Ali Poorkarimi1
Khaled Mafakheri2
Shahrzad Maleki2
Journal of Hydraulic Structures
J. Hydraul. Struct., 2023; 9(4): 76-87
DOI: 10.22055/jhs.2024.44817.1265
Abstract
중력에 의한 침전은 부유 물질을 제거하기 위해 물과 폐수 처리 공정에 널리 적용됩니다. 이 연구에서는 침전조의 제거 효율에 대한 입구 및 배플 위치의 영향을 간략하게 설명합니다. 실험은 CCD(중심복합설계) 방법론을 기반으로 수행되었습니다. 전산유체역학(CFD)은 유압 설계, 미래 발전소에 대한 계획 연구, 토목 유지 관리 및 공급 효율성과 관련된 복잡한 문제를 모델링하고 분석하는 데 광범위하게 사용됩니다. 본 연구에서는 입구 높이, 입구로부터 배플까지의 거리, 배플 높이의 다양한 조건에 따른 영향을 조사하였다. CCD 접근 방식을 사용하여 얻은 데이터를 분석하면 축소된 2차 모델이 R2 = 0.77의 결정 계수로 부유 물질 제거를 예측할 수 있음이 나타났습니다. 연구 결과, 유입구와 배플의 부적절한 위치는 침전조의 효율에 부정적인 영향을 미칠 수 있음을 보여주었습니다. 입구 높이, 배플 거리, 배플 높이의 최적 값은 각각 0.87m, 0.77m, 0.56m였으며 제거 효율은 80.6%였습니다.
Sedimentation due to gravitation is applied widely in water and wastewater treatment processes to remove suspended solids. This study outlines the effect of the inlet and baffle position on the removal efficiency of sedimentation tanks. Experiments were carried out based on the central composite design (CCD) methodology. Computational fluid dynamics (CFD) is used extensively to model and analyze complex issues related to hydraulic design, planning studies for future generating stations, civil maintenance, and supply efficiency. In this study, the effect of different conditions of inlet elevation, baffle’s distance from the inlet, and baffle height were investigated. Analysis of the obtained data with a CCD approach illustrated that the reduced quadratic model can predict the suspended solids removal with a coefficient of determination of R2 = 0.77. The results showed that the inappropriate position of the inlet and the baffle can have a negative effect on the efficiency of the sedimentation tank. The optimal values of inlet elevation, baffle distance, and baffle height were 0.87 m, 0.77 m, and 0.56 m respectively with 80.6% removal efficiency.
Keywords
Sedimentation tank, Particle removal, Central Composite Design, Computational
Fluid Dynamics, Flow-3D
References
- Shahrokhi, M., F. Rostami, M.A. Md. Said, S.R.S. Yazdi, and Syafalni, (2013). Experimental
investigation of the influence of baffle position on the flow field, sediment concentration, and
efficiency of rectangular primary sedimentation tanks. Journal of Hydraulic Engineering,.
139(1): p. 88-94. - Shahrokhi, M., F. Rostami, M.A.M. Said, and S.R.S. Yazdi, (2012). The effect of number of
baffles on the improvement efficiency of primary sedimentation tanks. Applied Mathematical
Modelling,. 36(8): p. 3725-3735. - Borna, M., A. Janfeshan, E. Merufinia, and A. Asnaashari, (2014). Numerical simulations of
distribution and sediment transmission in pre-settled pools using Finite Volume Method and
comparison with experimental results. Journal of Civil Engineering and Urbanism,. 4(3): p.
287-292. - Rad, M.J., P.E. Firoozabadi, and F. Rostami, (2022). Numerical Investigation of the Effect
Dimensions of Rectangular Sedimentation Tanks on Its Hydraulic Efficiency Using Flow-3D
Software. Acta Technica Jaurinensis,. 15(4): p. 207-220. - Hirom, K. and T.T. Devi, (2022). Application of computational fluid dynamics in sedimentation
tank design and its recent developments: A review. Water, Air, & Soil Pollution,. 233: p. 1-
26. - Shahrokhi, M., F. Rostami, M.A.M. Said, S.-R. Sabbagh-Yazdi, S. Syafalni, and R. Abdullah,
(2012). The effect of baffle angle on primary sedimentation tank efficiency. Canadian Journal
of Civil Engineering,. 39(3): p. 293-303. - Tarpagkou, R. and A. Pantokratoras, (2014). The influence of lamellar settler in sedimentation
tanks for potable water treatment—A computational fluid dynamic study. Powder
Technology,. 268: p. 139-149. - Ekama, G. and P. Marais, (2004). Assessing the applicability of the 1D flux theory to full-scale
secondary settling tank design with a 2D hydrodynamic model. Water research,. 38(3): p. 495-
506. - Gharagozian, A., (1998). Circular secondary clarifier investigations using a numerical model.,
University of California, Los Angeles. - Shahrokhi, M., F. Rostami, and M.A.M. Said, (2013). Numerical modeling of baffle location
effects on the flow pattern of primary sedimentation tanks. Applied Mathematical Modelling,.
37(6): p. 4486-4496. - Razmi, A.M., R. Bakhtyar, B. Firoozabadi, and D.A. Barry, (2013). Experiments and
numerical modeling of baffle configuration effects on the performance of sedimentation tanks.
Canadian Journal of Civil Engineering,. 40(2): p. 140-150. - Liu, Y., P. Zhang, and W. Wei, (2016). Simulation of effect of a baffle on the flow patterns
and hydraulic efficiency in a sedimentation tank. Desalination and Water Treatment,. 57(54):
p. 25950-25959. - Saeedi, E., E. Behnamtalab, and S. Salehi Neyshabouri, (2020). Numerical simulation of baffle
effect on the performance of sedimentation basin. Water and environment journal,. 34(2): p.
212-222. - Miri, J.K., B. Aminnejad, and A. Zahiri, (2023). Numerical Study of Flow Pattern, Sediment
Field and Effect of the Arrangement of Guiding Blades (Baffles) on Sedimentation in PreSedimentation Basins by Numerical Models. Water Resources,. 50(1): p. 68-81. - Heydari, M.M., M. Rahbani, and S.M.M. Jamal, (2014). Experimental and numerical
investigations of baffle effect on the removal efficiency of sedimentation basin. Advances in
Environmental Biology,: p. 1015-1022. - Guo, H., S.J. Ki, S. Oh, Y.M. Kim, S. Wang, and J.H. Kim, (2017). Numerical simulation of
separation process for enhancing fine particle removal in tertiary sedimentation tank mounting
adjustable baffle. Chemical engineering science,. 158: p. 21-29.