퇴적-세굴(쇄굴) / Sediment Scour

유체 역학과 완벽하게 연계된 FLOW-3D 의 sediment scour model은 침전물 수송, 부유물 운반, 인입 및 퇴적을 포함하여 비 점착성 토양의 모든 퇴적물 이동 과정을 모의 실험합니다 (Wei 등, 2014). 입자 크기, 질량 밀도 및 임계 전단 응력과 같은 다른 성질을 갖는 다중 퇴적물 종을 허용합니다. 예를 들어, 중간 모래, 거친 모래 및 자갈은 시뮬레이션에서 세 가지 종으로 분류 할 수 있습니다. 이 모델은 3D 흐름과 2D 천수(shallow water) 흐름에 모두 적용됩니다.

모델에서, 퇴적물의 충진 층은 퇴적물 종의 상이한 조합을 갖는 다수의 하위 구성 요소로 구성 될 수있는 하나의 기하학적 구성 요소에 의해 정의됩니다. 충전된 베드는 면적 및 부피 분율을 사용하는 FAVORTM 기술에 의해 기술된다. 베드 인터페이스를 포함하는 메쉬 셀에서 인터페이스의 위치, 방향 및 면적이 계산되어 베드 전단 응력, 임계 실드 매개 변수, 침식 속도 및 베드로의 전송 속도를 결정합니다. 3 차원 난류 유동에서의 전단 응력은 매체 입자 크기 50 에 비례하는 층 표면 거칠기를 고려한 표준 벽 함수를 사용하여 평가됩니다. 2D 천수(shallow water)의 경우, 층 전단 응력 계산은 항력 계수가 사용자 정의이거나 수심과 층 표면 거칠기를 사용하여 국부적으로 계산 된 2 차 법칙을 따릅니다.

그림 1. t = 8 분에서의 유량
이 모델은 Meyer-Peter와 Muller (1948)의 방정식을 사용하여 베드 인터페이스를 포함하는 각 메쉬 셀에서의 베드로드 이송을 계산합니다. 서브 메쉬 (submesh) 방법은 메쉬 셀에서 이웃에있는 각 메쉬 셀로 이동하는 입자의 양을 결정하는 데 사용됩니다. 부유 퇴적물 농도는 퇴적물 수송 방정식을 풀음으로써 얻어집니다. 침식의 계산은 침전물 유입 및 침전을 동시에 고려합니다. entrainment에서 입자의 리프팅 속도는 Winterwerp et al. (1992). 퇴적시의 침강 속도는 3D 유동에 대한 퇴적물의 표류 속도와 같지만 얕은 수류에 대해서는 현존 방정식을 사용하여 계산됩니다 (Soulsby, 1997). 드리프트 플럭스 이론 (Breitour and Hirt, 2009)은 입자의 드리프트 속도를 계산하는 데 사용됩니다.

그림 2. t = 8 분의 구멍 채취
이 페이지의 예는 3 개의 원통형 교각을 중심으로 한, 맑은 물 정화에 대한 시뮬레이션입니다. 교각의 지름은 1.5m이며, 교각은 2m 간격으로 나란히 배치되어 있습니다. 다가오는 유량은 실린더와 정렬되며 2m/s의 속도를가집니다. 베드 재료는 모래 (직경 5mm), 자갈 (10mm) 및 거친 자갈 (20mm) 인 세 가지 퇴적물 종으로 구성됩니다. 그림 1, 2 및 3은 8 분간 실린더 주변의 흐름, 채취 구멍 및 채취 깊이 분포를 보여줍니다.

그림 3. t = 8min에서의 정련 깊이 (양수 값) 및 침전 높이 (양수 값)
이 모델에 대한 더 자세한 정보는 침전물 퇴적에 관한 Flow Science Report를 다운로드하십시오.