이 기술 요약은 Zhida Liang 외 저자가 발표한 “High-Ti inducing local η-phase transformation and creep-twinning in CoNi-based superalloys” 논문을 기반으로 하며, STI C&D가 기술 전문가를 위해 분석 및 요약했습니다.
키워드
- Primary Keyword: 코발트-니켈 초합금(CoNi-based superalloys)
- Secondary Keywords: 크리프 저항성(creep resistance), 상변태(phase transformation), 티타늄 함량(Ti content), 미세 트위닝(microtwinning), 평면 결함(planar defects)
Executive Summary
- The Challenge: 고온 초합금의 강도와 연성을 동시에 확보하기 위해 합금 원소가 석출물 전단 메커니즘에 미치는 영향을 정밀하게 제어하는 것이 핵심 과제입니다.
- The Method: 티타늄(Ti)과 알루미늄(Al)의 비율을 다르게 설정한 코발트-니켈(CoNi) 기반 초합금을 제작하여, 950°C 고온 크리프 시험, 주사투과전자현미경(STEM) 분석 및 제일원리계산(DFT)을 통해 변형 메커니즘을 분석했습니다.
- The Key Breakthrough: Ti 함량이 증가함에 따라 주된 석출물 전단 메커니즘이 역위상 경계(APB)에서 초격자 외부 적층결함(SESF)으로 전환되며, 이 SESF 영역에서 국부적으로 강화상인 η상이 형성됨을 최초로 규명했습니다.
- The Bottom Line: 높은 Ti 함량은 크리프 저항성을 향상시키지만, 동시에 재료에 해로운 미세 트윈(microtwin) 형성을 촉진하므로, 초합금 설계 시 최적의 Ti/Al 비율(본 연구에서는 0 < Ti/Al < 1을 제안)을 찾는 것이 매우 중요합니다.
The Challenge: Why This Research Matters for CFD Professionals
항공우주 및 발전 터빈과 같은 고온 환경에서 사용되는 초합금의 성능은 크리프 저항성에 의해 결정됩니다. 크리프 저항성은 주로 합금 내에 존재하는 γ'(감마 프라임) 석출물이 고온에서 전위의 이동을 얼마나 효과적으로 막아주는지에 달려있습니다. 하지만 고온 및 응력 환경에서는 전위가 석출물을 잘라내며(shearing) 소성 변형을 일으키는데, 이 전단 메커니즘은 합금의 조성에 따라 복잡하게 변화합니다. 특히 티타늄(Ti)과 같은 합금 원소는 γ’ 석출물의 안정성과 변형 거동에 큰 영향을 미치지만, Ti 함량 변화가 CoNi 기반 초합금의 평면 결함 유형(APB, SESF 등)과 국부적인 상변태에 미치는 영향에 대한 연구는 제한적이었습니다. 이러한 미세조직 변화를 예측하고 제어하지 못하면 부품의 수명과 신뢰성을 보장할 수 없으므로, 이는 재료 개발자와 엔지니어에게 중요한 기술적 과제입니다.
![Fig. 1. Supercell models of first-principles calculations. (a) supercell models of bulk optimization for binary, ternary and quaternary L12-Co-based phases; (b) top view of stacking fault supercells with atomic distributions of A, B and C layers; (c) generation of APB and CSF through planar shearing; (d) generation of SISF and SESF through planar shearing along [1̅1̅2] direction.](https://www.flow3d.co.kr/wp-content/uploads/image-975.webp)
The Approach: Unpacking the Methodology
본 연구는 CoNi 기반 초합금에서 Ti/Al 비율 변화가 크리프 변형 메커니즘에 미치는 영향을 규명하기 위해 체계적인 실험과 계산을 병행했습니다.
- 소재: 연구진은 Co-30Ni-(12.5-x)Al-xTi-2.5Mo-2.5W (x=0, 4, 8 at.%) 조성을 갖는 다결정 CoNi 기반 초합금(0Ti, 4Ti, 8Ti)을 진공 아크 용해로 제작했습니다. 이후 1250°C에서 24시간 균질화 처리 및 900°C에서 220시간 시효 처리를 통해 안정적인 γ/γ’ 미세조직을 형성했습니다.
- 크리프 시험: 각 합금 시편에 대해 950°C의 고온 및 241 MPa의 압축 응력 조건에서 크리프 시험을 수행하여 변형 저항성을 평가했습니다.
- 미세조직 분석: 크리프 변형 후 시편의 미세조직 변화를 관찰하기 위해 주사전자현미경(SEM-BSE), 전자후방산란회절(EBSD) 분석을 수행했습니다. 또한, 원자 수준의 결함 구조와 국부적인 화학 조성을 분석하기 위해 고각 환형 암시야상(HAADF-STEM) 및 에너지 분산형 X선 분광법(EDS)을 활용했습니다.
- 이론 계산: 관찰된 평면 결함의 형성 경향성을 이론적으로 뒷받침하기 위해, 제일원리계산(DFT)을 이용하여 다양한 조성의 L1₂ 구조에서 역위상 경계(APB), 복합 적층결함(CSF), 초격자 고유/외부 적층결함(SISF/SESF)의 형성 에너지를 계산했습니다.

The Breakthrough: Key Findings & Data
본 연구를 통해 Ti 함량이 CoNi 초합금의 크리프 변형 메커니즘과 미세조직 안정성에 미치는 영향에 대한 두 가지 핵심적인 발견을 이루었습니다.
Finding 1: Ti 함량이 평면 결함 유형을 결정 (APB → SESF 전환)
Ti 함량은 γ’ 석출물의 주된 전단 메커니즘을 근본적으로 변화시켰습니다. 그림 3(b)의 STEM 이미지에서 볼 수 있듯이, Ti가 없거나(0Ti) 낮은(4Ti) 합금에서는 역위상 경계(APB)가 주된 평면 결함으로 관찰되었습니다. 반면, Ti 함량이 높은(8Ti) 합금에서는 초격자 외부 적층결함(SESF)이 지배적으로 형성되었습니다. 이는 그림 11의 DFT 계산 결과로 뒷받침되는데, 저-Ti 합금에서는 APB 형성 에너지가 CSF 에너지보다 낮아 APB 형성이 유리하지만, 고-Ti 합금에서는 이 경향이 역전되어 CSF 형성, 즉 적층결함(SF) 형성이 더 유리해지기 때문입니다.
Finding 2: 화학적 편석이 국부적 상변태를 유도
평면 결함 주변의 원소 편석 현상은 국부적인 상변태를 유발하여 재료의 기계적 특성을 변화시켰습니다.
- 저-Ti 합금 (APB): 그림 6의 EDS 분석 결과, APB 영역에는 Co가 농축되고 Ni, Al, Mo, W가 결핍되었습니다. 이는 국부적으로 γ’ 상(L1₂)이 무질서한 γ 상(A1)으로 변태하여 연화(softening)되는 현상을 의미합니다.
- 고-Ti 합금 (SESF): 그림 8의 분석 결과, SESF 영역에는 Co, Mo, W 및 Ti가 농축되고 Ni, Al이 결핍되었습니다. 이러한 조성 변화는 국부적으로 정렬된 η 상(D0₂₄)을 형성하여 강화(strengthening) 효과를 나타냅니다. 하지만 이 강화된 SESF는 크리프 변형을 가중시키는 미세 트윈의 ‘배아’ 역할을 하여 장기적인 크리프 수명에는 오히려 해로울 수 있습니다.
Practical Implications for R&D and Operations
- 공정 엔지니어 (재료/합금 설계자): 본 연구는 Ti/Al 비율이 크리프 거동을 제어하는 핵심 변수임을 시사합니다. 0과 1 사이의 Ti/Al 비율을 적용하면 SESF 형성을 통한 강화 효과를 활용하면서도 과도한 미세 트위닝 위험을 완화하여 강도와 수명을 최적화할 수 있습니다.
- 품질 관리팀: 고-Ti 합금에서 크리프 변형 후 관찰되는 미세 트윈(그림 4의 EBSD 분석)은 잠재적인 취성 파괴의 주요 지표가 될 수 있습니다. 이는 고온 환경에서 사용되는 부품의 새로운 품질 검사 기준으로 활용될 수 있습니다.
- 설계 엔지니어: 고-Ti 함량이 η 상과 트위닝을 촉진한다는 결과는, 특히 고온 저응력 크리프 환경에 노출되는 부품 설계 시 과도하지 않게 정밀 제어된 Ti 함량을 갖는 초합금을 지정하는 것이 장기적인 구조적 안정성 확보에 매우 중요함을 의미합니다.
Paper Details
High-Ti inducing local η-phase transformation and creep-twinning in CoNi-based superalloys
1. Overview:
- Title: High-Ti inducing local η-phase transformation and creep-twinning in CoNi-based superalloys
- Author: Zhida Liang, Jing Zhang, Li Wang, Florian Pyczak
- Year of publication:
- Journal/academic society of publication:
- Keywords: Superalloys, Transmission electron microscopy, First-principles calculations, Twinning, Phase transformation
2. Abstract:
본 연구에서는 Ti/Al 비율이 다른 L1₂ 함유 CoNi 기반 합금의 압축 크리프 중 석출물 전단 메커니즘을 조사했다. 950°C, 241 MPa의 일정 하중 응력 하에서 중단 크리프 시험을 수행했다. CoNi 기반 합금에서 Ti/Al 비율이 증가함에 따라 크리프 저항성이 증가하는 것을 발견했다. 또한, Ti 함량이 증가함에 따라 석출물 전단 중 (111) 평면의 평면 결함 유형이 역위상 경계(APB)에서 초격자 외부 적층결함(SESF)으로 변하는 것을 처음으로 발견했다. 즉, γ’ 상의 전단은 Ti가 없거나 낮은 합금에서는 주로 APB에 의해 지배되지만, 고-Ti 합금에서는 SESF에 의해 지배된다. 밀도범함수이론(DFT)을 사용하여 Ti가 없거나 낮은 합금에서는 APB 에너지가 복합 적층결함(CSF) 에너지보다 낮지만, 고-Ti 함유 합금에서는 이 상황이 반대가 됨을 발견했다. 추가적으로, L1₂-(Co,Ni)₃Ti 구조에서 SESF 에너지는 SISF 에너지보다 낮아 고-Ti 합금에서 SESF 형성을 강력하게 지지한다. 주사투과전자현미경 모드에서의 에너지 분산형 X선 분광법 분석을 통해, 관찰된 화학적 편석이 Ti가 없거나 낮은 합금에서는 APB가 무질서한 γ상 구조로 변하게 하고, 고-Ti 합금에서는 SESF가 국부적으로 정렬된 η상 구조로 변하게 함을 확인했다. 그러나 미세 트윈 또한 고-Ti 합금에서 발견되었는데, 이는 일반적으로 SESF나 APB와 같은 다른 평면 결함보다 더 높은 크리프 변형을 유발한다. 이 발견은 초합금 설계에서 Ti 함량을 합리적으로 사용하는 방법에 대한 새로운 통찰력을 제공한다.
3. Introduction:
초합금의 고온 크리프 저항성은 전위의 활주와 전단을 막는 정합적인 정렬된 석출물의 높은 함량에서 비롯된다. 크리프 중 석출물에 축적된 응력은 결국 전단을 일으킬 만큼 높아진다. 합금 조성, 적용 응력, 시험 온도의 차이에 따라 다양한 γ’ 석출물 전단 모드가 활성화된다. 일반적으로 낮은 응력과 높은 온도에서는 Ni 기반 및 CoNi 기반 초합금의 γ’ 석출물 전단은 역위상 경계(APB)를 남기는 쌍을 이룬 a/2<110> 전위의 이동에 의해 지배된다. 그러나 Co 기반 초합금에서의 γ’ 석출물 전단은 단일 a/3<112> 초-쇼클리 부분 전위의 활주에 의해 발생하며, 초격자 고유 적층결함(SISF)을 남긴다. 중간 온도 범위(600~850°C)에서는 초격자 적층결함(SSF) 및 변형 트위닝을 포함한 재배열 매개 γ’ 석출물 전단 모드가 우세해진다. 본 연구는 CoNi 기반 초합금에서 Ti 함량 변화가 이러한 변형 메커니즘, 특히 평면 결함의 유형 변화와 국부적 상변태에 미치는 영향을 규명하고자 한다.
4. Summary of the study:
Background of the research topic:
초합금은 항공기 엔진, 발전 터빈 등 고온 고응력 환경에서 사용되는 핵심 소재로, 크리프 저항성이 성능을 좌우한다. 이 저항성은 기지상(γ)에 분포된 강화상(γ’) 석출물에 의해 발현된다.
Status of previous research:
기존 연구들은 Ni 기반 또는 Co 기반 초합금에서 다양한 변형 메커니즘(APB, SISF, SESF, 트위닝)을 규명해왔다. 특히 Nb, Ta과 같은 원소가 SESF를 따라 η상을 형성시켜 강화 효과를 나타낸다는 보고가 있었으나, CoNi 기반 초합금에서 Ti 원소가 크리프 변형 및 상변태에 미치는 영향에 대한 연구는 매우 제한적이었다.
Purpose of the study:
본 연구의 목적은 CoNi 기반 초합금에서 Ti/Al 비율을 체계적으로 변화시키면서 고온 저응력 크리프 조건 하에서 발생하는 석출물 전단 메커니즘의 변화를 규명하는 것이다. 특히 Ti 함량이 평면 결함의 종류(APB vs. SESF)를 결정하고, 결함 주변의 원소 편석을 통해 국부적인 상변태(γ’→γ 또는 γ’→η)를 유도하며, 최종적으로 미세 트위닝에 미치는 영향을 밝히고자 한다.
Core study:
Ti 함량이 다른 CoNi 기반 합금(0Ti, 4Ti, 8Ti)을 대상으로 950°C에서 크리프 시험을 수행하고, STEM-EDS와 같은 첨단 분석 기법을 이용하여 변형 후 미세조직을 원자 수준에서 분석했다. 또한, DFT 계산을 통해 실험적으로 관찰된 평면 결함의 안정성을 이론적으로 검증했다. 이를 통해 Ti 함량이 증가함에 따라 ①크리프 저항성 증가, ②주요 평면 결함이 APB에서 SESF로 전환, ③SESF에서 국부적 η상 형성, ④미세 트윈 형성 촉진이라는 일련의 과정을 종합적으로 규명했다.
5. Research Methodology
Research Design:
본 연구는 실험적 접근과 이론적 계산을 결합한 설계 방식을 채택했다. 실험적으로는 CoNi 기반 초합금의 Ti/Al 비율을 주요 변수로 설정하여 세 종류의 합금(0Ti, 4Ti, 8Ti)을 설계 및 제작했다. 이 합금들을 동일한 고온 크리프 조건에 노출시킨 후, 미세조직의 변화, 특히 평면 결함의 유형과 분포를 비교 분석했다.
Data Collection and Analysis Methods:
- 데이터 수집: 크리프 시험기(Satec Systems)를 사용하여 시간-변형률 곡선을 수집했다. FE-SEM, EBSD, TEM(Thermo Fisher Scientific Themis Z, Talos 200i)을 이용하여 변형 후 미세조직 이미지, 결정 방위 정보, 원자 분해능 구조 이미지, 그리고 결함 주변의 국부 화학 조성(EDS 맵핑 및 라인 스캔) 데이터를 수집했다.
- 데이터 분석: 수집된 크리프 곡선을 비교하여 Ti 함량에 따른 크리프 저항성을 정량적으로 평가했다. TEM 이미지를 통해 평면 결함의 유형(APB, SESF)을 식별하고, EBSD 데이터를 분석하여 미세 트윈의 존재와 결정학적 관계를 확인했다. EDS 데이터를 정량 분석하여 결함 영역에서의 원소 편석 경향을 파악했다. VASP 코드를 이용한 DFT 계산을 통해 각 결함의 형성 에너지를 계산하고 실험 결과와 비교하여 메커니즘을 해석했다.
Research Topics and Scope:
본 연구는 L1₂ 강화 CoNi 기반 다결정 초합금을 대상으로 한다. 연구의 핵심 주제는 ‘Ti 함량이 고온 크리프 변형 중 석출물 전단 메커니즘, 국부적 상변태 및 미세 트위닝에 미치는 영향’이다. 연구 범위는 합금 설계 및 제조, 고온 크리프 시험, 다중 스케일 미세조직 분석(SEM, EBSD, STEM), 그리고 제일원리계산을 포함한다.
6. Key Results:
Key Results:
- Ti/Al 비율이 증가할수록 CoNi 기반 초합금의 크리프 저항성이 현저히 향상되었다.
- Ti 함량이 증가함에 따라 γ’ 석출물 내 주된 평면 결함의 유형이 역위상 경계(APB)에서 초격자 외부 적층결함(SESF)으로 변화했다.
- 저-Ti 합금의 APB에서는 Co가 농축되어 국부적으로 무질서한 γ상으로 변태(연화)하는 경향을 보였다.
- 고-Ti 합금의 SESF에서는 Co, Ti, Mo, W가 농축되어 국부적으로 정렬된 η상으로 변태(강화)하는 경향을 보였다.
- Ti 함량이 8 at.% 이상인 합금에서는 장시간 시효 처리 시 벌크(bulk) η상이 형성되었으며, 크리프 변형 중에는 미세 트윈이 형성되었다.
- DFT 계산 결과, 고-Ti 합금에서 APB 에너지보다 CSF 에너지가 낮아져 SF 형성이 유리해지며, SESF가 SISF보다 안정적인 것으로 나타나 실험 결과를 뒷받침했다.
![Fig. 6. Chemical fluctuations analysis around an APB region on a (111) plane in alloy 0Ti. (a) HAADF-STEM image of the ' precipitate with APBs taken along [011] beam direction. (b) Magnified image of white rectangular marked in (a). (c) Composite chemical map of elements Co, Ni, Al, Mo and W. (d)-(h) Net intensity elemental maps of elements Co, Ni, Al, Mo and W. (i) and (j) EDS line scan integrated along the APB in the region marked in (c).](https://www.flow3d.co.kr/wp-content/uploads/image-978.webp)
Figure List:
- Fig. 1. Supercell models of first-principles calculations. (a) supercell models of bulk optimization for binary, ternary and quaternary L1₂-Co-based phases; (b) top view of stacking fault supercells with atomic distributions of A, B and C layers; (c) generation of APB and CSF through planar shearing; (d) generation of SISF and SESF through planar shearing along [112] direction.
- Fig. 2. Compression creep test of alloys 0Ti, 4Ti and 8Ti at 950 °C with applied stress of 241 MPa.
- Fig. 3. (a) Post-mortem SEM-BSE images for compressive creep specimens of alloys 0Ti, 4Ti and 8Ti. (b) HAADF-STEM (0Ti, 4Ti and 8Ti) images of dislocation networks and planar defects (SESF and APBs) taken near the [110] zone axis. (The white arrows indicate planar defects and red arrows indicate dislocation networks.)
- Fig. 4. Creep twinning identification by EBSD in the crept specimen of alloys 8Ti. (a) Pattern quality map, (b) Inverse pole figure (IPF) map and (c) Misorientation distribution of IPF in (b).
- Fig. 5. (a) HAADF-STEM image of ‘isolated’ SESFs taken near the [110] zone axis in alloy 8Ti. (b) HRSTEM micrograph showing an SESF terminating in an ISF. (c) Center of symmetry (COS) visualization of the area highlighting the deviations from crystal symmetry produced by the stacking fault in Fig. 5(b).
- Fig. 6. Chemical fluctuations analysis around an APB region on a (111) plane in alloy 0Ti. (a) HAADF-STEM image of the γ’ precipitate with APBs taken along [011] beam direction. (b) Magnified image of white rectangular marked in (a). (c) Composite chemical map of elements Co, Ni, Al, Mo and W. (d)-(h) Net intensity elemental maps of elements Co, Ni, Al, Mo and W. (i) and (j) EDS line scan integrated along the APB in the region marked in (c).
- Fig. 7. Chemical fluctuations analysis around an APB region on a (001) plane in alloy 4Ti. (a) HAADF-STEM image of the γ’ precipitate with an APB taken along [001] beam direction. (b) Magnified image of white rectangular marked in (a). (c) Composite chemical map of elements Co, Ni, Al, Ti, Mo and W. (d) and (e) EDS line scan integrated along the APB in the region marked in (c).
- Fig. 8. Chemical fluctuations analysis in alloy 8Ti. (a) HAADF-STEM image of SESFs in [011] beam direction. (b) Net intensity elemental maps of two vertical SESFs. (c) The integrated EDS line scanning curves represent the area incorporated into the vertically integrated line scan shown from (b).
- Fig. 9. (a) SEM-BSE image with the coarse lath-like η phase in alloy 8Ti after 1036 h aging heat treatment at 900 °C. (b) Compositions (at.%) comparison of the γ’ phase, SESF region (local η phase) and lath η phase. (The composition details were shown in Table 2.)
- Fig. 10. SEM-BSE images (a-g) and EBSD images (h₁ and h₂) of alloys 0Ti, 2Ti, 4Ti, 6Ti, 8Ti, 10Ti and 12.5Ti after homogenization heat treatment at 1250 °C. (In the EBSD images, the red phases are the η phases and the blue phases are the mixed γ and γ’ phases.)
- Fig. 11. (a) E(111)APB and E(111)CSF energies (mJ/m²) of the L1₂-Co₃Ti, L1₂-Co₃(Al,W) and L1₂-Ni₃Al structures calculated by the DFT method in literatures [33-39]. (b) E(111)APB and E(111)CSF energies (mJ/m²) of the L1₂-(Co₀.₅,Ni₀.₅)₃(Al₀.₅,Mo₀.₅), L1₂-(Co₀.₅,Ni₀.₅)₃(Al₀.₅,Ti₀.₅) and L1₂-(Co₀.₅,Ni₀.₅)₃Ti structures calculated by DFT method. (c) The discrepancy of the calculated E(111)SISF and E(111)SESF energies (mJ/m²) of the L1₂-(Co₀.₅,Ni₀.₅)₃Ti structures by DFT method.
- Fig. 12. Comparison of dislocation-precipitate shearing mechanisms during creep at high temperatures, i.e. 950 °C, in Ti-free, low-Ti and high-Ti CoNi based superalloys.
- Fig. 13. (a) HAADF-STEM image of L1₂-γ’ phase, SESF and D0₂₄-η lath in 10Ti alloy taken close to [110] beam direction. (b) Selected area electron diffraction (SAED) pattern obtained from L1₂-γ’ phase and D0₂₄-η phase.
- Fig. 14. Summary of Ti content dependent fault shearing modes and local phase transformation (LPT) effects.
7. Conclusion:
본 연구는 950°C 저응력 크리프 조건에서 Ti 함량이 다른 CoNi 기반 초합금의 γ’ 석출물 전단 메커니즘을 조사했다. 선호되는 전단 모드는 γ’ 석출물 내에 존재하는 평면 결함의 종류를 결정하는 APB와 CSF 에너지에 의해 영향을 받을 가능성이 높다. Ti가 없거나 낮은 초합금에서는 APB 에너지가 CSF 에너지보다 낮다. 따라서 γ’ 상의 전단은 주로 a/2<110> 초격자 전위에 의해 발생하며, (111) 및 (001) 결정면의 APB에서 원소 편석에 의해 γ상으로의 국부적 상변태를 유발한다. 고-Ti 초합금에서는 APB 에너지가 CSF 에너지보다 높다. APB 형성은 불리해지고, γ’ 전단은 a/6<121> 부분 전위의 이동에 의해 발생하여 높은 에너지의 CSF를 생성한다. 이후 이 CSF들은 고온에서 원소 재배열 및 편석을 동반하여 낮은 에너지의 SESF로 변환된다. SESF에서의 편석은 γ’ 석출물 내부에 정렬된 η상을 형성함으로써 국부적인 상변태 강화를 일으키는 것으로 나타났다. 문헌에 따르면, η형 SESF 형성은 크리프 트위닝 형성을 어느 정도 억제할 수 있지만, 크리프 변형과 시간이 지남에 따라 이 SESF는 더 두꺼워져 미세 트윈으로 변형될 수 있다. 미세 트위닝은 전체 크리프 변형에 상당한 기여를 할 수 있으므로, 크리프 저항성을 향상시키기 위해서는 크리프 유발 미세 트윈의 형성을 완전히 방지하기 위해 낮은 Ti 함량을 사용해야 한다.
8. References:
- R.C. Reed, The superalloys: fundamentals and applications. Cambridge university press, (2008).
- Eggeler, Y. M., Müller, J., Titus, M. S., Suzuki, A., Pollock, T. M., & Spiecker, E. (2016). Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Materialia, 113, 335-349.
- Lenz, M., Eggeler, Y. M., Müller, J., Zenk, C. H., Volz, N., Wollgramm, P., … & Spiecker, E. (2019). Tension/Compression asymmetry of a creep deformed single crystal Co-base superalloy. Acta Materialia, 166, 597-610.
- Titus, M. S., Eggeler, Y. M., Suzuki, A., & Pollock, T. M. (2015). Creep-induced planar defects in L12-containing Co-and CoNi-base single-crystal superalloys. Acta Materialia, 82, 530-539.
- Barba, D., Alabort, E., Pedrazzini, S., Collins, D. M., Wilkinson, A. J., Bagot, P. A. J., … & Reed, R. C. (2017). On the microtwinning mechanism in a single crystal superalloy. Acta Materialia, 135, 314-329.
- L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, M.J. Mills, Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog. Mater. Sci. 54(6) (2009) 839-873.
- T.M. Smith Jr, Orientation and alloying effects on creep strength in Ni-based superalloys (Doctoral dissertation, The Ohio State University), (2016).
- N. Tsuno, S. Shimabayashi, K. Kakehi, C.M.F. Rae, R.C. Reed. Tension/Compression asymmetry in yield and creep strengths of Ni-based superalloys. In Superalloys 2008, Proceedings of the International Symposium on Superalloys, pages 433-442, 2008.
- F. Leon Cazares, On the plastic deformation behaviour of nickel-based superalloys: low cycle fatigue and stress orientation effects (Doctoral dissertation, University of Cambridge), (2020).
- T.M. Smith, B.D. Esser, N. Antolin, A. Carlsson, R.E.A. Williams, A. Wessman, M.J. Mills, Phase transformation strengthening of high-temperature superalloys. Nat. Commun. 7(1) (2016) 1-7.
- Titus, M. S., Rhein, R. K., Wells, P. B., Dodge, P. C., Viswanathan, G. B., Mills, M. J., … & Pollock, T. M. (2016). Solute segregation and deviation from bulk thermodynamics at nanoscale crystalline defects. Science advances, 2(12), e1601796.
- Feng, L., Lv, D., Rhein, R. K., Goiri, J. G., Titus, M. S., Van der Ven, A., … & Wang, Y. (2018). Shearing of γ’particles in Co-base and Co-Ni-base superalloys. Acta Materialia, 161, 99-109.
- Smith, T. M., Esser, B. D., Antolin, N., Viswanathan, G. B., Hanlon, T., Wessman, A., … & Mills, M. J. (2015). Segregation and η phase formation along stacking faults during creep at intermediate temperatures in a Ni-based superalloy. Acta Materialia, 100, 19-31.
- Lilensten, L., Antonov, S., Gault, B., Tin, S., & Kontis, P. (2021). Enhanced creep performance in a polycrystalline superalloy driven by atomic-scale phase transformation along planar faults. Acta Materialia, 202, 232-242.
- P.E. Blöchl, Projector augmented-wave method, Physical Review B 50(24) (1994) 17953-17979.
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science 6(1) (1996) 15-50.
- A. Zunger, S.H. Wei, L.G. Ferreira, J.E. Bernard, Special quasirandom structures, Physical Review Letters 65(3) (1990) 353-356.
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77(18) (1996) 3865-3868.
- H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13(12) (1976) 5188-5192.
- Liang, Z., Stark, A., & Pyczak, F. (2024). Extreme high lattice-misfit superalloys with regular cubic L12 particles and excellent creep resistance. arXiv preprint arXiv:2405.05851.
- T. Yokokawa, H. Harada, K. Kawagishi, T. Kobayashi, M. Yuyama, Y. Takata, Advanced alloy design program and improvement of sixth-generation Ni-base single crystal superalloy TMS-238. In Superalloys 2020: Proceedings of the 14th International Symposium on Superalloys (pp. 122-130). Springer International Publishing.
- T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction. Acta Mater. 52(12) (2004) 3737-3744.
- J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi, The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta mater. 53(17) (2005) 4623-4633.
- J.X. Zhang, T. Murakumo, H. Harada, Y. Koizumi, Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scripta Mater. 48(3) (2003) 287-293.
- Kolbe, M. (2001). The high temperature decrease of the critical resolved shear stress in nickel-base superalloys. Materials Science and Engineering: A, 319, 383-387.
- Karpstein, N., Lenz, M., Bezold, A., Wu, M., Neumeier, S., & Spiecker, E. (2023). Reliable identification of the complex or superlattice nature of intrinsic and extrinsic stacking faults in the L12 phase by high-resolution imaging. Acta Materialia, 260, 119284.
- Freund, L. P., Messé, O. M., Barnard, J. S., Göken, M., Neumeier, S., & Rae, C. M. (2017). Segregation assisted microtwinning during creep of a polycrystalline L12-hardened Co-base superalloy. Acta Materialia, 123, 295-304.
- He, J., Zenk, C. H., Zhou, X., Neumeier, S., Raabe, D., Gault, B., & Makineni, S. K. (2020). On the atomic solute diffusional mechanisms during compressive creep deformation of a Co-Al-W-Ta single crystal superalloy. Acta Materialia, 184, 86-99.
- Lu, S., Antonov, S., Li, L., Liu, C., Zhang, X., Zheng, Y., … & Feng, Q. (2020). Atomic structure and elemental segregation behavior of creep defects in a Co-Al-W-based single crystal superalloys under high temperature and low stress. Acta Materialia, 190, 16-28.
- Morris, D. G., & Morris, M. A. (1990). Antiphase domain boundaries and their importance for dislocation behaviour in Ni3Al based alloys. Philosophical Magazine A, 61(3), 469-491.
- Hazzledine, P. M., Yoo, M. H., & Sun, Y. Q. (1989). The geometry of glide in Ni3Al at temperatures above the flow stress peak. Acta Metallurgica, 37(12), 3235-3244.
- Barba, D., Smith, T. M., Miao, J., Mills, M. J., & Reed, R. C. (2018). Segregation-assisted plasticity in Ni-based superalloys. Metallurgical and Materials Transactions A, 49, 4173-4185.
- N.L. Okamoto, T. Oohashi, H. Adachi, K. Kishida, H. Inui, P. Veyssière, Plastic deformation of polycrystals of Co3(Al,W) with the L12 structure. Philos. Mag. 91(28) (2011) 3667-3684.
- J.E. Saal, C. Wolverton, Energetics of antiphase boundaries in L12 Co3(Al,W)-based superalloys. Acta Mater. 103 (2016) 57-62.
- K.V. Vamsi, S. Karthikeyan, Yield anomaly in L12 Co3AlxW1-x vis-a-vis Ni3Al, Scripta Mater. 130 (2017) 269-273.
- H. Hasan, P. Mlkvik, P.D. Haynes, V.A. Vorontsov, Generalised stacking fault energy of Ni-Al and Co-Al-W superalloys: Density-functional theory calculations. Materialia, 9 (2020) 100555.
- W.Y. Wang, F. Xue, Y. Zhang, S.L. Shang, Y. Wang, K. A. Darling, , Z.K. Liu, Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al,TM): A comprehensive first-principles study. Acta Mater.145 (2018) 30-40.
- H.P. Karnthaler, E.T. Mühlbacher, C. Rentenberger, The influence of the fault energies on the anomalous mechanical behaviour of Ni3Al alloys. Acta Mater. 44(2) (1996) 547-560.
- H.J. Im, S. Lee, W.S. Choi, S.K. Makineni, D. Raabe, W. S. Ko, P.P. Choi, Effects of Mo on the mechanical behavior of γ/γ-strengthened Co-Ti-based alloys. Acta Mater. 197 (2020) 69-80.
- Chandran, M., & Sondhi, S. K. (2011). First-principle calculation of APB energy in Ni-based binary and ternary alloys. Modelling and Simulation in Materials Science and Engineering, 19(2), 025008.
- Wang, W. Y., Xue, F., Zhang, Y., Shang, S. L., Wang, Y., Darling, K. A., … & Liu, Z. K. (2018). Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): a comprehensive first-principles study. Acta Materialia, 145, 30-40.
- Smith, T. M., Good, B. S., Gabb, T. P., Esser, B. D., Egan, A. J., Evans, L. J., … & Mills, M. J. (2019). Effect of stacking fault segregation and local phase transformations on creep strength in Ni-base superalloys. Acta Materialia, 172, 55-65.
- Egan, A. J., Xue, F., Rao, Y., Sparks, G., Marquis, E., Ghazisaeidi, M., … & Mills, M. J. (2022). Local phase transformation strengthening at Microtwin boundaries in nickel-based superalloys. Acta Materialia, 238, 118206.
- Lambrigger, M., Calderon, H. A., & Kostorz, G. (1992). Phase Transformation to the Stable D024 Structure in Ni-11.8 at.% Ti/Phasenumwandlung zur stabilen D024-Struktur in Ni-11, 8 At.-% Ti. International Journal of Materials Research, 83(8), 624-629.
- Al-Kassab, T., Kompatscher, M., Kirchheim, R., Kostorz, G., & Schönfeld, B. (2014). Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography. Micron, 64, 45-51.
- Messé, O. M., Barnard, J. S., Pickering, E. J., Midgley, P. A., & Rae, C. M. F. (2014). On the precipitation of delta phase in ALLVAC® 718Plus. Philosophical Magazine, 94(10), 1132-1152.
- Xu, J. H., Lin, W., & Freeman, A. J. (1993). Electronic structure and phase stability of A3Ti (A= Fe, Co, Ni, and Cu). Physical Review B, 48(7), 4276.
- M. S. Titus, A. Mottura, G. B. Viswanathan, A. Suzuki, M. J. Mills, T. M. Pollock, High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater. 89, 423–437 (2015).
- J. P. Hirth, Thermodynamics of stacking faults. Metall. Trans. 1, 2367–2374 (1970).
- Leroux, C., Loiseau, A., Cadeville, M. C., Broddin, D., & Van Tendeloo, G. (1990). Order-disorder transformation in Co30Pt70 alloy: evidence of wetting from the antiphase boundaries. Journal of Physics: Condensed Matter, 2(15), 3479.
- P. B. Hirsch, A. Howie, R. Nicholson, D. Pashley, M. Whelan, Electron microscopy of thin crystals, Butterworths, Washington DC, 1965.
- J. W. Edington, Practical Electron Microscopy in Materials Science., Voan Nostrand, New York, 1975.
- D. B. Williams, C. B. Carter, The transmission electron microscope, Springer, New York, 1996.
- Wu, X. (2017). Elementary deformation processes during low temperature and high stress creep of Ni-base single crystal superalloys.
Expert Q&A: Your Top Questions Answered
Q1: Ti 함량이 증가하면서 석출물 전단 메커니즘이 APB에서 SESF로 전환된 근본적인 이유는 무엇입니까?
A1: 이는 평면 결함 형성 에너지의 상대적인 차이 때문입니다. 본 논문의 DFT 계산 결과(그림 11)에 따르면, Ti가 없거나 낮은 합금에서는 APB 형성 에너지가 CSF(적층결함의 전구체) 형성 에너지보다 낮아 전위가 APB를 형성하며 이동하는 것이 에너지적으로 더 유리합니다. 하지만 Ti 함량이 증가하면 L1₂ 구조의 정렬도가 향상되어 APB 에너지가 급격히 증가하고, 상대적으로 CSF 에너지보다 높아집니다. 이로 인해 고-Ti 합금에서는 APB 형성 대신 CSF를 거쳐 SESF를 형성하는 전단 메커니즘이 활성화됩니다.
Q2: 평면 결함에서 관찰된 화학적 편석 현상은 구체적으로 어떤 의미를 가집니까?
A2: 이 편석 현상은 국부적인 상변태를 유도하여 재료의 기계적 특성을 변화시키는 핵심적인 역할을 합니다. 저-Ti 합금의 APB에서는 Co와 같은 γ상 형성 원소가 농축되어, 국부적으로 강화상인 γ’가 연한 γ상으로 변태(연화)됩니다. 반면, 고-Ti 합금의 SESF에서는 Co, Ti, Mo, W와 같은 η상 형성 원소들이 농축되어, 국부적으로 더 단단하고 정렬된 η상을 형성(강화)합니다. 이는 Ti 함량에 따라 동일한 크리프 조건에서도 미세조직이 국부적으로 연화되거나 강화될 수 있음을 의미합니다.
Q3: 논문에서는 고-Ti 합금에서 η상 형성을 통한 강화 효과와 미세 트위닝을 통한 연화 효과를 모두 언급했습니다. 장기적인 크리프 수명 관점에서 어떤 효과가 더 지배적입니까?
A3: 단기적으로는 SESF에서 형성된 국부적 η상이 전위 이동을 방해하여 재료를 강화시킬 수 있습니다. 하지만 논문은 이러한 SESF가 미세 트윈의 ‘배아’ 역할을 한다고 지적합니다. 미세 트위닝은 APB나 SESF와 같은 다른 평면 결함보다 훨씬 더 큰 크리프 변형을 유발하며(전체 소성 변형의 73%-96% 기여), 트윈 경계에서의 응력 집중으로 인해 균열 핵 생성 및 전파를 유발하여 취성 파괴를 일으킬 수 있습니다. 따라서 장기적인 크리프 수명 관점에서는 미세 트위닝으로 인한 해로운 효과가 강화 효과를 압도하며 더 지배적이라고 할 수 있습니다.
Q4: 본 연구에서 제안된 SESF 형성 메커니즘은 무엇입니까?
A4: 논문에서는 콜베(Kolbe) 메커니즘을 가능한 경로 중 하나로 제시합니다. 이 메커니즘은 γ 기지 내에서 두 개의 <110> 전위가 상호작용하여 2층짜리 CSF(복합 적층결함)를 형성하는 것으로 시작됩니다. 이후 이 높은 에너지의 CSF 영역으로 Co, Ti, Mo, W와 같은 원소들이 확산하여 편석되면서 결함의 에너지를 낮추고, 최종적으로 더 안정한 저에너지 SESF로 변환된다는 것입니다. 즉, 전위의 기계적인 이동(displacive)과 원자의 확산(diffusional)이 결합된 과정입니다.
Q5: 이 연구 결과를 바탕으로 실제 초합금 설계에 적용할 수 있는 실용적인 권장 사항은 무엇입니까?
A5: 고온 저응력 환경에서 석출물의 과도한 전단을 피하고 해로운 미세 트윈 형성을 억제하기 위해, 적절한 Ti 농도를 사용하는 것이 핵심입니다. 본 연구는 Ti 함량이 너무 높으면 크리프 저항성은 초기에는 좋을 수 있으나 결국 미세 트위닝으로 인해 파괴에 이를 수 있음을 보여줍니다. 따라서 연구진은 코발트-니켈 초합금 설계 시 Ti/Al 비율을 1 미만(0 < Ti/Al < 1)으로 조절할 것을 제안합니다. 이는 강화와 장기 안정성 사이의 균형을 맞추는 최적의 설계 방안이 될 수 있습니다.
Conclusion: Paving the Way for Higher Quality and Productivity
본 연구는 코발트-니켈 초합금의 성능을 좌우하는 티타늄(Ti)의 역할이 양날의 검과 같다는 것을 명확히 보여주었습니다. Ti 함량을 높이면 초기 크리프 저항성은 향상되지만, 이는 변형 메커니즘을 변화시켜 결국 재료의 파괴를 앞당길 수 있는 미세 트위닝을 촉진합니다. APB에서 SESF로의 전환, 그리고 결함 주변의 국부적 상변태에 대한 심도 있는 이해는 차세대 초합금의 신뢰성과 수명을 극대화하는 데 필수적입니다. 이 연구는 합금 설계 시 단순히 강도뿐만 아니라 장기적인 미세조직 안정성을 함께 고려해야 한다는 중요한 교훈을 줍니다.
(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD consulting services를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.
- 연락처 : 02-2026-0450
- 이메일 : flow3d@stikorea.co.kr
Copyright Information
- This content is a summary and analysis based on the paper “High-Ti inducing local η-phase transformation and creep-twinning in CoNi-based superalloys” by “Zhida Liang, Jing Zhang, Li Wang, Florian Pyczak”.
- Source:
This material is for informational purposes only. Unauthorized commercial use is prohibited. Copyright © 2025 STI C&D. All rights reserved.
![Fig. 6. Chemical fluctuations analysis around an APB region on a (111) plane in alloy 0Ti. (a) HAADF-STEM image of the ' precipitate with APBs taken along [011] beam direction. (b) Magnified image of white rectangular marked in (a). (c) Composite chemical map of elements Co, Ni, Al, Mo and W. (d)-(h) Net intensity elemental maps of elements Co, Ni, Al, Mo and W. (i) and (j) EDS line scan integrated along the APB in the region marked in (c).](https://flow3d.co.kr/wp-content/uploads/image-978.webp)