Fig.4 Schematic of a package structure

Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling

Junichi Saeki and Tsutomu Kono
Production Engineering Research Laboratory, Hitachi Ltd.
292, Y shida-cho, Totsuka-ku, Yokohama, 244-0817 Japan

Abstract

Thermosetting molding compounds are widely used for encapsulating semiconductor devices and electronic modules. In recent years, the number of electronic parts encapsulated in an electronic module has increased, in order to meet the requirements for high performance. As a result, the configuration of inserted parts during molding has become very complicated. Meanwhile, package thickness has been reduced in response to consumer demands for miniaturization. These trends have led to complicated flow patterns of molten compounds in a mold cavity, increasing the difficulty of predicting the occurrence of void formation or gold-wire deformation.

A method of three-dimensional (3-D) flow analysis of thermosetting compounds has been developed with the objective of minimizing the trial term before mass production and of enhancing the quality of molded products. A constitutive equation model was developed to describe isothermal viscosity changes as a function of time and temperature. This isothermal model was used for predicting non-isothermal viscosity changes. In addition, an empirical model was developed for calculating the amount of wire deformation as a function of viscosity, wire configuration, and other parameters. These models were integrated with FLOW-3D® software, which is used for multipurpose 3-D flow analysis.

The mold-filling dynamics of an epoxy compound were analyzed using the newly developed modeling software during transfer molding of an actual high performance electronic module. The changes in the 3-D distributions of parameters such as temperature, viscosity, velocity, and pressure were compared with the flow front patterns. The predicted results of cavity filling behavior corresponded well with actual short shot data. As well, the predicted amount of gold-wire deformation at each LSI chip with a substrate connection also corresponded well with observed data obtained by X-ray inspection of the molded product.

Korea Abstract

열경화성 몰딩 컴파운드는 반도체 장치 및 전자 모듈을 캡슐화하는 데 널리 사용됩니다. 최근에는 고성능에 대한 요구 사항을 충족시키기 위해 전자 모듈에 캡슐화되는 전자 부품의 수가 증가하고 있습니다.

그 결과 성형시 삽입 부품의 구성이 매우 복잡해졌습니다. 한편, 소비자의 소형화 요구에 부응하여 패키지 두께를 줄였다. 이러한 경향은 몰드 캐비티에서 용융된 화합물의 복잡한 흐름 패턴을 야기하여 보이드 형성 또는 금선 변형의 발생을 예측하기 어렵게합니다.

열경화성 화합물의 3 차원 (3-D) 유동 분석 방법은 대량 생산 전에 시험 기간을 최소화하고 성형 제품의 품질을 향상시킬 목적으로 개발되었습니다. 시간과 온도의 함수로서 등온 점도 변화를 설명하기 위해 구성 방정식 모델이 개발되었습니다. 이 등온 모델은 비등 온 점도 변화를 예측하는 데 사용되었습니다.

또한 점도, 와이어 구성 및 기타 매개 변수의 함수로 와이어 변형량을 계산하기위한 경험적 모델이 개발되었습니다. 이 모델은 다목적 3D 흐름 분석에 사용되는 FLOW-3D® 소프트웨어와 통합되었습니다.

실제 고성능 전자 모듈의 트랜스퍼 몰딩 과정에서 새로 개발 된 모델링 소프트웨어를 사용하여 에폭시 화합물의 몰드 충전 역학을 분석했습니다. 온도, 점도, 속도 및 압력과 같은 매개 변수의 3D 분포 변화를 유동 선단 패턴과 비교했습니다.

캐비티 충전 거동의 예측 결과는 실제 미 성형 데이터와 잘 일치했습니다. 또한, 기판 연결이 있는 각 LSI 칩에서 예상되는 금선 변형량은 성형품의 X-ray 검사에서 얻은 관찰 데이터와도 잘 일치했습니다.

Fig.1 A system of three-dimensional flow analysis for thermosetting compounds
Fig.1 A system of three-dimensional flow analysis for thermosetting compounds
Fig.2 Procedure for determining viscosity changes of thermosetting compounds
Fig.2 Procedure for determining viscosity changes of thermosetting compounds
Fig.4 Schematic of a package structure
Fig.4 Schematic of a package structure
Fig.6 Calculated results of filling behavior and temperature  distribution in the runner
Fig.6 Calculated results of filling behavior and temperature distribution in the runner
Fig.8 Comparison of cavity filling
Fig.8 Comparison of cavity filling

References

1)J.Saeki et al. ,6th annual meeting of PPS, 12KN1(1990)
2)J.Saeki et al. , JSME International Journal Series Ⅱ, 33,486(1990)
3)J.Saeki et al.,SEIKEI KAKOU,12,67(2000)
4) J.Saeki et al.,SEIKEI KAKOU,12,788(2000)
5) J.Saeki et al.,SEIKEI KAKOU,13,49(2001)

Selective electron beam melting – Void formation / 선택적 전자빔 용해 – 공극 형성

L-PBF프로세스와의 차이점

  • 레이저 source대신 사용되는 전자빔
    – 진공 챔버에서 공정 발생
    – 더 큰층 / 분말 크기로 인해 빌드 속도는 높아지지만 표면 조도는 낮아짐
    – 고온에서 공정 발생
    – 낮은 잔류 응력 및 더 조밀 한 미세 구조
  • SEBM 프로세스 모델링
    – 전자빔의 깊이 기반 흡수
    – 볼링 및 불균일성과 같은 용융 풀(Melt pool) 결함과 관련

스캔 전략 및 공극 형성

  • Ti-6Al-4V에서 다중 트랙 및 다중 레이어의 SEBM 프로세스를 조사한 연구
    – 분말 확산의 DEM모델과 분말 용융의 CFD모델 통합
  • 스캔 전략은 공극의 영향을 미침

공극 형성의 성향 : 다중 트랙의 다중 레이어

  • 단방향 케이스 (그림 a)
    – 두 스캔 경로의 중간 부근에 보이드가 형성됨
    – 이 위치에서 분말 입자의 두꺼운 층과 낮은 에너지 밀도
  • 반대 방향 케이스 (그림 b)
    – 두 번째 레이어 트랙의 시작 근처에 추가 빈 공간이 있는 중심으로부터 빈 위치 오프셋
    – 시작점 근처의 녹는 깊이는 트랙을 따라 멀어짐
    – 가장자리 근처의 공극은 단방향보다 반대 방향의 겨우 더 뚜렷함
  • 레이어별 회전 스캔 전략
    – 중심선 사이의 중간 지점에서 첫 번째 및 두 번째 레이어에서 보이드가 관찰
    – 공극은 θ = 0 ° 및 θ = 180 °에서 더 일반적
  • 레이어 별 인터레이스 스캔 전략
    – 두 번째 레이어 스캔 라인은 첫 번째 레이어 스캔라이의 중심을 따라 놓임
    – 두 번째 레이어 스캔 위치로 인한 보이드 제거에 보다 효과적임