Fig. 6. Configuration of Johnson (1958) hydraulic experiment.

Equation for ship wave crests in the entire range of water depths

Byeong Wook Lee a
, Changhoon Lee b,
*a Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science & Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea
b Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea

ABSTRACT

An equation for ship wave crests y/x in the entire range of water depths is developed using the linear dispersion relation. In deep water, the developed equation is reduced to the equation of Kelvin (1906). The locations of ship wave crests in the x – and y -directions are obtained using a dimensionless constant C. The wave ray angle θc at the cusp locus is determined using the condition that θc is maximal at the cusp locus and the cusp locus angle is determined as αc=−tan−1(y/x)max. Numerical experiments are conducted using the FLOW-3D to simulate ship wave propagation. The cusp locus angles of the FLOW-3D are similar to both those of the present theory and Havelock (1908) theory in the entire range of the Froude number. Both the present theory and the FLOW-3D yield that, with the increase of ship speed, the Froude number increases and does the wavelength. For the Froude number equal to or greater than unity, the wavelength becomes infinitely large and the transverse waves disappear. The wavelengths of the FLOW-3D are slightly smaller than those of the present theory because the FLOW-3D considers the decrease of wavelength due to energy dissipation which happens because of viscosity of water and turbulence of high-speed particle velocities.

Fig. 6. Configuration of Johnson (1958) hydraulic experiment.
Fig. 6. Configuration of Johnson (1958) hydraulic experiment.
Fig. 8. Comparison of ship wave crest patterns: (a) Fr ¼ 0:66 (Us ¼ 6:5m=s,  kh � 0:724π), (b) Fr ¼ 0:86 (Us ¼ 8:5m=s, kh � 0:342π), (c) Fr ¼ 1:21 (Us ¼ 12:0m=s, kh � 0:003π). Line definition: red solid line ¼ present theory; yellow  dashed line ¼ Kelvin theory; white dot ¼ FLOW-3D solution. (For interpretation  of the references to colour in this figure legend, the reader is referred to the  Web version of this article.)
Fig. 8. Comparison of ship wave crest patterns: (a) Fr ¼ 0:66 (Us ¼ 6:5m=s, kh >= 0:724π), (b) Fr ¼ 0:86 (Us ¼ 8:5m=s, kh >= 0:342π), (c) Fr ¼ 1:21 (Us ¼ 12:0m=s, kh >= 0:003π). Line definition: red solid line ¼ present theory; yellow dashed line ¼ Kelvin theory; white dot ¼ FLOW-3D solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Keywords

Ship wave crests
Cusp locus angle
Entire range of water depths
Theoretical solution
Numerical experiment

References

kylas, T.R., 1984. On the excitation of long nonlinear water waves by a moving pressure
distribution. J. Fluid Mech. 141, 455–466.

Chen, X.N., Sharma, S.D., 1995. A slender ship moving at a near-critical speed in a
shallow channel. J. Fluid Mech. 291, 263–285.
David, C.G., Roeber, V., Goseberg, N., Schlurmann, T., 2017. Generation and propagation
of ship-borne waves – solutions from a Boussinesq-type model. Cost Eng. 127,
170–187.
Ersan, D.B., Beji, S., 2013. Numerical simulation of waves generated by a moving
pressure field. Ocean Eng. 59, 231–239.
Ertekin, R.C., Webster, W.C., Wehausen, J.V., 1986. Waves caused by a moving
disturbance in a shallow channel of finite width. J. Fluid Mech. 169, 275–292.
Fang, M.-C., Yang, R.-Y., Shugan, I.V., 2011. Kelvin ship wake in the wind waves field
and on the finite sea depth. J. Mech. 27 (1), 71–77.
Havelock, T.H., 1908. The propagation of groups of waves in dispersive media with
application to waves on water produced by a travelling disturbance. Proc. Royal Soc.
London Ser. A 398–430.
Hennings, I., Romeiser, R., Alpers, W., Viola, A., 1999. Radar imaging of Kelvin arms of
ship wakes. Int. J. Remote Sens. 20 (13), 2519–2543.
Hur, D.S., Lee, J., Choi, D.S., Lee, H.W., 2011. On run-up characteristics of revetment
under interaction among ocean wave, current and ship induced wave in the canal.
In: Proceedings of the 37th Conference on the Korean Society of Civil Engineers,
pp. 588–591 (in Korean).
Johnson, J.W., 1958. Ship waves in navigation channels. In: Proceedings of the 6th
Conference on Coastal Engineering, pp. 666–690.
Kang, Y.S., Kim, P.J., Hyun, S.K., Sung, H.K., 2008. Numerical simulation of ship-induced
wave using FLOW-3D. J. Korean Soc. Coast. Ocean Eng. 20 (3), 255–267 (in Korean).
Kelvin, 1887. On ship waves. In: Proceedings of the Institution of Mechanical
Engineering, pp. 409–433.
Kelvin, 1906. Deep sea ship-waves. Proc. R. Soc. Edinb. 25 (2), 1060–1084.
Lamb, H., 1945. Hydrodynamics. Dover Publications.
Lee, C., Lee, B.W., Kim, Y.J., Ko, K.O., 2011. Ship wave crests in intermediate-depth
water. In: Proceedings of the 6th International Conference on Asian and Pacific
Coasts, pp. 1818–1825.
Lee, B.W., Lee, C., Kim, Y.J., Ko, K.O., 2013. Prediction of ship wave crests on varying
water depths and verification by FLOW-3D. J. Korean Soc. Civil Eng. 33 (4),
1447–1454 (in Korean).
Lighthill, M.J., Whitham, G.B., 1955. On kinematic waves: I. Flood movement in long
rivers; II. Theory of traffic flow on long crowded roads. Proc. R. Soc. A 229, 281–345.
Newman, J.N., 1970. Recent research on ship waves. In: Proceedings of the 8th
Symposium on Naval Hydrodynamics, pp. 519–545.
Newman, J.N., 1977. Marine Hydrodynamics. The MIT Press.
Reed, A.M., Milgram, J.H., 2002. Ship wakes and their radar images. Annu. Rev. Fluid
Mech. 34, 469–502.
Shemdin, O.H., 1990. Synthetic aperture radar imaging of ship wakes in the Gulf of
Alaska. J. Geophys. Res. 95 (C9), 16319–16338.
Shi, F., Malej, M., Smith, J.M., Kirby, J.T., 2018. Breaking of ship bores in a Boussinesqtype ship-wake model. Cost Eng. 132, 1–12.
Sorensen, R.M., 1967. Investigation of ship-generated waves. J. Waterw. Harb. Div.
85–99. ASCE.
Sorensen, R.M., 1969. Waves generated by model ship hull. J. Waterw. Harb. Div.
513–538. ASCE.
Sorensen, R.M., Weggel, J.R., 1984. Development of ship wave design information. In:
Proceedings of the 19th Conference on Coastal Engineering, pp. 3227–3243. ASCE.
Stoker, J.J., 1957. Water Waves: the Mathematical Theory with Applications.
Interscience Publishers.
Tuck, E.O., 1966. Shallow-water flows past slender bodies. J. Fluid Mech. 26, 81–95.
Wu, D.M., Wu, T.Y., 1982. Three-dimensional nonlinear long waves due to moving
surface pressure. In: Proceedings of the 14th Symposium on Naval Hydrodynamics,
pp. 103–129.