Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

Amin Hasanalipour Shahrabadi1*, Mehdi Azhdary Moghaddam2

1-University of Sistan and Baluchestan،amin.h.shahrabadi@gmail.com

2-University of Sistan and Baluchestan،Mazhdary@eng.usb.ac.ir

Abstract

Probabilistic designation is a powerful tool in hydraulic engineering. The uncertainty caused by random phenomenon in hydraulic design may be important. Uncertainty can be expressed in terms of probability density function, confidence interval, or statistical torques such as standard deviation or coefficient of variation of random parameters. Controlling cavitation occurrence is one of the most important factors in chute spillways designing due to the flow’s high velocity and the negative pressure (Azhdary Moghaddam & Hasanalipour Shahrabadi, ۲۰۲۰). By increasing dam’s height, overflow velocity increases on the weir and threats the structure and it may cause structural failure due to cavitation (Chanson, ۲۰۱۳). Cavitation occurs when the fluid pressure reaches its vapor pressure. Since high velocity and low pressure can cause cavitation, aeration has been recognized as one of the best ways to deal with cavitation (Pettersson, ۲۰۱۲). This study, considering the extracted results from the Flow-۳D numerical model of the chute spillway of Darian dam, investigates the probability of cavitation occurrence and examines its reliability. Hydraulic uncertainty in the design of this hydraulic structure can be attributed to the uncertainty of the hydraulic performance analysis. Therefore, knowing about the uncertainty characteristics of hydraulic engineering systems for assessing their reliability seems necessary (Yen et al., ۱۹۹۳). Hence, designation and operation of hydraulic engineering systems are always subject to uncertainties and probable failures. The reliability, ps, of a hydraulic engineering system is defined as the probability of safety in which the resistance, R, of the system exceeds the load, L, as follows (Chen, ۲۰۱۵): p_s=P(L≤R) (۱) Where P(۰) is probability. The failure probability, p_f, is a reliability complement and is expressed as follows: p_f=P[(L>R)]=۱- p_s (۲) Reliability development based on analytical methods of engineering applications has come in many references (Tung & Mays, ۱۹۸۰ and Yen & Tung, ۱۹۹۳). Therefore, based on reliability, in a control method, the probability of cavitation occurrence in the chute spillway can be investigated. In reliability analysis, the probabilistic calculations must be expressed in terms of a limited conditional function, W(X)=W(X_L ,X_R)as follows: p_s=P[W(X_L ,X_R)≥۰]= P[W(X)≥۰] (۳) Where X is the vector of basic random variables in load and resistance functions. In the reliability analysis, if W(X)> ۰, the system will be secure and in the W(X) <۰ system will fail. Accordingly, the eliability index, β, is used, which is defined as the ratio of the mean value, μ_W, to standard deviation, σ_W, the limited conditional function W(X) is defined as follows (Cornell, ۱۹۶۹): β=μ_W/σ_W (۴) The present study was carried out using the obtained results from the model developed by ۱:۵۰ scale plexiglass at the Water Research Institute of Iran. In this laboratory model, which consists of an inlet channel and a convergent thrower chute spillway, two aerators in the form of deflector were used at the intervals of ۲۱۱ and ۲۷۰ at the beginning of chute, in order to cope with cavitation phenomenon during the chute. An air duct was also used for air inlet on the left and right walls of the spillway. To measure the effective parameters in cavitation, seven discharges have been passed through spillway. As the pressure and average velocity are determined, the values of the cavitation index are calculated and compared with the values of the critical cavitation index, σ_cr. At any point when σ≤σ_cr, there is a danger of corrosion in that range (Chanson, ۱۹۹۳). In order to obtain uncertainty and calculate the reliability index of cavitation occurrence during a chute, it is needed to extract the limited conditional function. Therefore, for a constant flow between two points of flow, there would be the Bernoulli (energy) relation as follows (Falvey, ۱۹۹۰): σ= ( P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) (۵) Where P_atm is the atmospheric pressure, γ is the unit weight of the water volume, θ is the angle of the ramp to the horizon, r is the curvature radius of the vertical arc, and h cos⁡θ is the flow depth perpendicular to the floor. Therefore, the limited conditional function can be written as follows: W(X)=(P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) -σ_cr (۶) Flow-۳D is a powerful software in fluid dynamics. One of the major capabilities of this software is to model free-surface flows using finite volume method for hydraulic analysis. The spillway was modeled in three modes, without using aerator, ramp aerator, and ramp combination with aeration duct as detailed in Flow-۳D software. For each of the mentioned modes, seven discharges were tested. According to Equation (۶), velocity and pressure play a decisive and important role in the cavitation occurrence phenomenon. Therefore, the reliability should be evaluated with FORM (First Order Reliable Method) based on the probability distribution functions For this purpose, the most suitable probability distribution function of random variables of velocity and pressure on a laboratory model was extracted in different sections using Easy fit software. Probability distribution function is also considered normal for the other variables in the limited conditional function. These values are estimated for the constant gravity at altitudes of ۵۰۰ to ۷۰۰۰ m above the sea level for the unit weight, and vapor pressure at ۵ to ۳۵° C. For the critical cavitation index variable, the standard deviation is considered as ۰.۰۱. According to the conducted tests, for the velocity random variable, GEV (Generalized Extreme Value) distribution function, and for the pressure random variable, Burr (۴P) distribution function were presented as the best distribution function. The important point is to not follow the normal distribution above the random variables. Therefore, in order to evaluate the reliability with the FORM method, according to the above distributions, they should be converted into normal variables based on the existing methods. To this end, the non-normal distributions are transformed into the normal distribution by the method of Rackwitz and Fiiessler so that the value of the cumulative distribution function is equivalent to the original abnormal distribution at the design point of x_(i*). This point has the least distance from the origin in the standardized space of the boundary plane or the same limited conditional function. The reliability index will be equal to ۰.۴۲۰۴ before installing the aerator. As a result, reliability, p_s, and failure probability, p_f, are ۰.۶۶۲۹ and ۰.۳۳۷۱, respectively. This number indicates a high percentage for cavitation occurrence. Therefore, the use of aerator is inevitable to prevent imminent damage from cavitation. To deal with cavitation as planned in the laboratory, two aerators with listed specifications are embedded in a location where the cavitation index is critical. In order to analyze the reliability of cavitation occurrence after the aerator installation, the steps of the Hasofer-Lind algorithm are repeated. The modeling of ramps was performed separately in Flow-۳D software in order to compare the performance of aeration ducts as well as the probability of failure between aeration by ramp and the combination of ramps and aeration ducts. Installing an aerator in combination with a ramp and aerator duct greatly reduces the probability of cavitation occurrence. By installing aerator, the probability of cavitation occurrence will decrease in to about ۴ %. However, in the case of aeration only through the ramp, the risk of failure is equal to ۱۰%.

확률적 지정은 수력 공학에서 강력한 도구입니다. 유압 설계에서 임의 현상으로 인한 불확실성이 중요할 수 있습니다. 불확실성은 확률 밀도 함수, 신뢰 구간 또는 표준 편차 또는 무작위 매개변수의 변동 계수와 같은 통계적 토크로 표현될 수 있습니다. 캐비테이션 발생을 제어하는 ​​것은 흐름의 높은 속도와 음압으로 인해 슈트 여수로 설계에서 가장 중요한 요소 중 하나입니다(Azhdary Moghaddam & Hasanalipour Shahrabadi, ۲۰۲۰). 댐의 높이를 높이면 둑의 범람속도가 증가하여 구조물을 위협하고 캐비테이션으로 인한 구조물의 파손을 유발할 수 있다(Chanson, ۲۰۱۳). 캐비테이션은 유체 압력이 증기압에 도달할 때 발생합니다. 높은 속도와 낮은 압력은 캐비테이션을 유발할 수 있으므로, 통기는 캐비테이션을 처리하는 가장 좋은 방법 중 하나로 인식되어 왔습니다(Pettersson, ۲۰۱۲). 본 연구에서는 Darian 댐의 슈트 여수로의 Flow-۳D 수치모델에서 추출된 결과를 고려하여 캐비테이션 발생 확률을 조사하고 그 신뢰성을 조사하였다. 이 수력구조의 설계에서 수력학적 불확실성은 수력성능 해석의 불확실성에 기인할 수 있다. 따라서 신뢰성을 평가하기 위해서는 수력공학 시스템의 불확도 특성에 대한 지식이 필요해 보인다(Yen et al., ۱۹۹۳). 따라서 수력 공학 시스템의 지정 및 작동은 항상 불확실성과 가능한 고장의 영향을 받습니다. 유압 공학 시스템의 신뢰성 ps는 저항 R, 시스템의 부하 L은 다음과 같이 초과됩니다(Chen, ۲۰۱۵): p_s=P(L≤R)(۱) 여기서 P(۰)은 확률입니다. 고장 확률 p_f는 신뢰도 보완이며 다음과 같이 표현됩니다. Mays, ۱۹۸۰ 및 Yen & Tung, ۱۹۹۳). 따라서 신뢰성을 기반으로 제어 방법에서 슈트 여수로의 캐비테이션 발생 확률을 조사할 수 있습니다. 신뢰도 분석에서 확률적 계산은 제한된 조건부 함수 W(X)=W(X_L , X_R)은 다음과 같습니다. p_s=P[W(X_L,X_R)≥۰]= P[W(X)≥۰] (۳) 여기서 X는 부하 및 저항 함수의 기본 랜덤 변수 벡터입니다. 신뢰도 분석에서 W(X)> ۰이면 시스템은 안전하고 W(X) <۰에서는 시스템이 실패합니다. 따라서 표준편차 σ_W에 대한 평균값 μ_W의 비율로 정의되는 신뢰도 지수 β가 사용되며, 제한된 조건부 함수 W(X)는 다음과 같이 정의됩니다(Cornell, ۱۹۶۹). β= μ_W/σ_W (۴) 본 연구는 이란 물연구소의 ۱:۵۰ scale plexiglass로 개발된 모델로부터 얻은 결과를 이용하여 수행하였다. 이 실험 모델에서, 입구 수로와 수렴형 투수 슈트 여수로로 구성되며 슈트 중 캐비테이션 현상에 대처하기 위해 슈트 초기에 ۲۱۱과 ۲۷۰ 간격으로 편향기 형태의 2개의 에어레이터를 사용하였다. 여수로 좌우 벽의 공기 유입구에도 공기 덕트가 사용되었습니다. 캐비테이션의 효과적인 매개변수를 측정하기 위해 7번의 배출이 방수로를 통과했습니다. 압력과 평균 속도가 결정되면 캐비테이션 지수 값이 계산되고 임계 캐비테이션 지수 σ_cr 값과 비교됩니다. σ≤σ_cr일 때 그 범위에서 부식의 위험이 있다(Chanson, ۱۹۹۳). 슈트 중 캐비테이션 발생의 불확실성을 구하고 신뢰도 지수를 계산하기 위해서는 제한된 조건부 함수를 추출할 필요가 있다. 따라서 두 지점 사이의 일정한 흐름에 대해 다음과 같은 Bernoulli(에너지) 관계가 있습니다(Falvey, ۱۹۹۰). σ= ( P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗 ^۲/۲g) (۵) 여기서 P_atm은 대기압, γ는 물의 단위 중량, θ는 수평선에 대한 경사로의 각도, r은 수직 호의 곡률 반경, h cos⁡ θ는 바닥에 수직인 흐름 깊이입니다. 따라서 제한된 조건부 함수는 다음과 같이 쓸 수 있습니다. W(X)=(P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) -σ_cr (۶) Flow-۳D는 유체 역학의 강력한 소프트웨어. 이 소프트웨어의 주요 기능 중 하나는 수리학적 해석을 위해 유한 체적 방법을 사용하여 자유 표면 흐름을 모델링하는 것입니다. 방수로는 Flow-۳D 소프트웨어에 자세히 설명된 바와 같이 폭기 장치, 램프 폭기 장치 및 폭기 덕트가 있는 램프 조합을 사용하지 않고 세 가지 모드로 모델링되었습니다. 언급된 각 모드에 대해 7개의 방전이 테스트되었습니다. 식 (۶)에 따르면 속도와 압력은 캐비테이션 발생 현상에 결정적이고 중요한 역할을 합니다. 따라서 확률분포함수에 기반한 FORM(First Order Reliable Method)으로 신뢰도를 평가해야 한다 이를 위해 실험실 모델에 대한 속도와 압력의 확률변수 중 가장 적합한 확률분포함수를 Easy fit을 이용하여 구간별로 추출하였다. 소프트웨어. 확률 분포 함수는 제한된 조건부 함수의 다른 변수에 대해서도 정상으로 간주됩니다. 이 값은 단위 중량의 경우 해발 ۵۰۰ ~ ۷۰۰۰ m 고도에서의 일정한 중력과 ۵ ~ ۳۵ ° C에서의 증기압으로 추정됩니다. 임계 캐비테이션 지수 변수의 표준 편차는 ۰.۰۱으로 간주됩니다. . 수행된 시험에 따르면 속도 확률변수는 GEV(Generalized Extreme Value) 분포함수로, 압력변수는 Burr(۴P) 분포함수가 가장 좋은 분포함수로 제시되었다. 중요한 점은 확률 변수 위의 정규 분포를 따르지 않는 것입니다. 따라서 FORM 방법으로 신뢰도를 평가하기 위해서는 위의 분포에 따라 기존 방법을 기반으로 정규 변수로 변환해야 합니다. 이를 위해, 비정규분포를 Rackwitz와 Fiiessler의 방법에 의해 정규분포로 변환하여 누적분포함수의 값이 x_(i*)의 설계점에서 원래의 비정상분포와 같도록 한다. 이 점은 경계면의 표준화된 공간 또는 동일한 제한된 조건부 함수에서 원점으로부터 최소 거리를 갖습니다. 신뢰성 지수는 폭기 장치를 설치하기 전의 ۰.۴۲۰۴과 같습니다. 그 결과 신뢰도 p_s와 고장확률 p_f는 각각 ۰.۶۶۲۹과 ۰.۳۳۷۱이다. 이 숫자는 캐비테이션 발생의 높은 비율을 나타냅니다. 따라서 캐비테이션으로 인한 즉각적인 손상을 방지하기 위해 폭기 장치의 사용이 불가피합니다. 실험실에서 계획한 대로 캐비테이션을 처리하기 위해, 나열된 사양을 가진 두 개의 폭기 장치는 캐비테이션 지수가 중요한 위치에 내장되어 있습니다. 폭기장치 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 폭기 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 폭기장치 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다.

Keywords

Aerator Probable Failure Reliability Method FORM Flow ۳D. 

PDF View