Carbide (red) and graphite (blue) rich areas in a solidified gray iron casting.

Cast iron model

FLOW-3D‘의 주철 모델은 hypo 및 hyper-eutectic 철-탄소-실리콘 합금의 응고를 설명합니다. FLOW-3D‘는 융해하는 혼합반응(eutectic reaction) 동안 흑연, 오스테나이트 (또는 감마 – 철) 및 탄화물 상(유동) 형성을 예측합니다. 냉각 및 고형화 동안의 용적 변화는 수축 및 다공성 형성 모델과 결합됩니다. 주철 모델은 실제 철 동결 경로와 냉각 취약성 기준을 사용하여 현장의 탄화 수소 형성을 제어합니다.

주조 공장 엔지니어의 주요 관심사 중 하나는 응고 중에 형성될 수 있는 과도한 수축 다공성입니다. 주철의 체적 변화는 대부분 액체 합금을 주입 온도에서 고체로 냉각할 때, 그리고 더욱 중요하게는 감마선, 흑연 및 탄화물 형태로 응고할 때 발생합니다. 라이저(or risering)를 배치하면 수축을 유도할 수 있는 추가 금속이 제공됩니다. 최소 비용으로 우수한 품질의 주물을 달성하기 위해서는 최적의 하역이 중요합니다. 또한 금속의 적절한 합금과 냉각을 통해 수축의 양을 제어할 수 있습니다. FLOW-3D의 주철 모델은 이러한 모든 요소를 고려하여 용융, 응고 동안 기공 형성 및 위상 개발을 예측합니다.

주철 모델 개요 / Overview of the Cast Iron Model

주철은 탄소와 실리콘이 합금 된 용융 철입니다. 탄소는 전형적으로 2.5 wt % 내지 4.5 wt % 범위로 존재하고 실리콘은 1 wt % 내지 3 wt % 범위로 존재합니다. 흑연을 안정화하고 “냉각”경향 (즉, 탄소 철의 형성)을 줄이기 위해 실리콘이 첨가됩니다. 다른 원소 및 화합물은 미량으로 존재하며 일반적으로 흑연 모양 (예 : 연성 철의 마그네슘)을 제어하거나, 추가 탈산제 (예 : 인)로 작용하거나, 흑연의 주입제 (예 : 페로 실리콘) 역할을합니다.

FLOW-3D  의 주철 모델은 주입 온도에서 응고까지 발생하는 부피 변화를 설명합니다. 액체 상태에서 냉각 중 수축; 사전 용융 감마 철 형성 동안 추가 수축; 용융 반응 동안 후속 수축 또는 팽창; 그리고 용융 반응의 끝에서 고형 선으로의 2 차 수축. 주철은 일반적으로 탄화물의 형성에 영향을 미칠 수있는 비철 상을 포함하기 때문에, 응고된 금속의 밀도에 대한 이러한상의 영향에 대해 휴리스틱 허용치 (냉각 민감성 매개 변수의 형태)가 만들어집니다.

주철 응고 모델의 잠열 방출은 초기 용융물에서 탄소와 실리콘의 농도를 사용하여 Fe-C 위상 다이어그램 [1] 에서 결정된 온도 함수 (소위 동결 경로)로 계산됩니다 . 이 모델은 유동 유무에 관계없이 일반 응고 모델과 함께 사용할 수 있습니다. 그러나 다른 단계의 형성과 관련된 체적 변화는 흐름을 포함하지 않는 단순화된 수축 모델에만 결합됩니다.

철 확장 중 금형 벽 이동의 효과는 현재 모델에 포함되지 않습니다. 금형에서 사용 가능한 공간으로 수용 할 수없는 순 체적 확장은 무시됩니다.

융해 영역에서는 융해 경계의 속도를 사용하여 국부적인 냉각 경향을 계산하고, 따라서 국부적인 탄화물의 양을 계산하므로 금형 벽 근처의 냉각 영역을 모델링 할 수 있습니다. 고체 유전체 변환 중에는 더 이상의 공기상 변화를 추적하려는 시도가 없습니다. 즉, 최종 물질 미세 구조가 예측되지 않습니다.

hyper-eutectic cast irons의 경우, 회색 및 연성 주철과 같이 초기 경화전 공정 단계에서 흑연만 형성되는 것으로 가정합니다. 즉, 이 모델은 주로 탄화물이 형성되는 사전 융해 단계에서 hyper-eutectic white irons의 응고를 포함하지 않습니다.

Cast Iron Freezing Path

주철 동결 경로는 공융 합금의 경로입니다. 이는 액상 선 온도, 공융 온도, 공융 – 시작 및 공융 – 말단 고체 분율 및 고 상면 온도에 의해 특징 지어 질 수 있습니다. 모두지만, 마지막 두 양은 평형 3 원 Fe-C-Si 상 다이어그램 [1]에서 계산됩니다.
(The cast iron freezing path is that of a eutectic alloy. It can be characterized by the liquidus temperature, eutectic temperature, the eutectic-start and eutectic-end solid fractions and the solidus temperature. All, but the last two quantities are computed from the equilibrium ternary Fe-C-Si phase diagram [1].)

감마상의 탄소 용해도는 다음에 따라 중량 % 단위 Si 함량 에 따라 달라집니다 .

(1)     \displaystyle {{C}_{{\gamma ,mx}}}=2.07-0.098Si,

이는 Stefanescu [2]에 의해 보고된 용해도와 밀접한 관련이 있습니다. 합금의 액상 점 (섭씨 온도)은 hypo-eutectic liquidus plane :

(2)     \displaystyle {{T}_{i}}=1636-113\left( {C+0.25Si} \right)

또는 초정밀 액상 평면 [2] :

(3)     \displaystyle {{T}_{i}}=-505.8+389.1\left( {C+0.31Si} \right),

그리고 공융 혼합물 및 온도는 이들 평면의 교차점에 의해 주어집니다.

(4)     \displaystyle {{C}_{e}}=4.26-0.296Si,     \displaystyle {{T}_{e}}=1154.6+5.2Si

공융 반응의 시작은 레버 규칙에 의해 주어진 파생된 양입니다.

(5)     \displaystyle {{f}_{e}}=\frac{{c-{{c}_{\varepsilon }}}}{{{{c}_{{\gamma ,mx}}}-{{c}_{\varepsilon }}}}.

[3]의 측정은 이 근사가 많은 주철에 적합 함을 암시합니다.

흑연 공융 반응의 끝, 수수료 및 solidus Ts는 사용자 정의 수량으로 남습니다. 액체에서 인의 양의 분리를 고려하면 실제 고 상선 온도는 흑연 공융 온도보다 낮고 1100 ° C 정도로 낮습니다. 이 경우, 흑연 침전은 동결이 끝나기 전에 완료되고 동결되는 금속의 마지막 부분은 공융 밀도와 다른 밀도 ρei 에서 수행된다고 가정합니다.

흑연 공융 반응의 끝 f ee 및 고형 선 T s 는 사용자 정의 수량으로 남습니다. 액체에서 인의 양의 분리를 고려하면 실제 고 상선 온도는 흑연 공융 온도보다 낮으며 1100 ° C까지 낮습니다. 이 경우, 흑연 침전이 동결이 끝나기 전에 완료되고 동결 할 마지막 금속 부분 인 1- f ee 가 공융 밀도와 다른 밀도 ρ ei 에서 그렇게 한다고 가정합니다.
( The end of graphitic eutectic reaction, fee , and the solidus Ts, are left as user-defined quantities. If one considers positive segregation of phosphorous in the liquid, the actual solidus temperature is below the graphitic eutectic temperature, and is as low as 1100 °C. For this case, it is assumed that graphite precipitation is complete before the end of freezing, and that the last fraction of metal to freeze, 1-fee, does so at a density ρei different from the eutectic density. )

밀도 변화 / Density Changes

일반적으로 주철 주물의 과열은 크며 응고가 시작되기 전에 냉각 중 수축이 중요합니다. 액체 철 밀도의 온도 의존성은 선형 형태로 모델링됩니다 :

(6)     \displaystyle \rho \left( T \right)={{\rho }_{0}}\left[ {1-\alpha \left( {T-{{T}_{0}}} \right)} \right]

또는 테이블 형식으로 함수 ρ (T) 를 정의하여 .

일단 동결 범위에 들어가면 감마철은 고형분수에 도달할 때까지 형성됩니다. 이 단계의 농도 값인 ,ϒ은 7.2 g/cc입니다 [4,5,6]. 고형분수에 도달하면, 일반(흰색) 공극과 불규칙한 회색 공극이 경쟁적으로 성장하는 동안 공극 반응이 시작됩니다. 높은 동결률과 높은 황동-전방 속도에서 백색 황동은 부분적으로 황동 전방에 앞서 탄소 농도 구배가 더 낮기 때문에 안정적입니다. 낮은 Eutectic-front 속도에서는 회색 Eutectic이 안정적입니다.
( Once in the freezing range, gamma iron forms until fe solid fraction is reached. The density value of this phase, ρϒ, is a 7.2 g/cc [4,5,6]. Upon reaching fe solid fraction, the eutectic reaction begins during which a regular (white) eutectic and an irregular grey eutectic grow competitively. At high freezing rates and high eutectic-freezing-front speeds the white eutectic is stable in part due to shallower carbon concentration gradients ahead of the eutectic front. At lower eutectic-front speeds the grey eutectic is stable. )

냉기 형성을 설명하기 위해 간단한 접근 방식이 사용됩니다.  In a range of eutectic freezing front speeds,

(7)     \displaystyle {{\nu }_{e}}\in \left[ {\frac{{\nu -}}{{{{X}_{{eut}}}}},\frac{{\nu +}}{{{{X}_{{eut}}}}}} \right]

형성되는 냉기의 양은 주어진 탄소 구성에서 허용되는 최대치에서 0까지 다양합니다. 파라미터 ν-=30μ/ms, ν+=60μ/ms, Xeut은 사용자 정의 파라미터인 쿨링 취약성 기준이며, 값이 0.0 ~ 1.0 범위이고 기본값은 1입니다. 잘 절연된 철이나 특정 표면적이 높은 회색 광택제의 경우 Xeut는 0에 가깝고 추위는 형성되지 않습니다. 반면, 철이 절연되지 않은 경우 기본값인 1이 더 적합해야 합니다. Xeut의 실제 값은 예를 들어 ASTM 쿨웨지 테스트(그림 1)에서 실험적으로 결정해야 합니다.
( the amount of chill formed varies from zero to the maximum allowed for a given carbon composition. The parameters ν-=30 μ/ms, and ν+=60 μ/ms, and Xeut is the chilling susceptibility criterion, a user-defined parameter, with values in the range from 0.0 to 1.0 with the default of one. For well-inoculated iron, or for a grey eutectic with a high specific surface area, Xeut is close to zero, and no chill will form. On the other hand, if the iron is un-inoculated the default value of one should be more appropriate. The actual value of Xeut must be determined experimentally, for example, from an ASTM chill-wedge test (Fig 1.).)

Figure 1. Carbide (left) and graphite (right) content in a 3.4 wt% C, 1.7 wt% Si iron with Xeut=0.25 (top) and Xeut=0.40 (bottom)

주조물의 순 체적 변화는 응고 과정에서 형성되는 서로 다른 상의 양과 액체 수축의 결합 효과입니다. 그림 2는 3.4wt %의 탄소와 2.5wt %의 실리콘을 갖는 합금에 대한 3 가지 상이한 과열 온도에 대한 금속 부피의 변화를 보여줍니다. 더 큰 과열은 금속 체적의 순수한 감소로 이어. 그래파이트 형성으로 인해 응고 동안 나중에 팽창은 체적의 손실을 보상 할 수 없습니다.

Figure 2. Computed volume vs. time for three pouring temperatures for a 3.4 wt % C, 2.5 wt % Si cast iron. From top to bottom: 1250, 1400 and 1550°C pouring temperatures.

Summary

동결시 철의 밀도 변화를 추적하고 흑연, 오스테나이트 및 탄화물 상을 포함하는 미세 구조를 예측하기 위한 주철 모델을 기술하였습니다. 이 모델은 단순 응고 수축 및 미세 다공성 모델에 대한 옵션입니다. 고형물 (> 2 %)을 함유 한 철의 변성 열을 정의하기 위해 유동이 있건, 없건 응고 중에 사용할 수 있습니다. 수축 및 팽창 모두 흐름없이 모델에 포함됩니다. 팽창을 위한 공간이 없는 경우를 제외하고 팽창은 무시됩니다.

References

[1] G. Goodrich and John Svoboda, “Basic Concepts of Ferrous Metallurgy,” Cast Metals Institute, Inc., American Foundry Society, Inc., 1997.

[2] D. M. Stefanescu, S. Katz, “Thermodynamic Properties of Iron-Base Alloys,” ASM Handbook Volume 15, Casting (ASM International), 2008.

[3] K.G. Upadhya, D.M. Stefanescu, K. Lieu and D.P. Yeager, “Computer-Aided Cooling Curve Analysis: Principles and Applications in Metal Casting,” AFS Transactions, Vol. 97, 1989, 61-66.

[4] AFS, “Gating Calculations for Iron Castings,” spreadsheet, 2009.

[5] Von Alfred Holzmuller, VDG and Robert Wlodawer, VDG, “Zehn Jahre Speiser-Eingrs-Verfahren fur Guseisen,” Giesserei, 1963.

[6] G. Goodrich, “Introduction to Cast Irons,” ASM Handbook, Volume 15: Casting, 2008, pp 794-795.

[7] A. Starobin, M.C. Carter, “Modeling Volume Changes and High Temperature Microstructure in Cast Iron,” Flow Science Technical Note FSI-11-TN89, 2011.