Figure 2 | Distribution map of detection points.

교각 모양이 황하 하류의 흐름에 미치는 영향

Xianqi Zhanga,b,c, Tao Wanga,* and Xiaobin Lua
a Water Conservancy College, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
b Collaborative Innovation Center of Water Resources Efficient Utilization and Protection Engineering, Zhengzhou 450046, China
c Technology Research Center of Water Conservancy and Marine Traffic Engineering, Henan Province, Zhengzhou 450046, China
*Corresponding author. E-mail: 1124149584@qq.com

Abstract

하천을 가로지르는 교각의 형태는 하천의 역류에 영향을 미치는 중요한 요인 중 하나이다. 교각 형상이 강의 흐름 패턴에 미치는 영향에 대한 연구는 교량 설계 및 하천 범람에 가치가 있습니다. Mike 21 Flow Model 유체역학 모델을 기반으로 동적 수치 시뮬레이션을 수행하여 다양한 형태의 교각이 물 흐름에 미치는 영향을 조사했습니다. 그 결과 직사각형, 원형 ​​및 타원형 교각이 하천에 물 차단 효과가 있음을 보여줍니다. 교각 근처의 지역에서 흐름 패턴이 변경되었습니다. 동일한 유속에서 직사각형 교각의 역류가 가장 컸고 원형 교각이 그 뒤를 이었고 타원형 교각이 가장 작았다. 직사각형 교각으로 인한 역류량 값은 타원형 교각의 1.95배였다. 타원형 교각 교각은 기본적으로 강의 전반적인 흐름 패턴을 변경하지 않으며 하천 체제에 거의 영향을 미치지 않습니다. 하천 교각의 배치에 대한 참조를 제공합니다.

Key words

bridge piers shape, flow regime, Mike21 Flow Model, numerical simulation, Yellow River

Figure 1 | Location of the proposed bridge
Figure 1 | Location of the proposed bridge
Figure 2 | Distribution map of detection points.
Figure 2 | Distribution map of detection points.
Figure 3 | (a) Elevation contour map of water surface near the rectangular pier in the working condition 1, (b) Elevation contour map of water surface near the round pier in the working condition 1 and (c) Elevation contour map of water surface near the oval pier in the working condition 1.
Figure 3 | (a) Elevation contour map of water surface near the rectangular pier in the working condition 1, (b) Elevation contour map of water surface near the round pier in the working condition 1 and (c) Elevation contour map of water surface near the oval pier in the working condition 1.
Figure 9 | Monitoring section backwater changes; (a) Once in ten years traffic, (b) Yearly average flow, (c) Lowest water level (p ¼ 95%)
Figure 9 | Monitoring section backwater changes; (a) Once in ten years traffic, (b) Yearly average flow, (c) Lowest water level (p ¼ 95%)

REFERENCES

Ban, M. N. & Wu, Y. G. 2018 Analysis of flood carrying capacity of Nandu River estuary based on MIKE21 FM. South-to-North
Water Diversion and Water Conservancy Science and Technology 16(02), 151–157.
Guo, F. Q., Qu, H. F., Zeng, H., Cong, P. T. & Geng, X. 2013 Numerical simulation of flood evolution in flood storage area based
on MIKE21 FM model. Hydropower Energy Science 31(05), 34–37.

Huang, X., Wang, L. L. & Tang, H. W. 2017 Study on the law of the influence of Bridge Pier Shape of Plain River Course on
River Backwater. In: The 14th National Hydrodynamics Conference and the 28th National Hydrodynamics Conference
Proceedings (Volume 2). Ed. China Ocean Press. pp. 858–866.
Liu, X. C., Geng, P. C., Cao, L. & Sun, X. L. 2020 Mike21 simulates the influence of cross-river bridge on river regime. People’s
Yellow River 42(S1), 24–25 þ 29.
Luo, W. G., Lu, J. & Lai, H. 2015 Research on the backwater in front of multiple parallel bridge piers at equal distances. Journal
of Sichuan University: Engineering Science Edition 47(4), 6–13.
Luo, M., Huang, E. & Li, G. 2018 Optimization of water intake layout in an irrigation area based on MIKE21FM numerical
simulation. Hydropower Energy Science 36(03), 118–122.
Milad, H., Mohammad, A. Z. & Mohammad, M. A. 2019 Simulation of turbulent flow around tandem piers. Iranian Journal of
Science and Technology, Transactions of Civil Engineering 43(4).
Ren, M. F., Xu, Z. X. & Su, G. G. 2017 Calculation and comparative analysis of bridge backwater based on two-dimensional
hydrodynamic model and empirical formula. Journal of Hydroelectric Engineering 36(05), 78–87.
Selahattin, K. 2014 Prediction of backwater profiles due to bridges in a compound channel using CFD. Advances in Mechanical
Engineering 6.
Sulaiman, D. J., Adnan, A. I. & Manahil, A. T. 2019 Simulation analyses of flow in the wake region of non-uniform bridge pier
by using computational fluid dynamic. The Eurasia Proceedings of Science Technology Engineering and Mathematics (6).
Wan, L. M. & Li, P. J. 2018 Numerical simulation of navigable flow conditions of bridges across rivers. Water Conservancy
Science and Technology and Economy 24(02), 28–33.
Wang, L. L., Zhang, F. S. & Tang, H. W. 2016 Relationship between water resistance ratio and congestion characteristics of
bridge piers in plains rivers. Journal of River and Sea University (Natural Science Edition) 44(05), 386–392.
Wang, S. T. 2019 On the application of numerical simulation of river and coast hydrodynamics. Engineering and Construction
33(01), 13–16.
Wang, P., He, Y. & Du, Z. S. 2020a Study on urban design flood simulation based on hydrodynamic numerical calculation.
Journal of Xi’an University of Technology 1–6(11–04).
Wang, Q. X., Peng, W. Q., Dong, F., Liu, X. B. & Ou, N. 2020b Simulating flow of an urban river course with complex cross
sections based on the MIKE21 FM model. Water 12(3).
Wei, X. L., Yang, S. F., Hu, P. F. & Ma, X. H. 2016 The influence of tandem cylindrical bridge piers on navigable water flow
based on two-dimensional mathematical model. Water Transport Engineering (08), 75–81.
Wu, P., Balachandar, R. & Ramamurthy, A. 2018 Effects of splitter plate on reducing local scour around bridge pier. River
Research and Applications 34(10).
Xu, D., Yang, H. T., Wang, D., He, C. N., Bai, Y. C. & J, Z. Z. 2018 Numerical simulation study on the congestion characteristics
of river diagonal bridge piers. Journal of Hydropower 37(08), 55–63.
Yang, L. H., Li, J. Z., Kang, A. Q., Li, S. & Feng, P. 2020 The effect of nonstationarity in rainfall on urban flooding based on
coupling SWMM and MIKE21. Water Resources Management. (prepublish).
Yu, P. & Zhu, L. K. 2020 Numerical simulation of local scour around bridge piers using novel inlet turbulent boundary
conditions. Ocean Engineering 218, 108166.