위분류 금형 설계안의 3차원 모델

이 기술 요약은 SUN Xuemei, ZHAO Guoqun이 JOURNAL OF MECHANICAL ENGINEERING에 발표한 논문 “Fake Porthole Extrusion Die Structure Design and Strength Analysis for Cantilever Aluminum Alloy Profiles”을 기반으로 하며, (주)에스티아이씨앤디의 기술 전문가에 의해 분석 및 요약되었습니다.

키워드

  • Primary Keyword: 위분류 압출 금형 (Fake Porthole Extrusion Die)
  • Secondary Keywords: 캔틸레버 알루미늄 프로파일, 압출 금형 설계, 금형 강도 해석, CFD 시뮬레이션, 재료 유동 최적화

Executive Summary

  • 도전 과제: 크고 긴 캔틸레버 형상의 알루미늄 프로파일을 압출할 때, 기존의 평금형이나 유도 금형은 캔틸레버 부분에 가해지는 높은 응력으로 인해 쉽게 손상되거나 파손됩니다.
  • 해결 방법: 본 연구에서는 수치 해석 시뮬레이션을 통해 기존의 일반 유도 금형 설계와 새로운 ‘위분류(Fake Porthole) 금형’ 설계를 비교 분석하여 재료 유동, 온도 분포 및 금형 강도를 평가했습니다.
  • 핵심 돌파구: 위분류 금형 설계를 적용했을 때, 금형에 가해지는 최대 등가 응력이 기존 1,852 MPa에서 891 MPa로 51.9%나 감소하여 금형의 강도를 획기적으로 확보했습니다.
  • 핵심 결론: 위분류 금형 구조는 복잡한 캔틸레버 프로파일 압출 시 금형의 수명을 보장하고, 구조 최적화를 통해 우수한 제품 품질까지 달성할 수 있는 매우 효과적인 설계 솔루션입니다.

도전 과제: 이 연구가 CFD 전문가에게 중요한 이유

자동차, 항공우주, 건축 등 다양한 산업에서 크고 복잡한 단면을 가진 알루미OUS 프로파일의 수요가 급증하고 있습니다. 특히, 길고 얇은 캔틸레버(외팔보) 구조를 포함하는 프로파일은 압출 공정이 매우 까다롭습니다.

기존의 평금형(flat die)이나 유도 금형(diversion die)을 사용하면 압출 과정에서 금형의 캔틸레버 부분에 엄청난 응력이 집중됩니다. 이로 인해 금형이 소성 변형되거나 파손되어 생산성이 저하되고 금형 교체 비용이 증가하는 문제가 발생합니다. 단순히 금형의 두께를 늘리는 것만으로는 이 문제를 근본적으로 해결하기 어렵습니다. 따라서, 제품의 품질을 보장하면서 동시에 금형의 강도와 수명을 확보할 수 있는 혁신적인 금형 설계 기술이 절실히 요구되었습니다.

접근 방식: 연구 방법론 분석

본 연구는 특정 대형 캔틸레버 알루미늄 프로파일(그림 1)을 대상으로 두 가지 다른 금형 설계 방식의 성능을 수치적으로 비교 분석했습니다.

  • 설계 비교:
    1. 일반 유도 금형 (Conventional Diversion Die): 일반적인 압출 공정에 사용되는 표준 설계 방식입니다 (그림 2).
    2. 위분류 금형 (Fake Porthole Die): 중공 프로파일 압출에 사용되는 포트홀 금형의 원리를 차용하여, 상부 금형에 맨드릴과 유사한 코어 구조를 두어 캔틸레버 부분의 하중을 분산시키는 새로운 설계 방식입니다 (그림 8).
  • 시뮬레이션: 상용 해석 소프트웨어인 HyperXtrude를 사용하여 압출 공정을 시뮬레이션했습니다.
    • 재료: 압출재는 AA6063 알루미늄 합금, 금형 재료는 H13 공구강을 사용했습니다.
    • 공정 조건: 빌렛 초기 온도 450°C, 금형 초기 온도 420°C, 압출 속도 1 mm/s 등 실제 생산 조건을 모사한 경계 조건을 설정했습니다 (표 4).
  • 평가 지표:
    • 제품 품질: 금형 출구에서 프로파일 단면의 속도 분포 균일성(속도 표준편차, SDV)을 평가했습니다.
    • 금형 강도: 압출 중 금형에 발생하는 최대 등가 응력(von Mises stress)을 분석하여 H13 강재의 항복 강도(1,020 MPa)와 비교했습니다.

핵심 돌파구: 주요 연구 결과 및 데이터

결과 1: 일반 유도 금형, 강도 한계 노출

일반 유도 금형으로 시뮬레이션한 결과, 프로파일의 속도 분포는 비교적 균일(SDV = 1.37 mm/s)하여 제품 형상 품질은 양호할 것으로 예측되었습니다(그림 5).

하지만 금형 응력 분석 결과, 최대 등가 응력이 1,852 MPa에 달하는 것으로 나타났습니다(그림 6). 이는 금형 재료인 H13의 항복 강도(1,020 MPa)를 훨씬 초과하는 수치로, 실제 생산 시 금형이 파손될 위험이 매우 높다는 것을 의미합니다.

알루미늄 합금 프로파일의 단면 치수와 형상
알루미늄 합금 프로파일의 단면 치수와 형상

결과 2: 위분류 금형, 강도 문제 해결 및 품질 최적화

초기 위분류 금형 설계: 위분류 금형을 적용하자 금형의 최대 등가 응력은 891 MPa로 급격히 감소했습니다(그림 11). 이는 항복 강도 이하의 안전한 수치로, 기존 설계 대비 51.9%나 응력을 줄여 금형의 내구성을 획기적으로 개선했음을 보여줍니다. 그러나 이때 프로파일 출구 속도의 균일성이 저하되어 SDV가 1.98 mm/s로 증가하는 문제가 발생했습니다.

최적화된 위분류 금형 설계: 재료 유동을 개선하기 위해 2차 용접 챔버(secondary welding chamber)를 추가하는 구조 최적화를 진행했습니다(그림 12). 그 결과, 금형의 최대 등가 응력은 850.6 MPa로 여전히 낮은 수준을 유지하면서(그림 14), 프로파일 출구 속도의 균일성은 크게 향상되어 SDV가 0.69 mm/s까지 감소했습니다(그림 13). 이는 금형의 강도와 제품의 품질을 모두 만족시키는 최적의 설계임을 입증합니다.

위분류 금형 설계안의 3차원 모델
위분류 금형 설계안의 3차원 모델

R&D 및 운영을 위한 실질적 시사점

  • 공정 엔지니어: 이 연구는 복잡한 캔틸레버 프로파일 압출 시 위분류 금형 구조가 금형 파손을 방지하고 안정적인 생산을 가능하게 하는 효과적인 대안임을 보여줍니다. 특히 2차 용접 챔버와 같은 유동 제어 구조를 추가하면 재료 유동을 최적화하여 품질을 높일 수 있습니다.
  • 품질 관리팀: 논문의 그림 5, 10, 13에서 제시된 속도 분포 데이터는 금형 설계가 최종 제품의 형상 정밀도에 얼마나 직접적인 영향을 미치는지 명확히 보여줍니다. 출구 속도 균일성(SDV)은 프로파일의 뒤틀림이나 변형을 예측하는 핵심 품질 지표로 활용될 수 있습니다.
  • 설계 엔지니어: 이 연구의 핵심은 고체 프로파일임에도 불구하고 중공 프로파일용 포트홀 금형의 개념을 창의적으로 적용한 것입니다. 즉, 금형의 코어(상부 금형)가 하중을 분담하게 하여 취약한 캔틸레버(하부 금형)를 보호하는 원리는 다른 복잡한 형상의 금형 설계에도 영감을 줄 수 있는 중요한 설계 원칙입니다.

논문 상세 정보


悬臂铝合金型材伪分流挤压模具 结构设计及其强度分析 (캔틸레버 알루미늄 합금 프로파일용 위분류 압출 금형의 구조 설계 및 강도 분석)

1. 개요:

  • 제목: Fake Porthole Extrusion Die Structure Design and Strength Analysis for Cantilever Aluminum Alloy Profiles
  • 저자: SUN Xuemei, ZHAO Guoqun
  • 발행 연도: 2013
  • 학술지/학회: JOURNAL OF MECHANICAL ENGINEERING, Vol.49 No.24
  • 키워드: 위분류 금형, 형재 품질, 금형 강도 (Fake porthole die, Product quality, Die strength)

2. 초록:

알루미늄 프로파일 압출 공정과 금형 설계는 제품 품질뿐만 아니라 금형의 강도와 수명도 보장해야 한다. 그러나 크고 긴 캔틸레버 알루미늄 프로파일의 경우, 기존의 평금형이나 유도 금형 설계는 종종 금형의 캔틸레버 부분 파손을 유발한다. 해당 부위의 금형 두께를 늘리더라도 금형 강도 요구사항을 충족하기 어렵다. 본 논문은 대형 캔틸레버 알루미늄 프로파일을 예로 들어, 위분류 금형 설계 방법과 캔틸레버 분해 기술을 연구했다. 일반 금형과 위분류 금형 설계가 프로파일 압출 속도 분포, 온도 분포, 재료 입자 이동 경로 등에 미치는 영향을 비교 분석하고, 각기 다른 구조의 금형 강도를 연구했다. 연구 결과, 위분류 금형을 사용하면 금형 응력을 크게 낮출 수 있을 뿐만 아니라, 재료 유동 최적화를 통해 양호한 재료 유동 패턴과 제품 품질을 얻을 수 있음을 확인했다. 이를 바탕으로 위분류 구조의 설계 원칙을 제시했다.

3. 서론:

알루미늄 합금 프로파일은 자동차, 선박, 고속철도, 항공우주, 건축 등 다양한 산업 분야에서 널리 사용되며, 대형화, 복잡화, 정밀화, 다품종화 추세에 있다. 복잡한 대단면 프로파일의 압출 공정 및 금형 설계에 대해 최근 많은 연구가 수치 해석을 통해 이루어지고 있다. 연구들은 주로 압출 과정에서의 온도, 속도 분포 예측, 금형 출구 속도 균일성 제어, 금형 응력 분포 및 변형 예측에 초점을 맞추고 있다. 그러나 크고 긴 캔틸레버 형상의 프로파일 수요가 증가하면서, 기존 설계 방식으로는 금형 강도 확보가 어려운 문제가 대두되었다. 금형을 두껍게 만들어도 재료비만 증가할 뿐 강도 향상에는 한계가 있어, 새로운 특수 금형 설계가 시급한 실정이다.

4. 연구 요약:

연구 주제의 배경:

대형/장척 캔틸레버 알루미늄 프로파일의 산업적 수요는 증가하고 있으나, 기존의 압출 금형 설계 방식(평금형, 유도 금형)으로는 캔틸레버 부분의 응력 집중으로 인한 금형 파손 문제를 해결하기 어렵다.

이전 연구 현황:

이전 연구들은 주로 일반적인 프로파일의 압출 공정 시뮬레이션, 재료 유동 최적화, 결함 예측에 집중되어 있었다. 대형 캔틸레버 프로파일의 금형 강도 문제를 근본적으로 해결하기 위한 특수 금형 구조에 대한 연구는 부족했다.

연구 목적:

대형 캔틸레버 알루미늄 프로파일 압출 시, 제품 품질과 금형 강도를 동시에 만족시킬 수 있는 새로운 ‘위분류(Fake Porthole) 금형’ 구조를 제안하고, 그 유효성을 수치 해석을 통해 검증하고자 한다.

핵심 연구:

  1. 일반 유도 금형과 위분류 금형의 두 가지 설계안을 제시.
  2. 수치 시뮬레이션을 통해 각 설계안에 대한 압출 공정을 해석하여 프로파일의 속도 분포, 온도 분포, 재료 유동을 비교.
  3. 두 금형의 응력 분포를 분석하여 강도를 평가하고, 위분류 금형의 우수성을 입증.
  4. 위분류 금형의 유동 균일성을 개선하기 위한 구조 최적화(2차 용접 챔버 추가)를 수행하고 그 효과를 검증.

5. 연구 방법론

연구 설계:

비교 연구 설계를 채택하여, 동일한 캔틸레버 프로파일에 대해 ‘일반 유도 금형’과 ‘위분류 금형’이라는 두 가지 독립 변수가 종속 변수(프로파일 품질, 금형 응력)에 미치는 영향을 분석했다.

데이터 수집 및 분석 방법:

  • 데이터 수집: 유한 요소 해석 소프트웨어 HyperXtrude를 사용하여 압출 공정 시뮬레이션을 수행하고, 속도, 온도, 응력 등의 데이터를 수집했다.
  • 데이터 분석: 프로파일 단면의 속도 표준편차(SDV)를 계산하여 유동 균일성을 정량적으로 평가하고, 금형의 최대 등가 응력 값을 재료의 항복 강도와 비교하여 안전성을 판단했다.

연구 주제 및 범위:

본 연구는 벽 두께 0.8mm의 특정 대형 캔틸레버 알루미늄 프로파일(AA6063) 압출 공정에 국한된다. 금형 재료는 H13을 사용했으며, 제시된 특정 공정 조건 하에서 금형의 구조적 설계 차이에 따른 성능 변화를 분석하는 데 초점을 맞췄다.

6. 주요 결과:

주요 결과:

  • 일반 유도 금형은 양호한 유동 균일성(SDV=1.37 mm/s)을 보였으나, 최대 등가 응력이 1,852 MPa로 항복 강도(1,020 MPa)를 초과하여 강도 부족 문제를 보였다.
  • 위분류 금형은 최대 등가 응력을 891 MPa로 51.9% 감소시켜 강도 문제를 해결했으나, 초기 설계에서는 유동 균일성이 저하(SDV=1.98 mm/s)되었다.
  • 2차 용접 챔버를 추가하여 최적화된 위분류 금형은 낮은 응력(850.6 MPa)을 유지하면서 유동 균일성을 대폭 개선(SDV=0.69 mm/s)하여, 금형 강도와 제품 품질 목표를 모두 달성했다.

그림 목록:

  • 图1 铝合金型材的截面尺寸与形状 (알루미늄 합금 프로파일의 단면 치수와 형상)
  • 图2 常规方法设计的挤压模具 (일반적인 방법으로 설계된 압출 금형)
  • 图3 建立的数值模拟模型 (수립된 수치 해석 모델)
  • 图4 边界条件的设定 (경계 조건 설정)
  • 图5 导流模具设计方案中型材截面的速度分布图 (유도 금형 설계안의 프로파일 단면 속도 분포도)
  • 图6 导流模具等效应力分布图 (유도 금형 등가 응력 분포도)
  • 图7 两种模具设计方案的下模空刀设计图 (두 가지 금형 설계안의 하부 금형 공구 설계도)
  • 图8 伪分流模具设计方案的三维模型 (위분류 금형 설계안의 3차원 모델)
  • 图9 伪分流模具数值分析模型 (위분류 금형 수치 해석 모델)
  • 图10 伪分流模具的挤压型材截面的速度分布图 (위분류 금형의 압출 프로파일 단면 속도 분포도)
  • 图11 模具等效应力分布图 (금형 등가 응력 분포도)
  • 图12 下模的二级焊合室设计 (하부 금형의 2차 용접 챔버 설계)
  • 图13 伪分流模具优化后型材速度分布图 (위분류 금형 최적화 후 프로파일 속도 분포도)
  • 图14 优化后伪分流模具等效应力分布图 (최적화 후 위분류 금형 등가 응력 분포도)

7. 결론:

본 연구는 대형 캔틸레버 알루미늄 프로파일 압출을 위해 일반 유도 금형과 위분류 금형을 설계하고 수치 해석을 통해 비교 분석했다.

  1. 일반 유도 금형: 제품의 형상 품질은 만족시킬 수 있으나, 금형에 가해지는 응력이 과도하여 실제 생산에 적용하기 어렵다.
  2. 위분류 금형: 금형의 등가 응력을 획기적으로 낮춰(1,852 MPa → 891 MPa) 금형의 수명과 안정성을 크게 향상시킬 수 있다.
  3. 최적화된 위분류 금형: 2차 용접 챔버를 추가함으로써, 프로파일 단면의 속도 균일성을 크게 개선(SDV 1.98 → 0.69 mm/s)하여 재료 유동을 최적화했다.
  4. 최종 결론: 위분류 금형 구조는 대형 캔틸레버 프로파일 압출 시 금형 강도를 확보하고, 후속 최적화를 통해 우수한 제품 품질까지 달성할 수 있는 매우 효과적이고 실용적인 설계 방안이다.

8. 참고 문헌:

  1. 吴向红, 赵国群, 赵新海, 等. 铝型材挤压成型过程数值模拟的研究现状及发展[J]. 系统仿真学报, 2007, 19(5): 945-951.
  2. 陈浩, 赵国群, 张存生, 等. 薄壁空心铝型材挤压过程数值模拟及模具优化[J]. 机械工程学报, 2010, 46(24): 34-39.
  3. FANG Gang, ZHOU Jie, DUSZCZGK J. FEM simulation of aluminum extrusion through two-hole multi-step pocket dies[J]. Journal of Materials Processing Technology, 2009, 209: 1891-1900.
  4. CERETTI E, FRATINI L, GAGLIARDI F, et al. A new approach to study material bonding in extrusion porthole dies[J]. CIRP Annals-Manufacturing Technology, 2009, 58: 259-262.
  5. BASTANI A F, AUKRUST T, SKAUVIK I. Study of flow balance and temperature evolution over multiple aluminum extrusion press cycles with Hyper-Xtrude 9.0[J]. Key Engineering Materials, 2010, 424: 257-264.
  6. 徐磊, 赵国群, 张存生, 等. 多腔壁板铝型材挤压过程数值模拟及模具优化[J]. 机械工程学报, 2011, 47(22): 61-68.
  7. 于明涛, 李付国. 基于有限体积法的异形空心型材挤压模具设计[J]. 模具技术, 2008(4): 40-43.
  8. 王丽巍. 带悬臂梁的挤压模设计[J]. 模具工业, 2000(8): 48-49.
  9. 刘静安. 铝型材挤压模具设计、制造、使用及维修[M]. 北京: 冶金工业出版社, 1999.
  10. 张双杰, 李强, 王丽娟, 等. 厚壁管件有芯棒开式冷挤压成形极限分析[J]. 机械工程学报, 2010, 46(22): 53-57.

전문가 Q&A: 핵심 질문과 답변

Q1: 고체 프로파일 압출에 중공 프로파일용 포트홀 금형의 원리를 적용한 이유는 무엇인가요?

A1: 이 설계의 핵심 아이디어는 ‘하중 분산’입니다. 일반 금형에서는 압출 하중이 얇고 긴 캔틸레버 부분에 집중되어 파손을 유발합니다. 위분류 금형은 상부 금형에 코어(core) 구조를 만들어 하중의 일부를 분담하게 합니다. 이 코어가 마치 중공 프로파일 금형의 맨드릴(mandrel)처럼 작용하여, 하부 금형의 캔틸레버에 가해지는 응력을 효과적으로 분산시키므로 고체 프로파일의 강도 문제를 해결하기 위해 창의적으로 도입된 방식입니다.

Q2: 초기 위분류 금형에서 속도 균일성이 저하된 이유는 무엇이며, 2차 용접 챔버는 이를 어떻게 개선했나요?

A2: 초기 위분류 금형에서는 재료가 상부 금형의 코어 구조를 피해 여러 갈래로 나뉘었다가 다시 합쳐지는 복잡한 유동 경로를 거칩니다. 이 과정에서 각 경로의 유동 저항 차이로 인해 속도 불균일이 발생합니다. 2차 용접 챔버는 금형 출구 직전에 재료가 다시 합쳐지고 안정화될 수 있는 공간을 제공합니다. 이 공간에서 재료의 압력과 속도가 재분배되어 균일해진 상태로 최종 프로파일이 형성되므로, 속도 균일성(SDV)이 1.98 mm/s에서 0.69 mm/s로 크게 개선될 수 있었습니다.

Q3: 금형 응력이 51.9% 감소한 것은 실제 생산 현장에서 어떤 의미를 가지나요?

A3: 이는 금형의 수명과 직결되는 매우 중요한 결과입니다. 최대 응력이 재료의 항복 강도(1,020 MPa)를 초과하는 1,852 MPa에서 항복 강도 이하인 891 MPa로 감소했다는 것은, 금형이 소성 변형이나 파손 없이 반복적인 압출 작업을 견딜 수 있게 되었음을 의미합니다. 이는 금형 교체 주기를 늘리고, 예기치 않은 생산 중단을 방지하여 전체적인 생산 비용 절감과 안정성 향상에 크게 기여합니다.

Q4: 본 연구에서는 금형 구조에 초점을 맞췄는데, 압출 속도나 온도 같은 공정 변수도 결과에 영향을 미치지 않을까요?

A4: 물론입니다. 압출 속도, 빌렛 및 금형 온도는 재료의 유동성과 금형에 가해지는 압력에 큰 영향을 미칩니다. 본 연구에서는 이러한 공정 변수들을 표 4와 같이 고정하고 순수하게 금형 구조의 영향만을 비교 분석했습니다. 실제 생산에서는 최적화된 위분류 금형 구조를 기반으로, 추가적인 시뮬레이션이나 실험을 통해 최적의 공정 변수 조합을 찾아냄으로써 생산성과 품질을 더욱 향상시킬 수 있습니다.

Q5: 위분류 금형 설계는 모든 종류의 캔틸레버 프로파일에 적용할 수 있나요?

A5: 위분류 금형은 특히 캔틸레버가 크고 길어 기존 설계로는 강도 확보가 어려운 경우에 매우 효과적인 솔루션입니다. 캔틸레버의 형상, 크기, 그리고 전체 프로파일의 복잡성에 따라 코어의 형상, 크기, 위치 및 2차 용접 챔버의 설계 등을 맞춤형으로 최적화해야 합니다. 따라서 이 연구에서 제시된 설계 원칙은 다양한 캔틸레버 프로파일에 적용될 수 있는 강력한 기본 틀을 제공한다고 볼 수 있습니다.


결론: 더 높은 품질과 생산성을 향한 길

대형 캔틸레버 알루미늄 프로파일 압출 시 발생하는 금형 파손 문제는 생산 현장의 오랜 난제였습니다. 본 연구는 혁신적인 위분류 압출 금형 설계를 통해 이 문제를 해결할 수 있는 명확한 해법을 제시했습니다. 위분류 금형은 금형에 가해지는 응력을 획기적으로 낮춰 수명을 보장할 뿐만 아니라, 구조 최적화를 통해 재료 유동을 제어하여 최종 제품의 품질까지 확보할 수 있음을 입증했습니다.

(주)에스티아이씨앤디는 최신 산업 연구 결과를 적용하여 고객이 더 높은 생산성과 품질을 달성할 수 있도록 지원하는 데 전념하고 있습니다. 이 논문에서 논의된 과제가 귀사의 운영 목표와 일치한다면, 저희 엔지니어링 팀에 연락하여 이러한 원칙을 귀사의 부품에 어떻게 구현할 수 있는지 논의해 보십시오.

(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD consulting services를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.

  • 연락처 : 02-2026-0450
  • 이메일 : flow3d@stikorea.co.kr

저작권 정보

  • 이 콘텐츠는 “SUN Xuemei” 외 저자의 논문 “Fake Porthole Extrusion Die Structure Design and Strength Analysis for Cantilever Aluminum Alloy Profiles”을 기반으로 한 요약 및 분석 자료입니다.
  • 출처: https://doi.org/10.3901/JME.2013.24.039

이 자료는 정보 제공 목적으로만 사용됩니다. 무단 상업적 사용을 금지합니다. Copyright © 2025 (주)에스티아이씨앤디. All rights reserved.