이 기술 요약은 Bin Ouyang 외 저자의 학술 논문 “Structural Disorder and Electronic Structure of Sr(TixFe1-x)O3-x/2 Solid Solutions: A Computational Framework”를 기반으로 하며, STI C&D의 기술 전문가에 의해 분석 및 요약되었습니다.
키워드
- Primary Keyword: 혼합 이온-전자 전도체 (MIEC)
- Secondary Keywords: Sr(TixFe1-x)O3-x/2 (STF), 클러스터 확장법, 몬테카를로 시뮬레이션, 밀도범함수이론, 고체산화물 연료전지 (SOFC), 전산 재료 과학
Executive Summary
- The Challenge: 복잡한 혼합 이온-전자 전도체(MIEC) 소재는 원자 배열의 경우의 수가 너무 많아, 원자 수준의 정확한 모델링과 물성 예측이 매우 어려웠습니다.
- The Method: 클러스터 확장법(Cluster Expansion), 몬테카를로 시뮬레이션(Monte Carlo simulations), 그리고 밀도범함수이론(DFT+U) 계산을 결합한 계산 프레임워크를 사용하여 무질서한 STF 합금의 구조와 에너지를 모델링했습니다.
- The Key Breakthrough: Ti/Fe 양이온의 무작위 혼합과 산소 공공(vacancy)이 Fe 원자 주위에 모이는 특정 유형의 원자 무질서가 전하 수송에 유리한 비편재화된(delocalized) 전자 상태를 형성한다는 것을 발견했습니다.
- The Bottom Line: 이 모델링 프레임워크는 ‘유익한 무질서’를 공학적으로 설계하여 연료전지와 같은 응용 분야에서 고성능 MIEC 소재를 이해하고 개발하는 강력한 도구를 제공합니다.
The Challenge: Why This Research Matters for CFD Professionals
고체산화물 연료전지(SOFC), 전해조, 산소 분리막 등 다양한 고체 전해질 장치에서 높은 이온 및 전자 전도도를 동시에 갖는 혼합 이온-전자 전도체(MIEC)는 핵심 소재로 주목받고 있습니다. 특히 Sr(Ti1-xFex)O3-y (STF) 합금은 조성과 환경에 따라 전도도를 폭넓게 조절할 수 있어 기술적으로 매우 중요합니다.
하지만 이러한 비희석(non-dilute), 무질서(disordered) 합금은 원자 배열의 조합이 기하급수적으로 많아 현실적인 원자 구조를 구현하기 어렵습니다. 이는 소재의 구조와 물성 간의 관계를 명확히 규명하고 예측 모델을 개발하는 데 큰 걸림돌이 되어 왔습니다. 본 연구는 이러한 문제를 해결하기 위해 조성, 합금 배열, 전자 구조, 광학 특성 간의 상관관계를 규명하는 계산 프레임워크를 제시하는 것을 목표로 합니다.

The Approach: Unpacking the Methodology
본 연구는 무질서한 STF 합금의 특성을 원자 수준에서 규명하기 위해 다단계 계산 프레임워크를 도입했습니다.
- 클러스터 확장(Cluster Expansion, CE) 모델 개발: 먼저, 밀도범함수이론(DFT+U) 계산을 통해 다양한 원자 배열을 가진 350개의 STF 구조에 대한 총 에너지를 계산했습니다. 이 데이터를 기반으로 특정 원자 배열의 에너지를 빠르고 정확하게 예측할 수 있는 클러스터 확장 모델을 구축했습니다. 이 모델은 Ti/Fe 양이온과 산소/산소 공공의 분포에 따른 에너지 변화를 설명합니다.
- 현실적 원자 구조 예측: 개발된 CE 모델을 클러스터 확장 몬테카를로(CEMC) 시뮬레이션에 적용하여, 주어진 조성과 온도(T=0K, T=1000K)에서 가장 안정적인(가장 낮은 에너지를 갖는) 원자 배열을 예측했습니다. 이를 통해 무작위로 원자를 배열하는 것이 아닌, 물리적으로 가장 가능성 높은 현실적인 구조를 얻을 수 있었습니다.
- 전자 구조 및 물성 분석: CEMC를 통해 얻은 현실적인 구조와 비교를 위해 가상으로 설정한 두 가지 규칙적 배열(ordered mixture, superlattice) 구조에 대해 DFT+U 계산을 수행했습니다. 이를 통해 각 구조의 전자 구조, 밴드갭, 광학적 특성을 분석하고, 원자 배열의 무질서가 물성에 미치는 영향을 심도 있게 비교 분석했습니다.
The Breakthrough: Key Findings & Data
Finding 1: 원자 무질서가 에너지 안정성을 결정
CEMC 시뮬레이션 결과, STF 합금은 규칙적인 배열을 형성하거나 두 개의 상(SrTiO3, Sr2Fe2O5)으로 분리되는 것보다 무질서한 고용체를 형성하는 것이 에너지적으로 더 안정적이었습니다. 특히, 가장 안정한 구조는 Ti와 Fe 양이온이 B-자리에 무작위로 섞이는 경향을 보이면서도, 산소 공공은 Ti 원자보다 Fe 원자 주위에 모이는(clustering) 특징을 보였습니다. Figure 2(b)에서 볼 수 있듯이, CEMC로 예측된 가장 낮은 에너지 상태(파란색 선)는 가상으로 설정된 규칙적 혼합물(Ordered mixture)이나 초격자(Superlattice) 구조보다 항상 에너지가 낮아, 이러한 특정 형태의 ‘단거리 질서(short-ranged order)’를 갖는 무질서 구조가 더 선호됨을 확인했습니다.
Finding 2: 조성에 따른 예측 가능한 밴드갭 변화
CEMC로 예측된 현실적인 무질서 구조의 밴드갭은 Fe 함량(x)이 증가함에 따라 2.13 eV에서 0.95 eV로 거의 선형적으로 부드럽게 감소했습니다. Figure 3에서 볼 수 있듯이, 이러한 경향은 기존의 실험 결과와 매우 일치합니다. 반면, 가상으로 설정된 두 가지 규칙적 구조는 Fe 함량 변화에 따라 밴드갭이 불규칙하게 변동하며 체계적인 경향을 보이지 않았습니다. 이는 본 연구의 계산 프레임워크가 실제 소재의 전자적 특성을 정확하게 예측할 수 있음을 시사합니다.

five atom unit cell of the conventional perovskite lattice. (b) Convex hull showing the lowest energy
configurations predicted from Monte Carlo simulation. The training data and two ordered structures are
shown for comparison. (c) Atomic configurations of CEMC predicted lowest energy state, CEMC
predicted structure at T = 1000 K, and two types of ordered structures. For the convenience of
visualization, A-site strontium atoms are not shown.
Finding 3: ‘유익한 무질서’가 전자 수송을 촉진
가장 중요한 발견은 원자 배열의 무질서가 전자 수송 특성에 미치는 영향입니다. Figure 5는 x=0.5 조성에서 가전자대 상단(VBM)과 전도대 하단(CBM)의 전하 밀도 분포를 보여줍니다. CEMC로 예측된 현실적인 무질서 구조에서는 VBM과 CBM이 전체 초격자(supercell)에 걸쳐 넓게 비편재화(delocalized)되어 있습니다. 이는 전하 운반체(전자, 정공)가 격자 내에서 자유롭게 이동할 수 있어 높은 전도도에 기여함을 의미합니다. 반면, 규칙적인 구조에서는 VBM과 CBM이 특정 원자(주로 Fe) 주변에 국소화(localized)되어 전하 운반체를 포획하는 ‘트랩(trap)’으로 작용하여 전도도를 저해할 수 있습니다. 즉, Ti/Fe의 무작위 혼합과 산소 공공 클러스터링이라는 특정 유형의 무질서는 전자 수송에 ‘유익하게’ 작용합니다.
Practical Implications for R&D and Operations
- For Process Engineers: 본 연구는 Ti/Fe의 무작위 혼합을 촉진하면서 산소 공공이 Fe 원자 주위에 위치하도록 유도하는 공정 조건이 STF 계열 소재의 전자 전도도를 향상시킬 수 있음을 시사합니다.
- For Quality Control Teams: 논문의 Figure 3과 Figure 6에서 보듯이, Fe 함량과 밴드갭(또는 광 흡수 스펙트럼) 사이에는 명확한 상관관계가 있습니다. 이는 소재의 조성을 비파괴적으로 검증하는 품질 관리 기준으로 활용될 수 있습니다.
- For Design Engineers: 이 프레임워크는 새로운 MIEC 소재를 설계하는 강력한 도구가 될 수 있습니다. 완벽한 결정 구조를 목표로 하기보다, 특정 유형의 ‘유익한 무질서’를 의도적으로 설계하여 연료전지나 센서용 고성능 소재를 개발하는 전략을 제시합니다.
Paper Details
Structural Disorder and Electronic Structure of Sr(TixFe1-x)O3-x/2 Solid Solutions: A Computational Framework
1. Overview:
- Title: Structural Disorder and Electronic Structure of Sr(TixFe1-x)O3-x/2 Solid Solutions: A Computational Framework
- Author: Bin Ouyang, Tim Mueller, Nicola H. Perry, N. R. Aluru, Elif Ertekin
- Year of publication:
- Journal/academic society of publication:
- Keywords: Mixed ionic/electronic conductors (MIECs), Sr(Ti,Fe)O3-δ (STF), cluster expansion, Monte Carlo simulation, electronic structure, band gap, solid solution
2. Abstract:
연료전지나 전해조의 전극으로 사용되는 여러 혼합 이온-전자 전도체(MIEC)는 페로브스카이트 산화물과 정렬된 산소 공공 화합물 간의 고용체 혼합물로 간주될 수 있다. 예를 들어, 모델 MIEC인 Sr(Ti1-xFex)O3-x/2+δ (STF)는 페로브스카이트 SrTiO3와 브라운밀러라이트 Sr2Fe2O5의 혼합물로 기술될 수 있다. 이러한 비희석, 무질서 합금의 거대한 배열 공간은 역사적으로 직접적인 원자 규모 모델링을 방해하여 심도 있는 이해와 예측 분석을 불가능하게 했다. 본 연구에서는 전체 고용체 조성 공간 Sr(Ti1-xFex)O3-x/2 (0<x<1, δ=0) 내에서 무질서한 STF 합금의 에너지를 기술하기 위한 클러스터 확장 프레임워크를 제시한다. 클러스터 확장 몬테카를로(CEMC) 시뮬레이션을 수행하여 최저 에너지 원자 배열을 결정하고 격자 무질서의 기원과 정도를 조사한다. 다른 온도에서 CEMC로부터 얻은 현실적인 배열을 사용하여, 다른 화학량론에서의 용액의 전자 구조를 조사하여 그들의 전자 구조, 밴드갭, 광학적 특성을 이해하고 가상적인 정렬 구조와 비교 및 대조한다. 우리의 원자 모델을 사용하여 예측된 밴드갭과 광 흡수의 조성에 따른 변화는 실험과 일치한다. 한편, 밴드 가장자리 분석은 B 양이온 부격자에서의 Fe/Ti 무질서의 동시 존재와 산소 공공이 Fe 원자 주위에 군집하는 경향으로부터 합금 내 전자 수송이 이점을 얻는다는 것을 명확히 한다. SrTiO3/Sr2Fe2O5 합금을 예로 사용하여, 여기서 채택된 모델링 프레임워크는 다른 MIEC 재료로 확장될 수 있다.
3. Introduction:
큰 전자 및 산소 이온 전도성을 나타내는 혼합 이온 전자 전도체(MIEC)는 고체 산화물 연료 및 전해조 전극, 산소 분리막, 산소 센서 및 촉매를 포함한 다양한 고체 상태 전기화학 장치에서 중요하다. SrTi1-xFexO3-y 합금(STF로 지칭)은 복잡한 MIEC 합금의 고전적인 예이다. STF 조성 공간은 0 < x < 1 사이의 연속적인 고용체를 형성하며, Ti/Fe 조성 및 열역학적 환경에 따라 크고 가변적인 이온 및 전자 전도성을 나타낸다. 이는 STF 고용체를 여러 실제 응용 분야에서 기술적으로 중요하게 만들며, 특히 조성, 산소 풍부/결핍 및 배열을 조절하여 특성을 제어할 수 있다면 더욱 그렇다. STF의 배열, 전자 구조 및 수송 특성을 이해하는 것은 여전히 어려운 과제이며, 구조/특성 관계에 대한 통일된 그림은 아직 없다. 이는 비희석, 무질서 용액의 배열에 대한 현실적인 원자 규모 표현을 달성하기 어렵기 때문이며, 기계론적 이해와 예측 모델링을 어렵게 만든다. 이 연구의 목표는 조성, 합금 배열, 전자 구조 및 광학 특성을 연관시키는 계산 프레임워크를 소개하는 것이다. 우리는 클러스터 확장 모델을 기반으로 전체 조성 공간 0 < x < 1에 걸쳐 원자 규모 배열에 대한 자체 일관된 설명을 제시한다. 클러스터 계수는 밀도 함수 이론 계산에 맞춰 배열 에너지를 설명하며, 결과 모델은 세부 사항을 확립하는 데 사용된다.
4. Summary of the study:
Background of the research topic:
혼합 이온-전자 전도체(MIEC)는 고체산화물 연료전지(SOFC)와 같은 차세대 에너지 변환 장치의 핵심 소재이다. 이 중 Sr(Ti,Fe)O3-y (STF)는 조성에 따라 이온 및 전자 전도도를 조절할 수 있어 큰 잠재력을 가지고 있다.
Status of previous research:
기존 연구들은 희석 용액(dilute-solution) 관점에서 STF를 이해하려는 시도가 있었으나, STF는 두 개의 다른 물질(SrTiO3와 Sr2Fe2O5)이 넓은 조성 범위에서 섞인 비희석 고용체이다. 이러한 복잡한 무질서 합금의 거대한 원자 배열 경우의 수 때문에, 현실적인 원자 구조를 모델링하고 물성을 정확히 예측하는 데 한계가 있었다.
Purpose of the study:
본 연구는 클러스터 확장법과 몬테카를로 시뮬레이션을 결합한 계산 프레임워크를 개발하여, 전체 조성 범위(0<x<1)에 걸쳐 STF 합금의 현실적인 원자 구조를 예측하고, 이를 통해 구조적 무질서가 전자 구조, 밴드갭, 광학 특성에 미치는 영향을 규명하는 것을 목표로 한다.
Core study:
본 연구는 STF 고용체를 페로브스카이트 구조의 SrTiO3와 브라운밀러라이트 구조의 Sr2Fe2O5 사이의 혼합물로 정의했다. 밀도범함수이론(DFT+U) 계산을 통해 얻은 350개 구조의 에너지 데이터를 사용하여 클러스터 확장(CE) 모델을 훈련시켰다. 이 CE 모델을 몬테카를로(CEMC) 시뮬레이션에 적용하여 다양한 조성과 온도에서 가장 안정적인 원자 구조를 예측했다. 마지막으로, 예측된 현실적인 구조와 가상으로 설정한 규칙적인 구조들의 전자 구조를 DFT+U로 계산하여, 무질서가 밴드갭과 전하 수송 특성에 미치는 영향을 분석했다.
5. Research Methodology
Research Design:
본 연구는 전산 재료 과학(computational materials science) 접근법을 사용했다. 클러스터 확장법을 통해 무질서한 합금의 에너지 모델을 구축하고, 몬테카를로 시뮬레이션으로 통계역학적 평형 상태의 원자 구조를 찾은 뒤, 양자역학 기반의 제일원리계산(first-principles calculations)으로 해당 구조의 전자 물성을 분석하는 다단계 프레임워크를 설계했다.
Data Collection and Analysis Methods:
- 제일원리계산 (DFT+U): VASP 코드를 사용하여 다양한 STF 원자 배열의 총 에너지와 전자 구조를 계산했다. 전이 금속(Ti, Fe)의 3d 전자 상태를 정확히 기술하기 위해 Hubbard U 보정을 적용했다(Ti에 U=3 eV, Fe에 U=5 eV).
- 클러스터 확장 모델링 및 몬테카를로 시뮬레이션: 350개의 DFT+U 계산 결과를 바탕으로 클러스터 상호작용 계수를 피팅하여 CE 모델을 구축했다. 이 모델을 사용하여 CEMC 시뮬레이션을 수행, 최저 에너지 구조와 고온(1000K)에서의 대표 구조를 예측했다.
- 비교 분석: CEMC로 얻은 현실적인 무질서 구조의 특성을 두 종류의 가상적 규칙 구조(ordered mixture, superlattice)와 비교하여 무질서의 효과를 명확히 분석했다.
Research Topics and Scope:
연구는 Sr(Ti1-xFex)O3-x/2 (δ=0) 조성을 갖는 STF 고용체에 초점을 맞췄다. 이는 Ti+4, Fe+3의 안정적인 산화 상태를 유지하는 기준 조성이다. 연구 범위는 전체 조성 공간(0 < x < 1)에 걸친 에너지 안정성, 원자 배열(단거리 질서), 밴드갭 변화, 전자 상태 밀도(PDOS), 밴드 가장자리 전하 분포 및 광학적 흡수 특성 분석을 포함한다.
6. Key Results:
Key Results:
- 클러스터 확장 모델은 DFT+U 계산 결과를 4.33 meV/atom의 낮은 RMSE로 정확하게 예측했으며, 무질서한 STF 고용체가 상분리보다 에너지적으로 안정적임을 보였다.
- 가장 안정한 구조는 Ti/Fe 양이온이 무작위로 혼합되면서 산소 공공이 Fe 원자 주위에 모이는 경향을 보였다.
- Fe 함량이 증가함에 따라 밴드갭은 실험 결과와 일치하게 거의 선형적으로 감소했다. 이는 가상적인 규칙 구조의 불규칙한 밴드갭 변화와 대조적이다.
- 현실적인 무질서 구조는 전하 수송에 유리한 비편재화된(delocalized) 밴드 가장자리 상태를 형성하는 반면, 규칙적인 구조는 전하 트랩으로 작용할 수 있는 국소화된(localized) 상태를 보였다.

Figure List:
- Fig. 1: Illustration of the atomic configuration of SrTiO3, SrFeO2.5 and SrTi1-xFexO3-0.5x lattices. The SrTi1-xFexO3-0.5x can be regarded as a mix of SrTiO3 and SrFeO2.5 with disorder of Fe and Ti cations.
- Fig. 2: (a) Linear least squares fitting of mixing enthalpy using cluster expansion; ‘u.c.’ denotes the five atom unit cell of the conventional perovskite lattice. (b) Convex hull showing the lowest energy configurations predicted from Monte Carlo simulation. The training data and two ordered structures are shown for comparison. (c) Atomic configurations of CEMC predicted lowest energy state, CEMC predicted structure at T = 1000 K, and two types of ordered structures. For the convenience of visualization, A-site strontium atoms are not shown.
- Fig. 3: The evolution of band gap with Fe content. For the lowest energy state and T = 1000 K structures, the band gap smoothly decreases with increasing Fe content with little degree of bowing evident. The band gap of the ordered structures are shown for comparison.
- Fig. 4: Site and orbital projected density of states (PDOS) of the four configurations of Sr(Ti1-xFex)O3-x/2 at (a) x = 0.5 and (b) x = 0.875.
- Fig. 5: Charge density of the SrTi0.5Fe0.5O2.75 valence band maximums (VBM) and conduction band minimums (CBM).
- Fig. 6: Optical absorption for selected compositions of Sr(Ti1-xFex)O3-x/2 alloy for the lowest energy configurations.
7. Conclusion:
결론적으로, 본 연구는 STF MIEC 고용체의 조성과 질서/무질서 효과를 고려하기 위한 계산 프레임워크를 제시했다. 클러스터 확장 모델링과 몬테카를로 시뮬레이션을 사용하여 SrTiO3에서 Sr2Fe2O5에 이르는 전체 조성 공간에 걸쳐 Sr(Ti1-xFex)O3-x/2의 에너지와 현실적인 배열을 예측할 수 있다. 우리는 이 프레임워크를 사용하여 대표적인 배열을 생성하고 밀도범함수이론을 사용하여 그 특성을 평가한다. 분석 결과, Ti/Fe 양이온 무질서와 산소 공공 분포가 전자 구조에 미치는 연관성이 드러났다. 나아가, Ti/Fe 양이온 무질서와 Fe 원자 주위의 산소 공공 군집이 함께 공간적으로 비편재화된 밴드 가장자리 상태를 유발하며, 이는 격자 내 전자 수송을 촉진할 수 있음이 밝혀졌다. 이 연구는 Sr(Ti1-xFex)O3-x/2의 무질서와 전자 구조에 대한 기계론적 이해를 제공할 뿐만 아니라, 연료 및 전해조 응용을 위한 복잡한 페로브스카이트 용액 분석을 위한 계산 전략을 제안한다.
8. References:
- Adler, S. B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chemical Reviews 2004, 104 (10), 4791-4844.
- Jacobson, A. J. Materials for Solid Oxide Fuel Cells†. Chemistry of Materials 2010, 22 (3), 660-674.
- Wang, K.; Hissel, D.; Péra, M. C.; Steiner, N.; Marra, D.; Sorrentino, M.; Pianese, C.; Monteverde, M.; Cardone, P.; Saarinen, J. A Review on solid oxide fuel cell models. International Journal of Hydrogen Energy 2011, 36 (12), 7212-7228.
- Munoz-Garcia, A. B.; Pavone, M.; Ritzmann, A. M.; Carter, E. A. Oxide ion transport in Sr2Fe1.5Mo0.5O(6-delta), a mixed ion-electron conductor: new insights from first principles modeling. Phys Chem Chem Phys 2013, 15 (17), 6250-9.
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Progress in Materials Science 2015, 72 (Supplement C), 141-337.
- Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334 (6061), 1383-1385.
- Munoz-Garcia, A. B.; Ritzmann, A. M.; Pavone, M.; Keith, J. A.; Carter, E. A. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics. Acc Chem Res 2014, 47 (11), 3340-8.
- Rothschild, A.; Menesklou, W.; Tuller, H. L.; Ivers-Tiffée, E. Electronic Structure, Defect Chemistry, and Transport Properties of SrTi1-xFexO3-y Solid Solutions. Chemistry of Materials 2006, 18 (16), 3651-3659.
- Metlenko, V.; Jung, W.; Bishop, S. R.; Tuller, H. L.; De Souza, R. A. Oxygen diffusion and surface exchange in the mixed conducting oxides SrTi1-yFeyO3-delta. Physical Chemistry Chemical Physics 2016, 18 (42), 29495-29505.
- Gryaznov, D.; Merkle, R.; Kotomin, E. A.; Maier, J. Ab initio modelling of oxygen vacancies and protonic defects in La1-xSrxFeO3-[small delta] perovskite solid solutions. Journal of Materials Chemistry A 2016, 4 (34), 13093-13104.
- Heifets, E.; Kotomin, E. A.; Bagaturyants, A. A.; Maier, J. Thermodynamic stability of stoichiometric LaFeO3 and BiFeO3: a hybrid DFT study. Physical Chemistry Chemical Physics 2017, 19 (5), 3738-3755.
- Choi, Y.; Lin, M. C.; Liu, M. Computational Study on the Catalytic Mechanism of Oxygen Reduction on La0.5Sr0.5MnO3 in Solid Oxide Fuel Cells. Angewandte Chemie International Edition 2007, 46 (38), 7214-7219.
- Ong, K. P.; Fan, X.; Subedi, A.; Sullivan, M. B.; Singh, D. J. Transparent conducting properties of SrSnO3 and ZnSnO3. APL Materials 2015, 3 (6), 062505.
- Erina, B.; Daisuke, K.; Yasuhiro, Y.; Mitsutaka, H.; Hiroki, K.; Yoshihiko, K.; Yuichi, S. Optical and transport properties of transparent conducting La-doped SrSnO 3 thin films. Journal of Physics D: Applied Physics 2015, 48 (45), 455106.
- Rodríguez, J.; González-Calbet, J. M. Rhombohedral Sr2Co2O5: A new A2M2O5 phase. Materials Research Bulletin 1986, 21 (4), 429-439.
- Koehl, A.; Kajewski, D.; Kubacki, J.; Lenser, C.; Dittmann, R.; Meuffels, P.; Szot, K.; Waser, R.; Szade, J. Detection of Fe2+ valence states in Fe doped SrTiO3 epitaxial thin films grown by pulsed laser deposition. Physical Chemistry Chemical Physics 2013, 15 (21), 8311-8317.
- Fagg, D. P.; Kharton, V. V.; Kovalevsky, A. V.; Viskup, A. P.; Naumovich, E. N.; Frade, J. R. The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. Journal of the European Ceramic Society 2001, 21 (10), 1831-1835.
- Baker, J. N.; Bowes, P. C.; Long, D. M.; Moballegh, A.; Harris, J. S.; Dickey, E. C.; Irving, D. L. Defect mechanisms of coloration in Fe-doped SrTiO3 from first principles. Applied Physics Letters 2017, 110 (12), 122903.
- Kumar, A. S.; Suresh, P.; Kumar, M. M.; Srikanth, H.; Post, M. L.; Kathy, S.; Ralf, M.; Srinath, S. Magnetic and ferroelectric properties of Fe doped SrTiO 3-δ films. Journal of Physics: Conference Series 2010, 200 (9), 092010.
- Fuentes, S.; Muñoz, P.; Barraza, N.; Chávez-Ángel, E.; Sotomayor Torres, C. M. Structural characterisation of slightly Fe-doped SrTiO3 grown via a sol–gel hydrothermal synthesis. Journal of Sol-Gel Science and Technology 2015, 75 (3), 593-601.
- van Benthem, K.; Elsässer, C.; French, R. H. Bulk electronic structure of SrTiO3: Experiment and theory. Journal of Applied Physics 2001, 90 (12), 6156-6164.
- Ohly, C.; Hoffmann-Eifert, S.; Guo, X.; Schubert, J.; Waser, R. Electrical Conductivity of Epitaxial SrTiO3 Thin Films as a Function of Oxygen Partial Pressure and Temperature. Journal of the American Ceramic Society 2006, 89 (9), 2845-2852.
- D’Hondt, H.; Abakumov, A. M.; Hadermann, J.; Kalyuzhnaya, A. S.; Rozova, M. G.; Antipov, E. V.; Van Tendeloo, G. Tetrahedral Chain Order in the Sr2Fe2O5 Brownmillerite. Chemistry of Materials 2008, 20 (22), 7188-7194.
- Young, J.; Rondinelli, J. M. Crystal structure and electronic properties of bulk and thin film brownmillerite oxides. Physical Review B 2015, 92 (17), 174111.
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Physical Review 1964, 136 (3B), B864-B871.
- Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140 (4A), A1133-A1138.
- Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77 (18), 3865-3868.
- Blöchl, P. E. Projector augmented-wave method. Physical Review B 1994, 50 (24), 17953-17979.
- Loetzsch, R.; Lübcke, A.; Uschmann, I.; Förster, E.; Große, V.; Thuerk, M.; Koettig, T.; Schmidl, F.; Seidel, P. The cubic to tetragonal phase transition in SrTiO3 single crystals near its surface under internal and external strains. Applied Physics Letters 2010, 96 (7), 071901.
- Auckett, J. E.; Studer, A. J.; Sharma, N.; Ling, C. D. Floating-zone growth of brownmillerite Sr2Fe2O5 and the observation of a chain-ordered superstructure by single-crystal neutron diffraction. Solid State Ionics 2012, 225 (Supplement C), 432-436.
- Laks, D. B.; Ferreira, L. G.; Froyen, S.; Zunger, A. Efficient cluster expansion for substitutional systems. Physical Review B 1992, 46 (19), 12587-12605.
- Ferreira, L. G.; Wei, S.-H.; Zunger, A. First-principles calculation of alloy phase diagrams: The renormalized-interaction approach. Physical Review B 1989, 40 (5), 3197-3231.
- Thomas, J. C.; Ven, A. V. d. Finite-temperature properties of strongly anharmonic and mechanically unstable crystal phases from first principles. Physical Review B 2013, 88 (21), 214111.
- Puchala, B.; Van der Ven, A. Thermodynamics of the Zr-O system from first-principles calculations. Physical Review B 2013, 88 (9), 094108.
- Van der Ven, A.; Thomas, J. C.; Xu, Q.; Bhattacharya, J. Linking the electronic structure of solids to their thermodynamic and kinetic properties. Mathematics and Computers in Simulation 2010, 80 (7), 1393-1410.
- van de Walle, A. Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad 2009, 33 (2), 266-278.
- Seko, A.; Yuge, K.; Oba, F.; Kuwabara, A.; Tanaka, I. Prediction of ground-state structures and order-disorder phase transitions in II-III spinel oxides: A combined cluster-expansion method and first-principles study. Physical Review B 2006, 73 (18), 184117.
- Seko, A.; Togo, A.; Oba, F.; Tanaka, I. Structure and Stability of a Homologous Series of Tin Oxides. Physical Review Letters 2008, 100 (4), 045702.
- Ouyang, B.; Qi, W.; Liu, C.; Wang, X.; Wei, L.; Sun, C. Q. Size and shape dependent order–disorder phase transition of Co–Pt nanowires. Computational Materials Science 2012, 63 (Supplement C), 286-291.
- Mueller, T. Ab initio determination of structure-property relationships in alloy nanoparticles. Physical Review B 2012, 86 (14), 144201.
- Weber, J.; Alonso, M. I. Near-band-gap photoluminescence of Si-Ge alloys. Physical Review B 1989, 40 (8), 5683-5693.
- Donati, G. P.; Kaspi, R.; Malloy, K. J. Interpolating semiconductor alloy parameters: Application to quaternary III–V band gaps. Journal of Applied Physics 2003, 94 (9), 5814-5819.
- Yen, Kuang K.; Wen, Wei L.; Jiann Lin. Band-Gap Bowing Parameter of the In x Ga 1- x N Derived From Theoretical Simulation. Japanese Journal of Applied Physics 2001, 40 (5R), 3157.
- Mourad, D.; Czycholl, G.; Kruse, C.; Klembt, S.; Retzlaff, R.; Hommel, D.; Gartner, M.; Anastasescu, M. Band gap bowing of binary alloys: Experimental results compared to theoretical tight-binding supercell calculations for ${\text{Cd}}{x}{\text{Zn}}{1\ensuremath{-}x}\text{Se}$. Physical Review B 2010, 82 (16), 165204.
- Moses, P. G.; Van de Walle, C. G. Band bowing and band alignment in InGaN alloys. Applied Physics Letters 2010, 96 (2), 021908.
- Gajdoš, M.; Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Physical Review B 2006, 73 (4), 045112.
Expert Q&A: Your Top Questions Answered
Q1: 왜 표준 DFT-PBE 대신 DFT+U 방법을 선택했나요?
A1: 표준 DFT-PBE 계산은 STF와 같은 전이 금속 산화물의 밴드갭을 실제보다 현저히 낮게 예측하는 경향이 있습니다. 본 연구에서는 양 끝단 물질인 SrTiO3와 Sr2Fe2O5의 실험적 밴드갭과 잘 일치하도록 Ti와 Fe 원자에 대해 보정된 Hubbard U 값을 적용했습니다. 이를 통해 계산 정확도와 효율성 사이의 합리적인 절충점을 찾아, 대규모 구조 계산에 필요한 신뢰도를 확보할 수 있었습니다.
Q2: 논문에서 Sr(Ti1-xFex)O3-x/2라는 특정 화학량론에 집중한 이유는 무엇인가요?
A2: 이 ‘기준 조성’은 전체 조성 범위에 걸쳐 전이 금속이 가장 선호하는 산화 상태(Ti+4, Fe+3)를 평균적으로 유지하게 합니다. 실제 작동 환경에서는 산소 함량이 변할 수 있지만, 이 기준 조성은 서로 다른 결정 구조를 갖는 두 물질 사이의 전체 고용체 공간에 걸쳐 클러스터 확장 모델을 개발하기 위한 현실적이고 계산적으로 다루기 쉬운 기준선을 제공합니다.
Q3: Figure 5에서 무질서가 전자 수송에 유리하다고 하셨는데, 그 메커니즘을 더 자세히 설명해 주실 수 있나요?
A3: 규칙적인 구조에서는 6개의 산소와 배위된 Fe와 4개의 산소와 배위된 Fe처럼 화학적 환경이 뚜렷하게 구분됩니다. 이러한 환경 차이는 특정 위치에 에너지가 국소화된 상태를 만들어 전하 운반체를 포획하는 트랩 역할을 합니다. 반면, CEMC로 예측된 무질서 구조에서는 Ti/Fe가 무작위로 섞여 이러한 환경들이 평균화되고, 그 결과 밴드 가장자리 상태가 물질 전체에 넓게 퍼지게(비편재화) 됩니다. 이는 전하 운반체가 특정 위치에 갇히지 않고 더 자유롭게 이동할 수 있게 해줍니다.
Q4: 모델이 예측한 거의 선형적인 밴드갭 변화(Figure 3)는 이론 및 실험과 어떻게 비교되나요?
A4: 이 결과는 Rothschild 등이 발표한 실험 결과와 매우 일치합니다. 많은 합금에서 조성에 따른 밴드갭 변화는 포물선 형태의 ‘보잉(bowing)’ 효과를 보이지만, STF의 경우 이 보잉 파라미터가 매우 작아 거의 선형적인 추세로 나타납니다. 이는 본 연구에서 사용된 클러스터 확장 접근법이 실제 소재의 전자적 특성을 성공적으로 예측할 수 있음을 검증하는 결과입니다.
Q5: 최저 에너지 구조에서 발견된 Fe-Vo-Fe 삼량체(trimer)는 어떤 의미를 갖나요?
A5: 이 삼량체는 Sr2Fe2O5의 브라운밀러라이트 구조에서 발견되는 국소적인 구조 모티프입니다. 혼합된 합금 내에서도 이러한 구조가 나타난다는 것은 단거리 질서(short-range order)가 존재함을 의미하며, 산소 공공이 왜 Fe 원자 주위에 모이는 것을 에너지적으로 선호하는지를 설명합니다. 이는 결과적으로 앞서 언급한 유익한 전자적 특성을 달성하는 핵심 요인 중 하나입니다.
Conclusion: Paving the Way for Higher Quality and Productivity
복잡한 혼합 이온-전자 전도체(MIEC) 소재의 성능을 예측하고 최적화하는 것은 기존의 방법론으로는 큰 도전이었습니다. 본 연구는 클러스터 확장법과 몬테카를로 시뮬레이션을 결합한 강력한 계산 프레임워크를 통해, 특정 유형의 원자 ‘무질서’가 실제로는 전자 수송 특성을 향상시키는 ‘유익한’ 역할을 할 수 있음을 규명했습니다. 이 발견은 완벽한 결정 구조만이 최선이라는 통념을 넘어, 소재의 성능을 극대화하기 위해 무질서를 공학적으로 제어하는 새로운 설계 패러다임을 제시합니다.
STI C&D는 최신 산업 연구 결과를 적용하여 고객이 더 높은 생산성과 품질을 달성할 수 있도록 최선을 다하고 있습니다. 이 논문에서 논의된 과제가 귀사의 운영 목표와 일치한다면, 저희 엔지니어링 팀에 연락하여 이러한 원칙을 귀사의 부품에 어떻게 구현할 수 있는지 논의해 보십시오.
(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD consulting services를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.
- 연락처 : 02-2026-0450
- 이메일 : flow3d@stikorea.co.kr
Copyright Information
- This content is a summary and analysis based on the paper “Structural Disorder and Electronic Structure of Sr(TixFe1-x)O3-x/2 Solid Solutions: A Computational Framework” by “Bin Ouyang, et al.”.
- Source:
This material is for informational purposes only. Unauthorized commercial use is prohibited. Copyright © 2025 STI C&D. All rights reserved.