Thermal Stress Evolution in Solidified Fluid Regions / 응고된 유체 영역의 열 응력 진화

열 응력 진화 (TSE) 모델은 응고유체 지역 내 응력과 변형을 모사하고 해석하기 위해 유한요소법을 이용하도록 되어 있다. 이 응력들은 주변 유체에 의해 가해지는 힘, 응고 된 유체 내의 온도 구배 및 또는 벽/주변요소들에 의한 제약에 의한 결과로 발생할 수 있다.

 

Model Setup모델 설정

이 계산은 완전히 응고된 유체 셀에 대해서만 계산되므로 이 모델은 Solidification 모델의 활성화를 필요로 한다. Thermal stress analysis Solidification 창 또는 Meshing & Geometry Geometry tree 밑의 Solidified fluid region 에서 활성화 된다.

이 모델의 사용을 위한 재료 물성치 최소 요구 양들은 다음과 같다 : Fluid Density Bulk Modulus, Shear Modulus, Elastic (Young’s) Modulus, 그리고 Poisson Ratio중 최소한 2개의 탄성 물성치. 이것이 만족되지 않으면 모사는 시작되지 않는다. 이 물성치들은 Fluids tab, Properties Fluid 1 Solidification Model Solidified Fluid 1 Properties에서 지정된다.

Yield Stress 입력은 항복 응력 극한값(응력의 단위)으로의 입력을 가능하게 한다. 이 값을 구성요소에 지정하면 그 요소에 대한 Plastic deformation 모델을 활성화시키는데 이는 지역 von Mises 응력이 지정된 값을 넘는 곳에서의 비탄성 변형을 예측한다. 이 값을 -1로 놔두면 항복이 없음을 의미한다; 즉, 무한항복응력.

액체 내 압력은 액체/고체 경계면에서 경계조건으로 사용된다. 대부분의 응고 된 유체물성은 표 입력을 통한 온도의 함수로 정의될 수 있다. 온도의존물성을 직접 입력하기 위해 Tabular 버튼을 누르거나 기존의 comma separated value (csv) 파일로부터 값을 읽거나 또는 지정된 외부 파일로부터의 값을 사용하는Use File 버튼을 누른다. 이 물성치들은 Materials Fluids Database 메뉴로부터 요소로 불러들일 수 있다.

Note:

각주: 밀도를 온도의 함수로 정의하기 위해 the Density Properties of Fluid 1에서 정의 되어야 한다. 일단 밀도에 대한 표가 있으면 이는 액체와 응고된 유체의 밀도에 이용될 것이다.

탄성 물성치가 주어진 후, 응고유체부분에 대한 유한요소(FE) 격자를 생성하게 된다. 이는 Meshing & Geometry Geometry Solidified fluid region 에서 수행된다. 전처리는 FE 격자를 생성하기 위해 유체지역을 감싸는 직사각형의 직교격자를 사용한다. 이 Input Mesh는 궁극적으로 유체(디폴트)를 해석하기 위한 직교격자이거나 단지 응고된 유체지역의 FE 격자를 생성하기 위한 독자적인 Local Input Mesh 일수 있다. FE 격자 발생기는 기본값으로 Solid 요소나 FEA domain removing 요소가 차지하고 있는 지역을 제외한 전체 영역을 둘러싸는 FE 격자를 생성할 것이다.

Note:

  • Local Input Mesh 정보는 prepin.* 파일이 아닌 다음 단계에서 생성되는 FE Mesh File 에 저장될 것이다.
  • 이동하는 구성요소가 차지하는 영역은 모사 중 어떤 순간에 이 지역이 응고된 유체에 의해 채워질 수 있다고 가정되므로 기본적으로 FLOW-3D 의 FE 격자 생성기에 의해 격자가 생성될 것이다. 응고유체에 의해 채워질 수 없는 지역을 알면 그 지역에 FEA domain removing 요소를 생성한다.

원통 좌표 유체격자가 축 대칭이거나 완전3차원인 FE 격자를 생성하는데 이용될 수 있다. 제약은 3차원 격자에 대해 FE 격자는 격자중심선을 접할 수가 없다; 이는 격자에 특이점을 발생시킬 것이다.

FE mesh type 밑으로 펼쳐지는 메뉴는 Hexahedron Tetrahedron 격자의 선택을 허용한다. 기본값인 6면체 격자는 부드러운 경계면을 허용하기 위해 요소경계근처에서 어떤 꼭지점들이 병합되는 6면을가지는 요소들에 근거한다. 4면체 격자는 4면을가지는 요소로 구성되며 어떤 꼭지점이 병합될 필요가 없다. 4면 격자는 단순하고 선형함수를 사용하며 CPU시간이 적게 소요된다. 그러나 선형 기본 함수로 인해 결과는 다소 부드럽지 않을 수 있다

Input Mesh 가 정의된 후 FE mesh를 위해 FE Mesh File and Generate 를 우측 클릭한다. 파일 이름이 지정되지 않으면 이 격자 파일 이름은 기본값으로 solidified_fluid.prjext.FEmesh가 되며 prjext 는 project  확장자이다. 한 FE 격자파일이 이미 존재하면 File options 버튼을 이용하여 이를 열고 기존FE 격자파일을 위해 FE Mesh File and Load and Display 를 우 클릭한다. FE 격자에 만족하면 FE mesh type 메뉴로부터 Use FLOW-3D mesh 를 선택한다.

FE mesh type 메뉴의 마지막 선택은 Use EXODUS FE mesh 이며 이는 EXODUS II 파일포맷 격자의 입력을 허용한다. EXODUS II 격자의 사용의 더 상세한 정보는 아래를 참조한다.

Note:

  • Use FLOW-3D mesh 선택이 체크되지 않으면 FE 격자 파일은 Generate Preprocess Simulation 이 선택될 때마다 재 생성된다.
  • 전처리는 Input Mesh 내의 전체공간 지역에 격자를 생성한다. 어떤 응고유체 지역이 공간지역 내 일부에 없을 것이라는 것을 미리 알면 그 부분은 Component type 선택이 FEA domain removing 인 요소를 가지는 FE 격자로부터 제거될 수 있다.

응고유체 지역이 인근 요소와 접촉할 때 모델은 이 구성요소가 어떻게 거동하는지 알아야 한다. 비 FSI 요소나 TSE/FSI 결합이 No coupling (하기참조)로 지정될 경우 인근요소들은 Constraining Component 이거나 a Non-constraining component 이다. 제약요소의 예는 스틸 금형 이다: 요소의 변형은 응고유체 내 발달된 응력에 비해 작을 것이다. 반대로, 비 제약 요소의 예제는 사형이다; 이런 몰드는 상당한 응력을 견디지 못해서 응고유체지역에 어떤 제약적인 힘을 미치지 못할 것이다.

Numerical Options 수치 선택

TSE 영역과 인접요소 간의 복잡한 상호작용이 모사될 필요가 있는 경우에 인접요소는 요소로 지정될 수 있고 Partial coupling 선택은  Numerics Coupling between solid fluid/FSI 선택 상자(이 이미지 참조)에서 사용될 수 있다. 기본값으로 No coupling 이 선택되는데 이는 기본 Constraining 이나 :guilabel :Non-constraining 선택들을 허용한다. The Partial coupling 은 TSE 지역과 FSI 요소가 분리되거나 서로 미끄러져 지나가는 것을 허용하지만 서로 간섭할 수는 없다. 미끄럼 마찰은 Friction coefficient 의 값을 지정함으로써 조절된다. 기본값으로 sliding 마찰은 제약이 없다.(즉, 미끄러짐은 TSE 지역과 FSI 요소가 접촉하고 있는 한 발생할 수 없다); 이를 0이나 미끄러질 수 있도록 더 큰 값으로 지정한다. 물리적 값은 일반적으로1보다 작다.

solidified fluid region 내 응력해석에 사용된 솔버는 GMRES 솔버와 유사하다. 이는 현재 이용 가능한 유일한 솔버이며 사용자는 GMRES subspace 크기(가끔 restart number로불리고 입력파일 내에서는MRSTRTFSI), 최대 반복 횟수 및 수렴 공차를 조절할 수 있다. 이 변수들의 변경은 Numerics 탭의 FSI/TSE solver options 에서 이루어진다.

GMRES subspace 크기의 디폴트 값은 20이다. 이 값을 증가시키면 솔버는 적은 반복수로 수렴에 도달할 것이다; 그러나 반복횟수당 CPU 시간은 증가하고 메모리사용도 subspace 크기에 따라 증가할 것이다. 수렴이 잘 되지 않는 모사(즉 최대반복수가 되어 FEA convergence ratio 가 1보다 클 경우)들에서는 이 값을 증가시키면 전체 시간이 크게 감소할 것이다.

추가로 Dynamically selected subspace size가 선택되면 솔버는 자동적으로 해석효과를 최적화하기 위해 subspace 크기를 조절할 것이다. 이 경우 GMRES subspace size 의 입력(또는 디폴트)값은 최대 이 경우 subspace 크기가 된다. 그러므로 이 선택 시에는 솔버에 더 큰 유연성을 주므로 가능한 가장 큰 값을 지정하는 것이 좋은 선택(컴퓨터에서 이용 가능한 메모리까지)이다. 수렴이 쉽게 되는 경우에는 subspace 크기가 솔버 효율 최적화를 위해 자동적으로 감소될 것이다.

Maximum number of iterations는 솔버가 사용하는 반복 수를 제한한다; 기본값은 보통 모사에 충분한 25이다. 솔버에서 FSI 반복수가 반복해서 제한(Simulation messages에서 보이듯이)에 도달하면 이 제한이나 subspace 크기가 증가될 수 있다. 우선 subspace 크기를 증가시키는 것 (이용 가능한 memory 제한까지) 이 권장된다.

Convergence tolerance 는 고체역학방정식의 해에 허용된 최대 잔류치를 지정한다. 이 값은 무차원으로 격자 크기와 시간단계에 무관하다. 이 값은 계산되는 변형들의 상대 에러를 나타낸다. 기본값은 10-3이며 대부분의 모사에 잘 작동한다. 그러나 모사 목적이 시간에 정확한 결과보다 마지막 응력결과라면 이 값을 증가시키는 것이 마지막 결과의 정확성에 영향이 없을 것이다. 모사 중에 변위와 응력이 아주 정확해야 할 경우에는 이 값을 줄이는 것이 도움이 된다. 수렴은 일반적으로 기계정확도의 반올림의 이유로 10-8 보다 작은 수렴공차 값에 대해 점진적으로 느려진다.

Preconditioning of FSI GMRES (디폴트) 선택은 GMRES 반복 수를 감소시키려는 목적으로 GMRES 알고리즘을 이용하기 전에 전처리 알고리즘을 사용한다. 전처리 알고리즘은 다음 경우에만 이용한다.

  1. GMRES 선택이 활성화되고
  2. 이전 10개의 계산사이클 중에 고체역학방정식을 해석하는데 필요한 평균 반복수가 4를 초과할 경우

Fully coupled stress between solidified and non- solidified fluid 선택은 응고 표면이 발달될 때 응고와 비응고 유체간 경계조건의 조정을 허용한다. 기본값(비활성화)은 각 사이클마다 표면의 위치를 고정시키는 것이다. 이는 수치적으로 안정적이고 계산시간을 최소화하며 응고유체의 “부유 조각” 수치효과를 위해 충분히 제어하는 것을 확실하게 해준다. 비응고 유체(즉, 압력)와 응고 물질간의 응력 결합을 모사하는 것이 중요하면 이를 선택한다. 이 선택은 응고 시 발생하는 수치적 문제의 위험성을 증가시키지는 않으나 계산시간을 증가시킬 것이다.

 

중요한 고려할 점

중력이 모사에 이용되면 응고 유체영역은 격자 경계나 다른 요소들과 접촉하고 있어서 자유로이 움직일 수 없어야 한다. 제약이 없으면 고체역학방정식은 고체의 강체 운동을 예측할 것이고 이 운동은 유체에서 표현될 수 없다. 자유-부유 응고 유체지역은 중력 없이 모델링 될 수 있다.

 

Postprocessing후처리

이 모델에 의해 생성된 유한요소결과는 별도의 화면을 통해 볼 수 있다. TSE 데이터에 접근하기 위해 Analyze 탭으로부터 FSI TSE 보조 탭을 선택한다.

이 탭으로부터 어느 요소를 볼지 선택한다.

각주: 응고유체지역은 항상 요소 0으로 표식 된다.

또한 데이터 소스와 시간 제약을 선택할 수 있다. Selected 데이터를 보기 위해 Fluid structure interaction이 모사 설정 중에 Model Setup Output 에 있는 Selected data 리스트로부터 선택되어야 한다. Render 를 클릭하면 Display 탭이 나타나고 이로부터 다양한 데이터 변수들을 FSI 요소에 대해 그릴 수 있다. 확대, 회전 등의 다른 조절은 3차원 화면과 같다.

기본 화면은 Normal displacement 이다. 이는 요소 표면에 수직이며 원래 형태에 상대적으로 외부로 향하는 방향의 표면변위를 보여준다. 음의 값은 표면이 안쪽으로 당겨지고 양의 값은 표면이 원래 위치에 상대적으로 밖으로 밀려나는 것을 가리킨다. x, y 그리고 z 방향에서 각 요소 전체를 통한 각 변위들은 또한 X displacement, Y displacement, Z displacement 를 선택함으로써 각각 보여질 수 있다.

6성분의 탄성응력과 6성분의 변형을 그릴 수 있다. 이는 대칭 응력과 변형 텐서로 이루어지는6개의 독립 성분이다. 심지어 좌표축에 대각인 1차원 인장에서 0이 아닌 많은 응력성분 들이 생성되는 것과 마찬가지로 이 성분들은 3차원 모사에서 고려되기 어렵다. 이 때문에 mean iso stress 와 the Von Mises stress 가 주어진다. 이들은 응력 불변이므로 선택한 좌표계에 무관하다. mean iso stress 는 등방성 응력이며 고체내의 압축(음의 값) 또는 인장(양의 값)응력의 양이고 좌굴 및 균열을 쉽게 받을 수 있는 지역을 가리킨다. 대조적으로 Von Mises stress 는 전단응력의 측정이다; 항상 이 값은 양이다. 고 전단응력의 지역은 쉽게 균열이 발생한다. 그러므로 단순 압축이나 인장은 무시할만한 Von Mises stress를 가질 수 있다; 반대로 단순 전단을 받는 고체는 무시할만한 압축 또는 인장응력을 받는다.

Yield Stress에 대해 한 값이 지정되면 이때 응고유체지역의 소성변형 데이터를 얻을 수 있다. 이 데이터는 소성변형의 독립적 성분(모두 무차원)과 소성변형크기(소성변형텐서의 2차불변항)를 포함한다. 이 값들은 최대 소성변형이 발생한 요소내의 위치를 가리킨다.

Temperature 는 편리하게 그림으로 그릴 수 있다. 이 온도는 유체의3차원 그림으로의 유체 온도와 같다. volume expansion 은 모사 중 늘거나(양의값) 줄어든(음의값) 요소의 지역을 가리킨다. 이러한 확장과 수축은  온도변화 또는 인장 또는 압축 응력에 의해  발생할 수 있다.

Export/Import TSE Meshes격자의 외부 입/출력

TSE 격자 및 데이터는 임의접근, 기기 독립이며 2진 파일 형태인 EXODUS II 파일 형태로 내 외부로 유출 유입될 수 있다. EXODUS II 는 유한요소해석 데이터의 저장 및 회수를 하기 위해 개발된 널리 사용되는 모델이다. EXODUS II 파일형태의 격자와 데이터 파일을 외부로 보내는 능력은 이동성을 강화시키고FLOW-3D GUI 외부에서도 FSI 결과를 보게 해줄 수 있다. ParaViewEXODUS II 파일을 보는데 이용할 수 있는 무상의 다기종 데이터 해석 및 가시화 응용 프로그램이다. EXODUS II 출력파일을 생성하기 위해 Model Setup Output 를 선택한다. Additional output 절에서 아래로 펼쳐지는 FSI/TSE EXODUS output format 의 메뉴에서 필요한 선택을 한다.

TSE 격자파일은 단지 격자정보(요소, 교점 등) 를 저장하며 반면에 TSE 데이터 파일은 각 FE 격자 격자정보뿐만 아니라 응력, 변형등과 같은 FE 격자 교점에서 물성을 포함한다. TSE data variables 테이블은 모든 데이터 TSE 변수들의 기술을 제공한다.

TSE 격자파일은 확장자 .EXFEmesh.exo 를 가지며 후처리 직후에 한 번만 쓰여진다. TSE 데이터 파일은 EXFEdata.exo 확장자를 가지며 재시작 데이터와 같은 빈도로 출력된다. EXODUS II 데이터 파일은 모든 재시작 출력 시간에 데이터를 포함하는 단일 파일(각FSI 요소에 대해 하나)이다. prepin.* 파일에서 변수 IEXODUSOUT(namelist XPUT)는 EXODUS II 포맷(see상세 내용을 위해 File Control Options 를 참조)으로 TSE 격자와 데이터 파일을 출력하는데 사용될 수 있다.

 

Table 11.9: TSE data variables

FE MESH VARIABLE DESCRIPTION
stressxx xx-요소 탄성 응력 텐서
stressxy xy-요소 탄성 응력 텐서
stressxz xz-요소 탄성 응력 텐서
stressyy yy-요소 탄성 응력 텐서
stressyz yz-요소 탄성 응력 텐서
stresszz zz-요소 탄성 응력 텐서
DISPLX x-요소 지역 변위벡터
DISPLY y-요소 지역 변위벡터
DISPLZ z-요소 지역 변위벡터
strainxx xx-요소 대칭 응력 텐서
strainxy xy-요소 대칭 응력 텐서
strainxz xz-요소 대칭 응력 텐서
strainyy yy-요소 대칭 응력 텐서
strainyz yz-요소 대칭 응력 텐서
strainzz zz-요소 대칭 응력 텐서
rel volume expansion 상대 체적확장. 응력 텐서의 제1불변량(대각합)
mean iso stress 평균 등방성 탄성 응력.

순수 압축(음이면)또는 인장(양이면)의 척도를 나타낸다.

찬성응력텐서의 대각합의 1/3

VM stress Von Mises stress. 응력 전단 응력의 척도를 나타낸다; 이 값은 항상 양이다. 고 전단응력지역은 균열을 받기 쉽다. 이는 탄성 응력 텐서의 2차 불변량의 제곱근이다.
Temperature 지역 고체온도
norm displ 고체 요소 경계의 수직 변위

요소경계에서는0이아님

Active node? 지역 노드의 활동 상태. 유체가 아직 액체(즉, T > Tsld) 인 지역내의 노드 또는 공간상이면 inactive.
pstrainxx 소성 변형 텐서의 xx-요소. 단지 항복(YLDSTRTS > 0) 이 지정되었을 경우에만 유효.
pstrainxy 소성 변형 텐서의 xy-요소. 단지 항복(YLDSTRTS > 0) 이 지정되었을 경우에만 유효.
pstrainxz 소성 변형 텐서의 xz-요소. 단지 항복(YLDSTRTS > 0) 이 지정되었을 경우에만 유효.
pstrainyy 소성 변형 텐서의 yy-요소. 단지 항복(YLDSTRTS > 0) 이 지정되었을 경우에만 유효.
pstrainyz 소성 변형 텐서의 yz-요소. 단지 항복(YLDSTRTS > 0) 이 지정되었을 경우에만 유효.
pstrainzz 소성 변형 텐서의 zz-요소. 단지 항복(YLDSTRTS > 0) 이 지정되었을 경우에만 유효.
pstrainmag 소성 변형 텐서의 xx-요소. 단지 항복(YLDSTRTS > 0) 이 지정되었을 경우에만 유효. 이는 소성 변형 텐서의2차 불변항의 제곱근이다.
Continued on next page

Table 11.9 – continued from previous page

FE MESH VARIABLE DESCRIPTION
nn:T Normal component of traction on the component interface. This is a measure of the force (due to surrounding fluid, neighboring components) on the component. Non-zero only on component interfaces.

요소 경계면 상의 마찰력의 수직 성분. 이는 요소에 대한 힘(주변유체 및 인근요소) 의 척도이다.

EXODUS II 격자를 FLOW-3D로 가져오는 것이 가능하다. 이 기능을 이용하여 FLOW-3D 에서 미리 생성된   EXODUS II 격자는 디폴트 FLOW-3D FE 격자형태 대신 FE 격자를 지정하는데 사용될 수 있다.

사용자 이용 면에서 FE mesh type의 펼쳐지는 메뉴의 마지막 선택은 Use EXODUS FE mesh 이며 EXODUS II 파일형태 격자의 입력을 허용한다.