이 기술 요약은 Fei Shuang 외 저자가 2025년에 발표한 학술 논문 “Universal machine learning interatomic potentials poised to supplant DFT in modeling general defects in metals and random alloys”를 기반으로 하며, STI C&D의 기술 전문가를 위해 분석 및 요약되었습니다.
Keywords
- Primary Keyword: Universal Machine Learning Interatomic Potentials (uMLIPs)
- Secondary Keywords: Density Functional Theory (DFT), 금속 결함 (metal defects), 재료 모델링 (materials modeling), 고엔트로피 합금 (high-entropy alloys), EquiformerV2
Executive Summary
- The Challenge: 신소재 개발에 필수적인 금속 결함 모델링은 기존의 밀도범함수이론(DFT) 시뮬레이션이 정확하지만, 막대한 계산 비용으로 인해 연구 개발 속도를 저해하는 한계가 있었습니다.
- The Method: 56종의 순수 금속 및 다양한 합금의 결정립계, 전위 등 복잡한 결함에 대한 광범위한 DFT 데이터셋을 구축하고, 26개의 최신 범용 머신러닝 원자간 포텐셜(uMLIPs) 모델의 정확도를 평가했습니다.
- The Key Breakthrough: 최신 uMLIP 모델인 EquiformerV2(eqV2)는 에너지에 대해 5 meV/atom 미만, 힘에 대해 100 meV/Å 미만의 평균 제곱근 오차(RMSE)를 기록하며 DFT 수준의 정확도를 달성했습니다.
- The Bottom Line: uMLIPs는 이제 금속 및 합금의 복잡한 결함을 모델링하는 데 있어 기존 DFT 계산을 대체할 수 있는 강력하고 신뢰성 높은 대안이며, 재료 R&D를 획기적으로 가속화할 수 있습니다.
The Challenge: Why This Research Matters for CFD Professionals
자동차, 항공우주, 전자 산업의 혁신은 고성능 신소재 개발에 달려 있습니다. 재료의 기계적, 열적, 화학적 특성을 결정하는 핵심 요인은 원자 수준의 미세한 결함(결정립계, 공공, 전위 등)입니다. 이러한 결함을 정확하게 예측하고 제어하는 것이 신소재 설계의 관건입니다.
지금까지 재료 과학자들은 밀도범함수이론(DFT) 계산에 의존해왔습니다. DFT는 양자역학 원리에 기반하여 높은 정확도를 제공하지만, 원자 수가 조금만 증가해도 계산 비용이 기하급수적으로 증가하는 치명적인 단점이 있습니다. 이로 인해 수백, 수천 개 이상의 원자로 구성된 실제적인 결함 구조나 대규모 시스템을 시뮬레이션하는 것은 사실상 불가능에 가까웠고, 이는 신소재 개발의 병목 현상을 야기했습니다.
최근 대안으로 떠오른 범용 머신러닝 원자간 포텐셜(uMLIPs)은 빠른 계산 속도를 자랑하지만, 복잡한 결함 환경에서의 예측 정확도에 대한 불확실성이 큰 과제였습니다. 본 연구는 바로 이 문제를 정면으로 다루며, 최신 uMLIPs가 과연 DFT를 대체할 수 있을 만큼 신뢰할 수 있는지 검증하고자 했습니다.

The Approach: Unpacking the Methodology
본 연구팀은 uMLIPs의 성능을 엄격하게 평가하기 위해 광범위하고 다양한 DFT 데이터셋을 구축했습니다.
- 데이터셋 구축: 연구팀은 Vienna Ab initio Simulation Package(VASP)를 사용하여 새로운 구성들에 대한 제1원리 계산을 수행했습니다. 데이터셋은 주기율표 상의 56개 금속 원소에 대한 단순 결정립계(GB-56 데이터셋)부터 Mo, Nb, Ta, W와 같은 BCC 내화 금속의 종합적인 결함(Mo-g, W-g 등), 고엔트로피 합금(CrCoNi, HEA10), 수소-합금 상호작용(MoNbTaW-H), 용질-결함 상호작용 등 실제 산업 환경에서 마주할 수 있는 복잡하고 다양한 시나리오를 총망라했습니다. 총 54,084개의 원자 구성과 730만 개 이상의 원자에 대한 에너지 및 힘 데이터를 확보했습니다.
- 성능 평가: 구축된 DFT 데이터셋을 기준으로, CHGNet, MACE, MatterSim, Orb, GRACE, DPA3 및 가장 광범위한 그룹인 EquiformerV2(eqV2)를 포함한 총 26개의 최첨단 uMLIPs 모델의 성능을 평가했습니다. 평가는 각 모델이 예측한 에너지 및 원자간 힘과 DFT 기준값 사이의 평균 제곱근 오차(RMSE)를 계산하는 방식으로 이루어졌습니다.
- 비용-정확도 분석: uMLIPs의 실용성을 평가하기 위해, 고전적인 EAM 포텐셜, 특화된 머신러닝 포텐셜(sMLIPs), uMLIPs, 그리고 DFT 간의 계산 비용 대비 정확도를 체계적으로 분석했습니다.
The Breakthrough: Key Findings & Data
본 연구는 최신 uMLIPs, 특히 EquiformerV2 모델이 재료 결함 모델링 분야에서 게임 체인저가 될 수 있음을 데이터로 입증했습니다.
Finding 1: 다양한 결함 환경에서 DFT 수준의 정확도 달성
EquiformerV2 모델은 순수 금속, 이원 합금, 고엔트로피 합금 및 복잡한 결함 구조를 포함한 광범위한 데이터셋에서 놀라운 예측 정확도를 보였습니다. Figure 3에서 볼 수 있듯이, 대부분의 데이터셋에서 가장 성능이 우수한 uMLIP 모델은 5 meV/atom 이하의 에너지 RMSE와 70 meV/Å 이하의 힘 RMSE를 달성했습니다. 이는 기존의 특화된 머신러닝 포텐셜(sMLIPs)을 능가하는 수준이며, DFT 계산의 고유 오차 범위에 근접하는 결과입니다. 특히, eqV2-omat-mp-salex 모델들은 에너지 예측에서, eqV2-omat 모델들은 힘 예측에서 전반적으로 가장 뛰어난 성능을 나타냈습니다.
Finding 2: DFT 대비 압도적인 계산 효율성 확보
uMLIPs의 가장 큰 장점은 계산 비용입니다. Figure 7은 uMLIPs가 DFT 계산에 비해 최소 3~4 자릿수(1,000배 이상) 빠르다는 것을 명확히 보여줍니다. 특히 GPU 가속을 활용할 경우, CPU 벤치마크 대비 최대 100배의 추가적인 속도 향상을 얻을 수 있습니다. 가장 정확한 모델 중 하나인 eqV2-31M-omat-mp-salex조차도 DFT보다 훨씬 빠릅니다. 이는 대규모 원자 시스템의 동적 시뮬레이션이나 수많은 후보 물질을 스크리닝하는 고속 처리 계산이 현실적으로 가능해졌음을 의미합니다.
Practical Implications for R&D and Operations
- For Process Engineers: 본 연구 결과는 합금 설계 및 열처리 공정 최적화에 직접적으로 활용될 수 있습니다. 예를 들어, Figure 6에서 보여준 용질-결함 상호작용 에너지의 정확한 예측은 특정 합금 원소가 재료의 강도나 취성에 미치는 영향을 원자 수준에서 이해하고 제어하는 데 기여할 수 있습니다.
- For Quality Control Teams: uMLIPs를 통해 재료의 잠재적인 파괴 모드를 더 빠르고 정확하게 예측할 수 있습니다. 대규모 시뮬레이션을 통해 다양한 응력 조건 하에서 결함이 어떻게 거동하는지 파악하고, 이를 기반으로 새로운 품질 검사 기준을 수립하거나 제품의 수명을 예측하는 데 활용할 수 있습니다.
- For Design Engineers: 이 기술은 새로운 합금 설계 주기를 획기적으로 단축시킵니다. DFT의 느린 계산 속도 대신 uMLIPs를 사용하여 고엔트로피 합금과 같은 신소재 후보군의 안정성과 특성을 신속하게 평가할 수 있습니다. 이는 초기 설계 단계에서 더 많은 가능성을 탐색하고 혁신적인 재료를 더 빨리 시장에 출시하는 데 결정적인 역할을 할 것입니다.
Paper Details
Universal machine learning interatomic potentials poised to supplant DFT in modeling general defects in metals and random alloys
1. Overview:
- Title: Universal machine learning interatomic potentials poised to supplant DFT in modeling general defects in metals and random alloys
- Author: Fei Shuang, Zixiong Wei, Kai Liu, Wei Gao, Poulumi Dey
- Year of publication: 2025 (Date on paper: 6/9/2025)
- Journal/academic society of publication: (Pre-print, not specified in the document)
- Keywords: universal machine learning interatomic potential, DFT, defect, solute-defect interaction, random alloys
2. Abstract:
최근 머신러닝의 발전과 광범위한 밀도범함수이론(DFT) 데이터셋 생성이 결합되어 범용 머신러닝 원자간 포텐셜(uMLIPs)의 개발이 가능해졌습니다. 이 모델들은 주기율표 전반에 걸쳐 광범위한 적용 가능성을 제공하며, 기존 DFT 계산 비용의 일부만으로 제1원리 수준의 정확도를 달성합니다. 본 연구에서는 최첨단 사전 훈련된 uMLIPs가 다양한 금속 및 합금의 복잡한 결함을 정확하게 모델링하는 데 있어 DFT를 효과적으로 대체할 수 있음을 입증합니다. 우리의 조사는 순수 금속의 결정립계 및 일반 결함, 고엔트로피 합금의 결함, 수소-합금 상호작용, 용질-결함 상호작용 등 다양한 시나리오를 포괄합니다. 특히, 최신 EquiformerV2 모델은 포괄적인 결함 데이터셋에서 에너지에 대해 5 meV/atom 미만, 힘에 대해 100 meV/Å 미만의 평균 제곱근 오차(RMSE)를 기록하며 DFT 수준의 정확도를 달성했으며, 이는 모멘트 텐서 포텐셜 및 원자 클러스터 확장과 같은 특화된 머신러닝 포텐셜을 능가하는 성능입니다. 또한 정확도 대 계산 비용에 대한 체계적인 분석을 제시하고 uMLIPs에 대한 불확실성 정량화를 탐구합니다. 텅스텐(W)에 대한 상세한 사례 연구는 순수 W 데이터만으로는 uMLIPs에서 복잡한 결함을 모델링하기에 불충분함을 보여주며, 이는 모든 원소를 아우르는 1억 개 이상의 구조를 포함하는 고급 머신러닝 아키텍처와 다양한 데이터셋의 중요성을 강조합니다.
3. Introduction:
머신러닝은 계산 재료 과학을 혁신하며 예측 모델링 능력을 향상시키고 재료 발견을 가속화하고 있습니다. 이 시대의 가장 중요한 성과 중 하나는 uMLIPs의 개발입니다. 이 포텐셜들은 과학자들이 주기율표 전반에 걸쳐 제1원리 수준의 정확한 시뮬레이션을 수행하는 방식에 패러다임 전환을 가져왔습니다. uMLIPs의 주요 목표는 계산 비용이 많이 드는 DFT 계산을 대체하는 것이지만, uMLIPs의 정확도에 대한 불확실성이 큰 장애물로 남아있었습니다. 이전의 벤치마크 연구들은 표면, 결함, 고체 용액 에너지 등에서 일관된 ‘연화 현상(softening phenomenon)’을 관찰했으며, 이는 uMLIPs의 사전 훈련 데이터셋이 평형 상태에 가까운 구성에 편향되어 샘플링되었기 때문이라고 지적했습니다. 이러한 연구들은 기존 uMLIPs의 성능에 상당한 불확실성이 있음을 강조했습니다.
4. Summary of the study:
Background of the research topic:
재료의 특성을 이해하고 새로운 고성능 재료를 설계하기 위해서는 원자 수준에서의 빠르고 정확한 시뮬레이션이 필수적입니다.
Status of previous research:
DFT는 정확하지만 계산 비용이 매우 높아 대규모 시스템이나 장시간 시뮬레이션에 적용하기 어렵습니다. 이전 세대의 uMLIPs는 DFT를 대체할 가능성을 보였지만, 특히 비평형 상태나 결함이 많은 구조에서의 정확도와 신뢰성에 한계가 있었습니다.
Purpose of the study:
본 연구의 목적은 Orb, MatterSim, EquiformerV2(eqV2), DPA3와 같은 최신 사전 훈련된 uMLIPs가 금속 및 합금 내의 다양한 복잡한 결함을 모델링하는 데 있어 DFT를 효과적으로 대체할 수 있을 만큼 정확하고 신뢰할 수 있는지 체계적으로 입증하는 것입니다.
Core study:
연구의 핵심은 다양한 금속 및 합금 시스템에서 결정립계, 전위, 공공, 용질 원자 등 광범위한 결함을 포함하는 종합적인 DFT 데이터셋을 생성하고 수집한 것입니다. 그런 다음, 26개의 서로 다른 uMLIP 모델을 사용하여 이 데이터셋에 대한 에너지와 힘을 예측하고, 그 결과를 DFT 기준값과 비교하여 정확도(RMSE)를 평가했습니다. 또한, 정확도와 계산 비용 간의 상충 관계 및 모델의 불확실성 정량화(UQ)도 분석했습니다.
5. Research Methodology
Research Design:
본 연구는 비교 벤치마크 연구로 설계되었습니다. 다양한 uMLIP 모델의 예측 성능을 동일한 DFT 기준 데이터셋에 대해 평가하여 객관적인 비교를 수행했습니다.
Data Collection and Analysis Methods:
VASP 코드를 사용하여 제1원리 DFT 계산을 수행하여 새로운 데이터셋을 생성했습니다. 기존 연구에서 발표된 데이터셋도 수집하여 총 14개의 데이터셋(54,084개 구성)을 구축했습니다. 각 uMLIP 모델의 성능은 Atomic Simulation Environment(ASE)를 사용하여 계산되었으며, 예측된 에너지와 힘의 RMSE를 통해 정량적으로 분석되었습니다.
Research Topics and Scope:
연구 범위는 다음과 같습니다: – 56개 원소의 단순 결정립계 – BCC 내화 금속(Mo, Nb, Ta, W)의 일반적인 결함 – Mg의 무작위 구조(RANDSPG) – 저엔트로피에서 고엔트로피까지의 합금(MoNb, CrCoNi, MoNbTaW, HEA10) 내 결함 – 합금 내 수소 확산(MoNbTaW-H) – BCC 금속 내 용질-결함 상호작용
6. Key Results:
Key Results:
- 최신 uMLIP 모델, 특히 EquiformerV2(eqV2)는 다양한 금속 및 합금의 복잡한 결함에 대해 DFT 수준의 정확도를 달성했습니다 (에너지 RMSE < 5 meV/atom, 힘 RMSE < 100 meV/Å).
- eqV2 모델은 훈련 데이터에 명시적으로 포함되지 않은 결함에 대해서도 높은 정확도를 보여, 뛰어난 일반화 및 외삽(extrapolation) 능력을 입증했습니다.
- uMLIPs는 DFT에 비해 최소 3~4 자릿수 더 빠른 계산 속도를 제공하며, GPU 사용 시 성능이 더욱 향상됩니다.
- 6개의 eqV2 모델 앙상블을 사용한 불확실성 정량화(UQ) 결과, 모델 예측의 편차는 실제 오차와 높은 상관관계를 보여 신뢰성 있는 UQ가 가능함을 확인했습니다.
- 순수 텅스텐(W) 데이터만으로는 복잡한 결함을 모델링하기에 불충분하며, 다양한 원소와 비평형 구조를 포함하는 대규모 데이터셋(예: OMat24, sAlex)이 uMLIP의 성능에 결정적이라는 사실을 밝혔습니다.
Figure List:
- Figure 1 DFT datasets used for the assessment of uMLIPs.
- Figure 2 Performance comparison of uMLIPs on the GB-56 grain boundary dataset.
- Figure 3 Comparison of the best-performing uMLIP across all benchmark datasets.
- Figure 4 Parity plot of uMLIP-predicted energies versus DFT reference energies for Mg structures.
- Figure 5 Ranking of uMLIP models based on (a) energy RMSE and (b) force RMSE.
- Figure 6 Validation of eqV2-31M-omat-mp-salex for solute-defect interaction energy in bcc metals.
- Figure 7 Accuracy-efficiency trade-off of interatomic potentials.
- Figure 8 Ensemble-based uncertainty quantification with six eqV2 models.
- Figure 9 Comparison of prediction accuracy between eqV2-31M-omat-mp-salex and sMLIPs.
- Figure 10 Comparative analysis of atomic environments and model performance.
7. Conclusion:
본 연구는 uMLIPs가 금속 및 합금의 결함과 복잡한 상호작용을 정확하게 모델링하는 데 있어 놀라운 잠재력을 가지고 있음을 보여주었으며, 이는 DFT 정밀도에 필적하면서도 계산 비용은 훨씬 저렴합니다. MPTrj, sAlex, OMat24와 같은 다양한 데이터셋으로 훈련된 eqV2 모델은 에너지와 힘을 예측하는 데 있어 각각 5 meV/atom 및 100 meV/Å 미만의 RMSE로 탁월한 정확도를 달성했습니다. 이러한 모델들은 보이지 않는 결함 구성과 복잡한 화학적 환경으로 외삽하는 데 있어 ACE 및 MTP와 같은 sMLIPs를 능가합니다. 이 연구 결과는 uMLIPs 발전에 있어 고급 머신러닝 아키텍처와 포괄적인 데이터셋 모두의 중요성을 강조합니다. 이러한 발전은 uMLIPs를 재료 발견 및 설계를 가속화하는 혁신적인 도구로 자리매김하게 하며, 계산 재료 과학에서 전통적인 DFT에 대한 강력한 대안을 제공합니다.

8. References:
요청하신 형식에 따라 제공된 자료의 참고 문헌(Reference) 목록을 번호순으로 정리했습니다.
참고 문헌 (References)
- K. Song, R. Zhao, J. Liu, Y. Wang, E. Lindgren, Y. Wang, S. Chen, K. Xu, T. Liang, P. Ying, N. Xu, Z. Zhao, J. Shi, J. Wang, S. Lyu, Z. Zeng, S. Liang, H. Dong, L. Sun, Y. Chen, Z. Zhang, W. Guo, P. Qian, J. Sun, P. Erhart, T. Ala-Nissila, Y. Su, Z. Fan, General-purpose machine-learned potential for 16 elemental metals and their alloys, Nat Commun 15 (2024) 10208. https://doi.org/10.1038/s41467-024-54554-x.
- R. Gurnani, S. Shukla, D. Kamal, C. Wu, J. Hao, C. Kuenneth, P. Aklujkar, A. Khomane, R. Daniels, A.A. Deshmukh, Y. Cao, G. Sotzing, R. Ramprasad, AI-assisted discovery of high-temperature dielectrics for energy storage, Nat Commun 15 (2024) 6107. https://doi.org/10.1038/s41467-024-50413-x.
- Z. Wang, J. Cai, A. Chen, Y. Han, K. Tao, S. Ye, S. Wang, I. Ali, J. Li, AlphaMat: A Material Informatics Hub Connecting Data, Features, Models and Applications, (2023). http://arxiv.org/abs/2303.11651.
- N.T. Hung, R. Okabe, A. Chotrattanapituk, M. Li, Universal Ensemble‐Embedding Graph Neural Network for Direct Prediction of Optical Spectra from Crystal Structures, Advanced Materials 36 (2024) 2409175. https://doi.org/10.1002/adma.202409175.
- A. Loew, D. Sun, H.-C. Wang, S. Botti, M.A.L. Marques, Universal Machine Learning Interatomic Potentials are Ready for Phonons, (2024). http://arxiv.org/abs/2412.16551.
- H. Lee, V.I. Hegde, C. Wolverton, Y. Xia, Accelerating High-Throughput Phonon Calculations via Machine Learning Universal Potentials, (2024). http://arxiv.org/abs/2407.09674.
- Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. V. Shapeev, A.P. Thompson, M.A. Wood, S.P. Ong, Performance and Cost Assessment of Machine Learning Interatomic Potentials, J Phys Chem A 124 (2020) 731–745. https://doi.org/10.1021/acs.jpca.9b08723.
- C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton, X. Fu, Z. Wang, A. Shysheya, J. Crabbé, S. Ueda, R. Sordillo, L. Sun, J. Smith, B. Nguyen, H. Schulz, S. Lewis, C.-W. Huang, Z. Lu, Y. Zhou, H. Yang, H. Hao, J. Li, C. Yang, W. Li, R. Tomioka, T. Xie, A generative model for inorganic materials design, Nature (2025) 1–3. https://doi.org/10.1038/s41586-025-08628-5.
- J. Riebesell, R.E.A. Goodall, P. Benner, Y. Chiang, B. Deng, G. Ceder, M. Asta, A.A. Lee, A. Jain, K.A. Persson, Matbench Discovery — A framework to evaluate machine learning crystal stability predictions, (2023). https://arxiv.org/abs/2308.14920v3.
- L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary, C. Wolverton, Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations, Phys Rev B 96 (2017) 024104. https://doi.org/10.1103/PhysRevB.96.024104.
- Y. Zuo, M. Qin, C. Chen, W. Ye, X. Li, J. Luo, S.P. Ong, Accelerating materials discovery with Bayesian optimization and graph deep learning, Materials Today 51 (2021) 126–135. https://doi.org/10.1016/j.mattod.2021.08.012.
- R.E.A. Goodall, A.S. Parackal, F.A. Faber, R. Armiento, A.A. Lee, Rapid discovery of stable materials by coordinate-free coarse graining, Sci Adv 8 (2022) 4117. https://doi.org/10.1126/sciadv.abn4117.
- J. Gibson, A. Hire, R.G. Hennig, Data-augmentation for graph neural network learning of the relaxed energies of unrelaxed structures, NPJ Comput Mater 8 (2022) 211. https://doi.org/10.1038/s41524-022-00891-8.
- T. Xie, J.C. Grossman, Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties, Phys Rev Lett 120 (2018) 145301. https://doi.org/10.1103/PhysRevLett.120.145301.
- C. Chen, W. Ye, Y. Zuo, C. Zheng, S.P. Ong, Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals, Chemistry of Materials 31 (2019) 3564–3572. https://doi.org/10.1021/acs.chemmater.9b01294.
- K. Choudhary, B. DeCost, Atomistic Line Graph Neural Network for improved materials property predictions, NPJ Comput Mater 7 (2021) 185. https://doi.org/10.1038/s41524-021-00650-1.
- C. Chen, S.P. Ong, A universal graph deep learning interatomic potential for the periodic table, Nat Comput Sci 2 (2022) 718–728. https://doi.org/10.1038/s43588-022-00349-3.
- B. Deng, P. Zhong, K. Jun, J. Riebesell, K. Han, C.J. Bartel, G. Ceder, CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling, Nat Mach Intell 5 (2023) 1031–1041. https://doi.org/10.1038/s42256-023-00716-3.
- I. Batatia, P. Benner, Y. Chiang, A.M. Elena, D.P. Kovács, J. Riebesell, X.R. Advincula, M. Asta, M. Avaylon, W.J. Baldwin, F. Berger, N. Bernstein, A. Bhowmik, S.M. Blau, V. Cărare, J.P. Darby, S. De, F. Della Pia, V.L. Deringer, R. Elijošius, Z. El-Machachi, F. Falcioni, E. Fako, A.C. Ferrari, A. Genreith-Schriever, J. George, R.E.A. Goodall, C.P. Grey, P. Grigorev, S. Han, W. Handley, H.H. Heenen, K. Hermansson, C. Holm, J. Jaafar, S. Hofmann, K.S. Jakob, H. Jung, V. Kapil, A.D. Kaplan, N. Karimitari, J.R. Kermode, N. Kroupa, J. Kullgren, M.C. Kuner, D. Kuryla, G. Liepuoniute, J.T. Margraf, I.-B. Magdău, A. Michaelides, J.H. Moore, A.A. Naik, S.P. Niblett, S.W. Norwood, N. O’Neill, C. Ortner, K.A. Persson, K. Reuter, A.S. Rosen, L.L. Schaaf, C. Schran, B.X. Shi, E. Sivonxay, T.K. Stenczel, V. Svahn, C. Sutton, T.D. Swinburne, J. Tilly, C. van der Oord, E. Varga-Umbrich, T. Vegge, M. Vondrák, Y. Wang, W.C. Witt, F. Zills, G. Csányi, A foundation model for atomistic materials chemistry, (2023). http://arxiv.org/abs/2401.00096.
- A. Bochkarev, Y. Lysogorskiy, R. Drautz, Graph Atomic Cluster Expansion for Semilocal Interactions beyond Equivariant Message Passing, Phys Rev X 14 (2024) 021036. https://doi.org/10.1103/PhysRevX.14.021036.
- Y. Park, J. Kim, S. Hwang, S. Han, Scalable Parallel Algorithm for Graph Neural Network Interatomic Potentials in Molecular Dynamics Simulations, J Chem Theory Comput 20 (2024) 4857–4868. https://doi.org/10.1021/acs.jctc.4c00190.
- M. Neumann, J. Gin, B. Rhodes, S. Bennett, Z. Li, H. Choubisa, A. Hussey, J. Godwin, Orb: A Fast, Scalable Neural Network Potential, (2024). http://arxiv.org/abs/2410.22570.
- A. Merchant, S. Batzner, S.S. Schoenholz, M. Aykol, G. Cheon, E.D. Cubuk, Scaling deep learning for materials discovery, Nature 624 (2023) 80–85. https://doi.org/10.1038/s41586-023-06735-9.
- H. Yang, C. Hu, Y. Zhou, X. Liu, Y. Shi, J. Li, G. Li, Z. Chen, S. Chen, C. Zeni, M. Horton, R. Pinsler, A. Fowler, D. Zügner, T. Xie, J. Smith, L. Sun, Q. Wang, L. Kong, C. Liu, H. Hao, Z. Lu, MatterSim: A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures, (2024). http://arxiv.org/abs/2405.04967.
- L. Barroso-Luque, M. Shuaibi, X. Fu, B.M. Wood, M. Dzamba, M. Gao, A. Rizvi, C.L. Zitnick, Z.W. Ulissi, Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models, (2024). http://arxiv.org/abs/2410.12771 (accessed December 31, 2024).
- Y.-L. Liao, B. Wood, A. Das, T. Smidt, EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations, 12th International Conference on Learning Representations, ICLR 2024 (2023). http://arxiv.org/abs/2306.12059.
- D. Zhang, X. Liu, X. Zhang, C. Zhang, C. Cai, H. Bi, Y. Du, X. Qin, A. Peng, J. Huang, B. Li, Y. Shan, J. Zeng, Y. Zhang, S. Liu, Y. Li, J. Chang, X. Wang, S. Zhou, J. Liu, X. Luo, Z. Wang, W. Jiang, J. Wu, Y. Yang, J. Yang, M. Yang, F.-Q. Gong, L. Zhang, M. Shi, F.-Z. Dai, D.M. York, S. Liu, T. Zhu, Z. Zhong, J. Lv, J. Cheng, W. Jia, M. Chen, G. Ke, W. E, L. Zhang, H. Wang, DPA-2: a large atomic model as a multi-task learner, Npj Computational Materials 2024 10:1 10 (2024) 1–15. https://doi.org/10.1038/s41524-024-01493-2.
- J. Zeng, D. Zhang, D. Lu, P. Mo, Z. Li, Y. Chen, M. Rynik, L. Huang, Z. Li, S. Shi, Y. Wang, H. Ye, P. Tuo, J. Yang, Y. Ding, Y. Li, D. Tisi, Q. Zeng, H. Bao, Y. Xia, J. Huang, K. Muraoka, Y. Wang, J. Chang, F. Yuan, S.L. Bore, C. Cai, Y. Lin, B. Wang, J. Xu, J.X. Zhu, C. Luo, Y. Zhang, R.E.A. Goodall, W. Liang, A.K. Singh, S. Yao, J. Zhang, R. Wentzcovitch, J. Han, J. Liu, W. Jia, D.M. York, E. Weinan, R. Car, L. Zhang, H. Wang, DeePMD-kit v2: A software package for deep potential models, Journal of Chemical Physics 159 (2023) 54801. https://doi.org/10.1063/5.0155600/18281512/054801_1_5.0155600.AM.PDF.
- B. Deng, Y. Choi, P. Zhong, J. Riebesell, S. Anand, Z. Li, K. Jun, K.A. Persson, G. Ceder, Systematic softening in universal machine learning interatomic potentials, NPJ Comput Mater 11 (2025) 9. https://doi.org/10.1038/s41524-024-01500-6.
- H. Yu, M. Giantomassi, G. Materzanini, J. Wang, G. Rignanese, Systematic assessment of various universal machine‐learning interatomic potentials, Materials Genome Engineering Advances 2 (2024) e58. https://doi.org/10.1002/mgea.58.
- B. Focassio, L.P. M. Freitas, G.R. Schleder, Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials’ Surfaces, ACS Appl Mater Interfaces (2024). https://doi.org/10.1021/acsami.4c03815.
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput Mater Sci 6 (1996) 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys Rev Lett 77 (1996) 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
- P.E. Blöchl, Projector augmented-wave method, Phys Rev B 50 (1994) 17953–17979. https://doi.org/10.1103/PhysRevB.50.17953.
- V. Wang, N. Xu, J.-C. Liu, G. Tang, W.-T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput Phys Commun 267 (2021) 108033. https://doi.org/10.1016/j.cpc.2021.108033.
- A. Hjorth Larsen, J. Jørgen Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P. Bjerre Jensen, J. Kermode, J.R. Kitchin, E. Leonhard Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, K.W. Jacobsen, The atomic simulation environment—a Python library for working with atoms, Journal of Physics: Condensed Matter 29 (2017) 273002. https://doi.org/10.1088/1361-648X/aa680e.
- A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Model Simul Mat Sci Eng 18 (2010) 015012. https://doi.org/10.1088/0965-0393/18/1/015012.
- J. Schmidt, T.F.T. Cerqueira, A.H. Romero, A. Loew, F. Jäger, H.-C. Wang, S. Botti, M.A.L. Marques, Improving machine-learning models in materials science through large datasets, Materials Today Physics 48 (2024) 101560. https://doi.org/10.1016/j.mtphys.2024.101560.
- Y.-L. Liao, T. Smidt, M. Shuaibi, A. Das, Generalizing Denoising to Non-Equilibrium Structures Improves Equivariant Force Fields, (2024). http://arxiv.org/abs/2403.09549 (accessed January 25, 2025).
- H. Zheng, X.-G. Li, R. Tran, C. Chen, M. Horton, D. Winston, K.A. Persson, S.P. Ong, Grain boundary properties of elemental metals, Acta Mater 186 (2020) 40–49. https://doi.org/10.1016/j.actamat.2019.12.030.
- F. Shuang, K. Liu, Y. Ji, W. Gao, L. Laurenti, P. Dey, Modeling extensive defects in metals through classical potential-guided sampling and automated configuration reconstruction, NPJ Comput Mater 11 (2025) 118. https://doi.org/10.1038/s41524-025-01599-1.
- M. Poul, L. Huber, E. Bitzek, J. Neugebauer, Systematic atomic structure datasets for machine learning potentials: Application to defects in magnesium, Phys Rev B 107 (2023) 104103. https://doi.org/10.1103/PhysRevB.107.104103.
- K. Sheriff, Y. Cao, T. Smidt, R. Freitas, Quantifying chemical short-range order in metallic alloys, Proceedings of the National Academy of Sciences 121 (2024) e2322962121. https://doi.org/10.1073/pnas.2322962121.
- F. Shuang, Y. Ji, L. Laurenti, P. Dey, Size-dependent strength superiority in multi-principal element alloys versus constituent metals: Insights from machine-learning atomistic simulations, Int J Plast 188 (2025) 104308. https://doi.org/10.1016/j.ijplas.2025.104308.
- Y.-J. Hu, G. Zhao, B. Zhang, C. Yang, M. Zhang, Z.-K. Liu, X. Qian, L. Qi, Local electronic descriptors for solute-defect interactions in bcc refractory metals, Nat Commun 10 (2019) 4484. https://doi.org/10.1038/s41467-019-12452-7.
- D. Wines, K. Choudhary, CHIPS-FF: Evaluating Universal Machine Learning Force Fields for Material Properties, (2024). http://arxiv.org/abs/2412.10516.
- R. Freitas, Y. Cao, Machine-learning potentials for crystal defects, MRS Commun 12 (2022) 510–520. https://doi.org/10.1557/s43579-022-00221-5.
- X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys Rev B 69 (2004) 144113. https://doi.org/10.1103/PhysRevB.69.144113.
- Y. Lysogorskiy, A. Bochkarev, M. Mrovec, R. Drautz, Active learning strategies for atomic cluster expansion models, Phys Rev Mater 7 (2023) 043801. https://doi.org/10.1103/PhysRevMaterials.7.043801.
- L. Himanen, M.O.J. Jäger, E. V. Morooka, F. Federici Canova, Y.S. Ranawat, D.Z. Gao, P. Rinke, A.S. Foster, DScribe: Library of descriptors for machine learning in materials science, Comput Phys Commun 247 (2020) 106949. https://doi.org/10.1016/j.cpc.2019.106949.
- C. Chen, S.P. Ong, A universal graph deep learning interatomic potential for the periodic table, Nat Comput Sci 2 (2022) 718–728. https://doi.org/10.1038/s43588-022-00349-3.
- S. Kang, How graph neural network interatomic potentials extrapolate: Role of the message-passing algorithm, J Chem Phys 161 (2024). https://doi.org/10.1063/5.0234287.
- N. Lopanitsyna, G. Fraux, M.A. Springer, S. De, M. Ceriotti, Modeling high-entropy transition metal alloys with alchemical compression, Phys Rev Mater 7 (2023) 045802. https://doi.org/10.1103/PhysRevMaterials.7.045802.
- J.P. Darby, D.P. Kovács, I. Batatia, M.A. Caro, G.L.W. Hart, C. Ortner, G. Csányi, Tensor-Reduced Atomic Density Representations, Phys Rev Lett 131 (2023) 028001. https://doi.org/10.1103/PhysRevLett.131.028001.
- E. Qu, A.S. Krishnapriyan, The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains, in: A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, C. Zhang (Eds.), Adv Neural Inf Process Syst, Curran Associates, Inc., 2024: pp. 139030–139053. https://proceedings.neurips.cc/paper_files/paper/2024/file/fad8e1915f66161581bb127ccf01092e-Paper-Conference.pdf.
- I. Amin, S. Raja, A.S. Krishnapriyan, Towards Fast, Specialized Machine Learning Force Fields: Distilling Foundation Models via Energy Hessians, (2025). https://arxiv.org/abs/2501.09009v2.
- X. Fu, Z. Wu, W. Wang, T. Xie, M. Research, R. Gomez-Bombarelli, T. Jaakkola, Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations, (2022). https://arxiv.org/abs/2210.07237v2.
- F. Bigi, M.F. Langer, M. Ceriotti, The dark side of the forces: assessing non-conservative force models for atomistic machine learning, (2024). https://arxiv.org/abs/2412.11569v2.
Expert Q&A: Your Top Questions Answered
Q1: 연구에서 순수 텅스텐(W) 데이터만으로는 uMLIP이 복잡한 결함을 정확하게 모델링하기에 불충분하다고 결론 내린 이유는 무엇입니까?
A1: 논문의 Figure 10에서 그 이유를 설명합니다. 특화된 ACE 포텐셜은 포괄적인 순수 W 결함 데이터(W-g)로 훈련했을 때 높은 정확도를 보였습니다. 반면, 여러 원소를 포함하는 uMLIP 훈련 데이터셋(MPTrj, sAlex, OMat24)에서 W 원자만 추출하여 새로운 ACE 포텐셜(ACE-new)을 훈련시키자, 실제 복잡한 결함 예측 성능이 크게 저하되었습니다. 이는 uMLIP의 높은 정확도가 단일 원소에 대한 데이터의 양보다는, 주기율표 전반의 다양한 원소와 화학적 환경으로부터 학습된 일반화 능력 덕분임을 시사합니다. 즉, 모델은 W 원자뿐만 아니라 다른 원자와의 상호작용을 통해 ‘원자 환경’ 자체를 학습하기 때문에 더 정확한 예측이 가능한 것입니다.
Q2: Figure 7에서 uMLIPs의 CPU와 GPU 성능 차이가 크게 나타납니다. 이는 R&D 현장에서의 실제적인 활용에 어떤 의미를 가집니까?
A2: 이는 uMLIPs의 잠재력을 최대한 활용하기 위해서는 GPU 가속 환경이 필수적이라는 것을 의미합니다. 논문에 따르면 GPU를 사용하면 CPU 대비 최대 100배의 속도 향상을 기대할 수 있습니다. 이는 대규모 원자 시스템(수십만 개 이상)의 분자동역학 시뮬레이션이나, 수천 개의 잠재적 합금 후보 물질을 빠르게 스크리닝하는 ‘고속 처리(high-throughput)’ 연구를 가능하게 합니다. R&D 부서에서는 고성능 GPU 워크스테이션이나 클러스터에 투자함으로써 신소재 개발 주기를 획기적으로 단축하고 더 넓은 설계 공간을 탐색할 수 있습니다.
Q3: 논문에서 언급된 이전 uMLIPs의 ‘연화 현상(softening phenomenon)’을 EquiformerV2와 같은 최신 모델은 어떻게 극복했나요?
A3: 이전 모델들의 연화 현상은 훈련 데이터가 주로 평형 상태에 가까운 구조에 편향되었기 때문입니다. 이는 원자간 거리가 멀어지거나 구조가 크게 변형되는 비평형 상태를 정확히 예측하지 못하게 만듭니다. EquiformerV2와 같은 최신 모델들은 OMat24와 같은 데이터셋을 훈련에 포함함으로써 이 문제를 해결했습니다. OMat24는 약 1억 1천만 개의 비평형 구조를 포함하고 있어, 모델이 더 넓고 다양한 원자 환경을 학습하게 합니다. 이처럼 다양하고 도전적인 데이터로 훈련함으로써 모델의 강건성(robustness)과 일반화 성능이 향상되어 연화 현상을 극복하고 더 정확한 예측을 할 수 있게 된 것입니다.
Q4: 힘(force) 예측의 정확도를 높이는 데 OMat24 데이터셋이 중요한 이유는 무엇입니까?
A4: 원자간 힘은 포텐셜 에너지 표면의 기울기(gradient)로, 원자들이 평형 위치에서 벗어났을 때 특히 커집니다. 즉, 힘을 정확하게 예측하려면 원자 구조가 안정적인 평형 상태가 아닌, 변형되거나 불안정한 ‘비평형’ 상태에 대한 정보가 풍부해야 합니다. 논문 13페이지에서 언급했듯이, OMat24 데이터셋은 약 1억 1천만 개의 비평형 구성을 포함하고 있습니다. 이 방대한 양의 비평형 데이터는 uMLIP 모델이 다양한 원자 환경에서 발생하는 힘을 정확하게 학습하는 데 결정적인 역할을 하며, 이것이 OMat24로 훈련된 모델들이 힘 예측에서 월등한 성능을 보이는 이유입니다.
Q5: 연구에서 eqV2 모델의 불확실성 정량화(UQ)를 위해 ‘앙상블 전략’을 사용했는데, 이것이 모델 예측의 신뢰도를 어떻게 높여주나요?
A5: 앙상블 전략은 약간씩 다른 6개의 eqV2 모델을 사용하여 동일한 구조에 대한 예측을 수행하고, 그 결과들 간의 편차를 측정하는 방식입니다. 논문의 Figure 8은 이 편차(dev(E), dev(F))가 실제 DFT 값과의 오차와 매우 높은 상관관계(Spearman 상관계수 0.88 및 0.70)를 보인다는 것을 입증했습니다. 이는 모델들의 예측값이 서로 크게 다를 경우(편차가 클 경우), 실제 오차도 클 가능성이 높다는 것을 의미합니다. 따라서 연구자들은 이 편차 값을 ‘신뢰도 지표’로 사용하여 예측 결과를 신뢰할 수 있는지, 아니면 추가적인 DFT 검증이 필요한지를 판단할 수 있습니다. 이는 uMLIPs를 ‘블랙박스’가 아닌 신뢰할 수 있는 엔지니어링 도구로 사용하는 데 매우 중요합니다.
Conclusion: Paving the Way for Higher Quality and Productivity
본 연구는 재료 과학 시뮬레이션 분야의 중대한 전환점을 제시합니다. 복잡한 금속 결함을 모델링하는 데 있어 정확하지만 느렸던 DFT의 시대는 저물고, 빠르면서도 신뢰할 수 있는 Universal Machine Learning Interatomic Potentials (uMLIPs) 의 시대가 열렸습니다. 특히 EquiformerV2와 같은 최신 모델들은 DFT에 필적하는 정확도를 수천 배 빠른 속도로 제공함으로써, 신소재 설계, 공정 최적화, 품질 관리의 패러다임을 바꿀 잠재력을 입증했습니다.
R&D 및 운영팀은 이제 uMLIPs를 활용하여 이전에는 불가능했던 대규모 시스템을 시뮬레이션하고, 수많은 후보 물질을 신속하게 평가하며, 재료의 거동을 더 깊이 이해할 수 있게 되었습니다. 이는 곧 더 높은 품질과 생산성으로 이어질 것입니다.
“At STI C&D, we are committed to applying the latest industry research to help our customers achieve higher productivity and quality. If the challenges discussed in this paper align with your operational goals, contact our engineering team to explore how these principles can be implemented in your components.”
(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD consulting services를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.
- 연락처 : 02-2026-0442
- 이메일 : flow3d@stikorea.co.kr
Copyright Information
- This content is a summary and analysis based on the paper “Universal machine learning interatomic potentials poised to supplant DFT in modeling general defects in metals and random alloys” by Fei Shuang, et al.
- Source: The findings are based on a pre-print version of the paper. A specific DOI is not available in the provided document.
This material is for informational purposes only. Unauthorized commercial use is prohibited. Copyright © 2025 STI C&D. All rights reserved.