본 소개 자료는 한국추진공학회 2017년도 춘계학술대회 논문집 에 게재된 논문 “Flow-3d를 이용한 표면장력 탱크용메시스크린모델링”의 소개 내용입니다.

1. 서론
- 우주비행체의 미소 중력 환경에서 추진제 관리가 필수적이며, 이를 위해 표면장력 탱크(Surface Tension Tank, STT)가 사용됨.
- STT 내 주요 구성 요소인 메시 스크린(Mesh Screen)은 추진제와 가압 기체를 분리하여 액상 추진제의 안정적인 배출을 돕는 핵심 장치임.
- 본 연구는 FLOW-3D를 이용하여 메시 스크린을 모델링하고, 기포점(bubble point) 시뮬레이션을 수행하여 수치 모델의 정확성을 평가하는 것을 목표로 함.
2. 연구 방법
FLOW-3D 기반 CFD 모델링
- VOF(Volume of Fluid) 기법을 사용하여 자유 수면을 추적.
- 거시적 다공성 매체 모델(Macroscopic Porous Media Model)을 적용하여 메시 스크린의 공극률, 모세관압, 항력 계수를 설정.
- 경계 조건 설정:
- 유입부: 초기 추진제(NTO) 유입 설정.
- 유출부: 배출구에서 자유 배출(Outflow) 조건 적용.
- 벽면: No-slip 조건 적용.
3. 연구 결과
기포점 측정 시뮬레이션
- 350 × 2600, 400 × 3000, 510 × 3600 DTW 메시 스크린 모델을 사용하여 기포점 측정을 수행.
- FLOW-3D 시뮬레이션 결과와 실험 결과 비교 시, 최대 오차율 1.6% 이내로 높은 신뢰도 확인.
- 스크린 모델의 차압은 초기 270 Pa에서 점진적으로 증가하여 약 630 Pa에 도달 시 배출 중단, 이는 예상된 기포점과 유사.
PMD(Propellant Management Device) 내 추진제 배출 해석
- 스크린을 포함한 STT 시스템의 추진제 배출 시뮬레이션 수행.
- 출구 스크린에서 기포점 도달 전까지 추진제 배출이 지속되며, 기포점 도달 후 배출이 중단됨을 확인.
- 베인(Vane) 구조를 통한 추진제의 균등 분포 확인, 표면장력 효과로 인해 추진제가 특정 경로를 따라 흐름.
4. 결론 및 제안
결론
- FLOW-3D를 이용한 메시 스크린 모델링이 실험 결과와 높은 신뢰도를 보이며, 표면장력 탱크 내 추진제 배출 특성을 효과적으로 분석할 수 있음.
- 기포점 특성을 정확히 반영하여 추진제 관리 장치(PMD)의 설계 최적화 가능성을 제시.
향후 연구 방향
- 추진제 종류 및 다양한 미소 중력 조건에서 추가 연구 필요.
- LES(Large Eddy Simulation) 모델을 적용하여 난류 효과 정밀 분석.
- 현장 데이터를 활용한 추가 검증 연구 수행.
5. 연구의 의의
본 연구는 FLOW-3D를 활용하여 표면장력 탱크용 메시 스크린의 모델링 및 추진제 배출 해석을 수행하였으며, 향후 우주비행체의 추진제 관리 시스템 설계 최적화에 기여할 수 있는 실질적인 데이터 및 분석 방법을 제공한다.

and mesh screen model based on macroscopic
porous media model in Flow-3d (right)


6. 참고 문헌
- David J. C and Maureen T. K, “Screen Channel Liquid Acquisition Devices for Cryogenic Propellants” NASA-TM-2005-213638, 2005.
- Hartwig, J., Mann, J. A. Jr., Darr, S. R., “Parametric Analysis of the Liquid Hydrogen and Nitrogen Bubble Point Pressure for Cryogenic Liquid Acquisition Devices”, Cryogenics, Vol. 63, 2014, pp. 25-36.
- Jurns, J. M., McQuillen, J. B., “Bubble Point Measurement with Liquid Methane of a Screen Capillary Liquid Acquisition Device”, NASA-TM-2009-215496, 2009.
- Jaekle, D. E. Jr., “Propellant Management Device: Conceptual Design and Analysis: Galleries”, AIAA 29th Joint Propulsion Conference, AIAA-97-2811, 1997.
- Jaekle, D. E. Jr., “Propellant Management Device: Conceptual Design and Analysis: Traps and Troughs”, AIAA 31st Joint Propulsion Conference, AIAA-95-2531, 1995.
- Yu, A., Ji, B., Zhuang, B. T., Hu, Q., Luo, X. W., Xu, H. Y., “Flow Analysis in a Vane-type Surface Tension Propellant Tank”, IOP Conference Series: Materials Science and Engineering, Vol. 52, No. 7, 2013, Article number: 072018.
- Chato, D. J., McQuillen, J. B., Motil, B. J., Chao, D. F., Zhang, N., “CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen”, World Academy of Science, Engineering and Technology, Vol. 3, 2009, pp. 144-149.
- McQuillen, J. B., Chao, D. F., Hall, N. R., Motil, B. J., Zhang, N., “CFD simulation of Flow in Capillary Flow Liquid Acquisition Device Channel”, World Academy of Science, Engineering and Technology, Vol. 6, 2012, pp. 640-646.
- Hartwig, J., Chato, D., McQuillen, J., “Screen Channel LAD Bubble Point Tests in Liquid Hydrogen”, International Journal of Hydrogen Energy, Vol. 39, No. 2, 2014, pp. 853-861.
- Fischer, A., Gerstmann, J., “Flow Resistance of Metallic Screens in Liquid, Gaseous and Cryogenic Flow”, 5th European Conference for Aeronautics and Space Sciences, Munich, Germany, 2013.
- Fries, N., Odic, K., Dreyer, M., “Wicking of Perfectly Wetting Liquids into a Metallic Mesh”, 2nd International Conference on Porous Media and its Applications in Science and Engineering, 2007.
- Seo, M. K., Kim, D. H., Seo, C. W., Lee, S. Y., Jang, S. P., Koo, J., “Experimental Study of Pressure Drop in Compressible Fluid through Porous Media”, Transactions of the Korean Society of Mechanical Engineers – B, Vol. 37, No. 8, pp. 759-765, 2013.
- Hartwig, J., Mann, J. A., “Bubble Point Pressures of Binary Methanol/Water Mixtures in Fine-Mesh Screens”, AlChE Journal, Vol. 60, No. 2, 2014, pp. 730-739.