Fig 1: Horizontal Centrifugal Casting Pro-E Model

이 기술 요약은 P.Shaliesh 외 저자가 2014년 International Journal of Current Engineering and Technology에 발표한 논문 “Determination of the Solidification Time of Al-7%Si Alloy during Centrifugal Casting”을 기반으로 하며, STI C&D의 기술 전문가에 의해 분석 및 요약되었습니다.

키워드

  • Primary Keyword: 원심주조 공정 최적화
  • Secondary Keywords: 응고 시간 예측, Al-Si 합금, 수치 해석, 열전달 해석, 주조 결함

Executive Summary

  • 도전 과제: 알루미늄 합금의 수평 원심주조 공정에서 응고 시간을 정확히 예측하는 것은 품질 불량 및 결함 발생을 줄이는 데 필수적이지만 매우 어렵습니다.
  • 해결 방법: 본 연구는 온도 의존적 물성치, 대류 및 복사 열전달을 모두 고려한 극좌표계 기반의 수학적 모델을 개발하여 응고 시간을 실험 및 이론적으로 분석했습니다.
  • 핵심 발견: 응고 시간은 금형 예열 온도와 용탕 주입 온도에 매우 큰 영향을 받지만, 일반적인 공정 범위(900-1440 rpm) 내의 회전 속도에는 거의 영향을 받지 않는 것으로 나타났습니다.
  • 핵심 결론: 금형 및 용탕 온도를 정밀하게 제어함으로써 제조업체는 응고 공정을 최적화하고 고온 균열과 같은 결함을 줄여 부품 품질을 획기적으로 향상시킬 수 있습니다.

도전 과제: 이 연구가 CFD 전문가에게 중요한 이유

원심주조는 높은 기계적 강도와 조직의 치밀성이 요구되는 고품질 알루미늄 부품 생산에 널리 사용되는 공정입니다. 하지만 용탕이 고속으로 회전하는 금형 내에서 응고되는 과정은 복잡한 열전달 메커니즘을 포함하기 때문에 최종 제품의 품질을 일관되게 유지하기 어렵습니다. 특히, 응고 시간 제어에 실패할 경우 고온 균열(hot cracking)과 같은 심각한 결함이 발생할 수 있습니다.

기존 연구에서는 이러한 수평 원심주조 공정에 대한 수치 해석적 시뮬레이션이 거의 이루어지지 않아, 현장에서는 경험에 의존한 공정 제어가 주를 이루었습니다. 이는 생산성 저하와 품질 불량의 주요 원인이었습니다. 따라서, 공정 변수가 응고 시간에 미치는 영향을 정량적으로 분석하고 예측할 수 있는 신뢰성 높은 모델의 개발이 시급한 과제였습니다.

접근 방식: 연구 방법론 분석

본 연구는 Al-7%Si 합금(4450)의 수평 원심주조 공정을 대상으로 실험과 수치 해석을 병행했습니다. 연구진은 원통형 주조품의 특성을 효과적으로 분석하기 위해 극좌표계를 사용한 열전달 모델을 개발했습니다.

  • 지배 방정식: 원통형 극좌표계에서의 반경 방향 1차원 열전도 방정식을 사용하여 금형과 용탕 내부의 온도 분포를 계산했습니다.
  • 물성치 고려: 합금의 밀도, 비열, 열전도도 등 주요 물성치가 온도에 따라 변하는 특성을 모델에 반영하여 해석의 정확도를 높였습니다. 또한, 응고 과정에서 발생하는 잠열(latent heat)도 고려했습니다.
  • 경계 조건:
    • 금형 외벽: 실제 주조 환경을 모사하기 위해 금형 외부 표면에서 발생하는 대류(convection)와 복사(radiation)에 의한 열 손실을 모두 계산에 포함했습니다. 특히 복사 열전달이 전체 열 손실의 약 35%를 차지함을 확인하여, 이를 무시할 수 없는 중요한 변수로 다루었습니다.
    • 용탕 내벽: 회전하는 공기에 의한 열 손실은 미미하다고 가정하여 단열 조건(Adiabatic)을 적용했습니다.
    • 금형/용탕 경계면: 금형과 응고된 금속 사이의 열유속(heat flux) 연속성을 적용하여 정확한 열전달을 계산했습니다.
Fig 1: Horizontal Centrifugal Casting Pro-E Model
Fig 1: Horizontal Centrifugal Casting Pro-E Model

이 모델을 기반으로 FORTRAN 코드를 개발하여 다양한 주입 온도, 금형 온도, 회전 속도 조건에서 응고 시간을 예측하고 실험 결과와 비교 검증했습니다.

핵심 발견: 주요 결과 및 데이터

결과 1: 금형 예열 온도가 응고 시간을 결정하는 핵심 변수임이 입증되었습니다.

데이터는 금형의 예열 온도가 응고 시간에 직접적이고 강력한 영향을 미친다는 것을 명확히 보여줍니다.

용탕 주입 온도를 720°C로 고정했을 때, 금형 온도를 35°C에서 100°C로, 그리고 200°C로 높이자 응고 시간은 각각 11.2초, 15초, 22.42초로 급격히 증가했습니다. 이는 금형 예열이 냉각 속도를 제어하고, 결과적으로 고온 균열과 같은 열응력 관련 결함을 방지하는 데 가장 효과적인 수단임을 시사합니다. (Fig. 3, 4, 5 참조)

결과 2: 공정 범위 내 회전 속도는 응고 시간에 미미한 영향을 미칩니다.

많은 현장 엔지니어들이 회전 속도가 냉각에 큰 영향을 줄 것이라고 예상하지만, 본 연구 결과는 다른 결론을 제시합니다.

금형의 회전 속도를 900 rpm에서 1440 rpm으로 증가시켰을 때, 응고 시간에는 유의미한 변화가 관찰되지 않았습니다. 이는 해당 공정 범위 내에서는 회전 속도 증가로 인한 대류 열전달 계수의 증가 효과가 전체 응고 시간에 미치는 영향이 미미하다는 것을 의미합니다. 따라서 응고 시간 제어를 위해 회전 속도를 조정하는 것은 비효율적인 접근일 수 있습니다.

R&D 및 운영을 위한 실질적 시사점

  • 공정 엔지니어: 이 연구는 금형 예열 온도가 냉각 속도를 제어하는 가장 중요한 변수임을 보여줍니다. 고온 균열 발생 가능성을 줄이고자 할 때, 회전 속도나 다른 변수보다 금형 예열 조건을 우선적으로 최적화하는 것이 효과적일 수 있습니다.
  • 품질 관리팀: 논문의 그림 3, 4, 5에 제시된 데이터는 특정 주입 온도와 금형 온도 조건이 응고 시간에 미치는 영향을 명확하게 보여줍니다. 이 데이터를 활용하여 일관된 품질의 제품을 생산하기 위한 공정 윈도우(process window)를 설정하고 새로운 품질 검사 기준을 수립하는 데 참고할 수 있습니다.
  • 설계 엔지니어: 연구 결과는 금형 예열 전략이 부품의 최종 품질, 특히 고온 균열과 같은 결함 형성에 직접적인 영향을 미친다는 것을 시사합니다. 따라서 부품 설계 초기 단계부터 생산 공정에서의 예열 조건을 고려하는 것이 중요합니다.

논문 상세 정보


Determination of the Solidification Time of Al-7%Si Alloy during Centrifugal Casting

1. 개요:

  • 제목: Determination of the Solidification Time of Al-7%Si Alloy during Centrifugal Casting
  • 저자: P.Shaliesh, B. Praveen Kumar, K Vijaya Kumar, A Nagendra
  • 발표 연도: 2014
  • 발표 학술지/학회: International Journal of Current Engineering and Technology
  • 키워드: Al-Si Alloy, Centrifugal Casting, Solidification Time

2. 초록:

본 연구는 다양한 속도의 원심주조 방식으로 생산된 주조 부품의 응고 시간을 결정하기 위한 실험적 및 이론적 조사를 다룬다. Al-7%Si 합금을 다른 주입 온도와 회전 속도에서 고려하였다. 응고 시간을 측정하고 동결 시간을 추정하기 위한 적절한 수학적 공식이 제안되었다. 본 연구에서는 수평축 원심주조를 실험 및 수치적으로 연구하였다. 분석 및 수치 조사 중에는 극좌표계가 고려되었다. 응고 시간 추정을 위해 알루미늄 합금의 온도 의존적 특성이 고려되었다. 회전하는 주철 금형의 외부 표면으로부터의 복사 열전달도 대류 열전달과 함께 고려되었다. 결과는 표와 그래프 형태로 제시되고 비교되었다.

3. 서론:

원심주조는 알루미늄 합금으로 만들어진 부품의 많은 응용 분야에서 광범위하게 사용된다. 원심주조로 만들어진 제품은 영구 금형 주조 공정으로 만들어진 부품보다 더 나은 건전성(integrity)을 가진다. 주조기는 수평축을 중심으로 금형을 회전시킨다. 약 720°C와 780°C의 Al-Si 합금이 주입구를 통해 금형으로 공급된다. 액체 Al-Si 합금이 금형과 접촉하면서 원심력에 의해 표면에 퍼지고 응고된다. 이 시간 동안 금형의 외부 표면과 뜨거운 Al-Si 합금 사이에서 열이 전도된다. 수평 원심주조에 사용되는 금속 금형의 내부 표면은 일반적으로 용탕과 접촉하기 전에 얇은 절연재 층으로 코팅된다. 본 연구에서는 금형 내 반경 방향 온도 분포와 용탕에 대한 분석을 Al-Si(IS 617:1975의 4450)에 대해 수행하였으며, 이 방법들은 응고 시간을 추정하는 데 활용되었다.

4. 연구 요약:

연구 주제의 배경:

원심주조는 고품질 알루미늄 부품 생산에 중요하지만, 응고 시간과 같은 핵심 공정 변수를 제어하기 어렵다. 특히 수평 원심주조 공정의 수치적 시뮬레이션에 대한 연구가 부족하여 공정 최적화에 어려움이 있었다.

이전 연구 현황:

일부 연구에서 강철 주물의 응고나 수직 원심주조 공정에 대한 기술이 있었지만, 수평 원심주조 공정, 특히 알루미늄 합금에 대한 포괄적인 수치 해석 모델은 문헌에서 찾아보기 어려웠다.

연구 목적:

다양한 주입 온도와 회전 속도 조건에서 Al-7%Si 합금의 수평 원심주조 공정 시 응고 시간을 실험적으로 측정하고, 이를 예측할 수 있는 신뢰성 있는 수학적 모델을 개발하는 것을 목적으로 한다.

핵심 연구:

실험과 수치 해석을 통해 주입 온도, 금형 예열 온도, 회전 속도가 응고 시간에 미치는 영향을 정량적으로 분석하였다. 특히, 금형 외부 표면에서의 대류 및 복사 열전달을 모두 고려한 포괄적인 열전달 모델을 수립하고 검증하였다.

5. 연구 방법론

연구 설계:

실험적 조사와 이론적(수치적) 조사를 병행하였다. 실험을 통해 특정 공정 조건에서의 응고 시간을 측정하고, 이를 수치 해석 모델의 검증 데이터로 사용하였다.

데이터 수집 및 분석 방법:

  • 실험: 특정 주입 온도 및 금형 온도에서 Al-7%Si 합금을 수평 원심주조기에 주입하고, 용탕의 내부 표면 온도가 고상선(solidus) 온도 이하로 떨어지는 시간을 측정하여 응고 시간을 결정했다.
  • 수치 해석: 원통형 극좌표계 기반의 1차원 열전도 방정식을 유한 차분법으로 이산화하였다. TDMA(Tridiagonal Matrix Algorithm)를 사용하여 매 시간 단계별 온도 분포를 계산했다. 개발된 FORTRAN 프로그램을 사용하여 다양한 조건에서의 응고 시간을 시뮬레이션했다.
Fig: 2Graphical diagram Horizontal Centrifugal Casting
Fig: 2 Graphical diagram Horizontal Centrifugal Casting

연구 주제 및 범위:

  • 합금: 4450 (Al-6.5-7.5%Si) 합금
  • 공정: 수평 원심주조
  • 변수:
    • 주입 온도: 720°C, 750°C, 780°C
    • 금형 온도: 35°C, 100°C, 200°C
    • 회전 속도: 900 rpm, 1440 rpm

6. 주요 결과:

주요 결과:

  • 금형 예열 온도가 증가할수록 응고 시간이 크게 증가했다. (예: 주입 온도 720°C에서 금형 온도가 35°C일 때 11.2초, 200°C일 때 22.42초)
  • 용탕 주입 온도가 높을수록 응고 시간이 증가했다.
  • 금형 회전 속도를 900 rpm에서 1440 rpm으로 증가시켜도 응고 시간에는 유의미한 변화가 없었다.
  • 수치 해석 결과는 실험적으로 관찰된 값과 잘 일치하였다.

Figure 목록:

  • Fig 1: Horizontal Centrifugal Casting Pro-E Model
  • Fig 2: Graphical diagram Horizontal Centrifugal Casting
  • Fig. 3 shows pouring temperature Vs Time (Sec) at 35° C mould temperature
  • Fig. 4. Shows pouring temperature Vs Time (Sec) at 100°C mould temperature
  • Fig. 5 Shows pouring temperature Vs Time (Sec) at 200° C mould temperature

7. 결론:

  • 다이캐스트 금형의 예열 온도가 증가하면 응고층의 두께가 감소하며, 이는 합금의 고온 균열 경향을 제거하는 데 바람직하다.
  • 원심주조에서 용탕의 응고 시간은 금형 온도와 주입 온도의 강력한 함수이다.
  • 본 연구에서 고려된 범위 내에서 응고 시간은 금형의 회전 속도와는 완전히 무관하다.
  • 개발된 수치 코드의 예측 능력은 실험값과의 비교를 통해 입증되었다.

8. 참고 문헌:

  1. H.Md. Roshan, (1947), Analytical Solution to the Heat Transfer in Mould walls during solidification of metals, AFS Cast Metals Research Journal, pp 39-47.
  2. Bahadori M.N (1971), Control of Solidification Rate by Application of Heat Pipe Principle, Cast Metals Research Journal, pp.62-66.
  3. E Kaschnitz (2012) Numerical simulation of centrifugal casting of pipes IOP Conf. Series: Materials Science and Engineering33012031.
  4. Jezierski J(1970), Analysis of the State of Thermal Stress in Moulds during Centrifugal Casting, AFS Cast Metals Research Journal, pp.75-79.
  5. LazardisA (1970), Thermal Analysis of Centrifugal Casting Moulds, AFS Cast Metals Research Journal, pp.153-160.
  6. Tae-Gyu Kim (1997), Time Varying Heat Transfer Coefficients between Tube Shaped Casting and Metal Mould, Pergamon, pp.3513-3525.
  7. Minosyan Ya P (1983), Mathematical Simulation of Centrifugal Casting of Pipes, Heat Transfer Soviet Research Journal, pp.134-140.

전문가 Q&A: 자주 묻는 질문

Q1: 수치 모델에서 왜 극좌표계를 선택했나요?

A1: 주조품이 원통형이기 때문에 극좌표계를 사용하면 반경 방향으로의 열전달을 효과적으로 모델링할 수 있습니다. 이는 직교 좌표계보다 계산이 단순하고 이 형상에 더 정확한 결과를 제공하기 때문에 원심주조와 같은 축대칭 공정 해석에 매우 적합합니다.

Q2: 연구에서는 회전 속도가 응고 시간에 미미한 영향을 미친다고 했는데, RPM이 높아지면 공기 흐름이 증가하여 냉각이 더 빨라지지 않나요?

A2: 모델 분석 결과, 회전 속도가 증가하면 레이놀즈 수가 커져 대류 열전달 계수가 증가하는 것은 사실입니다. 하지만 금형 외부 표면에서의 전체 열전달은 대류뿐만 아니라 복사와 금형을 통한 전도에 의해 결정됩니다. 본 연구의 공정 범위(900-1440 rpm) 내에서는 속도 증가에 따른 대류 효과의 변화가 전체 응고 시간을 크게 바꿀 만큼 지배적이지 않았습니다.

Q3: 금형 외부 표면에서 복사 열전달과 대류 열전달을 모두 고려한 이유는 무엇인가요?

A3: 분석 결과, 금형 외부 표면에서 발생하는 전체 열전달 중 복사가 차지하는 비중이 약 35%에 달했습니다. 만약 복사 열전달을 무시했다면, 전체 냉각 속도를 실제보다 현저히 낮게 예측하게 되어 응고 시간 계산에 큰 오차를 유발했을 것입니다. 따라서 정확한 시뮬레이션을 위해 두 메커니즘을 모두 고려하는 것이 필수적이었습니다.

Q4: 결론에서 ‘예열이 응고층의 두께를 감소시킨다’는 부분이 직관적이지 않습니다. 어떻게 해석해야 하나요?

A4: 해당 내용은 논문의 결론에 명시된 부분입니다. 이는 예열로 인해 냉각 속도가 느려지면서 특정 시간 동안 성장하는 응고층의 성장 ‘속도’가 감소한다는 의미로 해석하는 것이 타당합니다. 즉, 전체 응고는 더 오래 걸리지만, 급격한 냉각으로 인한 열응력을 줄여 고온 균열을 방지하는 데는 더 유리합니다. 이는 더 건전한 주조품을 얻기 위한 바람직한 현상입니다.

Q5: 이 연구 결과를 다른 알루미늄 합금이나 다른 크기의 주조품에도 적용할 수 있을까요?

A5: 본 연구에서 개발된 수학적 모델링 접근 방식은 원칙적으로 다른 합금이나 다른 치수의 원통형 주조품에도 적용할 수 있습니다. 다만, 해당 합금의 정확한 온도 의존적 물성치(밀도, 비열, 열전도도, 잠열 등)와 주조품의 기하학적 치수를 모델에 정확히 입력해야 신뢰성 있는 결과를 얻을 수 있습니다.


결론: 더 높은 품질과 생산성을 향한 길

이 연구는 Al-7%Si 합금의 원심주조 공정 최적화를 위해 응고 시간에 영향을 미치는 핵심 변수들을 명확히 규명했습니다. 핵심은 금형의 예열 온도와 용탕의 주입 온도를 정밀하게 제어하는 것이며, 일반적인 공정 범위 내에서 회전 속도는 부차적인 변수라는 점입니다. 이러한 발견은 제조업체가 경험에 의존하던 기존 방식에서 벗어나, 데이터를 기반으로 공정을 최적화하고 고질적인 품질 문제를 해결할 수 있는 과학적 근거를 제공합니다.

STI C&D는 최신 산업 연구 결과를 적용하여 고객이 더 높은 생산성과 품질을 달성할 수 있도록 지원하는 데 전념하고 있습니다. 이 백서에서 논의된 과제가 귀사의 운영 목표와 일치한다면, 저희 엔지니어링 팀에 연락하여 이러한 원칙을 귀사의 부품에 어떻게 구현할 수 있는지 논의해 보십시오.

(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD consulting services를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.

  • 연락처 : 02-2026-0450
  • 이메일 : flow3d@stikorea.co.kr

저작권 정보

  • 이 콘텐츠는 “P.Shaliesh” 외 저자의 논문 “[Determination of the Solidification Time of Al-7%Si Alloy during Centrifugal Casting]”을 기반으로 한 요약 및 분석 자료입니다.
  • 출처: http://dx.doi.org/10.14741/ijcet/spl.2.2014.40

이 자료는 정보 제공 목적으로만 사용됩니다. 무단 상업적 사용을 금지합니다. Copyright © 2025 STI C&D. All rights reserved.