파도 / Waves

FLOW-3D 는 비정형 파뿐만 아니라 일반 선형 및 비선형파 표면을 시뮬레이션 할 수 있는 기능이 있습니다. 선형파는 작은 진폭 및 급경사를 갖는 사인파 표면 프로파일을 가지며, 비선형파는 선형 파보다 더 큰 진폭 (유한 진폭), 더 뾰족한 볏 및 평탄한 골짜기를 갖는다. 비선형 파는 파동 문자와 그 해를 구하기 위해 사용 된 수학적 방법에 따라 스톡 (stookes), 코니이드 (cnoidal) 파 및 독방 파로 분류 될 수 있습니다.

그림 1. 다른 진행파의 프로파일 비교
도 1 및도 2에 도시 된 바와 같이, 스톡스 파는 심층 및 과도수의 주기적인 파이다. Cnoidal 파는 얕은 물과 중간 물에서 긴주기적인 파이고 Stokes 파보다 더 뾰족한 볏과 평평한 골짜기를 가지고 있습니다. 스톡스와 코니 형 파와 달리 독방 파는 얕은 물과 과도 수에서 존재하는 비 주기적 파이다. 그것은 하나의 산마루와 물마루를 가지며 완전히 방해받지 않은 수면 위입니다. 수학적으로 파장이 무한대가 될 때 그것은 코니 형 파의 제한적인 경우입니다. 심층수, 과도 수 및 파도에 대한 얕은 물의 분류는 표 1에서 찾아 볼 수있다.

그림 2. 다양한 파도의 적용 범위 (Le Méhauté, 1976, Sorensen, 2005 및 USACE, 2008). d : 평균 수심; H : 파고; T : 파주기; g : 중력 가속도

선형 파 이론 (Airy, 1845)이 많은 응용 분야에서 사용되었지만 비선형 파 이론은 파동의 진폭이 작지 않은 경우 선형 파 이론보다 정확도가 크게 향상되었습니다. FLOW-3D 에서 3 개의 비선형 파 이론이 5 차 스톡스 파 이론 (Fenton, 1985), 스톡스 및 코니이드 파에 대한 푸리에 급수 방법 (Fenton, 1999), McCowan의 독방 파 이론 (McCowan, 1891, Munk, 1949). 그 중에서 Fenton의 Fourier 시리즈 방법은 선형 물, 스톡 (Stokes) 및 코니형 (cnoidal) 파를 포함하여 심층수, 과도 수 및 얕은 물에서 모든 종류의 주기적 전파 파들에 유효합니다. 또한 다른 웨이브 이론보다 정확도가 높습니다 (USACE, 2008). 따라서 모든 수심에서 선형 및 비선형 주기파의 모든 유형을 생성하는 것이 권장되는 방법입니다. solitary wave의 경우, FLOW-3D 에 사용 된 McCowan의 이론은 Boussinesq (1871)에 의해 개발 된 다른 널리 사용되는 이론보다 더 높은 주문 정확도를 갖는다.

그림 3. PM과 JOHNSWAP 스펙트럼 (USCE, 2006에서 적응)

Classifications d /\lambda
Deep water 1/2 to ∞
Transitional water 1/20 to 1/2
Shallow water 0 to 1/20

불규칙한 물결은 파도의 물성이 일정하지 않은 자연적인 바다의 상태를 나타냅니다. FLOW-3D에서 불규칙한 파동은 다양한 진폭과 주파수 및 임의의 위상 변이를 갖는 많은 선형 성분 파의 중첩으로 표현됩니다. Pierson-Moskowitz (Pierson and Moskowitz, 1964)와 JONSWAP 파력 에너지 스펙트럼 (Hasselmann, et al., 1973)은 FLOW-3D에서 구성 요소 파를 생성하기 위해 구현된다. 다른 웨이브 에너지 스펙트럼은 사용자 정의 데이터 파일을 가져와서 사용할 수 있습니다.

계산 시간을 절약하기 위해 웨이브는 메시 블록 경계에서뿐만 아니라 초기 조건으로 정의 될 수 있습니다.

아래의 애니메이션은 웨이브 초기화가 있거나없는 웨이브의 모든 유형에 대한 예제를 보여줍니다.
선형 및 비선형 수위 시뮬레이션을 위해 FLOW-3D 의 성공적인 적용이 이루어졌습니다. Bhinder 외의 예를 참조하십시오. al (2009), Chen (2012), Hsu et. al (2012) Thanyamanta et. al (2011) 및 Yilmaz et. 자세한 내용은 알 (2011)을 참조하십시오.






References

Airy, G. B., 1845, Tides and Waves, Encyc. Metrop. Article 102.

Bhinder, M. A., Mingham, C. G., Causon, D. M., Rahmati, M. T., Aggidis, G. A. and Chaplin, R.V., 2009, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA), Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii.

Boussinesq, J., 1871, Theorie de L’intumescence Liquide Appelee Onde Solitaire ou de Translation se Propageant dans un Canal Rectangulaire, Comptes Rendus Acad. Sci. Paris, Vol 72, pp. 755-759.

Chen, C. H., 2012, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University.

Fenton, J. D., 1985, A Fifth-Order Stokes Theory for Steady Waves, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 111, No. 2.

Fenton, J. D., 1999, Numerical Methods for Nonlinear Waves, Advances in Coastal and Ocean Engineering, Vol. 5, ed. P.L.-F. Liu, pp. 241-324, World Scientific: Singapore, 1999.

Hasselmann, K., Barnet, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H., 1973, Measurement of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), German Hydrographic Institute, Amburg.

Hsu, T. W., Lai, J. W. and Lan, Y., J., 2012, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China.

Kamphuis, J. M., 2000, Introduction to Coastal Engineering and Management, World Scientific, Singapore.

Le Méhauté, B., 1976, An Introduction to Hydrodynamics and Water Waves, Springer-Verlag.

McCowan, J., 1891, On the solitary wave, Philosophical Magazine, Vol. 32, pp. 45-58.

Munk, W. H., 1949, The Solitary Wave Theory and Its Application to Surf Problems, Annals New York Acad. Sci., Vol 51, pp 376-423.

Pierson W. J. and Moskowitz, L., 1964, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitiagordskii, J. Geophys. Res. 9, pp. 5181-5190.

Thanyamanta, W., Herrington, P. and Molyneux, D., 2011, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands.

USACE (U.S. Army Corps of Engineers), 2006, Coastal Engineering Manual, EM 1110-2-1100, Washington, DC.

Yilmaz, N., Trapp, G. E., Gagan, S. M. and Emmerich, T., R., 2011 CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp. 537-541