이 기술 요약은 Luke J. Prendergast 외 저자가 Structural Engineering International (2018)에 발표한 논문 “Structural Health Monitoring for Performance Assessment of Bridges under Flooding and Seismic Actions”을 기반으로 하며, STI C&D가 기술 전문가를 위해 분석하고 요약했습니다.
키워드
- Primary Keyword: 교량 세굴 해석
- Secondary Keywords: 구조 건전성 모니터링(SHM), 내진 성능 평가, 다중 재해, CFD 시뮬레이션
Executive Summary
- 도전 과제: 홍수로 인한 교량 세굴과 지진 하중이 결합되었을 때 교량 구조물에 미치는 복합적인 영향은 명확히 규명되지 않아 설계 및 유지 관리에 큰 불확실성을 야기합니다.
- 연구 방법: 다경간 교량의 수치 모델을 사용하여 특정 교각에 점진적인 세굴(최대 10m)을 모사한 후, 지진 하중(1999년 아테네 지진)을 적용하여 교량의 동적 응답과 하중 재분배를 분석했습니다.
- 핵심 발견: 세굴은 교량의 고유 진동수와 모드 형상을 크게 변화시키며(최대 35% 주기 증가), 세굴된 교각의 전단력은 감소시키지만 인접 교각의 전단력을 증가시켜 예상치 못한 파괴를 유발할 수 있음을 규명했습니다.
- 핵심 결론: 교량의 안전성 평가는 세굴과 지진을 독립적인 사건으로 고려해서는 안 되며, 이들의 상호작용을 반드시 고려해야 합니다. 특히, 수리 작용에 의한 세굴 깊이를 정확히 예측하는 것이 복합 재해 평가의 신뢰성을 좌우하는 첫걸음입니다.
도전 과제: CFD 전문가에게 이 연구가 중요한 이유
교량은 홍수와 지진이라는 서로 다른 환경적 위협에 노출될 수 있습니다. 특히 홍수는 교각 주변의 토사를 침식시켜 기초를 약화시키는 ‘세굴(scour)’ 현상을 유발하며, 이는 전 세계적으로 교량 붕괴의 주요 원인으로 꼽힙니다. 동시에, 지진은 구조물에 강력한 횡력을 가해 심각한 손상을 초래합니다.
기존의 교량 설계 및 평가는 이러한 재해들을 개별적으로 고려하는 경향이 있었습니다. 그러나 세굴로 인해 교량 기초의 강성이 손실되면, 지진 발생 시 교량의 동적 거동은 완전히 달라질 수 있습니다. 유연성이 증가하여 지진 관성력이 감소하는 긍정적 효과가 있을 수 있지만, 반대로 지지력 상실로 인한 붕괴 위험이 커지는 등 그 영향이 매우 복합적이고 불확실합니다. 이러한 복합 재해(multi-hazard) 시나리오를 정확히 평가하지 못하는 것은 기존 인프라의 안전 관리에 있어 심각한 기술적 한계였습니다.

접근 방식: 연구 방법론 분석
본 연구는 홍수와 지진의 복합 작용을 분석하기 위해 비선형 수치 해석 모델을 사용했습니다. 연구진은 5개의 교각을 가진 다경간 교량을 모델링하기 위해 OpenSees 소프트웨어를 활용했습니다.
연구의 핵심은 ‘점진적 세굴’을 모사하는 것이었습니다. 교각 4번(Pier 4) 주변에서 세굴이 발생한다고 가정하고, 세굴 깊이를 0m에서 최대 10m까지 2m 간격으로 증가시켰습니다. 이는 세굴로 인해 교각의 유효 길이가 늘어나는 현상을 물리적으로 모델링한 것입니다.
각 세굴 깊이 조건에서, 연구진은 두 가지 분석을 수행했습니다. 1. 고유치 해석(Eigenvalue Analysis): 세굴 깊이 변화에 따른 교량의 고유 진동수(natural frequency)와 모드 형상(mode shape)의 변화를 분석했습니다. 2. 지진 응답 해석(Seismic Response Analysis): 1999년 아테네 지진 데이터를 입력 하중으로 사용하여, 각 세굴 조건에서 교량의 변위, 가속도, 그리고 각 교각에 걸리는 전단력을 계산했습니다.
이러한 체계적인 시뮬레이션을 통해 세굴이 교량의 내진 성능에 미치는 영향을 정량적으로 평가할 수 있었습니다.

핵심 발견: 주요 연구 결과 및 데이터
결과 1: 세굴로 인한 교량의 동적 특성 변화
세굴은 교량의 구조적 강성을 감소시켜 동적 특성을 크게 변화시켰습니다. 그림 5(Figure 5)는 세굴 깊이가 0m일 때와 10m일 때의 교량 모드 형상을 비교하여 보여줍니다.
- 교각 4번에 10m 깊이의 세굴이 발생했을 때, 교량의 1차 모드(종방향) 주기(period)는 1.46초에서 1.69초로 약 16% 증가했습니다.
- 더 중요한 것은, 2차 모드(횡방향) 주기는 0.31초에서 0.42초로 약 35%나 증가했습니다.
이러한 고유 진동 주기의 변화는 진동 기반 구조 건전성 모니터링(SHM)을 통해 세굴 발생 여부를 원격으로 감지할 수 있는 중요한 지표가 됩니다. 또한, 지진 응답 스펙트럼에서 교량의 응답 위치를 바꾸어 지진 하중의 크기를 변화시키는 직접적인 원인이 됩니다.
결과 2: 지진 하중의 예상치 못한 재분배
세굴은 지진 발생 시 각 교각이 부담하는 하중을 재분배하는 결과를 낳았습니다. 표 3(Table 3)은 세굴 깊이에 따른 각 교각의 최대 전단력을 보여줍니다.
- 세굴이 발생한 교각 4번(Pier 4)의 최대 전단력은 세굴 깊이가 0m일 때 5.72kN이었으나, 10m로 깊어지자 2.92kN으로 약 49% 감소했습니다. 이는 해당 교각의 유연성 증가로 인한 현상입니다.
- 하지만, 인접한 교각 2번(Pier 2)과 교각 3번(Pier 3)의 전단력은 각각 5.63kN에서 5.9kN으로, 5.76kN에서 5.9kN으로 오히려 증가했습니다.
- 교량 전체의 총 전단력 합계(FT)는 19.7kN에서 17.3kN으로 감소했지만, 이는 특정 교각에 하중이 집중되는 위험을 가릴 수 있는 오해의 소지가 있는 결과입니다.
이 결과는 세굴이 발생한 교각 자체는 안전해 보일 수 있지만, 그로 인해 다른 건전한 교각에 과도한 하중이 전달되어 예기치 않은 파괴를 유발할 수 있음을 시사합니다.
R&D 및 운영을 위한 실질적 시사점
- 교량 설계 엔지니어: 이 연구는 세굴과 지진을 별개의 하중 조건으로 설계하는 것의 위험성을 명확히 보여줍니다. 설계 초기 단계에서 CFD 시뮬레이션을 통해 예상 최대 세굴 깊이를 산정하고, 이를 반영한 통합 내진 성능 평가가 필수적입니다.
- 유지보수 및 검사팀: 그림 5의 데이터에서 볼 수 있듯, 세굴은 교량의 고유 진동수에 명확한 변화를 유발합니다. 이는 탁한 물 속에서 직접적인 시각 검사가 어려운 세굴을 원격 진동 모니터링(vibration-based SHM)으로 효과적으로 탐지할 수 있음을 의미하며, 새로운 검사 기준 수립에 활용될 수 있습니다.
- 구조 및 위험 평가 엔지니어: 표 3의 데이터는 국부적인 세굴이 교량 전체의 하중 전달 메커니즘을 어떻게 바꾸는지를 보여줍니다. 특정 부재의 유연성 증가가 다른 부재의 과부하로 이어질 수 있으므로, 다중 재해 시나리오에 기반한 전반적인 시스템 수준의 위험 평가가 필요합니다.
논문 상세 정보
Structural Health Monitoring for Performance Assessment of Bridges under Flooding and Seismic Actions
1. 개요:
- 제목: Structural Health Monitoring for Performance Assessment of Bridges under Flooding and Seismic Actions
- 저자: Luke J. Prendergast, Maria P. Limongelli, Naida Ademovic, Andrej Anžlin, Kenneth Gavin & Mariano Zanini
- 발표 연도: 2018
- 발표 학술지/학회: Structural Engineering International
- 키워드: scour; seismic; damage; hazard; vibration-based methods
2. 초록:
교량은 홍수와 지진 위험으로 인한 파괴적인 환경 작용에 노출될 수 있습니다. 세굴을 유발하는 홍수 작용은 교량 파괴의 주요 원인이며, 횡력을 유발하는 지진 작용은 교각의 연성 요구량을 초과하여 높은 수요를 초래할 수 있습니다. 지진 작용과 세굴이 결합되면, 이는 교량에 영향을 미치는 지배적인 세굴 조건에 따라 달라지는 효과를 낳을 수 있습니다. 세굴로 인한 강성 손실은 교량의 연성 능력을 감소시킬 수 있지만, 유연성을 증가시켜 지진 관성력을 줄일 수도 있습니다. 반대로, 증가된 유연성은 지지력 상실로 인한 상판 붕괴로 이어질 수 있어, 두 현상의 결합 효과에 대해서는 약간의 불확실성이 존재합니다. 홍수와 지진 작용 하에서 교량의 성능을 평가하기 위한 필수적인 단계는 다양한 작용 하에서의 구조적 응답을 재현할 수 있는 수치 모델을 보정하는 것입니다. 다음 단계는 코드가 정의한 성능 목표의 달성 여부를 검증하는 것입니다. 구조 건전성 모니터링(SHM) 기술은 수치 모델 보정 및 성능 목표 준수 여부의 직접적인 확인에 유용한 성능 매개변수의 계산을 가능하게 합니다. 본 논문에서는 세굴 및 지진 작용에 대한 교량 건전성을 모니터링하기 위해 사용되는 다양한 전략을 논의하며, 특히 진동 기반 손상 식별 방법에 중점을 둡니다.
3. 서론:
교량은 인프라 네트워크의 핵심 구성 요소이며, 높은 안전 기준을 유지하면서 수송 중단을 최소화하기 위해 수명을 최대화하는 것이 가장 중요합니다. 전 세계적으로 교량 자산은 노후화되고 있으며 많은 경우 원래의 (의도된) 설계 수명에 접근하고 있습니다. 경제적인 이유로 이러한 구조물을 즉시 교체하는 것은 종종 불가능합니다. 따라서 인프라 유지 관리(IMM) 분야는 유해한 작용으로부터 구조물을 보호하여 서비스 수명을 연장함으로써 자산 재고를 보존하는 것과 관련이 있습니다. 홍수, 지진, 바람 및 온도 변동과 같은 일반적으로 상관관계가 없는 원인으로부터의 환경적 하중은 기존 교량 손상의 주요 원인 중 하나입니다. 본 논문은 홍수와 지진의 복합 작용에 관한 것이므로, 이러한 작용을 논의하는 데 더 많은 주의를 기울입니다.
4. 연구 요약:
연구 주제의 배경:
교량은 홍수로 인한 세굴과 지진이라는 두 가지 주요 자연재해에 의해 심각한 손상을 입을 수 있습니다. 세굴은 교량 기초 주변의 흙을 씻어내어 지지력을 약화시키는 현상이며, 지진은 구조물에 큰 관성력을 가합니다. 이 두 재해는 일반적으로 서로 관련 없이 발생하지만, 한 교량에 연달아 영향을 미칠 경우 그 복합적인 효과는 단일 재해의 효과와는 매우 다를 수 있으며, 이에 대한 이해는 부족한 실정입니다.
이전 연구 현황:
이전 연구들은 주로 세굴 또는 지진 하중에 대해 개별적으로 교량의 거동을 분석해왔습니다. 일부 최근 연구에서 이 두 현상의 공동 효과를 분석하기 시작했지만, 세굴로 인한 강성 감소가 내진 성능에 미치는 영향(긍정적 또는 부정적)에 대한 불확실성은 여전히 남아있습니다. 또한, 구조 건전성 모니터링(SHM) 기술이 각 재해에 대해 개별적으로 개발되어 왔으나, 복합적인 손상 시나리오를 탐지하고 평가하는 데 통합적으로 적용된 사례는 드뭅니다.
연구 목적:
본 연구의 목적은 홍수(세굴)와 지진의 복합 작용 하에서 교량의 성능을 평가하기 위한 구조 건전성 모니터링(SHM) 전략을 논의하는 것입니다. 구체적으로, 세굴이 교량의 동적 특성을 어떻게 변화시키고, 이것이 지진 응답에 어떤 영향을 미치는지 수치 해석을 통해 정량적으로 분석하고자 합니다. 최종적으로는 진동 기반 모니터링 방법이 이러한 복합적인 손상 시나리오를 탐지하는 데 얼마나 효과적인지를 제시하는 것을 목표로 합니다.
핵심 연구:
핵심 연구 내용은 다경간 교량의 비선형 수치 모델을 사용하여 점진적인 세굴이 교량의 내진 성능에 미치는 영향을 분석하는 것입니다. 특정 교각에 다양한 깊이의 세굴을 적용한 후, 실제 지진 기록을 사용하여 동적 해석을 수행했습니다. 이를 통해 세굴 깊이에 따른 교량의 모드 특성(고유 진동수, 모드 형상) 변화와 지진 하중에 대한 응답(변위, 가속도, 교각 전단력) 변화를 분석하여, 두 재해의 상호작용 메커니즘을 규명했습니다.
5. 연구 방법론
연구 설계:
본 연구는 수치 시뮬레이션을 기반으로 한 사례 연구(case study) 설계를 채택했습니다. 5개의 교각을 가진 특정 다경간 교량을 대상으로, 하나의 교각(Pier 4)에 국부적인 세굴이 점진적으로 발생하는 시나리오를 설정했습니다. 세굴 깊이를 독립 변수로, 지진 하중에 대한 교량의 동적 응답(변위, 가속도, 전단력)을 종속 변수로 하여 인과 관계를 분석했습니다.
데이터 수집 및 분석 방법:
- 모델링: 교량의 비선형 거동을 모사하기 위해 구조 해석 프로그램인 OpenSees를 사용했습니다. 교량 상판, 교각, 베어링 등의 구조 요소를 상세히 모델링했습니다.
- 세굴 모사: 세굴은 교각의 유효 길이를 0m에서 10m까지 2m씩 증가시키는 방식으로 모델링했습니다.
- 지진 하중: 1999년 아테네 지진의 가속도 시간이력 데이터를 입력 하중으로 사용했습니다.
- 데이터 분석: 각 세굴 조건에서 고유치 해석을 수행하여 모드 특성을 추출하고, 시간이력해석을 통해 교량의 동적 응답 데이터를 수집하고 비교 분석했습니다.
연구 주제 및 범위:
본 연구는 교량 구조물에 대한 홍수(세굴)와 지진의 복합 작용에 초점을 맞춥니다. 연구 범위는 단일 교각에서 발생하는 국부 세굴이 교량 전체의 내진 성능에 미치는 영향으로 한정됩니다. 토양-구조 상호작용의 복잡한 비선형성이나 다중 지점에서의 세굴 발생과 같은 시나리오는 본 연구의 범위를 벗어납니다. 또한, 구조 건전성 모니터링 기법 중 진동 기반 손상 탐지 방법의 적용 가능성을 논의하는 데 중점을 둡니다.

6. 주요 결과:
주요 결과:
- 모드 특성 변화: 교각 4번에 10m 세굴이 발생했을 때, 교량의 1차 모드 주기는 16%, 2차 모드 주기는 35% 증가하여, 세굴이 교량의 동적 특성에 미치는 영향이 매우 크다는 것을 확인했습니다.
- 지진 응답 변화: 세굴 깊이가 증가함에 따라 교각 4번 상단의 최대 변위는 0.1m에서 0.12m로 증가했으며, 최대 가속도 또한 11.6 m/s²에서 12.4 m/s²로 증가했습니다.
- 전단력 재분배: 세굴된 교각 4번의 최대 전단력은 세굴이 없을 때에 비해 거의 50% 감소했습니다. 반면, 인접한 교각 2번과 3번의 전단력은 소폭(최대 약 5%) 증가하여, 지진 하중이 세굴되지 않은 다른 교각으로 재분배되는 현상을 확인했습니다.
- 전체 시스템 영향: 교량 전체에 작용하는 총 전단력은 세굴이 깊어짐에 따라 감소했지만, 이는 내부적인 하중 재분배로 인해 특정 부재의 위험이 증가할 수 있다는 사실을 가릴 수 있습니다.

Figure List:
- Fig. 1: Arch-bridge damage scenarios: (a) failure under symmetrical scour; (b) failure under asymmetrical scour
- Fig. 2: An example of poor seismic design: the Hyogo-Ken Nanbu earthquake in Japan, 1995
- Fig. 3: Failure due to seismic action: (a) slab unseating in Japan, 1964; (b) slab unseating in the US, 1989
- Fig. 4: Schematic of the non-linear numerical bridge model used in the case study (Units: m)
- Fig. 5: Bridge mode shapes under zero and 10 m scour of Pier 4: (a) mode 1 of the bridge – no scour, (b) mode 1 of the bridge – 10 m scour, (c) mode 2 of the bridge – no scour, (d) mode 2 of the bridge -10 m scour
- Fig. 6: Seismic input ground acceleration for the 1999 Athens earthquake: (a) time history; (b) spectrum of ground acceleration
- Fig. 7: Seismic response of the bridge deck (lateral) at Pier 4 under progressive scour conditions
7. 결론:
손상 작용 하에서의 교량 성능은 증가하는 파괴율과 관련 비용으로 인해 사회적 관심이 커지는 분야입니다. 본 연구는 세굴과 지진이라는 별개의 현상이 동일한 교량에 영향을 미칠 때 발생하는 거동 변화를 조사했습니다. 세굴의 존재는 지진의 영향을 바꾸고 일반적으로 그 위험을 증가시킬 수 있습니다. 세굴은 때때로 유연성을 증가시켜 상부 구조로 전달되는 관성력을 감소시키는 국부적인 이점을 가져올 수 있지만, 일반적으로 세굴이 유발하는 2차 손상 효과는 구조물을 약화시켜 지진 손상 가능성을 악화시키는 경향이 있습니다. 또한, 관성 하중 전달의 국부적 감소는 교량의 다른 요소로의 하중 전달 증가로 상쇄될 가능성이 높습니다. 최근 몇 년간 진동 기반 손상 탐지 방법이 주목받고 있으며, 이는 내진 손상 탐지 분야의 유사한 발전과 맥을 같이합니다. 손상 식별을 위한 진동 기반 방법과 관련된 많은 장점들은 세굴 및/또는 지진 작용 하에서 발생하는 광범위한 손상 시나리오의 식별을 보장하는 가장 실용적인 방법을 제공한다는 가정으로 이어집니다.
8. 참고문헌:
- [1] Hamill L. Bridge Hydraulics. E.& F.N. Spon: London, 1999. 1-367 p.
- [2] Arneson LA, Zevenbergen LW, Lagasse PF, Clopper PE. HEC-18 Evaluating Scour at Bridges. 2012.
- [3] Richardson EV, Davis SR. Evaluating Scour at Bridges. 1995.
- [4] Shirole AM, Holt RC. Planning for a comprehensive bridge safety assurance program. In Transport Research Record. Transport Research Board: Washington, DC, 1991. p. 39-50.
- [5] Wardhana K, Hadipriono FC. Analysis of recent bridge failures in the United States. J. Perform. Constr. Fac. 2003; 17(3): 144-150.
- [6] Prendergast LJ, Hester D, Gavin K. Determining the presence of scour around bridge foundations using vehicle-induced vibrations. J. Bridg. Eng. 2016; 21(10): 1–14.
- [7] Maddison B. Scour failure of bridges. Proc. ICE – Forensic Eng. 2012; 165(FE1): 39-52.
- [8] May RWP, Ackers JC, Kirby AM. Manual on Scour at Bridges and Other Hydraulic Structures. CIRIA: London, 2002. … (이하 생략)
Expert Q&A: 귀하의 질문에 대한 전문가 답변
Q1: 연구에서 세굴 깊이를 최대 10m로 설정한 이유는 무엇인가요? 이는 현실적인 가정인가요?
A1: 논문에 따르면, 10m의 세굴 깊이는 실제 세계에서 단독으로 발생하기는 어려운 ‘극단적인 경우(extreme case)’로 설정되었습니다. 연구진은 이러한 극단적인 조건을 통해 세굴이 교량의 내진 응답에 미치는 영향을 명확하고 확실하게 규명하고자 했습니다. 이는 세굴의 잠재적 위험성을 최대로 평가하고, 그에 따른 구조적 거동 변화의 상한선을 파악하기 위한 분석적 접근입니다.
Q2: 세굴된 교각의 전단력은 감소했는데, 왜 인접 교각의 전단력은 증가했나요? 그 메커니즘은 무엇입니까?
A2: 표 3의 결과는 하중 재분배 현상을 보여줍니다. 세굴로 인해 교각 4번의 기초 강성이 크게 감소하면서 유연해졌습니다. 지진 하중이 가해질 때, 이 유연한 교각은 하중을 충분히 지지하지 못하고 더 많이 변형됩니다. 이로 인해 교각 4번이 부담했어야 할 하중의 일부가 상대적으로 강성이 큰 인접 교각들(교각 2, 3)로 전달되어, 이들의 전단력이 증가하게 된 것입니다. 이는 교량 전체가 하나의 시스템으로 거동하기 때문에 발생하는 현상입니다.
Q3: 진동 기반 모니터링(SHM)이 세굴 탐지에 실질적으로 얼마나 효과적일까요?
A3: 본 연구 결과는 진동 기반 모니터링의 높은 잠재력을 시사합니다. 그림 5에서 보듯이, 세굴은 교량의 고유 진동 주기를 최대 35%까지 변화시켰습니다. 이러한 명확한 변화는 교량에 설치된 가속도계나 다른 센서로 쉽게 감지할 수 있습니다. 이는 직접 접근이 어려운 수중 환경에서도 원격으로, 그리고 지속적으로 교량의 기초 상태를 모니터링할 수 있어 기존의 시각적 검사나 개별적인 수심 측량보다 훨씬 효율적이고 신뢰성 높은 방법이 될 수 있습니다.
Q4: 이 연구는 구조 해석에 중점을 두었는데, CFD 시뮬레이션은 이 과정에서 어떤 역할을 할 수 있나요?
A4: CFD 시뮬레이션은 이 연구의 매우 중요한 선행 단계를 책임질 수 있습니다. 본 연구에서는 세굴 깊이를 가정하여 입력했지만, 실제 상황에서는 이 세굴 깊이를 예측하는 것이 가장 큰 불확실성입니다. FLOW-3D와 같은 CFD 소프트웨어는 특정 홍수 시나리오(유속, 수위 등)에서 교각 주변의 유동 특성과 토사 이동을 정밀하게 시뮬레이션하여 예상되는 최대 세굴 깊이와 범위를 예측할 수 있습니다. 이 CFD 결과를 구조 해석 모델의 입력값으로 사용하면, 본 연구와 같은 복합 재해 평가의 정확성과 신뢰도를 획기적으로 높일 수 있습니다.
Q5: 연구 결과는 모든 종류의 교량에 동일하게 적용될 수 있나요?
A5: 본 연구는 특정 다경간 거더교를 대상으로 한 사례 연구이므로, 결과를 모든 종류의 교량에 일반화하기는 어렵습니다. 예를 들어, 현수교나 사장교와 같이 매우 유연한 구조물이나, 단일 경간 교량의 경우 세굴에 따른 동적 거동 및 하중 재분배 양상이 다를 수 있습니다. 하지만 이 연구는 세굴과 지진의 상호작용이 중요하다는 근본적인 원리를 보여주며, 다른 형태의 교량에서도 유사한 복합 재해 평가가 필요하다는 점을 강력하게 시사합니다.
결론: 더 높은 품질과 생산성을 위한 길
본 연구는 홍수로 인한 교량 세굴 해석이 지진과 같은 다른 재해에 대한 구조물의 안전성을 평가하는 데 얼마나 중요한지를 명확히 보여주었습니다. 세굴로 인한 국부적인 기초 약화는 단순히 해당 부재의 문제로 끝나지 않고, 교량 전체의 동적 특성을 바꾸고 지진 하중을 예상치 못한 방식으로 재분배하여 시스템 전체의 붕괴 위험을 증가시킬 수 있습니다. 따라서, 정확한 수리 분석을 통한 세굴 예측은 신뢰성 있는 다중 재해 위험 평가의 필수적인 첫걸음입니다.
STI C&D에서는 최신 산업 연구를 적용하여 고객이 더 높은 생산성과 품질을 달성할 수 있도록 최선을 다하고 있습니다. 이 논문에서 논의된 과제가 귀사의 운영 목표와 일치한다면, 저희 엔지니어링 팀에 연락하여 이러한 원칙을 귀사의 구성 요소에 어떻게 구현할 수 있는지 알아보십시오.
(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD consulting services를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.
- 연락처 : 02-2026-0442
- 이메일 : flow3d@stikorea.co.kr
Copyright Information
- 이 콘텐츠는 “Luke J. Prendergast” 외 저자의 논문 “Structural Health Monitoring for Performance Assessment of Bridges under Flooding and Seismic Actions”을 기반으로 한 요약 및 분석 자료입니다.
- 출처: https://doi.org/10.1080/10168664.2018.1472534
이 자료는 정보 제공 목적으로만 사용됩니다. 무단 상업적 사용을 금합니다. Copyright © 2025 STI C&D. All rights reserved.