본 소개 자료는 ‘Environmental Fluid Mechanics’에서 발행한 ‘Numerical simulation of local scour around the pier with and without airfoil collar (AFC) using FLOW-3D’ 논문을 기반으로 합니다.

1. 서론
- 교각 주변의 국부 세굴(local scour)은 수리 구조물의 안전성에 중대한 영향을 미치는 요소이며, 교량 붕괴의 주요 원인 중 하나임.
- 기존 연구에서는 다양한 세굴 저감 장치를 연구해 왔으며, 본 연구에서는 에어포일 컬러(Air-Foil Collar, AFC)의 효과를 평가하고자 함.
- FLOW-3D를 이용하여 다양한 AFC 구성에서 세굴 깊이를 수치적으로 분석하고, 실험 결과와 비교하여 모델의 신뢰성을 검증함.
2. 연구 방법
FLOW-3D 기반 CFD 모델링
- 난류 해석: Large Eddy Simulation (LES) 모델 적용.
- 퇴적물 모델: van Rijn의 bed-load transport 모델 활용.
- 격자 설정: 12.234백만 개의 격자로 구성된 nested mesh 사용.
- 경계 조건:
- 유입부: 일정한 유속(velocity inlet) 적용.
- 유출부: 자유 배출(outflow) 조건 적용.
- 벽면: No-slip 조건 적용.
3. 연구 결과
AFC 적용 유무에 따른 세굴 특성 비교
- AFC가 없는 경우 최대 세굴 깊이: 6.33cm.
- AFC가 적용된 경우 세굴 깊이 감소 효과:
- dc1 (2b) 컬러 적용 시: 77.78% 감소.
- dc1R (역방향 2b) 컬러 적용 시: 46% 감소.
- dc2 (3b) 컬러 적용 시: 100% 감소 (세굴 없음).
- dc1 (2b) 컬러를 하단부에서 y/2 높이에 적용 시: 11.12% 감소.
- dc2 (3b) 컬러를 하단부에서 y/2 높이에 적용 시: 42.86% 감소.
- 최대 세굴 깊이 및 세굴 형상 분석
- AFC가 없는 경우, 세굴은 주로 교각 전면부에서 강하게 발생하며 후류(wake)에서 퇴적이 진행됨.
- AFC 적용 시, 와류 강도가 감소하고 말굽 와류(horseshoe vortex) 및 후류 난류가 완화됨.
- AFC의 위치 및 크기에 따른 효과 분석
- dc2 (3b) 컬러를 교각 기초에 설치했을 때 세굴 방지가 가장 효과적.
- dc1 (2b) 컬러의 경우 역방향(dc1R) 설치 시 세굴 감소 효과가 다소 감소.
4. 결론 및 제안
결론
- AFC는 교각 주변 국부 세굴을 효과적으로 감소시킬 수 있는 구조적 솔루션임.
- 3b 크기의 컬러(dc2)를 교각 기초에 설치하는 것이 가장 효과적인 세굴 방지 방법으로 확인됨.
- LES 모델을 활용한 수치 시뮬레이션 결과가 실험 결과와 7% 이내의 오차를 보이며 높은 신뢰도를 가짐.
향후 연구 방향
- 다양한 유속 및 침전 조건에서 추가 시뮬레이션 수행 필요.
- 실제 현장 데이터를 기반으로 AFC의 장기적인 효과 검증.
- AFC 형상 최적화를 위한 설계 연구 수행.
5. 연구의 의의
본 연구는 FLOW-3D를 활용하여 AFC의 적용 유무에 따른 교각 주변 국부 세굴 특성을 수치적으로 분석하고, 실험 데이터를 통해 모델 신뢰성을 검증하였다. 이를 통해 향후 교량 설계 시 AFC 적용을 고려한 세굴 방지 전략을 제안할 수 있는 실질적인 데이터를 제공한다.

![Fig. 4 Scour hole profle from Melville and Raudkivi [16] and simulated results](https://flow3d.co.kr/wp-content/uploads/image-452-png.webp)

6. 참고문헌
- Basu, D., Das, K., Green, S., Janetzke, R., and Stamatakos, J.: Numerical simulation of surface waves generated by subaerial landslide at Lituya Bay Alaska, J. Offshore Mech. Arct., 132, 041101, https://doi.org/10.1115/1.4001442, 2010.
- Braathen, A., Blikra, L. H., Berg, S. S., and Karlsen, F.: Rock- slope failures in Norway: type, geometry, deformation mecha- nisms and stability, Norsk Geol. Tidsskr., 84, 67–88, 2004.
- Bridge, T.: When mountains fall into the sea: https://www. hakaimagazine.com/, last access: September 2018.
- Chuanqi, S., Yi, A., Qiang, W., Qingquan, L., and Zhix- ian, C.: Numerical simulation of landslide-generated waves using a soil-water coupling smoothed particle hy- drodynamics model, Adv. Water Resour., 92, 130–141, https://doi.org/10.1016/j.advwatres.2016.04.002, 2016.
- Das, K., Janetzke, R., Basu, D., Green, S., and Stamatakos, J.: Numerical Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides Using RANS and SPH Models, 28th International Conference on Ocean, Off- shore and Arctic Engineering, Honolulu, USA, 5, 581–594, https://doi.org/10.1115/OMAE2009-79596, 2009.
- DGGS: DGGS Elevation portal – Alaska Division of Geologi- cal and Geophysical Surveys, https://elevation.alaska.gov/#65. 14611:-155.74219:4, last access 24 March 2020.
- Evers, F. M., Heller, V., Fuchs, H., Hager, W. H., and Boes, R. M.: Landslide generated impulse waves in reservoirs – Ba- sics and computation, VAW Communications, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland, 254 pp., 2019.
- Flow Science Inc.: Flow-3D®, Version 12.0, User’s Manual, https:// www.flow3d.com (last access: 31 January 2020), Santa Fe, USA, 2018.
- Franco, A.: Lituya Bay 1958 Tsunami – pre-event bathymetry reconstruction and 3D-numerical mod- elling utilizing the CFD software Flow-3D, Zenodo, https://doi.org/10.5281/zenodo.3831448, 2020.
- Fritz, H. M., Hager, W. H., and Minor, H. E.: Lituya Bay case: Rockslide impact and wave run-up, Sci. Tsunami Hazards, 19, 3–22, 2001.
- Fritz, H. M., Mohammed, F., and Yoo, J.: Lituya Bay landslide im- pact generated mega-tsunami 50th anniversary, Pure Appl. Geo- phys., 166, 153–175, https://doi.org/10.1007/s00024-008-0435- 4, 2009.
- Furseth, A.: Dommedagsfjellet – Tafjord 1934, Gyldendal Norsk Forlag A/S, Oslo, Norway, 1958.
- Gauthier, D., Anderson, S. A., Fritz, H. M., and Giachetti, T.: Karrat Fjord (Greenland) Tsunamigenic landslide of 17 June 2017: initial 3D observations, Landslides, 15, 327-332, https://doi.org/10.1007/s10346-017-0926-4, 2017.
- González-Vida, J. M., Macías, J., Castro, M. J., Sánchez-Linares, C., de la Asunción, M., Ortega-Acosta, S., and Arcas, D.: The Lituya Bay landslide-generated mega-tsunami- numerical sim- ulation and sensitivity analysis, Nat. Hazards Earth Syst. Sci., 19, 369-388, https://doi.org/10.5194/nhess-19-369-2019, 2019.
- Haeussler, P. J., Gulick, S. P. S., McCall, N., Walton, M., Reece, R., Larsen, C., Shugar, D. H., Geertsema, M., Venditti, J. G., and Labay, K.: Submarine deposition of a subaerial landslide in Taan Fjord, Alaska, J. Geophys. Res.-Earth, 123, 2443-2463, https://doi.org/10.1029/2018JF004608, 2018.
- Harbitz, C., Pedersen, G., and Gjevik, B.: Numerical simulations of large water waves due to landslides, J. Hydraul. Eng. 119, 1325- 1342, 1993.
- Hall Jr., J. V. and Watts, G. M.: Laboratory investigation of the ver- tical rise of solitary waves on impermeable slopes, U.S. Army Corps of Engineers, Beach Erosion Board, 173-189, 1953.
- Harlow, F. H. and Welch, J. E.: Numerical Calculation of Time- Dependent Viscous Incompressible Flow, Phys. Fluids, 8, 2182- 2189, https://doi.org/10.1063/1.1761178, 1965.
- Heller, V., Hager, W. H., and Minor, H.-E.: Landslide generated impulse waves in reservoirs Basics and computation, VAW Communications, 211, Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, Zurich, Switzerland, 211 pp., 2009.
- Heller, V. and Hager, W. H.: Impulse product parameter in landslide generated impulse waves, J. Waterw. Port Coast., 136, 145-155, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037, 2010. Hinze, J. O.: Turbulence, McGraw-Hill, New York, USA, 1975. Hirt, C.W. and Nichols, B. D.: Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 39, 201- 225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981.
- Hirt, C.W. and Sicilian, J.M.: A Porosity Technique for the Def- inition of Obstacles in Rectangular Cell Meshes, Proceedings of the Fourth International Conference on Ship Hydrodynamics, National Academy of Sciences. Washington, D.C., USA, 25-27 September 1985, 1-19, 1985.
- Holmsen, G.: De siste bergskred i Tafjord og Loen, Norge, Svensk geografisk Arbok 1936, Lunds Universitet, Geografiska Institu- tionen Meddelande, 124, 171-190, 1936.
- Huber, A. and Hager, W. H.: Forecasting impulse waves in reser- voirs, Dix-neuvième Congrès des Grands Barrages C31, Flo- rence, Italy, Commission International des Grands Barrages, Paris, France, 993-1005, 1997.
- Kamphuis, J. W. and Bowering, R. J.: Impulse waves generated by landslides, Coast. Eng., 35, 575-588, https://doi.org/10.9753/icce.v12.35, 1970.
- Körner H. J.: Reichweite und Geschwindigkeit von Bergstürzen und Fliessschneelawinen, Rock Mech., 8, 225-256, 1976.
- Li, G., Chen, G., Li, P., and Jing, H.: Efficient and Accurate 3-D Numerical Modelling of Landslide Tsunami, Water, 11, 2033, https://doi.org/10.3390/w11102033, 2019.
- Mader, C. L.: Modelling the 1958 Lituya Bay mega-tsunami, Sci. Tsunami Hazards, 17, 57-67, 2001.
- Mader C. L and Gittings M. L.: Modelling the 1958 Lituya Bay mega-tsunami II, Sci. Tsunami Hazards, 20, 241-250, 2002. Mao J., Zhao L., Liu X., Cheng J., and Avital E.: A three-phases model for the simulation of landslide-
- generated waves using the improved conservative level set method, Comput. Fluids, 159, 243-253, ISSN: 0045-7930, https://doi.org/10.1016/j.compfluid.2017.10.007, 2017.
- Miller, D.: Giant Waves in Lituya Bay, Alaska: A Timely Account of the Nature and Possible Causes of Certain Giant Waves, with Eyewitness Reports of Their Destructive Capacity, professional paper, US Government Printing Office, Washington, D.C., USA, 49-85, 1960.
- Noda, E.: Water waves generated by landslides, J. Waterway Div- ASCE., 96, 835-855, 1970.
- Pastor, M.. Herreros, I., Fernndez Merodo, J. A., Mira, P., Haddad, B., Quecedo, M., González, E., Alvarez- Cedrón, C., and Drempetic, V.: Modelling of fast catas- trophic landslides and impulse waves induced by them in fjords, lakes and reservoirs, Eng. Geol., 109, 124-134, https://doi.org/10.1016/j.enggeo.2008.10.006, 2008.
- Paronuzzi, P. and Bolla, A.: The prehistoric Vajont rockslide: an update geological model, Geomorphology, 169-170, 165-191, https://doi.org/10.1016/j.geomorph. 2012.04.021, 2012.
- Pararas-Carayannis, G.: Analysis of mechanism of tsunami genera- tion in Lituya Bay, Sci. Tsunami Hazards, 17, 193-206, 1999. Quecedo, M., Pastor, M., and Herreros, M.: Numerical modelling of impulse wave generated by fast landslides, Int. J. Numer. Meth. Eng., 59, 1633-1656, https://doi.org/10.1002/nme.934, 2004. Rady, R. M. A. E.: 2D-3D Modeling of Flow Over Sharp-Crested Weirs, J. Appl. Sci. Res., 7, 2495-2505, 2011.
- Slingerland, R. L. and Voight, B.: Occurrences, properties, and predictive models of landslide-generated water waves, Devel- opments in Geotechnical Engineering 14B, Rockslides and avalanches 2, Engineering Sites, Elsevier Scientific Publishing, Amsterdam, the Netherlands, 317-397, 1979.
- Schwaiger, H. F. and Higman, B.: Lagrangian hydrocode simulations of the 1958 Lituya Bay tsunamigenic rockslide, Geochem. Geophys. Geosyst., 8, Q07006, https://doi.org/10.1029/2007GC001584, 2007.
- Schwer L. E.: Is your mesh refined enough? Estimating Discretiza- tion Error using GCI, in 7th German LS-DYNA Forum, Bam- berg, Germany, 2008.
- Sepúlveda, S. A., A. Serey, M. Lara, A. Pavez, and Sepúlveda, S. A., Serey, A., Lara, M., Pavez, A., Rebolledo, S.: Landslides in- duced by the April 2007 Aysén Fjord earthquake, Chilean Patag- onia, Landslides, 7, 483-492, https://doi.org/10.1007/s10346- 010-0203-2, 2010.
- Sharpe, C.: Landslides and Related Phenomena, Columbia Univ. Press, New York, USA, 1938.
- Synolakis, C.: The runup of solitary waves, J. Fluid. Mech., 185, 523-545, https://doi.org/10.1017/S002211208700329X, 1987. Tocher, D. and Miller D. J.: Field observations on effects of Alaska earthquake of 10 July, 1958, Science, 129, 3346, 394-395, https://doi.org/10.1126/science.129.3346.394, 1959.
- Tognacca, C.: Beitrag zur Untersuchung der Entstehungsmechanis- men von Murgangen, VAW communications, 164, Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Zurich, Switzerland, 1999.
- US Coast and Geodetic Survey: Survey id: H04608: NOS Hy- drographic Survey, 1926-12-31, available at: https://data.world/us-noaa-gov/f6786b28-ea06-4c9a-ac30-53cb5356650c (last ac- cess: 28 September 2018), 1926.
- US Coast and Geodetic Survey: Survey id: H08492: NOS Hydrographic Survey, Lituya Bay, Alaska, 1959- 08-27, available at: https://data.world/us-noaa-9401821a-28f5-4846-88db-43e702a5b12b (last access: 28 September 2018), 1959.
- U.S. Coast and Geodetic Survey: Chart 8505, Lituya Bay, Washington D.C., USA, 1942.
- U.S. Coast and Geodetic Survey: Chart 8505, Lituya Bay, Washington D.C., USA, 1969.
- U.S. Coast and Geodetic Survey: Chart 16762, Lituya Bay, Washington D.C., USA, 1990.
- Vanneste, D.: Experimental and numerical study of wave-induced porous flow in rubble-mound breakwaters, Ph.D. thesis, Gent University, Gent, Belgium, 2012.
- Varnes, D.: Landslide type and Processes, In Landslides and Engineering Practice, H R B Special Rep., 29, 22–47, National Research Council (US), Washington D.C., USA, 1958.
- Vasquez, J. A.: Modelling the generation and propagation of landslide-generated landslide, CSCE SCGC, Leadership in Sustainable Infrastructure, Annual Conference, May 31–June 3 2017, Vancouver, Canada, 2017.
- Yakhot, V. and Smith, L. M.: The Renormalization Group, the eExpansion and Derivation of Turbulence Models, J. Sci. Comput., 7, 35–61, https://doi.org/10.1093/gji/ggv026, 1992.
- Wang, J., Ward, S. N., and Xiao, L.: Numerical simulation of the December 4, 2007 landslide-generated tsunami in Chehalis Lake, Canada, Geophys. J. Int., 201, 372–376, https://doi.org/10.1093/gji/ggv026, 2015.
- Ward, S. N. and Day, S.: The 1958 Lituya bay landslide and tsunami – A tsunami ball approach, J. Earthq. Tsunami, 4, 285–319, https://doi.org/10.1142/S1793431110000893, 2010.
- Weiss, R. and Wuennemann, K.: Understanding tsunami by landslides as the next challenge for hazard, risk and mitigation: Insight from multi-material hydrocode modeling, American Geophysical Union, Fall Meeting 2007, San Francisco, CA, USA, S51C-06, 2007.
- Weiss, R., Fritz, H. M., and Wünnemann, K.: Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century, Geophys. Res. Lett., 36, L09602, https://doi.org/10.1029/2009GL037814, 2009.
- Welch, J. E., Harlow, F. H., Shannon, J. P., and Daly, B. J.: The MAC Method: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid Flow Problems Involving Freesurfaces, Los Alamos Scientific Laboratory report LA-3425, Los Alamos, NM, USA, 1966.
- Wiegel, R. L.: Oceanographical Engineering, Prentice Hall, Englewood Cliffs, USA, 1964.
- Xenakis, A. M., Lind, S. J., Stansby, P. K., and Rogers, B. D.: Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment, P. R. Soc. A, 473, 1–18, https://doi.org/10.1098/rspa.2016.0674, 20