁니다.  조건식 6은 바로 ‘ 계산 안정성 “푸리에 분석에서 도출 한 안정 조건의 하나입니다.

A similar Courant-type condition can be inferred from the two first order derivative terms (the advective terms) in the truncated Eq. 5, which propagate information with speed c,

계산을 중단 한 식 5의 2 개의 1 차 도함수 항 (이류 항)에서 다음과 같은 유사한 쿨랑 유형 조건을 추측 할 수 있습니다.  여기에서 정보는 속도 c로 전달합니다.

(7)     \displaystyle \frac{c\delta t}{\delta x}\le 1.

This stability condition, also identified in Computational Stability, likewise leads to an oscillating and growing instability when violated.

이 안정 조건도 “계산 안정성”로 표시 한 것으로, 충족되지 않을 때뿐만 아니라 부호의 반전이나 증가를 수반 불안정성이 생깁니다.

To uncover a third stability condition we must first rewrite the truncated equation by converting the δt term to have space instead of time derivatives, but in a way that still maintains the first order of the expansion. This is done by differentiating Eq. 3 by t and neglecting all first and higher order terms,

세 번째 안정 조건을 도출 먼저, δt 항을 변환하여 계산을 중단 한 식을 다시 작성합니다.  이 때 배포 1 차 항이 유지되도록 시간 도함수 대신 공간 도함수를 갖도록 변환합니다.  이것은 식 3을 t로 미분 1 차 이상의 항을 무시합니다.

(8)     \displaystyle \frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+c\frac{\partial }{\partial x}\frac{\partial u}{\partial t}-\nu \frac{{{\partial }^{2}}}{\partial {{x}^{2}}}\frac{\partial u}{\partial t}=O\left( \delta t \right)

Next replace the first time derivative of u by t in this equation using Eq. 1 to obtain

그런 식 1을 이용하여이 식 u / t 시간의 1 차 도함수를 대체하여 다음의 식을 얻는다.

(9)     \displaystyle \frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}={{c}^{2}}\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}-2c\nu \frac{{{\partial }^{3}}u}{\partial {{x}^{3}}}+{{\nu }^{2}}\frac{{{\partial }^{4}}u}{\partial {{x}^{4}}}+O\left( \delta t \right)

Finally, rewrite the truncated Eq.5 using this result for the δt term

마지막으로,이 결과를 이용하여 δt 사항에 대해 계산을 중단 한 식 5를 다시 작성합니다.

(10)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\left( \nu -\frac{{{c}^{2}}\delta t}{2} \right)\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+c\nu \delta t\frac{{{\partial }^{3}}u}{\partial {{x}^{3}}}-\frac{{{\nu }^{2}}\delta t}{2}\frac{{{\partial }^{4}}u}{\partial {{x}^{4}}}.

This result is identical to what would have been obtained by Taylor expanding the original finite-difference equation about the point x=jδx and t=(n+½)δt (and would probably have been easier).

마지막으로 얻어진 수식은 원래 유한 차분 방정식을 점 x = jδx 및 t = (n + ½) δt의 주위에 테일러 전개하고 (아마도 더 쉽게) 제공하는 것과 같은 식입니다.

According to our rule-of-thumb the last two terms on the right side proportional to δt can be dropped because they involve higher order derivatives than what is in the first δt term on the right side, which leaves,

위의 경험칙에서 δt에 비례 우변의 마지막 두 절은 우변의 첫 번째 δt 항에 포함 된 것보다 고차 도함수를 포함하기 때문에 폐기합니다.

(11)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\left( \nu -\frac{{{c}^{2}}\delta t}{2} \right)\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}.

This is an alternative form for the truncated equation that retains only the lowest order (first) truncation errors and only those that contain the lowest even and odd derivatives with respect to each independent variable.

이것은 계산을 끊은 식의 대체 형식으로 최소 차수 (1 차)의 중단 오차와 각 독립 변수에 대해 최소의 짝수와 홀수 함수 (도함수)을 포함 것만을 보유하고 있습니다.

Equation 11 is nearly the same as the original Eq. 1, except for a modified diffusion coefficient. The significant thing here is that the diffusion coefficient can be negative. As long as the diffusion coefficient is positive solutions of Eq. 11 exhibit exponentially damped behavior, but with a negative coefficient solutions have an exponentially growing character, i.e., a computational instability! Thus, a further condition for computational stability is that the diffusion coefficient remains positive,

식 11는 변형 된 확산 계수를 제외하고는 원래의 식 1과 거의 동일합니다.  여기서 중요한 것은, 확산 계수는 마이너스가 될 가능성이있는 것입니다.  확산 계수가 양수로 한 식 11의 해는 기하 급수적으로 감쇠 거동을 나타내지 만 계수가 음수 솔루션은 기하 급수적으로 증가하는 특성을 보인다, 즉 계산의 불안정성이 생깁니다 .  따라서 계산 안정성을 구현하기위한 또 하나의 조건으로 확산 계수가 정의되는 것을 결정합니다.

(12)     \displaystyle \frac{{{c}^{2}}\delta t}{2}\le \nu

In this case the instability is a pure growing one without the oscillations in sign associated with the two earlier region-of-influence conditions. If instability is encountered, knowing whether it is exhibiting an oscillation in sign or not will identify it as either a region-of-influence violation or a negative diffusion coefficient. Having this knowledge makes it easier to find a remedy for the instability.

이 케이스의 불안정성은 전술의 영향 영역에 관한 두 가지 조건에 관련한 부호 반전을 수반하는 것이 아니라 단순히 증가하는 특성입니다.  불안정성이 보여진다 부호의 빈번한 반전을 수반 여부를 파악하여 영향 영역에 관한 조건 또는 음의 확산 계수에 관한 조건 중이 충족되지 않았는지 확인 할 수 있습니다.  이러한 정보를 파악할 수 있으면 불안정을 해소하는 방법을 쉽게 찾을 수 있습니다.

Application to Two-Dimensional Fluid Flow

A two-dimensional example (x,z) of water flowing under a laboratory scale sluice gate offers a test for examining a computational instability arising from non-linearity in the governing equations. The physical problem consists of water held behind a gate with an elevation of 0.9ft. Downstream (right) of the gate there is a water pool of depth 0.14 ft. Gravity is 32.2 ft/s2 in the negative z direction (down). At time t=0 the gate is raised up a distance of 0.125ft and water surges out into the pool. Figure 1 shows the resulting flow obtained with a Navier-Stokes solver [3] at t=0.35s. The solver used for this example has been optimized to automatically eliminate instabilities so none are apparent in this case, but it is possible to force the program to use non-optimum settings.

실험실 규모의 수문 아래를 통과하는 2 차원 (x, z)의 흐름의 예는 지배 방정식의 비선형 성으로 인한 계산 불안정성을 조사 테스트합니다.  이 물리 현상 문제는 0.9 피트 높이까지 물을 막아서있는 수문이 있습니다.  수문 하류 측 (오른쪽)의 수심은 0.14 피트입니다.  중력이 -z 방향 (아래쪽)에 32.2 피트 / s 2입니다.  시간 t = 0에 수문은 0.125 피트 상승하고 물이 하류로 흘러갑니다.  그림 1은 나비에 스톡스 솔버[3]을 이용하여 얻은 t = 0.35s의 흐름을 나타냅니다.  이 예에서 사용 된 솔버는 불안정성을 자동으로 제거하도록 최적화되어 있기 때문에이 경우에는 불안정성은 볼 수 없습니다.  그러나 프로그램에 최적화되지 않은 설정을 강제로 실행할 수 있습니다.

Computational stability issues

Figure 1 (left). Flow under a sluice gate. No unstable behavior is observed.
Figure 2 (right). Flow instability developing when computed with small time step and no viscosity.

To demonstrate some unstable behavior we first examine a heuristic analysis performed on the vertical velocity equation used in the simulation. Focus is on the effective diffusion coefficients for the z direction velocity w, while all other truncation errors are ignored,

불안정한 거동을 실례로 설명하기 위해 먼저 시뮬레이션에 사용 된 수직 속도 식에 대해 수행 한 휴리스틱 분석을 고찰합니다.  여기에서 z 방향 속도 w에 대한 효과적인 확산 계수에 초점을 맞추고 있으며, 다른 모든 중단 오차는 무시합니다.

(13)     \displaystyle \frac{\partial w}{\partial t}+u\frac{\partial w}{\partial x}+w\frac{\partial w}{\partial z}+\frac{\partial }{\partial z}\left( \frac{p}{\rho } \right)+g=\left( \nu +\frac{\alpha u\delta x}{2}-\frac{{{u}^{3}}\delta t}{2}-\frac{\delta {{x}^{2}}}{4}\frac{\partial u}{\partial x} \right)\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\left( \nu +\frac{\alpha w\delta z}{2}-\frac{{{w}^{2}}\delta t}{2}-\frac{\delta {{z}^{2}}}{2}\frac{\partial w}{\partial z} \right)\frac{{{\partial }^{2}}w}{\partial {{z}^{2}}}

The diffusion of w in the x and z directions are expressed by the two terms on the right side of Eq. 13, where ν is the fluid viscosity and α is a parameter that modifies the numerical approximation of the term describing the u advection of w, i.e., the second term on the left side of the above equation. When α=0 the finite-difference advection approximation is said to be centered about the location of w, but when α=1 an upstream or “donor cell” approximation is used.

x 및 z 방향의 w의 확산은 식 13의 우변의 두 항으로 표현되어 있습니다.  여기서, v는 유체 점성, α는 w의 u 이류를 나타내는 항 (식 13의 좌변의 제 2 항)의 수치 근사를 수정하는 매개 변수입니다.  α = 0 일 때, 이류의 유한 차분 근사 w의 위치를 중심으로 한 근사하지만, α = 1 일 때, 상류 측 또는 “도나세루」에 의한 근사를 사용합니다.

The first thing to notice is that if ν=0 and a centered difference approximation is also used (α=0) then the lowest order term in the two effective viscosity coefficients are proportional to δt and are negative. This clearly leads to unstable behavior, and is a well known property of the central difference approximation. Adding enough viscosity to keep the diffusion coefficient positive is also an established procedure to gain stability, but at the possible cost of introducing too much diffusion. The upstream difference option, α=1, is a reasonable compromise; provided the condition wδt<δx is maintained, the diffusion coefficients are positive (provided the δx2 and δz2 terms are small) and the simulation will be stable.

먼저 주의해야 할 점은 ν = 0이고 중심 차분 근사를 사용하는 경우 (α = 0), 2 개의 유효 점성 계수의 최소 차수의 항은 δt에 비례하고, 부가됩니다.  이것은 분명 불안정한 거동을 이끌 것으로, 중심 차분 근사의 잘 알려진 특성입니다.  확산 계수를 양수 유지하기 위해 충분한 점성을 추가 수법도 안정성을 얻는 데에서 확립 된 방법이지만, 확산이 커질 위험성도 있습니다.  상류 측에서 차분 옵션 α = 1은 합리적인 타협이다.  조건 wδt <δx이 충족되는 한, 확산 계수는 양이며 (δx 2 및 δz 2 항이 작은 경우) 시뮬레이션도 안정됩니다.

If the δx2 and δz2 terms in the diffusion coefficients are not small there is a possibility of unstable behavior. To demonstrate this we set the viscosity to zero and reduce the amount of upstream differencing by setting α=0.05. To keep the negative δt term less than the a term a very small time step δt=0.00025 is used. With these settings the resulting simulation is shown in Fig. 2. An instability in the z velocity has developed just upstream of the sluice gate, which is shown close up in Fig. 3 (where color indicates the z velocity magnitude).

확산 계수의 δx 2 및 δz 2 항이 작지 않은 경우 불안정한 거동이 발생할 수 있습니다.  이를 설명하기 위해 점성을 0으로 설정하고 상류의 차이 량을 α = 0.05로 줄입니다.  부정적인 δt 항이 a 항보다 작아 지도록 매우 작은 시간 단계 δt = 0.00025을 사용합니다.  이러한 설정에서 실행 된 시뮬레이션을 그림 2에 나타냅니다.  수문 상류 측에서 z 속도의 불안정성이 발생하고 있습니다.  그림 3은 그 확대도를 나타냅니다 (색상은 z 속도의 크기를 나타낸다).

This instability is a result of a negative x-direction diffusion coefficient, which is coming from the δx2 term. A negative value results from the fact that the flow upstream of the gate is compressing in the z direction, but expanding in the x direction, which means that the x derivative of u in the δx2 term is positive in this region resulting in a net negative diffusion coefficient.

이 불안정은 δx 2 항에 의하여 부정되었다 x 방향의 확산 계수에 기인합니다.  수문 상류의 흐름은 z 방향으로 압축하고 있습니다 만, x 방향으로 팽창하고 있기 때문에 음수입니다.  즉,이 영역에서는 δx 2 항의 u의 x 방향 도함수는 긍정적이고 순으로 부정적인 확산 계수입니다.

A check on this conclusion can be made by adding in a little viscosity ν=0.0093 to compensate for the negative δx2 term. Figure 4 shows that this change does, indeed, stabilize the flow.

이 결론을 확인하려면 부정적인 δx 2 항을 보정하기 위해 약간 점성을 추가합니다 (ν = 0.0093).  그림 4는이 작은 변화에 의해 흐름이 확실히 안정된 것을 알 수 있습니다.

This example demonstrates that truncation error terms arising from non-linear terms in the original equation influence the computational stability of the difference equation. This type of instability cannot be found by a von Neumann type Fourier analysis. Perhaps most important of all is that when troublesome truncation errors are found to exist this knowledge can be used to alter the finite difference equations to eliminate those errors.

이 예에서는 원래의 방정식의 비선형 항으로 인해 중단 오차 항은 차분 방정식의 계산 안정성에 영향을 미치는 것으로 나타했습니다.  이 유형의 불안정은 von Neumann 유형의 푸리에 분석에서 찾을 수 없습니다.  가장 중요한 것은 문제가 될 수있는 중단 오차가 존재하는 것으로 판명 될 때이 지식을 이용하여 유한 차분 방정식을 수정하여 이러한 오차를 제거 할 수 있습니다.

Totally unstable flow versus stable flow

Figure 3 (left). Close up of locally unstable flow caused by negative δx2 term. Color indicates z velocity.
Figure 4 (right). Same as Fig. 3 with a small amount of viscosity added to compensate for negative δx2 term.

Summary

To summarize, it has been shown that all the stability conditions associated with a linear finite-difference equation, Eq.2, can be identified using a heuristic truncation error approach. This approach not only identifies the instabilities, it also indicates what can be done to eliminate them. For instance, for a region-of-influence violation only a reduction in the time-step increment will solve the problem, but if there is a negative diffusion coefficient then adding more diffusion to compensate for the errors is one way to regain stability. Knowing the origin of a negative diffusion error may also suggest how the original finite-difference equation might be modified to avoid this problem.

이 책에서는 선형 유한 차분 방정식Eq.2에 관련된 모든 안정 조건을 중단 오차에 대한 경험적 접근에 의해 특정 할 수 있는지를 보여주었습니다.  이 방법은 불안정성을 특정 할 수있을 뿐만 아니라 그것을 제거하는 방법을 보여줍니다.  예를 들어, 영향 영역에 대한 조건이 충족되지 않을 경우 시간 단계를 줄일 수 밖에 없어 문제를 해결할 수 없지만, 음의 확산 계수가 존재하는 경우는 확산을 확대하고 오차를 보정하여 안정성을 되찾는 방법 도 있습니다.  음의 확산 오차의 원인을 아는 것은이 문제를 해결 할 수 있도록 원래의 유한 차분 방정식을 어떻게 해결 하는가하는 방법을 알려 줄 수 있습니다.

The most significant aspect of the heuristic approach is that it is not limited to linear equations with constant coefficients, as was shown in connection with the example of flow under a sluice gate. No special assumptions were necessary to form the approximating truncated equation. The goal was simply to reverse the procedure of writing a difference equation to approximate a partial differential equation, and instead to write a partial differential equation that approximates the difference equation. A simple rule-of-thumb was described for constructing the truncated equation. This approximating equation was then used to check for region-of-influence violations and for possible negative diffusion coefficients both features that lead to unstable solutions.

휴리스틱 접근법의 가장 중요한 특징은 상수 계수를 따른 선형 방정식에 한정되지 않는다는 점입니다.  이것은 수문 아래를 통과하는 흐름의 예에서 나타났습니다.  계산을 끊은 식의 근사 식을 세우는 데 특별한 가정이 필요하지 않았습니다.  편미분 방정식을 근사하는 차분 방정식을 설명하는 것이 아니라 차분 방정식을 근사하는 편미분 방정식을 기술한다는 단순히 역순를 할 목적이었습니다.  계산을 중단 한 식을 세우기위한 간단한 경험칙에 대해서도 설명했습니다.  이 근사 식을 사용하여 솔루션의 불안정으로 이어질 영향 영역에 대한 조건이 충족되어 있는지, 또한 음의 확산 계수가 존재하는지의 두 관점을 확인했습니다.

Several additional examples involving compressible and incompressible fluid dynamics simulations can be found in the original heuristic stability paper [1], which further show how the heuristic approach can be applied to real, practical, non-linear problems.

안정성에 관한 경험적 분석에 대해 기술 된 참고 문헌 [1]에는 압축 흐름 및 비 압축 흐름을 따른 몇 가지 유체 역학 시뮬레이션 예가 나와 있습니다.  또 경험적 접근을 실제 비선형 문제에 적용하는 방법에 대해 자세히 나와 있습니다.

References

  1. C.W. Hirt, Heuristic Stability Theory for Finite-Difference Equations, J. Comp. Phys., 2, 339 (1968).
  2. R. Courant, K.O. Friedricks and H. Lewy, Math. Ann. 100, 32 (1928).
  3. The commercial software package FLOW-3D from Flow Science, Inc., Santa Fe, NM, USA.

FLOW-3D Bibliography

FLOW-3D Bibliography

논문자료 | Bibliography

FLOW-3D 참고 문헌은 FLOW-3D를 사용하는 중에 도움이 될만한 기술적인 자료와 논문 들을 포함하고 있습니다. 본 자료는 FLOW-3D 소프트웨어를 사용하여 기술개발을 원활하게 할 수 있도록 지속적으로 보완하고 업데이트 되는 자료입니다.

제공데이터 목록에서 일부 다운로드 링크나 원문제공 서버의 서비스가 없어진 경우에는 해당 자료를 제공하는 측에서 변경하여 서비스가 더 이상 제공되지 않는 경우입니다. 안타깝지만 다른 검색방법이나 기관들을 통해 자료를 찾아보아야 합니다. 이 점 참고하여 주시기 바랍니다.

귀하께서 발표하거나 발행한 FLOW-3D 관련 논문이 목록에 없는 경우 발행물을 참조할 수 있도록 알려 주시기 바랍니다. 귀하의 연구가 많은 사람에게 도움이 될 것입니다.

주요 기술 자료

인공 박차 및 홈 암초 형성에서 자연 암초 유체 역학의 생체 모방

Emilee Wissmach, 플로리다 공과대학, 2023.

이 대학원 논문에서는 파도 감쇠 및 해안 보호에 있어 생체모방형 SAG(생체모방형 스퍼 앤 그루브) 수중 방파제 설계의 효율성을 탐구했습니다. FLOW-3D HYDRO는 파고 감소와 재료 비용을 위한 새로운 모듈 기반 설계를 분석하고 최적화하는 데 사용되었습니다. 인공 SAG 구조는 잠재적으로 고에너지 환경에서 해안선 보호 역할을 하는 동시에 취약한 산호초 생태계를 재건하는 데 도움이 될 수 있습니다.

FLOW-3D HYDRO는 FLOW-3D 학술 프로그램을 통해 제공되었습니다.

“전 세계 연안 해역에서 산호초 개체수가 급격히 감소하고 있습니다. 이러한 생태계를 잃으면 서식지와 생물 다양성이 손실될 뿐만 아니라 파도 감쇠 및 그에 따른 해안 보호도 손실됩니다. 진행 중인 프로젝트에서는 파괴된 산호초를 복구 및/또는 교체하려고 합니다. 암초 공 및 립 랩과 같은 인공 구조물을 사용하지만 건강한 자연 암초만큼 성능을 ​​발휘하는 것은 없습니다. 이 프로젝트는 자연 암초에서 흔히 발견되는 암초 능선 및 박차 및 홈(SAG) 구역을 모방한 규모 모듈을 만들어 사용했습니다. 이러한 모델은 인공 암초 설계에 대한 새로운 노력을 지원합니다. […] 암초 모듈의 3D 렌더링이 생성되어 유체 구조 상호 작용에 대한 정보를 계산하는 데 사용된 CFD 소프트웨어 패키지 FLOW-3D HYDRO 로 가져왔습니다.”

Biomimicry of natural reef hydrodynamics in an artificial spur and groove reef formation(Wissmach, 2023년에서 발췌 및 그림.)

일리노이 고속도로에서 눈 더미의 영향을 줄이기위한 생활 장벽 설계

John Petrie, et al. (2020) 일리노이 교통 센터 시리즈 번호 20-019, 연구 보고서 번호 FHWA-ICT-20-012.

  • Illinois Center for Transportation은 FLOW-3D를 사용하여 CFD 시뮬레이션을 수행하여 주 고속도로에서 눈 드리프트를 최소화하기 위해 구조적 눈 울타리의 대안 인 살아있는 눈 울타리 (LSF) 배치 지침을 개발했습니다.
  • 고속도로를 따라 제설 울타리를 설치하면 쟁기질, 화학 물질 및 도로 폐쇄의 필요성이 줄어들고 눈이 내리는 동안 도로 안전이 향상됩니다. LSF는 구조적 눈 울타리에 대한 저렴하고 오래 지속되는 대안입니다.
  • 구조적 눈 울타리의 설계 및 배치에 대한 고려 사항에는 울타리 높이, 다공성, 길이, 바닥 간격 및 우세한 풍향이 포함됩니다. 그러나 LSF의 자연스러운 발전은 높이 및 다공성과 같은 기능이 시간이 지남에 따라 변할 것임을 의미합니다.
Diagram. The fetch concept used to estimate snow transport/ Diagram. Schematic design of a living snow fence
Diagram. The fetch concept used to estimate snow transport/ Diagram. Schematic design of a living snow fence
다이어그램 : 울타리의 수치 시뮬레이션, 실제 모델 대 다공성 모델의 속도 크기 등고선

CFD 소프트웨어인 FLOW-3D를 사용하여 다공성 울타리 주변의 흐름에 대한 일련의 수치 시뮬레이션을 수행했습니다. 모델링 접근법은 불균일한 다공성을 가진 울타리 주변의 흐름에 대해 풍동에서 수집된 실험실 데이터를 사용하여 검증되었습니다. 검증 후, 수치 접근 방식을 사용하여 울타리 다공성에 대한 모델을 테스트하고 두 줄의 초목으로 구성된 울타리의 줄 간격 효과를 조사했습니다. 시뮬레이션은 평탄한 지형에 걸친 평균 풍속 및 울타리 다공성 범위에 초점을 맞추었고, 이러한 시뮬레이션의 결과는 임계 전단 속도를 사용하여 눈 퇴적 지역을 추정하는 데 사용되었습니다. 지형이 평평하다고 간주할 수 없는 사이트의 경우 울타리 구성이 다른 제방에 대해 시뮬레이션을 수행했습니다.

CFD 시뮬레이션은 울타리 특성의 함수로 눈 퇴적이 예상되는 지역의 길이에 대한 추정치를 제공합니다. 그 후 시뮬레이션 결과는 LSF에 대한 설계 지침을 개발하는 데 사용됩니다.”

연락처 : 02-2026-0455
이메일 : flow3d@stikorea.co.kr