
이 소개자료는 “Numerical Model for a Nineteenth-Century Hydrometric Module”논문의 소개자료임.
연구 목적
- 본 연구는 19세기에 건설된 수량 측정 모듈의 작동을 연구하고, 수치 모델을 통해 원래의 유량 조절 목표를 충족했는지 여부를 확인하는 것을 목적으로 함.
연구 방법:
모델링 설정
- FLOW-3D 전산 유체 역학(CFD) 소프트웨어를 사용하여 수량 측정 모듈의 수치 모델을 생성하였음.
- 19세기 수량 측정 모듈의 기하학적 형상 및 관련 유압 시스템을 모델에 반영하였음.
- 모듈의 동적 거동(과도 상태)을 재현하기 위한 시뮬레이션을 수행하였음.
모델 검증
- 실제 실험 측정값이 부족하기 때문에 문헌의 해석적 모델과 비교하여 수치 모델을 검증하였음.
- 모델이 수량 측정 모듈의 유량 조절 기능을 정확하게 예측하는지 평가하였음.
- 모델의 정확성을 확인하고 신뢰성을 확보하였음.
주요 결과:
흐름 특성 분석
- 수량 측정 모듈 내부의 흐름 속도, 수위 변화 등 흐름 특성을 FLOW-3D 모델을 통해 분석하였음.
- 모듈의 자동화 시스템 작동 시 유량 조절 과정을 시각적으로 제시하였을 것으로 예상됨.
- 설계 유량 조건에서 모듈의 유압적 성능을 평가하였을 것으로 예상됨.
구조물 영향 평가
- 수량 측정 모듈의 구조가 흐름 특성 및 유량 조절에 미치는 영향을 평가하였음.
- 19세기 자동화 시스템이 설정된 유량을 유지하는 능력을 분석하였음.
- 수치 모의실험 결과를 통해 역사적인 수량 측정 구조물의 작동 원리를 규명하였음.
결론 및 시사점:
- FLOW-3D를 이용한 수치 모델은 역사적인 수량 측정 모듈의 동적 거동을 성공적으로 재현하였음.
- 19세기 자동화 시스템이 요구되는 유량 제한 값을 정확하게 유지하며 작동했음을 확인하였음.
- 수치 모델은 수리 공학 분야의 역사적 연구를 위한 유용한 도구로 활용될 수 있을 것으로 기대됨.



레퍼런스:
- Ali, Z., P. G. Tucker, and S. Shahpar. 2017. “Optimal mesh topologygeneration for CFD.” Comput. Methods Appl. Mech. Eng. 317 (Apr):431–457. https://doi.org/10.1016/j.cma.2016.12.001.
- Andersson, A. G., P. Andreasson, and T. Staffan Lundström. 2013. “CFDmodelling and validation of free surface flow during spilling of reservoirin down-scale model.” Eng. Appl. Comput. Fluid Mech. 7 (1): 159–167.https://doi.org/10.1080/19942060.2013.11015461.
- Arvanaghi, H., and N. N. Oskuei. 2013. “Sharp-crested weir dischargecoefficient.” J. Civ. Eng. Urbanism 3 (3): 87–91.
- Aydin, I., A. B. Altan-Sakarya, and C. Sisman. 2011. “Discharge formulafor rectangular sharp-crested weirs.” Flow Meas. Instrum. 22 (2):144–151. https://doi.org/10.1016/j.flowmeasinst.2011.01.003.
- Aydin, M. C. 2016. “Investigation of a sill effect on rectangular side-weirflow by using CFD.” J. Irrig. Drain. Eng. 142 (2): 04015043. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000957.
- Babaali, H., A. Shamsai, and H. Vosoughifar. 2015. “Computational modeling of the hydraulic jump in the stilling basin with convergence wallsusing CFD codes.” Arabian J. Sci. Eng. 40 (2): 381–395. https://doi.org/10.1007/s13369-014-1466-z.
- Bhajantri, M. R., T. I. Eldho, and P. B. Deolalikar. 2006. “Hydrodynamicmodelling of flow over a spillway using a two-dimensional finitevolume-based numerical model.” Sadhana 31 (6): 743–754. https://doi.org/10.1007/BF02716893.
- Blasone, M., F. Dell’Anno, R. De Luca, O. Faella, O. Fiore, andA. Saggese. 2015. “Discharge time of a cylindrical leaking bucket.”Eur. J. Phys. 36 (3): 035017. https://doi.org/10.1088/0143-0807/36/3/035017.
- Franchini, M., and L. Lanza. 2013. “Leakages in pipes: GeneralizingTorricelli’s equation to deal with different elastic materials, diametersand orifice shape and dimensions.” Urban Water J. 11 (8): 678–695.https://doi.org/10.1080/1573062X.2013.868496.
- Hargreaves, D. M., H. P. Morvan, and N. G. Wright. 2007. “Validation ofthe volume of fluid method for free surface calculation: The broadcrested weir.” Eng. Appl. Comput. Fluid Mech. 1 (2): 136–146. https://doi.org/10.1080/19942060.2007.11015188.
- Kirchner, H., J. Oliver, and S. Vela. 2002. Aigua prohibida:Arqueologia hidràulica del feudalisme a la Cerdanya: El CanalReial de Puigcerdà. Bellaterra, Spain: Universitat Autònoma deBarcelona.
- Latorre, X. 1995. Història de l’aigua a Catalunya. L’abecedari S.L.Barcelona: Barcelona, Spain.
- Latorre, X. 2002. La Sèquia de Manresa. Girona, Spain: Fundaci ́o PereGarcía Fària.
- Lin, C. H., J. F. Yen, and C. T. Tsai. 2002. “Influence of sluice gate contraction coefficient on distinguishing condition.” J. Irrig. Drain. Eng.128 (4): 249–252. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(249).
- Namaee, M. R., M. Rostami, S. Jalaledini, and M. Habibi. 2014.“A 3D numerical simulation of flow over a broad-crested side weir.”In Advances in hydroinformatics, 511–523. Dordrecht, Netherlands:Springer.
- Namaee, M. R., and R. Shadpoorian. 2016. “Numerical modeling of flowover two side weirs.” Arabian J. Sci. Eng. 41 (4): 1495–1510. https://doi.org/10.1007/s13369-015-1961-x.
- Oliveras, J. 1986. La consolidaci ́o de la ciutat industrial: Manresa(1871-1900). Manresa, Spain: Caixa d’Estalvis de Manresa.
- Pandeyp, R., P. K. Mittalp, and P. M. K. Choudharyp. 2016. “Flow characteristics of sharp crested rectangular weir: A review.” Int. J. InnovateSci. Eng. Technol. 3 (3): 171–178.
- Sarkardeh, H., A. Reza Zarrati, E. Jabbari, and M. Marosi. 2014. “Numerical simulation and analysis of flow in a reservoir in presence of vortex.”Eng. Appl. Comput. Fluid Mech. 8 (4): 598–608. https://doi.org/10.1080/19942060.2014.11083310.
- Sarret, J. 1906. La Cequia de Manresa. Manresa, Spain: Caixa d’Estalvisde Manresa.
- Taghavi, M., and H. Ghodousi. 2015. “Simulation of flow suspended loadin weirs by using FLOW-3D model.” Civ. Eng. J. 1 (1): 37–49.
- Turalina, D., D. Yembergenova, and K. Alibayeva. 2015. “The experimental study of the features of water flowing through a sharp-crested weir inchannel.” In Vol. 92 of Proc., EPJ Web of Conf., 1–5. Les Ulis, France:EDP Sciences.
- Verstappen, R., and A. Veldman. 2003. “Symmetry-preserving discretization of turbulent flow.” J. Comput. Phys. 187 (1): 343–368. https://doi.org/10.1016/S0021-9991(03)00126-8.
- Versteeg, H. K. H. K., and W. W. Malalasekera. 2007. An introduction tocomputational fluid dynamics: The finite volume method. Harlow, UK:Pearson.
- White, F. M. 1999. Fluid mechanics. Boston: McGraw-Hill.
- Wu, S., and N. Rajaratnam. 2015. “Solutions to rectangular sluice gate flowproblems.” J. Irrig. Drain. Eng. 141 (12): 06015003. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000922.
- Zeng, J., L. Zhang, M. Ansar, E. Damisse, and J. A. González-Castro. 2017.“Applications of computational fluid dynamics to flow ratings at prototype spillways and weirs. I: Data generation and validation.” J. Irrig.Drain. Eng. 143 (1): 04016072. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001112.