Laser Powder Bed Additive Manufacturing

 

Heat transfer and fluid flow modeling

레이저 파우더 베드 퓨전 (L-PBF) 첨가제 제조에는 복잡한 물리적 공정이 필요합니다. 특히, 흡수 된 레이저 빔 에너지는 입자를 녹여 강한 유체 흐름이 표면 장력 기울기 (또는 Marangoni 전단 응력)에 의해 주로 발생하는 용융 풀을 형성합니다. 열 전달 및 유체 유동은 분말 베드 내의 분말 입자의 국부적 배열에 의해 영향을 받으며, 이는 위치에 따라 다를 수 있습니다. 매우 일시적인 유체 흐름으로 인해 용융 된 풀 표면 (자유 표면)의 형상이 끊임없이 진화하여 최종 표면 품질에 영향을 미칩니다.

Numerical modeling approach

본 연구에서는 분말 포장 특성, 공정 변수 및 용융 풀 역학이 표면 품질에 미치는 영향을 정량적으로 이해하기 위해 두 가지 모델을 순서대로 사용합니다. 첫 번째 모델은 오픈 소스 이산 요소 방법 (DEM) 코드 인 Yade를 기반으로 개발 된 분말 입자 포장 모델입니다. 입자 적층 정보 (예를 들어, 개별 입자의 위치 및 반경)를 제공한다. 이러한 정보는 FLOW-3D를 기반으로 한 3D 과도 용융 풀 모델 인 두 번째 모델에 입력됩니다. 두 모델의 세부 사항은 문헌 [1]에 나와있다. FLOW-3D를 기반으로 한 용융 풀 모델의 특징을 요약하면 다음과 같습니다.

과도 유체 흐름 시뮬레이션은 그림 1에서와 같이 1000 μm (길이), 270 μm (너비) 및 190 μm (높이) 치수의 3D 계산 영역에서 수행됩니다. 도메인은 50 μm 두께의 층 의 분말 입자를 90㎛ 두께의 기판 위에 놓았다. 도메인의 미리 알림은 처음에는 무효로 채워집니다. 분말 층 형상은 DEM 시뮬레이션의 결과를 사용하여 초기화됩니다. 총 셀 수를 줄이면서 공간 분해능을 극대화하기 위해 메쉬 크기가 기판 / 파우더 레이어 인터페이스를 향하여 기판에서 9 μm에서 3 μm까지 연속적으로 감소하는 편향 메쉬가 사용됩니다. 메쉬 크기는 파우더 레이어와 그 위의 빈 공간에서 3 μm로 일정하게 유지됩니다. 총 셀 수는 143 만입니다.

경계 조건의 경우, 가우시안 분포에 기초한 소정의 열유속이 분말 층의 상부 표면에 부과되어 X 방향을 따라 이동하는 레이저로부터의 열 입력을 나타낸다. 온도에 따른 표면 장력은 FLOW-3D에서 사용 가능한 개선 된 표면 장력 모델을 사용하여 포함됩니다. 다른 열 – 물리적 특성의 경우, FLOW-3D 데이터베이스에서 사용 가능한 IN718 합금에 대한 데이터가 사용됩니다.

약 600 마이크로 초 길이의 L-PBF의 과도 시뮬레이션은 약 40 시간의 클럭 시간이 소요되었으며 인텔 ® 제온 ® 프로세서 E5335 및 4GB RAM의 중간 정도급의 워크 스테이션에서 수행되었습니다.

Result and discussion

그림 2는 시간 = 55 μs에서 용융 풀 내의 온도 등면 및 속도 벡터의 종단면도 (즉, 레이저 이동 방향에 평행 한 단면)를 도시한다. 용융 된 풀 경계는 1608.15 K에서 등온선으로 표시되며, IN718의 액상 선 온도입니다. 이 그림의 오른쪽에 표시된 것처럼 입자는 부분적으로 용융 풀로 용융됩니다. 용융 된 풀 표면 근처에서, 용융 금속은 레이저 빔 바로 밑의 중심 위치에서 풀의 후단으로 당겨진다. 풀 표면 근처의 용융 금속의 이와 같은 역류는 풀의 후단을 향해 고비를 형성하는 동안 레이저 빔 아래에서 움푹 들어간 표면 프로파일을 생성한다. 다음에서 논의되는 바와 같이, 혹 모양은 볼 결함의 형성을 초래할 수 있습니다.

볼링(balling)은 그림 3에서와 같이 용융 풀이 불연속으로 분리되어 분리 된 섬으로 갈라질 때 발생할 수있는 결함입니다.이 그림에서 알 수 있듯이 레이저 빔 바로 아래의 용융 풀은 안정적이지 않으며 후단이 빠르게 분리됩니다 정면에서 분리 된 섬을 형성합니다. 분리는 그림 3 (c)와 같이 용융 풀의 중간에있는 보이드에서 시작된다. 이 공극은 레이저가 앞으로 계속 이동하면서 팽창하여 결국 용융 된 풀을 두 부분으로 나눕니다. 도 3 (e) 및 (f). 공극의 형성과 그 팽창은 표면 장력 구배 (Marangoni 효과)에 의해 강한 후진 유동에 의해 유발됩니다.

 

Summary

L-PBF에서의 열 전달 및 유체 흐름의 3D 과도 시뮬레이션은 볼 결함의 형성을 정량적으로 이해하기 위해 수행됩니다. 단순한 선형 트랙 만 시뮬레이션되었지만, 본 모델은 최종 빌드 품질의 중요한 속성 인 용융 풀 표면 프로파일 및 볼링 결함 형성을 연구 할 때 분말 레벨 시뮬레이션의 중요성을 보여줍니다.

뿐만 아니라 위의 금속 분말 소결 시뮬레이션은 금속 3D 프린팅(Metal 3D Printing) 산업의 핵심 기술이며 차후 많은 연구와 응용이 기대되는 분야가 될 것입니다.

Acknowledgements

이 자료는 수상 번호 N00014-14-1-0688하에 미해군 연구소(ONR)가 지원하는 연구과제에 기초로 작성되었습니다.

References

[1] Y.S. Lee and W. Zhang, Mesoscopic Simulation of Heat Transfer and Fluid Flow in Laser Powder Bed Additive Manufacturing, In: 2015 Annual International Solid Freeform Fabrication Symposium, Austin, TX, pp. 1154-1165, August 2015.