FLOW-3D 모델이 실험 결과와 높은 일치도를 보이며, 평균 오차율이 5% 이하로 나타남.
격자 크기가 20,000개 이상일 때 모델 정확도가 최적화됨.
낙차 구조의 형상 및 유입 조건에 따라 난류 강도가 다르게 나타남.
에너지 손실 및 하류 유동 특성
수로 길이가 증가할수록 에너지 손실이 감소하며, 하류 수심이 증가함.
낙차 구조 설계에 따라 난류 강도가 달라지며, 이를 고려한 최적 설계가 필요함.
낙차 구조 후단부에 역류(backflow)가 발생할 수 있으며, 이를 방지하기 위한 추가 설계가 요구됨.
결론
FLOW-3D를 활용한 수치 해석이 수직 낙차 구조물의 유동 특성을 정확하게 예측할 수 있음을 확인함.
하류 수심, 유입 속도 및 난류 모델이 유동 특성 및 에너지 손실에 미치는 영향을 분석함.
CFD 시뮬레이션 결과와 실험 데이터가 높은 상관관계를 보이며, 낙차 구조물 설계 최적화를 위한 유용한 도구임을 입증함.
향후 연구에서는 다양한 수리학적 조건을 반영한 추가적인 검증이 필요함.
Reference
RAND, W.: Flow Geometry at Straight Drop Spillways. In Proceedings of the Proceedings ofthe American Society of Civil Engineers; ASCE, 1955; Vol. 81, pp. 1–13.
Akram Gill, M.: Hydraulics of Rectangular Vertical Drop Structures. Journal of HydraulicResearch 1979, 17, 289–302.
RAJARATNAM, N. – CHAMANI, M.R.: Energy Loss at Drops. Journal of Hydraulic Research1995, 33, 373–384.
ESEN, I.I. – ALHUMOUD, J.M.; HANNAN, K.A.: Energy Loss at a Drop Structure with a Step atthe Base. Water international 2004, 29, 523–529.
HONG, Y.-M. – HUANG, H.-S. – WAN, S.: Drop Characteristics of Free-Falling Nappe forAerated Straight-Drop Spillway. Journal of hydraulic research 2010, 48, 125–129.
FAROUK, M. – ELGAMAL, M.: Investigation of the Performance of Single and Multi-DropHydraulic Structures. International Journal of Hydrology Science and Technology 2012, 2, 48–74.
LIU, S.I. – CHEN, J.Y. – HONG, Y.M. – HUANG, H.S. – RAIKAR, R. V.: Impact Characteristics ofFree Over-Fall in Pool Zone with Upstream Bed Slope. Journal of Marine Science andTechnology 2014, 22, 9.
AL-SHAIKHLI, H.I. – KHASSAF, S.I.: CFD Simulation of Waves over Mound Breakwater.Journal of Global Scientific Research 2022, 7, 2283–2291.
KHASSAF, S.I. – ABBAS, H.A. Study of the Local Scour around L-Shape Groynes in ClearWater Conditions. International Journal of Engineering & Technology 2018, 7, 271–276.
GESSLER, D. CFD Modeling of Spillway Performance. In Impacts of Global Climate Change;2005; pp. 1–10.
RAJAB, H. – Elgizawy, A. Design of Spill Tube with Features for Controlling Air BubbleGenerated for Aircraft Applicaitons. Mechanical and Aerospace Engineering presentations2012.
BERGA, L. – BUIL, J.M. – BOFILL, E. – DE CEA, J.C. – PEREZ, J.A.G.; MAÑUECO, G. -POLIMON, J. – SORIANO, A. – YAGÜE, J. Dams and Reservoirs, Societies and Environment inthe 21st Century, Two Volume Set: Proceedings of the International Symposium on Dams inthe Societies of the 21st Century, 22nd International Congress on Large Dams (ICOLD),Barcelona, Spain, 18 June 2006; CRC Press, 2006; ISBN 1482262916.
AL SHAIKHLI, H.I. – KHASSAF, S.I. Using of Flow 3d as CFD Materials Approach in WavesGeneration. Materials Today: Proceedings 2022, 49, 2907–2911.
CHANEL, P.G. An Evaluation of Computational Fluid Dynamics for Spillway Modeling 2009.
Flow-Science FLOW-3D User Manual, Version 11 2014.
MIA, M.F. – NAGO, H. Design Method of Time-Dependent Local Scour at Circular Bridge Pier.Journal of Hydraulic Engineering 2003, 129, 420–427.
AL SHAIKHLI, H.I. – KHASSAF, S.I. Stepped Mound Breakwater Simulation by Using Flow 3D.Eurasian Journal of Engineering and Technology 2022, 6, 60–68.
STEHLIK-BARRY, K. – BABINEC, A.J. Data Analysis with IBM SPSS Statistics; PacktPublishing Ltd, 2017; ISBN 1787280705.
Flow 3D outputs of flow depth and velocity of H =0.15m