setting

Culvert Outlet Scouring의 영향 매개변수 예측 및 최적화: FLOW-3D와 서로게이트 모델링을 활용한 연구


연구 배경

  • 문제 정의: 박스형 수로(culvert) 출구에서 발생하는 침식(scouring)은 구조물 설계에 중요한 영향을 미친다.
  • 목표: 침식 깊이와 위치를 예측하여 구조적 실패를 방지하고, 설계를 최적화하는 새로운 방법론을 제안한다.
  • 접근법: 수치 모델링(FLOW-3D)과 Box-Behnken 설계 기법을 이용한 서로게이트 모델링을 결합.

연구 방법

  1. FLOW-3D:
    • Reynolds 평균 Navier-Stokes 방정식을 기반으로 유체 흐름 시뮬레이션을 수행.
    • 침식 예측을 위해 RNG 난류 모델을 사용.
  2. Box-Behnken 설계:
    • 세 가지 주요 변수: 유량(Flow Discharge, QQQ), 수로 기울기(Slope, SSS), 토양 입자 크기(d50d_{50}d50​).
    • 총 15개 모델을 통해 변수와 침식 깊이 및 위치 간 상호작용 분석.
  3. 민감도 분석:
    • 각 변수의 변화가 결과(침식 깊이와 위치)에 미치는 영향을 정량화.
  4. 최적화:
    • 침식 깊이 및 위치를 최소화하거나 최대화하기 위한 설계 변수의 조합 도출.

주요 결과

  • 모델 성능:
    • 침식 깊이 예측 정확도: R2=0.931R^2 = 0.931R2=0.931
    • 침식 위치 예측 정확도: R2=0.969R^2 = 0.969R2=0.969
  • 민감도 분석:
    • 유량 증가: 침식 깊이와 위치에 선형적(또는 비선형적) 영향을 미침.
    • 기울기 증가: 일정한 비선형 패턴 관찰.
    • 토양 입자 크기 증가: 복잡하고 비선형적인 패턴 확인.
  • 최적 설계:
    • 침식 깊이 최소화: 유량과 토양 입자 크기를 낮게, 기울기를 높게 설정.
    • 침식 위치 최대화: 유량, 토양 입자 크기, 기울기의 조합을 조절.

결론

  • FLOW-3D와 서로게이트 모델링: 침식 예측과 최적화에 효과적인 도구로 확인.
  • 설계 최적화 가능성: 구조적 침식 문제를 예방하기 위해 설계 단계에서 주요 변수의 영향을 정밀히 평가.
  • 향후 연구 제안: 추가적인 변수 도입 및 데이터를 통한 모델 개선.

이 논문은 수치 해석과 통계적 설계 접근법을 결합하여 수로 설계 문제를 해결하는 새로운 방법론을 제시하며, 향후 관련 연구에 중요한 기초 자료를 제공할 수 있습니다.

Reference

  1. Abt SR, Ruf JF, Doehring FK (1985) Culvert slope efects on outlet scour. J Hydraul Eng 111(10):1363–1367. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:10(1363)
  2. Ahmad N, Mohammed TA, Melville BW, Ali FH, Yusuf B (2017) Modelling the efect of sediment coarseness on local scour at wide bridge piers. Pertanika J Sci Technol 25(1):191–200
  3. Amini A, Parto AA (2017) 3D numerical simulation of fow feld around twin piles. Acta Geophys 65(6):1243–1251. https://doi.org/10.1007/s11600-017-0094-x
  4. Amini A, Solaimani N (2018) The efects of uniform and nonuniform pile spacing variations on local scour at pile groups. Mar Georesour Geotechnol 36(7):861–866. https://doi.org/10.1080/1064119X.2017.1392658
  5. Bui DT, Shirzadi A, Amini A, Shahabi H, Al-Ansari N, Hamidi S, Ghazvinei PT et al (2020) A hybrid intelligence approach to enhance the prediction accuracy of local scour depth at complex bridge piers. Sustainability (switzerland). https://doi.org/10.3390/su12031063
  6. Chiew Y-M, Lim S-Y (1996) local scour by a deeply submerged horizontal circular jet. J Hydraul Eng 122(9):529–532. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:9(529)
  7. Dey S (2014) Bed-load transport. Fluv Hydrodyn Hydrodyn Sediment Transp Phenom. https://doi.org/10.1007/978-3-642-19062-9_5
  8. Elsebaie IH (2013) An experimental study of local scour around circular bridge pier in sand soil. Int J Civ Environ Eng IJCEE-IJENS 13(1):23–28
  9. Falconer RA (1991) Computational fluid dynamics. By M. B. ABBOTT and D. R. BASCO. Longman, 1989. 425 pp. J Fluid Mech 229:689–689. https://doi.org/10.1017/S0022112091213233
  10. Flow Science I (2012) FLOW-3D, version 12.0 user’s manual. In: I Flow Science (ed). FLOW-3D [Computer software]. Flow Science, Inc, Santa Fe. https://www.fow3d.com
  11. Galán Á, González J (2019) Efects of shape, inlet blockage and wing walls on local scour at the outlet of non-submerged culverts: undermining of the embankment. Environ Earth Sci 79(25):1–16. https://doi.org/10.1007/s12665-019-8749-3
  12. Günal M, Günal AY, Osman K (2019) Simulation of blockage efects on scouring downstream of box culverts under unsteady fow conditions. Int J Environ Sci Technol 16(9):5305–5310. https://doi.org/10.1007/s13762-019-02461-w
  13. Hariri-Ardebili MA, Seyed-Kolbadi SM, Noori M (2018) Response surface method for material uncertainty quantifcation of infrastructures. Shock Vib 2018:1–14. https://doi.org/10.1155/2018/1784203
  14. Hosseini R, Fazloula R, Saneie M, Amini A (2018) Bagged neural network for estimating the scour depth around pile groups. Int J River Basin Manag 16(4):401–412. https://doi.org/10.1080/15715124.2017.1372449
  15. Kincl M, Turk S, Vrečer F (2005) Application of experimental design methodology in development and optimization of drug release method. Int J Pharm 291(1):39–49. https://doi.org/10.1016/j.ijpharm.2004.07.041
  16. Klun M, Kryžanowski A, Schnabl S (2016) Application of response surface method in analysis of hydraulic structures. Acta Hydrotech 29(51):103–123
  17. Kocaman S (2014) Prediction of backwater profles due to bridges in a compound channel using CFD. Adv Mech Eng 6:905217–905217. https://doi.org/10.1155/2014/905217
  18. Mehnifard MA, Dalfardi S, Baghdadi H, Seirfar Z (2015) Simulation of local scour caused by submerged horizontal jets with Flow-3D
  19. numerical model. Desert 20(1):47–55 Najafzadeh M (2016) Neurofuzzy-based GMDH-PSO to predict maximum scour depth at equilibrium at culvert outlets. J Pipeline Syst Eng Pract 7(1):06015001
  20. Najafzadeh M, Kargar AR (2019) Gene-expression programming, evolutionary polynomial regression, and model tree to evaluate local scour depth at culvert outlets. J Pipeline Syst Eng Pract 10(3):04019013
  21. Nariman NA, Hussain RR, Msekh MA, Karampour P (2019) Prediction meta-models for the responses of a circular tunnel during earthquakes. Undergr Space 4(1):31–47. https://doi.org/10.1016/j.undsp.2018.06.003
  22. Othman Ahmed K, Amini A, Bahrami J, Kavianpour MR, Hawez DM (2021) Numerical modeling of depth and location of scour at culvert outlets under unsteady fow conditions. J Pipeline Syst Eng Pract 12(4):04021040
  23. Pasma SA, Daik R, Maskat M, Hassan O (2013) Application of boxbehnken design in optimization of glucose production from oil palm empty fruit bunch cellulose. Int J Polym Sci 2013:1–8. https://doi.org/10.1155/2013/104502
  24. Sorourian S (2015) Study of blockage efects on scouring pattern downstream of box culverts. (PhD), University of Technology Sydney, Retrieved from https://opus.lib.uts.edu.au/handle/10453/44198
  25. Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Telford, London
  26. Iranian Journal of Science and Technology, Transactions of Civil Engineering
  27. Taha N, El-Feky MM, El-Saiad AA, Fathy I (2020) Numerical investigation of scour characteristics downstream of blocked culverts. Alex Eng J 59:3503–3513
  28. Wang L, Melville BW, Guan D (2018) Efects of upstream weir slope on local scour at submerged weirs. J Hydraul Eng 144(3):04018002.
  29. Xiong W, Cai CS, Kong B, Kong X (2016) CFD simulations and analyses for bridge-scour development using a dynamic-mesh updating technique. J Comput Civ Eng 30(1):04014121.