Fig. 10 Transverse scour hole profles for six cases

본 소개 자료는 ‘Environmental Fluid Mechanics’에서 발행한 ‘Numerical simulation of local scour around the pier with and without airfoil collar (AFC) using FLOW-3D’ 논문을 기반으로 합니다.

Fig. 10 Transverse scour hole profles for six cases
Fig. 10 Transverse scour hole profles for six cases

1. 서론

  • 교각 주변의 국부 세굴(local scour)은 수리 구조물의 안전성에 중대한 영향을 미치는 요소이며, 교량 붕괴의 주요 원인 중 하나임.
  • 기존 연구에서는 다양한 세굴 저감 장치를 연구해 왔으며, 본 연구에서는 에어포일 컬러(Air-Foil Collar, AFC)의 효과를 평가하고자 함.
  • FLOW-3D를 이용하여 다양한 AFC 구성에서 세굴 깊이를 수치적으로 분석하고, 실험 결과와 비교하여 모델의 신뢰성을 검증함.

2. 연구 방법

FLOW-3D 기반 CFD 모델링

  • 난류 해석: Large Eddy Simulation (LES) 모델 적용.
  • 퇴적물 모델: van Rijn의 bed-load transport 모델 활용.
  • 격자 설정: 12.234백만 개의 격자로 구성된 nested mesh 사용.
  • 경계 조건:
    • 유입부: 일정한 유속(velocity inlet) 적용.
    • 유출부: 자유 배출(outflow) 조건 적용.
    • 벽면: No-slip 조건 적용.

3. 연구 결과

AFC 적용 유무에 따른 세굴 특성 비교

  • AFC가 없는 경우 최대 세굴 깊이: 6.33cm.
  • AFC가 적용된 경우 세굴 깊이 감소 효과:
    • dc1 (2b) 컬러 적용 시: 77.78% 감소.
    • dc1R (역방향 2b) 컬러 적용 시: 46% 감소.
    • dc2 (3b) 컬러 적용 시: 100% 감소 (세굴 없음).
    • dc1 (2b) 컬러를 하단부에서 y/2 높이에 적용 시: 11.12% 감소.
    • dc2 (3b) 컬러를 하단부에서 y/2 높이에 적용 시: 42.86% 감소.
  • 최대 세굴 깊이 및 세굴 형상 분석
    • AFC가 없는 경우, 세굴은 주로 교각 전면부에서 강하게 발생하며 후류(wake)에서 퇴적이 진행됨.
    • AFC 적용 시, 와류 강도가 감소하고 말굽 와류(horseshoe vortex) 및 후류 난류가 완화됨.
  • AFC의 위치 및 크기에 따른 효과 분석
    • dc2 (3b) 컬러를 교각 기초에 설치했을 때 세굴 방지가 가장 효과적.
    • dc1 (2b) 컬러의 경우 역방향(dc1R) 설치 시 세굴 감소 효과가 다소 감소.

4. 결론 및 제안

결론

  • AFC는 교각 주변 국부 세굴을 효과적으로 감소시킬 수 있는 구조적 솔루션임.
  • 3b 크기의 컬러(dc2)를 교각 기초에 설치하는 것이 가장 효과적인 세굴 방지 방법으로 확인됨.
  • LES 모델을 활용한 수치 시뮬레이션 결과가 실험 결과와 7% 이내의 오차를 보이며 높은 신뢰도를 가짐.

향후 연구 방향

  • 다양한 유속 및 침전 조건에서 추가 시뮬레이션 수행 필요.
  • 실제 현장 데이터를 기반으로 AFC의 장기적인 효과 검증.
  • AFC 형상 최적화를 위한 설계 연구 수행.

5. 연구의 의의

본 연구는 FLOW-3D를 활용하여 AFC의 적용 유무에 따른 교각 주변 국부 세굴 특성을 수치적으로 분석하고, 실험 데이터를 통해 모델 신뢰성을 검증하였다. 이를 통해 향후 교량 설계 시 AFC 적용을 고려한 세굴 방지 전략을 제안할 수 있는 실질적인 데이터를 제공한다.

Fig. 3 a Meshing around the geometry and b boundary conditions annotated
Fig. 3 a Meshing around the geometry and b boundary conditions annotated
Fig. 4 Scour hole profle from Melville and Raudkivi [16] and simulated results
Fig. 4 Scour hole profle from Melville and Raudkivi [16] and simulated results
Fig. 10 Transverse scour hole profles for six cases
Fig. 10 Transverse scour hole profles for six cases

6. 참고문헌

  1. Basu, D., Das, K., Green, S., Janetzke, R., and Stamatakos, J.: Numerical simulation of surface waves generated by subaerial landslide at Lituya Bay Alaska, J. Offshore Mech. Arct., 132, 041101, https://doi.org/10.1115/1.4001442, 2010.
  2. Braathen, A., Blikra, L. H., Berg, S. S., and Karlsen, F.: Rock- slope failures in Norway: type, geometry, deformation mecha- nisms and stability, Norsk Geol. Tidsskr., 84, 67–88, 2004.
  3. Bridge, T.: When mountains fall into the sea: https://www. hakaimagazine.com/, last access: September 2018.
  4. Chuanqi, S., Yi, A., Qiang, W., Qingquan, L., and Zhix- ian, C.: Numerical simulation of landslide-generated waves using a soil-water coupling smoothed particle hy- drodynamics model, Adv. Water Resour., 92, 130–141, https://doi.org/10.1016/j.advwatres.2016.04.002, 2016.
  5. Das, K., Janetzke, R., Basu, D., Green, S., and Stamatakos, J.: Numerical Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides Using RANS and SPH Models, 28th International Conference on Ocean, Off- shore and Arctic Engineering, Honolulu, USA, 5, 581–594, https://doi.org/10.1115/OMAE2009-79596, 2009.
  6. DGGS: DGGS Elevation portal – Alaska Division of Geologi- cal and Geophysical Surveys, https://elevation.alaska.gov/#65. 14611:-155.74219:4, last access 24 March 2020.
  7. Evers, F. M., Heller, V., Fuchs, H., Hager, W. H., and Boes, R. M.: Landslide generated impulse waves in reservoirs – Ba- sics and computation, VAW Communications, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland, 254 pp., 2019.
  8. Flow Science Inc.: Flow-3D®, Version 12.0, User’s Manual, https:// www.flow3d.com (last access: 31 January 2020), Santa Fe, USA, 2018.
  9. Franco, A.: Lituya Bay 1958 Tsunami – pre-event bathymetry reconstruction and 3D-numerical mod- elling utilizing the CFD software Flow-3D, Zenodo, https://doi.org/10.5281/zenodo.3831448, 2020.
  10. Fritz, H. M., Hager, W. H., and Minor, H. E.: Lituya Bay case: Rockslide impact and wave run-up, Sci. Tsunami Hazards, 19, 3–22, 2001.
  11. Fritz, H. M., Mohammed, F., and Yoo, J.: Lituya Bay landslide im- pact generated mega-tsunami 50th anniversary, Pure Appl. Geo- phys., 166, 153–175, https://doi.org/10.1007/s00024-008-0435- 4, 2009.
  12. Furseth, A.: Dommedagsfjellet – Tafjord 1934, Gyldendal Norsk Forlag A/S, Oslo, Norway, 1958.
  13. Gauthier, D., Anderson, S. A., Fritz, H. M., and Giachetti, T.: Karrat Fjord (Greenland) Tsunamigenic landslide of 17 June 2017: initial 3D observations, Landslides, 15, 327-332, https://doi.org/10.1007/s10346-017-0926-4, 2017.
  14. González-Vida, J. M., Macías, J., Castro, M. J., Sánchez-Linares, C., de la Asunción, M., Ortega-Acosta, S., and Arcas, D.: The Lituya Bay landslide-generated mega-tsunami- numerical sim- ulation and sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 369-388, https://doi.org/10.5194/nhess-19-369-2019, 2019.
  15. Haeussler, P. J., Gulick, S. P. S., McCall, N., Walton, M., Reece, R., Larsen, C., Shugar, D. H., Geertsema, M., Venditti, J. G., and Labay, K.: Submarine deposition of a subaerial landslide in Taan Fjord, Alaska, J. Geophys. Res.-Earth, 123, 2443-2463, https://doi.org/10.1029/2018JF004608, 2018.
  16. Harbitz, C., Pedersen, G., and Gjevik, B.: Numerical simulations of large water waves due to landslides, J. Hydraul. Eng. 119, 1325- 1342, 1993.
  17. Hall Jr., J. V. and Watts, G. M.: Laboratory investigation of the ver- tical rise of solitary waves on impermeable slopes, U.S. Army Corps of Engineers, Beach Erosion Board, 173-189, 1953.
  18. Harlow, F. H. and Welch, J. E.: Numerical Calculation of Time- Dependent Viscous Incompressible Flow, Phys. Fluids, 8, 2182- 2189, https://doi.org/10.1063/1.1761178, 1965.
  19. Heller, V., Hager, W. H., and Minor, H.-E.: Landslide generated impulse waves in reservoirs Basics and computation, VAW Communications, 211, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland, 211 pp., 2009.
  20. Heller, V. and Hager, W. H.: Impulse product parameter in landslide generated impulse waves, J. Waterw. Port Coast., 136, 145-155, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037, 2010. Hinze, J. O.: Turbulence, McGraw-Hill, New York, USA, 1975. Hirt, C.W. and Nichols, B. D.: Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 39, 201- 225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981.
  21. Hirt, C.W. and Sicilian, J.M.: A Porosity Technique for the Def- inition of Obstacles in Rectangular Cell Meshes, Proceedings of the Fourth International Conference on Ship Hydrodynamics, National Academy of Sciences. Washington, D.C., USA, 25-27 September 1985, 1-19, 1985.
  22. Holmsen, G.: De siste bergskred i Tafjord og Loen, Norge, Svensk geografisk Arbok 1936, Lunds Universitet, Geografiska Institu- tionen Meddelande, 124, 171-190, 1936.
  23. Huber, A. and Hager, W. H.: Forecasting impulse waves in reser- voirs, Dix-neuvième Congrès des Grands Barrages C31, Flo- rence, Italy, Commission International des Grands Barrages, Paris, France, 993-1005, 1997.
  24. Kamphuis, J. W. and Bowering, R. J.: Impulse waves generated by landslides, Coast. Eng., 35, 575-588, https://doi.org/10.9753/icce.v12.35, 1970.
  25. Körner H. J.: Reichweite und Geschwindigkeit von Bergstürzen und Fliessschneelawinen, Rock Mech., 8, 225-256, 1976.
  26. Li, G., Chen, G., Li, P., and Jing, H.: Efficient and Accurate 3-D Numerical Modelling of Landslide Tsunami, Water, 11, 2033, https://doi.org/10.3390/w11102033, 2019.
  27. Mader, C. L.: Modelling the 1958 Lituya Bay mega-tsunami, Sci. Tsunami Hazards, 17, 57-67, 2001.
  28. Mader C. L and Gittings M. L.: Modelling the 1958 Lituya Bay mega-tsunami II, Sci. Tsunami Hazards, 20, 241-250, 2002. Mao J., Zhao L., Liu X., Cheng J., and Avital E.: A three-phases model for the simulation of landslide-
  29. generated waves using the improved conservative level set method, Comput. Fluids, 159, 243-253, ISSN: 0045-7930, https://doi.org/10.1016/j.compfluid.2017.10.007, 2017.
  30. Miller, D.: Giant Waves in Lituya Bay, Alaska: A Timely Account of the Nature and Possible Causes of Certain Giant Waves, with Eyewitness Reports of Their Destructive Capacity, professional paper, US Government Printing Office, Washington, D.C., USA, 49-85, 1960.
  31. Noda, E.: Water waves generated by landslides, J. Waterway Div- ASCE., 96, 835-855, 1970.
  32. Pastor, M.. Herreros, I., Fernndez Merodo, J. A., Mira, P., Haddad, B., Quecedo, M., González, E., Alvarez- Cedrón, C., and Drempetic, V.: Modelling of fast catas- trophic landslides and impulse waves induced by them in fjords, lakes and reservoirs, Eng. Geol., 109, 124-134, https://doi.org/10.1016/j.enggeo.2008.10.006, 2008.
  33. Paronuzzi, P. and Bolla, A.: The prehistoric Vajont rockslide: an update geological model, Geomorphology, 169-170, 165-191, https://doi.org/10.1016/j.geomorph. 2012.04.021, 2012.
  34. Pararas-Carayannis, G.: Analysis of mechanism of tsunami genera- tion in Lituya Bay, Sci. Tsunami Hazards, 17, 193-206, 1999. Quecedo, M., Pastor, M., and Herreros, M.: Numerical modelling of impulse wave generated by fast landslides, Int. J. Numer. Meth. Eng., 59, 1633-1656, https://doi.org/10.1002/nme.934, 2004. Rady, R. M. A. E.: 2D-3D Modeling of Flow Over Sharp-Crested Weirs, J. Appl. Sci. Res., 7, 2495-2505, 2011.
  35. Slingerland, R. L. and Voight, B.: Occurrences, properties, and predictive models of landslide-generated water waves, Devel- opments in Geotechnical Engineering 14B, Rockslides and avalanches 2, Engineering Sites, Elsevier Scientific Publishing, Amsterdam, the Netherlands, 317-397, 1979.
  36. Schwaiger, H. F. and Higman, B.: Lagrangian hydrocode simulations of the 1958 Lituya Bay tsunamigenic rockslide, Geochem. Geophys. Geosyst., 8, Q07006, https://doi.org/10.1029/2007GC001584, 2007.
  37. Schwer L. E.: Is your mesh refined enough? Estimating Discretiza- tion Error using GCI, in 7th German LS-DYNA Forum, Bam- berg, Germany, 2008.
  38. Sepúlveda, S. A., A. Serey, M. Lara, A. Pavez, and Sepúlveda, S. A., Serey, A., Lara, M., Pavez, A., Rebolledo, S.: Landslides in- duced by the April 2007 Aysén Fjord earthquake, Chilean Patag- onia, Landslides, 7, 483-492, https://doi.org/10.1007/s10346- 010-0203-2, 2010.
  39. Sharpe, C.: Landslides and Related Phenomena, Columbia Univ. Press, New York, USA, 1938.
  40. Synolakis, C.: The runup of solitary waves, J. Fluid. Mech., 185, 523-545, https://doi.org/10.1017/S002211208700329X, 1987. Tocher, D. and Miller D. J.: Field observations on effects of Alaska earthquake of 10 July, 1958, Science, 129, 3346, 394-395, https://doi.org/10.1126/science.129.3346.394, 1959.
  41. Tognacca, C.: Beitrag zur Untersuchung der Entstehungsmechanis- men von Murgangen, VAW communications, 164, Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Zurich, Switzerland, 1999.
  42. US Coast and Geodetic Survey: Survey id: H04608: NOS Hy- drographic Survey, 1926-12-31, available at: https://data.world/us-noaa-gov/f6786b28-ea06-4c9a-ac30-53cb5356650c (last ac- cess: 28 September 2018), 1926.
  43. US Coast and Geodetic Survey: Survey id: H08492: NOS Hydrographic Survey, Lituya Bay, Alaska, 1959- 08-27, available at: https://data.world/us-noaa-9401821a-28f5-4846-88db-43e702a5b12b (last access: 28 September 2018), 1959.
  44. U.S. Coast and Geodetic Survey: Chart 8505, Lituya Bay, Washington D.C., USA, 1942.
  45. U.S. Coast and Geodetic Survey: Chart 8505, Lituya Bay, Washington D.C., USA, 1969.
  46. U.S. Coast and Geodetic Survey: Chart 16762, Lituya Bay, Washington D.C., USA, 1990.
  47. Vanneste, D.: Experimental and numerical study of wave-induced porous flow in rubble-mound breakwaters, Ph.D. thesis, Gent University, Gent, Belgium, 2012.
  48. Varnes, D.: Landslide type and Processes, In Landslides and Engineering Practice, H R B Special Rep., 29, 22–47, National Research Council (US), Washington D.C., USA, 1958.
  49. Vasquez, J. A.: Modelling the generation and propagation of landslide-generated landslide, CSCE SCGC, Leadership in Sustainable Infrastructure, Annual Conference, May 31–June 3 2017, Vancouver, Canada, 2017.
  50. Yakhot, V. and Smith, L. M.: The Renormalization Group, the eExpansion and Derivation of Turbulence Models, J. Sci. Comput., 7, 35–61, https://doi.org/10.1093/gji/ggv026, 1992.
  51. Wang, J., Ward, S. N., and Xiao, L.: Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chehalis Lake, Canada, Geophys. J. Int., 201, 372–376, https://doi.org/10.1093/gji/ggv026, 2015.
  52. Ward, S. N. and Day, S.: The 1958 Lituya bay landslide and tsunami – A tsunami ball approach, J. Earthq. Tsunami, 4, 285–319, https://doi.org/10.1142/S1793431110000893, 2010.
  53. Weiss, R. and Wuennemann, K.: Understanding tsunami by landslides as the next challenge for hazard, risk and mitigation: Insight from multi-material hydrocode modeling, American Geophysical Union, Fall Meeting 2007, San Francisco, CA, USA, S51C-06, 2007.
  54. Weiss, R., Fritz, H. M., and Wünnemann, K.: Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century, Geophys. Res. Lett., 36, L09602, https://doi.org/10.1029/2009GL037814, 2009.
  55. Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J.: The MAC Method: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid Flow Problems Involving Freesurfaces, Los Alamos Scientific Laboratory report LA-3425, Los Alamos, NM, USA, 1966.
  56. Wiegel, R. L.: Oceanographical Engineering, Prentice Hall, Englewood Cliffs, USA, 1964.
  57. Xenakis, A. M., Lind, S. J., Stansby, P. K., and Rogers, B. D.: Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment, P. R. Soc. A, 473, 1–18, https://doi.org/10.1098/rspa.2016.0674, 20